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ABSTRACT
Analyzing and mining geo-referenced trajectory data has
different aspects to researchers from different communities.
For example, animal location data provides ecologists live
points of contact between ecologies and the species. And
by studying movements of individual animals, they have
gained insight into population distributions, important re-
sources, dispersal settings, social interaction or general pat-
terns of how the space was used in an ecological system.
Similarly, geologists and environmentalists use earthquake
positional data for predicting the location of the next earth-
quake. Intelligent Transportation Systems and GIS com-
munities use heuristic algorithms on vehicle trajectory data
sets to construct or update digital street-maps that repre-
sent the data set. Recently, the Computational Geometry
community started to give attention to the street-map con-
struction problems as well, applying different approaches
and providing quality guarantees. Although different com-
munities use different types or aspects of the GPS data, they
face one challenge in common: how to model or incorporate
the impreciseness of the input data in their output. In this
paper we discuss specifically the impact of spatial inaccu-
racy of GPS trajectory data on street-map reconstruction

algorithms. In particular, we discuss approaches and chal-
lenges to associate that impreciseness with the reconstructed
street-intersections.
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Figure 1: Multi-vertex intersections extracted from
the original street-map of Berlin, Germany

1. INTRODUCTION
The problem of reconstructing street-maps from GPS trajec-
tory data is defined as: Given an input set I of GPS trajec-
tories in the plane and a precision parameter ε > 0, the goal
is to compute an undirected reconstructed graph that repre-
sents all curves in the set. Here, ε is a parameter that defines
the quality of the data. Intelligent Transportation Systems
and GIS communities mainly use heuristic algorithms [3, 10,
9, 5] while the Computational Geometry community applies
different approaches with quality guarantees [6, 1, 8, 2] to
solve this problem. Most of these approaches are based on
decomposing each street of a street-map into good portions

that are well-separated and other portions which are close
to intersections or other streets. Each point on a good por-
tion of a street is sufficiently far away from any point on any
other street or intersection. Reconstructing good portions of
a street is relatively easy using clustering approaches, where
the main idea is to group sub-trajectories that sample the
same street together based on ε and find a single represen-
tative curve for that group/cluster. But when it comes to
areas around street-intersections this approach fails. As the
streets incident to an intersection come close to each other
before sharing the intersection-vertex, the clustering algo-
rithm has a wide range of spatial uncertainty on where the
vertex is actually located and it will likely detect the ver-
tex where the trajectories become sufficiently close but not
where the intersection is actually located. And when an in-
tersection has a more complicated combinatorial structure,
consisting of multiple vertices connected with very short
streets, such algorithms fail to detect that as well. Hence, it
is not possible to detect the combinatorial structure and the
spatial position of a street-intersection with exact accuracy,
given noisy input trajectories.

Fathi et al. [7] propose an algorithm that constructs a street-
map from GPS data by initially finding street intersections.
They find the intersections using a classifier learned from
shape descriptors, then they connect the intersections with



A vertex component, v ∈ Vo

Figure 2: Original Street-map Model

roads and then optimize the estimated road network to best
fit the connected roads. Aanjaneya et al. [1] are the first to
provide guarantees on street-map reconstruction, although
their focus is different. They view street networks as metric
graphs and prove that their reconstructed structure is home-
omorphic to the original street network. Their main focus
is on computing an almost isometric space with lower com-
plexity, therefore they focus on computing the combinatorial
structure but they do not compute an explicit embedding of
the edges or vertices. In our most recent work [2] we bound
a region around an original vertex and prove that recon-
structed vertices will be created in that region. We also
proved that there is an one-to-one mapping between each
such region and a vertex. However, the difficulty with our
approach is that it generates multiple vertices for a single
original vertex. In both [1] and [2], the homeomorphism
claim is true only if each street-intersection consists of ex-
actly one vertex and if there is a specified minimum distance
(related to ε) between any two vertices. The algorithm of
Fathi et al. [7] also assumes that vertices are well-separated.
However, in practice street-intersections are not always well-
separated and do contain clusters of vertices (See Figure 1).

In this paper, we discuss various aspects and challenges of
the probabilistic street-intersection reconstruction problem.
The aim of this problem is to identify possible combinato-
rial structures and spatial positions of vertices in a street-
intersection, and associate a probability measure with each
outcome. A natural extension to the street-map reconstruc-
tion problem can be achieved by combining the results of
this paper with our previous work [2] to compute a class of
possible graphs representing the input trajectory set I , each
one having an associated probability measure.

2. PROBLEM FORMULATION
We model the original graph (street-map) Go = (Vo, Eo) as
an embedded undirected graph in R

2. We assume that Vo is
a set of connected graphs (vertex components) and each edge
is represented as a polygonal curve. Each vertex component
v ∈ Vo represents one street-intersection which could have
one or more vertices each one having degree > 2 and con-
nections between them (see Figure 2). Our Assumption 1b
implies how such vertex components are defined. We refer
to each edge of Go as a street.

