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ABSTRACT
Ontological structures provide a rich hierarchy of concepts
and relationships that are helpful in exploratory analysis.
Ontologies, however, are often categorical, which introduces
ambiguity, and makes numerical analysis difficult. Adding
to the problem is the fact that as the number of ontological
concepts increases so does computational complexity for a
variety of analytical tasks. In this paper, we propose both
spatial and ontological co-occurrence as a means to derive
similarity among categorical values. More specifically, we
devise a method that combines entity location as well as
categorical frequency into a numerical measure of similarity
for any pair of categorical values. In addition, we show how
different ontological levels can hide or uncover information
content while influencing the number of processed categor-
ical values. We provide experiments that demonstrate the
effectiveness of our approach.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and Meth-
ods]: Semantic Networks—data mining, spatial information
retrieval

General Terms
Algorithms, Theory

Keywords
Categorical data, ontologies, spatial hierarchies

1. INTRODUCTION
An ontology is commonly defined as a graph structure that

models connectivity among concepts and relationships in a
real-world domain [13]. One of its strengths is knowledge
sharing, in which field experts agree a priori on standard
concepts and linkage among them. The International Clas-
sification of Diseases (ICD), is such an example [2]. Pro-
vided by the World Health Organization (WHO), ICD is a
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Figure 1: International Classification of Diseases
(ICD) - partial view.

hierarchical structure that assigns codes to diseases and dif-
ferentiates them at nested levels. In Figure 1, Codes [I00
- I99.9], for instance, cover Diseases of the circulatory sys-
tem, which are further reclassified into subcategories: Acute
rheumatic fever (I00-I02.9), Cerebrovascular diseases(I60-
I69.99), and others.
Ontologies are designed such that, at shallow levels, con-
cepts are general in purpose. As traversal moves to deeper
levels, concepts become increasingly specific. Thus in Fig-
ure 1, while Level 1 (L1) has a general node for Diseases
of the circulatory system, Level 2 (L2) decomposes it into
several possibilities, such as Ischemic heart diseases. Other
levels exist, though not shown.

Ontological concepts are quite often categorical or nom-
inal by nature, making it difficult to establish a similarity
measure. Take for instance Figure 2, which depicts a few oc-
currences of heart disease in the region around Washington,
D.C. In between Reston and Tyson’s Corner, there is one
occurrence of hypertensive (⊗) heart disease along with one
occurrence of ischemic (4) heart disease. Spatially speak-
ing, their distance is just a few miles apart. Ontologically,
however, it is neither apparent nor intuitive whether hyper-
tensive is closer to ischemic than to other diseases, such as
pulmonary (2), or vice-versa. The hierarchy of Figure 1
shows that these elements reside in the same level (L2), but
their positioning relative to one another is at best arbitrary.
Without a proper numerical similarity, the ontological space
becomes challenging to reason over, which is a requirement



Figure 2: Hypothetical heart disease occurrences in
Northern Virginia.

in many analytical techniques. Certain classification ap-
proaches rely on numerical similarity to work properly [15],
while other data transformation techniques strictly require
numerical values, as is the case in PCA-based multidimen-
sional reduction [10] and certain clustering techniques [3].
Determining similarity as a condition of identity and relat-
edness among spatial entities is normally approached from
a Euclidean1 perspective. Distance and other quantitative
measures (e.g., a person’s age or water temperature) are
ideal as comparative norms since they provide an inherent
basis for differentiation and ordering.

When combined with spatial properties, a categorical sim-
ilarity measure may be devised quantitatively according to
data point frequency. In this manner, an “ontological sim-
ilarity between diseases” can be achieved. This idea makes
two assumptions: distances between each pair of entities are
available (or can be computed) and each entity is annotated
with a categorical label. Indeed, this is an ideal situation for
ontologies that reside both on the spatial domain (i.e., has
location) and on the non-metric space (i.e., has categorical
data). It is also considered a local approach since it relies
on the spatial distribution of data points within a region. In
addition, it lends itself well to specific contexts(e.g., blood
diseases), but can be easily extended as a general purpose
approach (e.g., diseases).

