
Programming Spatio-Temporal Data Streaming
Applications with High-Level Specifications

Shigeru Imai
Department of Computer Science
Rensselaer Polytechnic Institute

110 Eighth Street
Troy, NY 12180, USA
imais@cs.rpi.edu

Carlos A. Varela
Department of Computer Science
Rensselaer Polytechnic Institute

110 Eighth Street
Troy, NY 12180, USA

cvarela@cs.rpi.edu

ABSTRACT

In this paper, we describe the design and implementation
of PILOTS, a ProgrammIng Language for spatiO-Temporal
data Streaming applications. Using PILOTS, application
developers can easily program an application that handles
spatio-temporal data streams by writing a high-level declar-
ative program specification.

Whereas spatio-temporal data is available with various
spatial density and time frequency depending on data
sources (e.g., weather forecast data can be given hourly/-
daily for a vast geographic area, while GPS data can be
given every second or at a higher frequency for a specific ge-
ographic location), applications often need to process data
at a constant frequency. To view such heterogeneous data
streams as homogeneous data streams, PILOTS specifically
provides first-class support for data selection and interpola-
tion so that applications can get data consistently regardless
of the data’s original spatio-temporal heterogeneity.

To enable reasoning about errors in correlated spatio-
temporal data streams, we introduce the notion of error sig-
natures, patterns in output data streams that appear when
input data is erroneous. These patterns are produced thanks
to a mathematical model that explicitly specifies the redun-
dancy exhibited in the input data. PILOTS applications
readily produce error signatures, which can be an impor-
tant tool to semi-automatically detect data error conditions
and enable better decision support systems.

As a motivating application, we illustrate a PILOTS pro-
gram that receives as input data: the airspeed, the ground
speed, and the wind speed for a flight. We then compute the
error signatures exhibited by failing the airspeed data stream
simulating a pitot tube icing scenario (such as the one occur-
ring in Air France flight 447 in June 2009 ultimately killing
all people onboard), and by failing the ground speed data
stream simulating a GPS constellation shutdown.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL QUeST’12 November 6, 2012. Redondo Beach, CA,
USA
Copyright 2012 ACM 978-1-4503-1700-9/12/11 ...$15.00.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs
and Features—Frameworks

General Terms

Languages

Keywords

programming language, spatio-temporal, data streaming

1. MOTIVATION
Operating an aircraft is known as a complicated task since

there are a lot of complex correlations between the readings
in a cockpit’s instruments. If a failure happens during a
flight, it is not easy to find the cause of the failure by look-
ing at the available (potentially partially erroneous) data,
and also, a misinterpretation of instrument readings could
even lead to an accident as the tragic crash of Air France
flight 447, killing all 216 passengers and 12 aircrew [10]. The
records from the crash have suggested that the pilots lost
control of the airplane because they raised the nose of the
airplane when it should not have been brought up. Many
experts now understand that the airplane went into clouds
with thunderstorms and its iced speed sensors provided inac-
curate information to the autopilot, causing it to disengage.
The pilots then incorrectly reacted to the emergency by rais-
ing the nose of the plane when in fact it needed to go down
to avoid the stall.

An active redundant data-driven flight system may help
prevent crashes caused by malfunctioning sensors or other
data errors. For example, by comparing the air speed data
to the ground speed data, a flight system would be able
to fact check a bad air speed reading, assuming reasonable
constraints on the wind speed. If the (auto) pilot is only
operating by air speed data, they would have no way of
knowing that there is an error in the system and they would
respond to the incorrect data, upsetting the balance of the
plane. The ground speed data would instead provide a fact
checking mechanism because if airspeed were swiftly chang-
ing, ground speed would be doing the same. If airspeed is
changing, but ground speed remains unchanged, the more
active flight system would be able to notify the pilot of the
discrepancy, allowing for better informed decision making.

Considering the development of such an active flight sys-
tem, applications running on the flight system should deal

with (1) the airplane’s constantly changing location and
potentially inaccurate and incomplete input data streams
from various sensors and (2) reasoning about the input data
streams to identify failures and their potential sources using
redundancy among the input data streams.