Each trajectory in the input curve set I is assumed to have
sampled a connected sequence of edges in Go (street-path).
We model the error associated with each trajectory by a
precision parameter ε. Given an input set I of polygonal
curves in the plane, a precision parameter ε > 0 and a ver-
tex clustering parameter d, our goal is to compute probable
structures and positions of street-intersections and assign a
probability to each outcome.

d
kε

≤ 2kε+ d

> 3kε+ d

Figure 3: Illustration of Assumption 1 and 2

v

Figure 4: Intersection with an internal vertex

All of our assumptions in [2] will stay the same, except the
one about street-intersections (Assumption 1b). In the pre-
vious work we assumed that each vertex is sufficiently far
apart from other vertices, but since in practice vertices ac-
tually appear in clusters (see Figure 1) we redefine this as-
sumption as follows:

1. If for two streets γ1, γ2 there are points p1 ∈ γ1 and
p2 ∈ γ2 with distance ≤ 3ε, then either one of the fol-
lowing is true: a) γ1 and γ2 share a vertex v, and the
sub-curves γ1[p1, v] and γ2[p2, v] have Fréchet distance
≤ 3ε and they are fully contained in B(v0, 3ε/ sinα).
Here, α = ∠p1vp2 and B(v, ε) is the ε-ball centered at
v. b) γ1 and γ2 are connected to γs, and no point on γs
is (3ε)− good. γ1 shares a vertex v1 with γs, γ2 shares
a vertex v2 with γs, and the sub-curves γ1[p1, v1] and
γ2[p2, v2] have Fréchet distance ≤ 3ε and they are fully
contained in B(v1, 3ε/ sinα1) and B(v2, 3ε/ sinα2), re-
spectively. Here, α1 = ∠p1v1p2 and α2 = ∠p1v2p2.

2. The vertex clustering parameter d defines the maxi-
mum distance between any two vertices of the same
cluster. And the minimum distance between any two
vertices of different clusters is 3kε + d (see Figure 3).
Here, k = 3/ sinα.

3. Vertices that are incident to at least one street e ∈

Eo are called terminal vertices. We assume that the
number of edges in a shortest path between any vertex
and a terminal vertex is bounded by an integer c. For
example, c = 1 in Figure 4 for vertex v.

The first assumption ensures that vertices are either within
distance d from all vertices in an intersection or they have
distance greater than 3kε + d from all the vertices that be-
long to different intersections. This assumption ensures un-
ambiguous clustering. We use the first two assumptions to
compute the vertex cluster of candidate vertices. The third
assumption bounds the maximum possible number of ver-
tices in an intersection.



3. MODELINGUNCERTAINTY INRECON-
STRUCTED INTERSECTIONS

There are two main types of inaccuracy in time-stamped
positional data [11]: a) measurement error, caused by GPS
device error or signal propagation delay, and b) sampling er-

ror, reflecting how well the finite sequence of position sam-
ples represents the actual infinite trajectory of points. Al-
though trajectories are often modeled as polygonal curves
through the sequence of position samples, there are many
other possible original curves that could have generated the
same sequence of position samples. 1

There are two approaches to model such spatial uncertainty
in trajectories [12, 11]: 1. Pdf-based models, such as asso-
ciating a two-dimensional probability density function with
each time-stamped position. 2. Shape-based models bound
the possible locations by geometric shapes.

Although, there are different models to handle uncertainty
associated with the input, it is not yet clear how to use
them to generate probable outputs and how to associate
a probability measure to each one of them. So, the main
problem is to model the uncertainty of the output. In our
case, we observe two different kinds of uncertainty that could
arise due to having uncertain input data:

1. Spatial uncertainty defines the probability of a specific
position for an intersection-vertex. For example, in a
4−way intersection with one vertex, the reconstructed
vertex could be in different positions with non-zero
probabilities.

2. Structural uncertainty defines the probability of how
the streets around a vertex cluster are connected to
each other. For example, in a multi-vertex 4 − way
vertex-cluster, there are many different ways they could
be connected (see Figure 6). A vertex cluster with just
one vertex does not have structural uncertainty.

In this paper we discuss challenges and approaches of proba-
bilistic street-intersection reconstruction for single-vertex in-
tersections and multi-vertex intersections separately. When
there is just one vertex, we will exploit the location of inter-
sections of trajectories as witnesses to assign probabilities to
different vertex positions.

Single-Vertex Intersections
The motivation behind this approach is to reduce the num-
ber of vertices generated by our previously proposed algo-
rithm in [2]. In this section, we discuss our approach to
identify probable positions of a single vertex based on the
location of intersections of input trajectories. We compute
a combinatorial structure C which, under reasonable condi-
tions, has a one-to-one mapping between the intersections of
its edges and the intersections of the corresponding trajec-
tories. We also provide a guarantee for the distance between
the original intersection and our reconstructed vertex.