The number of levels in an ontology (i.e., depth) is count-
ably infinite. While there’s no limit on depth, there are
certainly trade-offs between information accuracy and com-
putational complexity at different levels. Figure 1, for in-
stance, has n = 6 diseases at L1. Making a hypothetical
calculation between one disease and all remaining others at
that level would require (n− 1) = 5 operations. Comparing

all to all would require n(n−1)
2

= 15 operations, assuming
symmetry among diseases (i.e, AB is equal to BA). At L2,
with n = 12, 1-to-all would need 11, while all-to-all would
require 66 operations.
This example underscores the fact that, at deeper ontolog-
ical levels, computation costs tend to rise. The good news,
on the other hand, is that at deeper levels, information
is richer: extracting L1 data only yields general types of
diseases, while L2 provides more specific knowledge. For
a given application, then, what level strikes the right bal-
ance between cost and information content? While certain
queries may just ask for metabolic diseases(L1), others may
demand the same, but related to Diabetes mellitus(L2). We

1Other distances are also applicable, but are outside the
scope of this document.

use this trade-off as a motivation when calculating an onto-
logical similarity. The major contributions of this paper are
as follows:

D A method to generate a quantitave similarity
measure for categorical data points. We extend
the concept of Pair Correlation Function(PCF ) [14] as
ontological similarities which measure the frequency of
co-occurrence of a pair of categories at specific spatial
distances. In our set up, we are interested in any pairs
of entities whose distance fall within a given range, and
use their category values and frequencies to determine
similarity.

D Reasoning over ontological levels. Determine when
working at deeper levels impacts the tradeoff between
information content and the number of categories to
be processed.

In section 2, we compare existing literature to our work
and note where they deviate or target different goals. Sec-
tion 3 provides background information referenced through-
out the remainder of the paper. The foundation for the
categorical similarity measure, which includes identification
of spatially-proximal entities, segmentation, and merging are
given in Section 4. Section 5 binds our proposed approach in
an algorithm, explains its phases, and provides a computa-
tional complexity analysis. We discuss our experiments and
provide insight into the results in Section 6, and conclude in
Section 7.

2. RELATED WORK
The notion of categorical similarity was applied on tax-

onomies in the early biological sciences (Gregor Mendel,
1822-1884 [12]). In modern times, similarity based on cate-
gorical data can be seen as one of two general types: entity
level, where the entities themselves are compared based on
the number of common characteristics; and attribute level,
where divergence is established among attribute values, but
not necessarily among their entities. Therefore, if two per-
sons share a few disease symptons, one could say the two
entities are similar. At the attribute level, however, the sim-
ilarity is simply between symptons, and no assumption is
extended to the similarity between the two persons.

Entity Level: These approaches are more related to the
idea of concept merging. Consider Table 1, where (vm, vn)
denotes two attribute values. Bouquet et al. propose a sim-
ilar approach to single hopping, where the distance between
two entities is determined by their shortest path to each
other [5], as a function of their distance to the root over the
distance of their Least Common Ancestor (LCA) to the root.
A variation is given by Leacock et al. [9], where the short-
est path length is scaled by the depth D of the ontological
tree. Haase et al. considers the length of the shortest path
between two concepts and the depth of the tree, adjusting
them with parameters α and β respectively for differentiated
weighing. In practical terms, they ignore correlation among
entities since they do not consider what groups of categories
are prevalent. Rather, only paths among individual entities
are examined. As will be shown in Section 3, we depart from
these approaches by looking not only where they occur, but
also how commonly they appear in the dataset.



Attribute Level: One of the simplest approaches is the
overlap measure, in which a value of 1 is assigned when two
attributes match, and 0 otherwise. This approach gives ev-
ery match and mismatch the same importance, and thus may
not work well for many applications due to its oversimplified
measure. There have been other more robust approaches to
the problem.

Inverse Occurrence Frequency (IOF) is related to term-
frequency and inverse document frequency (TF-IDF ) [6].
However, it operates on categorical data, not documents.
The highest similarity occurs when vm and vn appear only
once. When vm and vn are the only two values, and each
occurs half the time, then the lowest similarity is observed.
This approach also favors small categorical sets. Our ap-
proach favors entities that co-occur frequently.

Goodall examines the probability that a particular value is
observed for a pair of objects in a random sample [8]. In-
frequent values are given more importance, which is more
applicable to outlier detection, and less to entity relevance.
Our approach also investigates frequencies, but rather, we
claim higher frequency as a better indicator of importance.
Under Lin [11], the similarity value is rewarded on frequent
matches, and punished on infrequent mismatches. A draw-
back is that in many datasets mismatches are dominant, and
thus, may have an adverse effect on the overall similarity.
For this reason, we do not take mismatches into considera-
tion.