To provide a technological foundation towards the purpose
of (1), we have defined a programming model for spatio-
temporal data streaming applications [3], which is specif-
ically designed for moving objects (e.g., airplanes, cars,
trains, and so on) to take spatio-temporal data streams as
inputs and output processed data streams. In this paper,
we describe the design and implementation of a program-
ming language following the model: PILOTS (ProgrammIng
Language for spatiO-Temporal data Streaming applica-
tions). PILOTS provides first-class support for space and
time specific operations including data selection and inter-
polation when no data is available for a certain location and
time. We also show some experimental results of running
PILOTS code on actual flight data with simulated error
conditions to produce error signatures, an important step
towards the realization of (2).

The rest of the paper is organized as follows. Section 2
introduces the PILOTS programming language for spatio-
temporal data streaming applications. Section 3 describes
the implementation of the language in detail, and Section 4
presents experimental results of running PILOTS code. Sec-
tion 5 shows related work, and finally we conclude the paper
in Section 6 highlighting potential future work.

2. SPATIO-TEMPORAL PROGRAMMING

LANGUAGE

2.1 System Architecture
Figure 1 shows the system architecture for applications

implemented in the PILOTS programming language. In
this architecture, the application gets data (d′1, d

′

2, . . . , d
′

n)
from the Data Selection module, which takes incoming data
streams (d1, d2, . . . , dn) as inputs, and then the application
indefinitely generates outputs (o1, o2, . . . , om) and data er-
rors (e1, e2, . . . , el) based on an Application Model. Each
input data stream di(x, y, z, t) is a function of location and
time. The number of arguments of di varies depending on
dimensions of the location information, that is, di(t) for 0-D
(i.e., no location support), di(x, t) for 1-D, di(x, y, t) for 2-D,
and di(x, y, z, t) for 3-D. Some data streams are coming in
real-time whereas some predicted information (e.g., weather
forecasts) is associated with future time periods.

The Data Selection module stores some amount of incom-
ing data stream until it becomes out of date. The application
acquires the selected or interpolated data (d′1, d

′

2, . . . , d
′

n)
from the Data Selection module at a certain rate specified
in the Application Model and computes both outputs and
data errors. The application continues this computing pro-
cess in an infinite loop unless the user explicitly specifies the
termination time.

Whereas spatio-temporal data is available with various
spatial density and time frequency depending on sources of
data in general (e.g., weather forecast data can be given
hourly/daily for a vast geographic area, GPS data can be
given every second or at higher frequency for a specific ge-
ographic location), the application often needs to process
data at a constant frequency. The Data Selection module

essentially allows an application to view a set of these het-
erogeneous data streams as a homogeneous data stream, and
therefore enables a separation of concerns: application pro-
grammers can focus on their application model.

Figure 1: System architecture of PILOTS programs
which handle spatio-temporal data streams

2.2 First Class Support for Data Selection
PILOTS specifically implements first-class support for

data selection and interpolation in the Data Selection mod-
ule so that the application can get data consistently regard-
less of its heterogeneity. Here we explain three methods for
data selection and interpolation: closest, euclidean, and in-
terpolate and show an example use of these methods.

2.2.1 Data Selection/Interpolation Methods

• closest
This method takes a 1-D argument (i.e., t, x, y, or z)
to find the data closest to a given location or time.
Figure 2 shows examples of selecting closest data to
the current time and location respectively. In Figure
2(a), when selecting the closest time to the current
time tcurr, di(tcurr) is not defined, but di(t) is defined
for {t | t1 ≤ t ≤ t2, t3 ≤ t ≤ t4, t5 ≤ t ≤ t6}. Since t4 is

closest to tcurr, we define d′i(tcurr) , di(t4). Similarly,

we define d′i(xcurr) , di(x3) for the example shown in
Figure 2(b).

• euclidean
This method takes 2-D or 3-D arguments to find the
data closest to a given location. Figure 3 shows
an example for the 2-D case, where data is not de-
fined for the current location lcurr = (xcurr, ycurr),
but are defined for l0, and l1. Since lcurr is clos-
est to l0 = (x0, y0) in Euclidean distance, we define

d′i(xcurr, ycurr) , di(x0, y0).

• interpolate
This method takes 1-D, 2-D or 3-D arguments to lin-
early interpolate the defined data. It also takes another
argument ninterp to select the closest ninterp data from
a given location to interpolate. Suppose we have a sit-
uation shown in Figure 4, where data is not defined
for the current location lcurr = (xcurr, ycurr), but are
defined for l0, l1, and l2. Also, suppose that ninterp is

Figure 2: (a) Selecting the closest time (above); (b)
Selecting the closest x value (below)

Figure 3: Selecting the closest 2D region in Eu-
clidean distance

2, we select l0 and l1 since they are closer to lcurr than
l2. In such a case, we linearly interpolate the data de-
fined for l0 and l1 by taking a weighted sum based on
the Euclidean distance as follows:

d′i(xcurr, ycurr)

, (1−
‖l0 − lcurr‖

∑

1

j=0
‖lj − lcurr‖

) · di(x0, y0) +

(1−
‖l1 − lcurr‖

∑

1

j=0
‖lj − lcurr‖

) · di(x1, y1) (1)

Note that the equation (1) can be easily extended to
n data points.