1Note that we will neither model missing data in the form
of failed location attempts because of adverse environmental
conditions that make the device hard to connect to satellites,
nor error caused by change of orientation of the device which
is a common type of error in animal movement data [4] .
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Figure 5: (a) Original street-map (b) Candidate ver-
tices of intersection v (c) Combinatorial Represen-
tation C for v (d) Dashed portion is not part of the
input trajectory

Our Approach
Our aim is to use the location of intersections between in-
put trajectories as witnesses for positioning a vertex. Our
approach consists of the following steps:

1. Clustering Candidate Vertices
In this step we form clusters of candidate vertices which
belong to the same intersection. A pair of candidate
vertices (ve, vl) consists of the first or last two points on
two different trajectories e and l, where dist(ve, vl) is
less than or equal to some specified distance, in our set-
ting it is 1.5ε (see Figure 5(b)). Such pairs can be com-
puted as terminal points of the partition in M1.5ε(e, l)
using our previously published algorithm in [2].
After comparing vl with endpoints of e, we determine
if vl and ve belong to an existing cluster or to a new
cluster. This is justified by Assumption 1b. Cluster-
ing of candidate vertices will be done within distance
2kε + d. With each such cluster we identify and save
the entry and exit candidate vertices for each trajec-
tory that pass through the intersection. In this fashion
we are storing traffic flow information.

2. Creating Combinatorial Representation C
We compute a combinatorial representation for each
cluster in the following steps: (a) Compute a disk D
centered at a candidate vertex that contains all vertices
of the cluster. (b) Compute a circular ordering S of
intersections ofD with all edges around the cluster (see
Figure 5(b), the squares indicate such intersections).
(c) Add all of the intersection points as vertices in C.
And also add edges between two vertices if there is
a trajectory that enters and exits the cluster through
them (see Figure 5(c)). Exploiting the assumptions
stated in Section 2, it can be proven that two edges e1
and e2 between non-consecutive vertices in S intersect
in C iff their corresponding trajectories intersect.

3. Probable Positions
Any intersection between edges of C indicates that cor-
responding trajectories have at least one intersection.
We pick one pair of edges from C that intersect and
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Figure 6: 4 way Intersection

compute and define one of the intersections of the cor-
responding trajectories as a probable position of the
vertex. Using a similar explanation as in [2], it can be
proven that the distance between the original and such
probable vertex is ≤ ε/2 sinα/2.

Challenges
Unfortunately, this approach will not work when two or more
one-way streets merge into a single one. Additional unsolved
issues include: a) How to assign a probability measure to
such probable positions, and b) how to assign a probability
to the parts of the reconstructed streets computed by our
algorithm which are not parts of the input trajectory (see
Figure 5(d)).

Multi-Vertex Intersections
We consider two types of graphs in a vertex component: a) a
DAG, similar to Figure 6(b), or b) a cyclic graph, similar to
the intersections in Figure 6(c) and (d). We compute the
cluster of candidate vertices for intersections using the same
approach but, for multi-vertex intersections the trajectory
intersections are not always good witnesses for existence or
probable positions of a vertex. For example, in Figure 7
although the intersection has two vertices the trajectories
intersect just once. How to compute probable vertex posi-
tions is an unsolved challenge for multi-vertex intersections.

Modeling Structural Uncertainty
Here, we propose a model for the structural uncertainty of a
multi-vertex intersection. We assume we have the following
input:
a) Let S = s1s2s3 . . . sn be the circular ordering of the
streets around the intersection.
b) Each street has an associated probability that describes
the probability of sharing a vertex or edges with incident
edges: Pr(sisi+1) denotes the probability of si and si+1

sharing a vertex, and Pr(sisi+1) denotes the probability of
si and si+1 are being connected by an edge which does not
have a good section (or, the probability of si and si+1 not
sharing a vertex). For example, s1 and s2 share a vertex
while s2 and s3 are connected by an edge in Figure 7. Based
on our assumptions, Pr(sisi+1) + Pr(sisi+1) = 1.
And using our model we can answer the following queries:
a) Find the most likely or least likely intersection structure
for a given input. b) The probability of a given combina-
torial structure of an intersection for a given input.

Challenges
There are many issues which need to be solved for multi-
vertex intersections: a) How to compute the most likely spa-
tial positions of vertices. b) How to assign probabilities to
each street which will indicate if it shares a vertex or edges
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Figure 7: Intersections are not good witnesses.

with incident streets. c) How to model the probability asso-
ciated with streets that connect vertices of an intersection.
Also, the existence of non-terminal vertices in intersections
adds another whole new set of challenges.

4. CONCLUSION AND FUTURE WORK
This paper is an effort to identify different issues and re-
search opportunities on the probabilistic modeling of the
street-intersection reconstruction problem. And even though
identifying good-sections is easy, it is still not clear how to
combine the uncertainties of sub-trajectories that belong to
one cluster to compute a representative curve with the low-
est uncertainty. In our future work we hope to address the
challenges presented here.
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