Eskin et al. take a somewhat different direction by look-
ing at the number of values a particular category can take
[7]. When the values match, the similarity is maximal. Oth-
erwise, it decreases based on the number of possible values.
This approach has better usage in small category sets, but is
less than ideal in wide categories. While real-world applica-
tions do limit the number of categories to a certain extent,
our approach leaves that restriction to the domain expert,
not the algorithm.

An additional aspect that differentiates our approach is
the use of spatial co-location. In the above methods, the re-
lation between entities is independent of physical proximity.
Our motivation is that, even though similarity is influenced
by frequency, nearby entities should be more influential than
distant ones. We address this problem by calculating both
spatial and ontological similarities, while imposing on each a
weighing scheme, as one of our contributions. Our approach
is the last item in Table 1.

3. PRELIMINARY CONCEPTS
Entities in a high-dimensional space are often qualified

by attributes of different natures: discrete, continuous, cat-
egorical (or nominal), interval, ordinal, among others. In
our approach, a similarity measure δ defined by a shared at-
tribute ak between entities ep and eq must meet the following
requirements:

1. δak(ep,eq) ≥ 0 iff ep 6= eq (positive definiteness)

2. δak(ep,ep) = 0 (equality)

3. δak(ep,eq) = δak(eq,ep) (symmetry)

Positive definiteness maintains that for any given dis-

Table 1: Similarity Measures

Measure on Entity e or Attribute a spatial

a overlap =

{
1 if vm = vn
0 otherwise

8

a Goodall =

 1−
|V |∑
m=1

Fr(vm)Fr(vm − 1) if vm = vn

0 otherwise

8

a Lin=

 2× log(Fr(vm)Fr(vm − 1)) if vm = vn
2× log(Fr(vm)Fr(vm − 1) + Fr(vn)Fr(vn − 1))
otherwise

8

a Eskin =

{
1 if vm = vn
Fr(vm)
Fr(vm)+2

− Fr(vn)
Fr(vn)+2

otherwise
8

a IOF =

{
1 if vm = vn

1
1+log(Fr(vm))×log(Fr(vn))

otherwise 8

e Haase =

 e
−αl e

βh−e−βh

eβh+e−βh if vm 6= vn
1 otherwise

8

e Bouquet =
{

d(vm,root)+d(vn,root)
2×d(LCA(vm,vn),root)

8

e Leacock =
{
max[−log( d(vm,vn)

2D )] 8

a Oσ∗(vm,vn) −→ see Section 4.3 4

vm, vn: categorical values Fr(vm): frequency of vm
d(vm, root): distance from vm to tree root
LCA(vm, vn): Least Common Ancenstor of vm and vn

tance2 function, two entities can only lie apart from each
other if they are separate objects. Further, two separate
objects can have zero distance (i.e., same location). Item
#2 complements that thought by stating that an object can
never be distant from itself. Symmetry establishes that the
distances are the same regardless of origin and destination
(i.e., going from A to B is the same as going from B to A).

These definitions lend themselves to practical use under cer-
tain assumptions: values are numerical and allow ordering to
be established. In addition, data points (entities, elements,
objects) are well defined in unambiguous format: two ob-
jects are either the same exact thing or completely separate
elements. The effect of the above rules have significant im-
pact on data reasoning as it simplifies the computation of
similarity measures via numerical analysis. In our earlier ex-
ample, we can easily determine that a heart-disease patient
at 239 mg/dL cholesterol is more similar to a 220 mg/dL
person than to a 189 mg/dL person.

Commonly, the 3 above requirements are not applicable
to categorical analysis. In the same manner that the curse
of dimensionality causes metric data to become sparse in
high dimensions [4], categorical data dilute the meaning
of similarity in a complex ontological space. Take for in-
stance the attributes side-effects = {anxiety, nausea, tired-
ness, swelling, coughing} and risk-factors = {gender, hered-
ity, smoking, nutrition}. If persons pe1 and pe2 suffer anx-
iety, while persons pe2 and pe3 have the same nutritional
diets, which 2 persons are closer, the ones that share side-

2Distance and similarity have an inverse relationship, their
converse used interchangeably in this paper.



Figure 3: (a) A hypothetical region of radius r. (b)
5 pairs of entities segmented by distance.

effects or the ones that share risk-factors? For these 2 cat-
egorical attributes, items #1 and #2 (see the requirements
above) do not hold since there’s no distance within or be-
tween side-effects and risk-factors. However, we do know
they are separate concepts, and should be treated likewise.
As such, this paper constrains the discussion to a single cat-
egorical attribute with many possible values. Item #3 is
important because it allows bidirectional processing of at-
tributes, and lowers overall processing when comparing ele-
ments. The following definitions will be used going forward:

I ) D is a multi-dimensional dataset.