Figure 4: Linear interpolation

Table 1: Wind speed prediction information (ID:0-2
for Albany, ID:3-5 for Pittston, and ID:6-8 for JFK
Airport

ID latitude(x), altitude(z) time(t) windspeed

longitude(y) [ft.] [knot]
0 42.73,-73.69 3000 04/03/12 14:00 20
1 42.73,-73.69 6000 04/03/12 14:00 32
2 42.73,-73.69 9000 04/03/12 14:00 40
3 41.34,-75.72 3000 04/03/12 14:00 17
4 41.34,-75.72 6000 04/03/12 14:00 31
5 41.34,-75.72 9000 04/03/12 14:00 41
6 40.64,-73.78 3000 04/03/12 14:00 18
7 40.64,-73.78 6000 04/03/12 14:00 33
8 40.64,-73.78 9000 04/03/12 14:00 43

2.2.2 Example

Imagine you are flying in an airplane at the altitude of
7000 ft. in the middle of New York state as shown in Figure
5. Given the predicted wind speed information for Albany,
Pittston, and JFK Airport in Table 1, how can we estimate a
reasonable wind speed for the current location at the current
time?

Figure 5: Example geographical relationship be-
tween the current location and surrounding cities

Suppose the current location represented by (latitude, lon-
gitude, altitude) is (42.20, -74.18, 7000 ft.) and the current
time is 04/03/12 15:34, we can get a wind speed by applying
euclidean(x,y), closest(t), and interpolate(z,2) se-
quentially as follows.

1. Apply euclidean(x,y) to all the data. Looking at
latitude(x) and longitude(y), the closest city to the
current location is Albany as shown in Figure 5. Select
the data from ID:0 to ID:2.

2. Apply closest(t) to data ID:0-2. Looking at time(t),
the current time is equally close to the time of data
ID:0-2. Select all three data.

3. Apply interpolate(z,2) to data ID:0-2. Since ninterp

is 2, pick up the two closest data in altitude(z), which
are ID:1 and 2. Finally, calculate the final wind speed
value similar to the equation (1) as (1− 1000/3000) ∗
32+(1−2000/3000)∗40 = 13.33+21.33 = 34.66 [knot].

2.3 Example Program Specifications
Here we show two example program specifications; one

is very simple and the other is slightly more complex than
the first one. See [3] for the detailed PILOTS grammar
definition. We will see the experimental results of these
programs later in Section 4.

2.3.1 Simple Example - Twice

Figure 6 shows one of the simplest program specifications
written in PILOTS, called twice. As the name says, it takes
two input streams, a(t) and b(t), where b is supposed to be
twice as large as a, and outputs an error defined by e =
(b−2∗a) every 1 second. Note that these two input streams
are not associated with any location information.

✬

✫

✩

✪

program twice ;
inputs

a: (t) using closest (t);
b: (t) using closest (t);

outputs ;
errors

e: (b - 2 * a) at every 1 sec;
end;

Figure 6: A simple declarative specification of the
twice application

2.3.2 More Complex Example - Flight Planning

This is an example of a simplified flight planning system.
Suppose that sensors in an airplane record airspeeds va dur-
ing a given flight and GPS units record the airplane’s flight
path over the ground including ground speeds vg at differ-
ent locations. An aircraft’s airspeed and ground speed are
related by the following mathematical formula (2), where va
and αa are the aircraft airspeed and angle (heading), and
vw and αw are the wind speed and direction acquired from
the weather forecast:

vg =
√

v2a + 2va · vw · cos(αa − αw) + v2w (2)

Also, we can compute crosswind velocity: vx = vw ·
sin(αa − αw). Therefore, given the aircraft desired course
αd, it is possible to compute the crab angle δ by using the
formula (3) so that the aircraft can use αa = αd + δ as
the heading to maintain the desired direction under varying
wind conditions.