II ) E = {e1,e1,...,ej} is a set of entities.

III ) δ:E x E =⇒ R is a spatial distance function.

IV ) The region R w.r.t. radius r, denoted Rr, constrains
the set of entities E such that ∀k, z ∈ {1,...,n}, z6=k,
the spatial distance δ(ek,ez) ≤ 2r.

V ) A = {a1,a2,...,aj} is a set of attributes of ek in E.

VI ) V = {v1,v2,...,vj} is a set of categorical values of ak
in A.

VII ) Fr(vk) is the frequency of value vk in the entire
dataset D.

VIII ) The spatial segment SSq w.r.t. Rr is comprised of all
pairs of entities whose distance is equal to or greater
than q × c and less than (q + 1)× c. q is the segment
index and c is a user-defined length of each segment.

IX ) The ontological segment OS(vm,vn) w.r.t. Rr, is com-
prised of all pairs of entities whose attribute values are
(vm, vn) or (vn, vm) (i.e., symmetrical).

Objective:

1. Devise an Ontological Similarity Oσ∗(vm,vn) between
pairs of categories based on co-occurrence frequency
and spatial distance.

4. ESTIMATING A LOCAL CATEGORICAL
SIMILARITY

In this section, we describe a method to estimate the simi-
larity between two categorical labels based on co-occurrence
frequency and the Euclidean distance between pairs of enti-
ties. Other distance types can be substituted.

Given an entity ek in a dataset of |E| entities, ai is a single-
valued random attribute of ek assuming one of the values in
V. The probability of observing ai = vj is the frequency of
vj in the dataset:

Fr (vj ) = P [ai = vj ] =
|E|vj
|E| (1)

where |E|vj is the number of entities with a vj attribute
and |E| is the total number of entities in Rr. Figure 3(a)
has a total of 34 entities within radius r. Each entity is
represented by its disease category, i.e., 2 or ⊗ or 4. There
are 15 2, 15 ⊗, and 4 4. According to Equation (1), Fr (2)
= 15

34
, Fr (⊗) = 15

34
, and Fr (4) = 4

34
.

In order to group pairs by distance, we must define two
values: the number of segments we would like to work with;
and a uniform length of each segment. These values are
application-specific. For instance, we can create 5 segments,
each one being 2.5 miles wide. Each segment has an index
q ∈ {1..n} whose greatest value denotes the total number of
segments created. The length of each segment corresponds
to parameter c in Section 3, definition VIII. We use each
segment as follows: within region Rr, all pairs of entities
located less than 2.5 miles apart are allocated to Segment
1. Segment 2 encompasses all pairs of entities between 2.5
miles and less than 5 miles, and so forth. Figure 3(b) shows
5 pairs of entities (p1 through p5) at different distances. Pair
p1 is composed of two entities with categorical values (⊗4),
which are located 2 distance units from each other. Pair p2
has the same distance, but with different categories. Both
would go to the same segment since they have the same
distance. Pair p3 would go to segment 2, and pairs p4 and
p5 would go to segment 3.

The number of segments can be set randomly or according
to application need, since no single approach can be shown
always appropriate under different spatial distributions and
varying frequencies. A feasible method, however, is to find it
based on dmax, the distance between the two farthest entities
in Rr, as shown in Figure 3(b). Dividing it by a user-defined
value λ, produces segment length c:

c =
dmax
λ

(2)

Therefore, if the 2 farthest entities are 7.5 miles apart from
each other, and λ=3, we obtain 3 segments, which can be set
for distance ranges [0-2.5),[2.5,5.0), and [5.0,7.5). Adjusting
λ from lower to higher values influences the granularity from
coarser to more fine-grained.

4.1 Spatial Pair Segmentation
The steps explained earlier create a separation of entities

in space. Our motivation is that nearby entities tend to be
more similar than distant ones, as is commonly accepted in
geographic systems. Based on spatial distance, each pair of
entities is allocated to a unique spatial segment:

SS q =
⋃
{ej , ek} (3)

such that: q×c ≤ δ(ej , ek) < (q+1)×c as in Definition VIII.
In Figure 4, there are 3 segments: SS1 and SS3 have 2 pairs
of entities each, while SS2 has 1 pair, based on Figure 3(b).
For simplicity, this example only shows 5 pairs, though all
others would need to be accounted for, as well.

4.2 Segment Merging



Figure 4: Segmentation based on spatial distance

Having in hand all spatial segments, we must now create
separate ontological segments, as described in Defintion IX.
This is simply a matter of allocating all pairs of entities with
the same categories to the same segment. In Figure 3(b), for
example, we can allocate p1 to Segment 1 and p3 to Segment
3. As for p2, p4 and p5, they go into segment 2 since they
have the same pairs of attributes. The partial results are
shown in Figure 5.

The next step is to merge the spatial and ontological seg-
ments. This is accomplished by comparing the qth SSq seg-
ment against each of the OS(vm,vn) segments, and combining
the common pairs of attributes:

Seg
SSq

OS(vm ,vn )
= SS q

⋂
OS(vm ,vn ) (4)

We denote them as merged segments. To paraphrase, we
break down each spatial segment based on ontological seg-
ment. For example, intersecting SS1 of Figure 4 withOS(⊗,4)

of Figure 5 generates only 1 common pair, which is Seg
SS1

OS(⊗,4)
=

{P1}. Likewise, Seg
SS1

OS(⊗,2)
= {P2}.

4.3 Ontological Similarity Computation
By looking at each merged segment, we first define the

Segmented Correlation Factor (SCF):

SCF q(vm,vn) =
|segSS

q

OS(vm,vn)
|

|segq∗|
(5)

SCF computes the probability of observing a given pair
of categories among all different pairs of categories in all
merged segments with the same index q (denoted by segq∗).
In practice, it implies the frequency of entities that share the
same attributes within a certain spatial distance. From the

previous section, where Seg
SS1

OS(⊗,4)
= {P1} and Seg

SS1

OS(⊗,2)
=

{P2}, then we can calculate SCF 1
(⊗,4) = 1

2
. Similarly,

SCF 1
(⊗,2) = 1

2
. It is possible to observe pairs of categories

that are very frequent, whereas others are very rare. This
leads us to define Ontological Similarity :

Oσq
(vm ,vn ) =

SCF q
(vm ,vn )

Fr(vm).Fr(vn)
(6)

For all purposes, the Ontological Similarity is just the nor-
malized version of the SCF calculation. By taking into ac-
count the frequencies of each category calculated earlier in
this section, it prevents extremely common categories from

dominating all others. Therefore, Oσ1
(⊗,4) =

1
2

15
34
. 4
34

= 9.70.

Because each segment has an ontological similarity per pair
of categories, we end up with a matrix of values as shown

Figure 5: Ontological segmentation

in Figure 6. Since our goal is to obtain a single measure be-
tween categories, we consolidate the various ontological simi-
larities as follows:

Figure 6: Hy-
pothetical matrix
of ontological dis-
tances.

Oσ∗(vm,vn) =

λ∑
i=1

Oσi(vm,vn)
i

(7)
Equation (7) adds all onto-

logical similarities of a particu-
lar pair into one value. Note
that it also divides each one by
its segment number i. Lower
segment numbers have spatially
closer entities, and therefore
contribute more to the overall
value. As the segment numbers increase, the overall con-
tribution decreases. In Figure 6, we then have Oσ∗(2,4) =
6.20
1

+ 2.19
2

+ 2.77
3

= 8.21. Likewise, Oσ∗(2,⊗) = 6.11 and
Oσ∗(4,⊗) = 14.8. Based on spatial co-location and frequency
of attributes, these ontological similarities allows us to infer:
4 is more similar to ⊗ than to 2. In addition, (2,⊗) is the
least similar of the 3 pairs.

5. COMPUTATIONAL COMPLEXITY
Algorithm 1 puts togegther our approach for ontological

similarities in 6 phases. As inputs, it expects a set of entities
for which one of its attributes is annotated with a categori-
cal value in a set V, and λ, the maximum number of spatial
segments to be considered.

Phase I generates several components needed throughout
the algorithm. First, matrix sp d m stores the spatial dis-
tance between every pair of entities in the set E (Lines 1-5).
Because our data is spatially symmetric (i.e., distance from
A to B equals distance from B to A) only the upper half of
the matrix needs to be populated. The frequencies of each
category are gathered in Lines 6-8, each of which is stored
in its own variable. The next pre-processing step is to ob-
tain from the spatial distance matrix the largest distance
between any two entities (Line 9). In combination with λ,
it helps determine the length c of each segment that we will
work with, and also the index q, to identify each generated
segment.