δ = arcsin(vx/vg)

= arcsin

(

vw · sin(αa − αw)
√

v2a + 2va · vw · cos(αa − αw) + v2w

)

(3)

The above mentioned relationship can be brought into a
program specification shown in Figure 7, which outputs the
crab angle δ and error e that is the difference between the
monitored ground speed vg from GPS and the calculated
one with the equation (2).

In this flight planning example, there are three input data
streams in which each stream has two functions. Since
each of these two functions has the same source of in-
formation and arguments, they are declared as a single

input data stream. In the case of the first input data
stream, there are two functions, wind_speed(x,y,z,t) and
wind_angle(x,y,z,t), that share the same arguments and
information source (weather forecast). Data interpola-
tion/selection methods used for these two functions are eu-

clidean(x,y), closest(t), and interpolate(z,2). Just
like we explain in Section 2.2.2, these methods apply in or-
der: first, the closest x and y to xcurr and ycurr in Euclidean
distance are selected; second, the closest t to the current
time tcurr is selected; and finally, the final value is linearly
interpolated on the z-axis using up to the two closest data
points to zcurr as specified in the argument.

✬

✫

✩

✪

program flightplan ;
inputs

wind_speed , wind_angle : (x,y,z,t)
using euclidean (x,y), closest (t),
interpolate (z,2);

air_speed , air_angle : (x,y,t)
using euclidean (x,y), closest (t);

ground_speed , ground_angle: (x,y,t)
using euclidean (x,y), closest (t);

outputs
crab_angle :

arcsin (wind_speed *
sin(wind_angle -air_angle) /
sqrt(air_speed ^2 +

2* air_speed *wind_speed *
cos(air_angle -wind_angle) +
wind_speed ^2))

at every 1 min ;

errors
e: ground_speed -

sqrt(air_speed ^2 +
2* air_speed *wind_speed *
cos(air_angle -wind_angle) +
wind_speed ^2)

at every 1 min;
end;

Figure 7: A declarative specification of the flight
planning application

3. LANGUAGE IMPLEMENTATION
When executing a PILOTS program, its high-level pro-

gram specification needs to be compiled into Java code by
the PILOTS compiler. The generated application program
then uses the PILOTS runtime library to run the program.

3.1 Compiler
The compiler consists of two parts: a parser and a code

generator. The parser is developed using JavaCC [4]. Then
the code generator uses the abstract syntax tree created from
the parser and applies visitor pattern to generate Java code.

3.2 System Interaction
Figure 8 shows how a PILOTS application interacts with

the system. The interactions are based on a client-server
model using Internet sockets in which the application works
as a server and takes inputs from the clients on a single port.

It outputs some values to the specified output ports as well
as error values to the specified error ports.

Figure 8: System interaction of a PILOTS applica-
tion

When executing a compiled Java program, we specify in-
put, output, and error ports as follows. In this example, the
flightplan application illustrated in Section 2.3.2 takes an
input data stream on the port 10001 and sends output and
error streams to the hosts specified by 10.0.0.1:20001 and
10.0.0.2:30001 respectively.

$ java pilots.tests.Flightplan -input 10001

-outputs 10.0.0.1:20001 -errors 10.0.0.2:30001

3.2.1 Data Format

The input, output, and error data streams share the same
format shown in Table 2. The first line is used to declare
one or more variables (var0, var1,...) in a single data
stream. The values of the declared variables start from
the second line. The data stream can have multiple val-
ues (val0, val1,...) with various spatial and temporal
combinations: ex1 is just defined for a 2-D region; ex2 is
defined for a 3-D point and a time interval; ex3 is defined
for a 1-D interval and a particular time; ex4 is defined for
no location and a particular time. All lines have to end with
an end-of-line marker (\n). Especially, the last line has to
have only one end-of-line marker.

Note that the data format for input is compatible with
output and error, that is, we can connect either an output or
error port to an input port of another PILOTS application.

Table 2: The data stream format of input, output,
and error

first line #var0,var1,...\n

after ex1) x0,y0∼x1,y1::val0,val1,...\n
second line ex2) x,y,z:t0∼t1:val0,val1,...\n

ex3) x0∼x1:t:val0,val1,...\n
ex4) :t:val0,val1,...\n

last line \n

.

Here are some instances of spatio-temporal data for
ex1· · · ex4 respectively.