Segmentation is done in Phase II, where the first step
is to examine the spatial distance matrix. For spatial seg-
mentation (Line 12), each pair of entities whose distance is
in the same range is allocated to the same segment q. For
ontological segmentation (Line 13), all pairs of entities that
share the same categories are also stored in the same seg-



Algorithm 1: Computing Ontological Similarities

inputs : set of entities E, λ, set of attribute values V
output: a descending list of ontological distances

{Phase I: pre-processing steps}
1: for i = 1 to |E| do
2: for j = i+ 1 to |E| do
3: sp d m(i, j) = δ(ei, ej) /*build spatial distance matrix*/;

4: end

5: end
6: foreach (vi) in V do

7: set Fr(vi) =
|Evi |
|E| /*compute frequency of each category*/ ;

8: end

{define number and length of segments}
9: set d max = max{sp d m} ;

10: set c = d max/λ; q = 1 to λ ;

{Phase II: allocate entity pairs to spatial and

ontological segments}
11: foreach (ei, ej) in sp d m do
12: SSq ←− sp d m(i, j) /*apply definition VIII in Section 3*/;
13: OS(vm,vn) ←− sp d m(i, j) /*apply definition IX in Section

3*/;

14: end

{Phase III: merge spatial and ontological segments}
15: foreach (ei, ej) in SSq do
16: set x = 1 /*create a new index*/;
17: if (ei, ej) ⊂ OS(vm,vn) then

18: Seg
SSx

OS(vm,vn)
←− (ei, ej) ;

19: x++;

20: end

21: end

{Phase IV: compute ontological similarities}
22: foreach Seg

SSx

OS(vm,vn)
do

23: compute SCFx(vm,vn) using Eq. (5) ;

24: compute Oδx(vm,vn) using Eq. (6) ;

25: map((vm, vn, x), Oδ
x
(vm,vn)) /*store values in a map*/;

26: end

{Phase V: combine ontological similarities}
27: foreach (vm, vn, x) || (vn, vm, x) in map do
28: Oδ∗(vm,vn) =+ Oδx(vm,vn) /*as in Eq. (7)*/;

29: end
30: output descending(Oδ∗(vm,vn));

ment, separate from the spatial segments.

Phase III is simply a matter of matching pairs of entities:
when one pair in a spatial segment is also found in an on-
tological segment (Line 17), the algorithm creates a merged
segment to store it (Line 18). A new index is created to keep
track of the merged segments (Line 16).

With the merged segments of the previous step, Phase
IV computes the Segmented Correlation Factor for each seg-
ment and category pair (Line 23). These values, along with
the frequencies of each category from Phase I, are subse-
quently used in the calculation of the ontological similarities
(Line 24). Since each pair of categories gets an ontological
similarity value per segment, a map is used as a separate
data structure to temporarily store those values (Line 25).

The map is used in Phase V as follows: for all pairs of
segments with equal (or symmetrical) attribute values, their
corresponding ontological similarities for all segments x are
summed (Line 28). This allows the algorithm to finally sort
and output, in descending order, a list of all ontological simi-
larities (Line 30). The path of calculations leading to the on-

tological similarities goes through different stages. Initially,
several pre-processing steps must take place to transform a
raw dataset into usable data points. Since this work is based
on n entities with an attribute having one of v possible val-
ues, their frequencies require O(n).O(v) to be computed.
Since v � n, the latter can be disregarded. Creating the
spatial distance matrix requires visiting half of the entities
in the region and comparing them to the remaining others

at O(n(n−1)
2

) (due to symmetry).
For spatial and ontological segmentation, SSq andOS(vm,vn)

both depend on pair values of the spatial distance matrix.
Therefore each needs O(|sp d matrix|). Merging the spa-
tial and ontological segments runs at O(|SSq|.|OS(vm,vn)|).
Finally, computing the ontological distances depends on the
number of merged segments at O(|segSS

q

(vm,vn)
|) (individual

frequency counts are disregarded since they have been pre-
computed).

In summary, the worst case for Algorithm 1 is O(n) =

O(n) + O(n(n−1)
2

) + O(n(n−1)
2

) + O(|SSq|.|OS(vm,vn)|) +

O(|segSS
q

(vm,vn)
|). Through the manipulation of segment num-

bers and lengths, or the elimination of merged segments, the
number of computations can be decreased to achieve shorter
run times. Interestingly, the number of categories is less of
a factor because they are treated in pairs and examined on
a per-segment basis. In addition, many real-world domains
limit categorical values per level, which is a reasonable as-
sumption that makes the application more user-friendly.

6. EXPERIMENTS
To gauge the effectiveness of our proposed method, several

evaluations have been performed. The process of convert-
ing a set of categorical values into a numerical similarity is
influenced by different factors. Therefore, our goal is three-
fold: compare our proposed approach against some of the
existing methods in the Related Works; observe how these
factors impact our computations; and draw conclusions of
what they mean in practical terms. Our dataset (Dawn)

Table 2: Dataset Characteristics
Total # of
entities

380,126

Description Each entity represents a visit to a hospital’s emer-
gency room due to a drug condition, such as aller-
gic reaction or overdose, whether illegal or not.

# categories
per level

L1 : 22 L2 : 195 L3 : 170 L4 : 990

Locations cities of NY, Boston, Minneapolis, Chicago, and
Detroit.

Spatial ¬ [0-240)→ (Bos-NY),(Chi-Det)
Segments  [240-480)→ (Chi-Minn),(NY-Det)
in miles ® [480-720)→ (Det-Minn),(Bos-Det),(NY-Chi)

¯ [720-960)→ (Bos-Chi)
° [960-1200)→ (NY-Minn),(Bos-Minn)

is provided by the U.S Dept. of Health and Human Services
[1] and has the characteristics outlined in Table 2. The en-
tire data is composed of 14 metropolitan areas throughout
the United States. In our experiments, however, we limit
our region of observation to the 5 locations of the table.
The Dawn dataset records emergency room events in the
5 metro areas in the year 2009: those are individuals who
suffered a drug reaction due to one of several factors, such
as illicit drug use, accidental ingestion, suicide attempts,
and others. Each event is annotated with its location, and
has a drug name attribute from an ontological hierarchy of



four levels. Level 1 has 22 categories (e.g., methenamine,
dapsone, acyclovir), Level 2 has 170 categories (e.g., oxa-
cyllin, carbamazepine), Level 3 has 195 categories (e.g., in-
sulin, coumarin), and Level 4 has 981 categories (e.g., sul-
fonamides, penicillins).

In terms of spatial segmentation, we pre-processed the data
in ranges of 240 miles (lat-lon distance, not driving dis-
tance). This gave us 5 segments that include, for instance,
areas less than 240 miles apart, such as NY-Boston and
Chicago-Detroit, in Segment 1. Metro areas farther than
240 miles, but less than 480 miles fall in Segment 2 (e.g.,
Chi-Minn and NY-Det) and so forth. We did vary that seg-
mentation in some of our queries, but note when doing so.
In the next subsections, we explain the results of applying
Algorithm 1 to the above dataset using different parame-
ters. Initially, we ran the pre-processing steps of Phase I of
the algorithm ahead of time, to obtain the spatial distance
matrix and the frequencies of each categorical value in the
dataset.

6.1 Effect of Varying the Ontological Levels
The density of entities in each city is very high. New York

alone has 58,645 entities while Boston accounts for 39,526.
We take a gradual approach and use the data for each city
in increments of 1% up to 5%, which yields the range of enti-
ties between 1,939 and 9,698. Spatial segmentation (sp segs)
is kept at the original number of 5 and Levels 1-3 are used
for the ontological segmentation (ont segs) which yields 231
segments (segments with only 1 occurrence are not consid-
ered). We compared our approach against those of Leacock

entities[min-max] sp segs ont segs ontological level

1,939-9,698 5 231 1

(LE), Goodall (G), and Lin (LI). We are interested in how
well our Ontological Similarity can differentiate categorical
values in comparison to each approach. For this purpose, we
plot the number of entities (n) against the ontological simi-
larity (Oσ) of merged segment 1 and most popular category
pair of each run. For the other approaches that does not use
segments, we compute their similarity directly using their
respective formulas. In the plot, we have also normalized
the similarities from zero to one.

Figure 7: Number of Entities vs. Ontological Simi-
larity - Level 1

Figure 7 shows the similarity between (warfarin,ibuprofen),
which came out to be the most frequent drugs in Segment
1. The graph reveals an inverse trend between our approach

Figure 8: Number of Entities vs. Ontological Simi-
larity - Level 2

(Oσ) and the others: while LE, G, and LI display a high
initial similarity, they tend to fall as the number of entities
increase. By contrast, ours start low and ends higher. The
parameters for this run works at a shallow level of the ontol-
ogy (L1), where the other approaches are fairly efficient. For
the next run below, we move to ontological Level 2, where
the number of categories increases to 195 and the parame-
ters are as follows:

entities[min-max] sp segs ont segs ontological level

1,939-9,698 5 2,313 2

Figure 8 shows a different result from the previous plot. Our
approach tends to take advantage of a higher number of cat-
egories, and thus more ontological segments, which bumps
up the values of the ontological similarity. LI is particu-
larly susceptible to ups and downs as the number of enti-
ties change because it punishes the similarity when it finds
mismatches, which we observe after the 8K mark. Our ap-
proach behaves slightly more consistently as more entities
are added, displaying Oσ between 0.5 and 0.7. On the next
run, we visit Level 3, where the number of categories sub-
stantially increases. After cleaning up the very infrequent
pairs of categories, we end up with the following parameters:

entities[min-max] sp segs ont segs ontological level

1,939-9,698 5 8,000 3

This setup is particularly interesting because Level 3 of
the Dawn dataset is extremely large, as shown by the 8000
ontological segments it generates. Figure 9 shows the result.
LE and LI behave more poorly than G and Oσ. Particu-
larly, G slightly outperforms our approach as the number
of entities increases. The reason is that it has encountered
a certain number of fairly infrequent values from which it
benefits. For example, with 9K entities, we observed ap-
proximately 1,100 segments whose attribute pair occur no
more than 5 times. In our approach, this fact helps decrease
the Oσ, while under Goodall it helps increase the similarity.

6.2 Practical Implications
The previous section compared our approach with differ-

ent methods and manipulated various factors to observe the
behavior of our proposed approach. While that is all good,
we also seek to understand the practical results of Ontolog-
ical Similarities.

First and foremost, categorical co-occurrence is an inte-
gral part of our approach. One would then expect that when
pairs of categories occur frequently, their ontological similar-
ity would always be high. In fact, we observe this is not true



Figure 9: Number of Entities vs. Ontological Simi-
larity - Level 3

quite often. In the Det-NY stretch, for example, the combi-
nation (methenamine,glimepiride) is a fairly common emer-
gency room event. The former has 81 events and the latter
has 112. Their Ontolgical Similarity Oσ = 42.20, however,
is fairly low as compared to other pairs with even lower fre-
quencies, but that are located in closer spatial proximity.
Two such pairs are (topotecan,iodixanol) whose Oσ=51.0
and (cidofovir,pilocarpine) whose Oσ=77.12. These two are
located in the Bos-NY area, whose lesser distance helps in-
crease their similarity measures. All merged segments have
corresponding pairs of categories in at least one level of the
ontology. However, not all merged segments have pairs that
are present at all levels. As an example, we find that (anti-
histamines, methylphenidate) are two drugs present in Level
1. However, no drug sub-categories exist for them in Lev-
els 2 through 4 (Dawn populates them with the value -7).
This has a practical implication: working at different onto-
logical levels may not be applicable in many domains whose
ontologies provides low coverage at deeper levels.

Lastly, Table 3 presents the most similar pairs of drugs
along with their frequencies and Ontological Similiarities Oσ
for Level 3. It shows, for example, that ethanol is ontologi-
cally more similar to heroin than to any other drugs. More-
over, marijuana is highly similar to other drugs for which
not data is reported (i.e., drug unknown). The high frequen-
cies shown in the table also corroborate our approach that,
along with co-occurence and spatial distance, these elements
are able to devise a useful Ontological Similarity helpful in
exploratory analysis.

Table 3: Most Similar Drug Occurences
vm, vn Fr(vm) Fr(vn) Oσ

ethanol, heroin 61,819 18,621 112.75

cocaine, miscellaneous agents 20,389 5,334 110.04

marijuana,drug unknown 12,875 8,057 81.01

antineoplastics,hydrocodone 5,615 5,237 77.76

inotropic agents,amoxycillin 4,527 4,513 71.55

7. CONCLUSION
Ontologies provide a wealth of information hidden in nested

hierarchical levels. One of its limitations, however, is that
ontological data is often categorical, making it inappropriate
for many analytical tasks that require numerical values. In
this paper, we proposed Ontological Similarities, a numeri-
cal measure of categorical values based on attribute frequen-
cies and entity co-occurrences. Our approach considers spa-
tial apects of the data and is able to determine application-
specific similarity between any pair of categories. We also
compare our work to existing methods, and show where our
approach is more efficient. Further, we show how categorical

pairs can be eliminated from the analysis to save computing
cycles. Our work has been effective in uncovering insightful
information hidden in different levels of the underlying data.
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