• ex1) 40.100,-76.300∼39.600,-76.300::166.0,215.0

• ex2) 42.749,-73.802,3000:2012-04-03 140000-0500
∼2012-04-03 210000-0500:15.0,320.0

• ex3) 42.6886∼43.9258:2012-04-03 140900-0500
:112.0,222.0

• ex4) :2012-04-03 141400-0500:42.5486,-74.1142,8100.0

3.2.2 Running Mode

Two modes are available for the user to run PILOTS ap-
plications as shown below.

• real-time mode: This mode is default and is intended to
be used for receiving data from sensors and processing
it in real-time. If the frequency of an output is specified
as “at every 1 min” in the program specification, the
program actually outputs data once every 1 minute.
Also, in this mode, the program finishes if one of input
data streams sends the last line marker (\n) or certain
amount of time has elapsed, which can be specified by
the user in the command line as -DtimeSpan=30min.

• simulation mode: This mode is used for simulations
and is activated if the user gives a past time span
in the command line as -DtimeSpan=t0∼t1. The PI-
LOTS runtime sets its internal time as t0 and virtually
progress the time as the program runs, and when the
internal time reaches t1, the program finishes. The
user can get outputs as fast as possible. This mode
is intended to be used for processing recorded data in
the past.

In either mode, time stamp of input streams should match
the internal time of the PILOTS runtime to get proper out-
puts.

3.3 Runtime Library
The PILOTS runtime library is in charge of starting a

data receiving server, storing received data, providing data
selection/interpolation service to the application, and send-
ing processed data to output/error hosts.

Primary classes included in the PILOTS runtime library
shown in Figure 9 are explained as follows.

• PilotsRuntime class is extended by the application
and provides all basic functions to run a PILOTS ap-
plication other than application-specific processing. It
starts DataReceiver to start receiving data, requests
stored data from DataStore, and sends calculated out-
puts and errors to other hosts.

• DataReceiver class receives data from data input
clients from a port specified in the command-line argu-
ments. Upon accepting data, it launches a new worker
thread to receive data and the created thread requests
to add these data to DataStore.

• DataStore class accepts data from DataReceiver as a
string, and then it asks SpatioTempoData to parse the
string and stores the parsed data. It also implements
getData() method supporting closest, euclidean,

interpolate for data selection. When comparing lo-
cations and time for data selection/interpolation, it
asks for the current time and location from Current-

LocationTimeService. Stored data are accessed from
multiple threads (i.e., threads for adding data from
DataReceiver vs. threads getting data from Pilot-

sRuntime), so the data have to be protected from si-
multaneous data access.

• CurrentLocationTimeService class is an interface
class for providing the current time and location. Users
have to implement this class for the system to work

Figure 9: Class diagram of PILOTS runtime library

(e.g., SimpleTimeService and SimulationService).
The implemented class can either return the actual
current time for the real-time mode or past time for
the simulation mode.

4. EXPERIMENTS
In this section, we report the results of two experiments.

The first experiment has been done with the twice appli-
cation to illustrate how error signatures exhibit different
shapes depending on simulated input data streams. The
second one has been conducted with the flightplan appli-
cation to apply PILOTS to data sampled in the real world
and see how PILOTS’ first-class support for data selection
and interpolation work for real data.

4.1 Simulated Data Inputs - Twice

4.1.1 Experimental Setup

As we present in Figure 6, the twice application takes two
inputs, a and b, and we prepare an independent client for
each input to test the following four different scenarios.

• Scenario A: There are random timing jitters between
one data and another on the data input clients. That
is, every 1 ± ǫ seconds, the variable a’s input comes
as 1, 2, 3, . . ., whereas the variable b’s input comes as
2, 4, 6,

• Scenario B: The variable a’s data stream becomes con-
sistently one second behind the variable b’s input data
stream at some point of time.

• Scenario C: The variable a’s data stream stops provid-
ing data at some point of time.

• Scenario D: The variable b’s data stream stops provid-
ing data at some point of time.

In all the scenarios, the application runs in the real-time
mode with SimpleTimeService that returns the current time
only. We start the twice application followed by the data in-
put clients, and then record the error output for 120 seconds
once data from the clients reaches the PILOTS runtime.

4.1.2 Results

Figure 10 shows different types of errors generated with
the four different scenarios. In Figure 10(a), most of the time
the error stays at zero, but there are several spikes due to
transient fluctuation of the data input timing. It happens
occasionally since the use of closest(t) causes the Data
Selection module to select data at one second earlier or one
second later than it is supposed to select. This type of error
is unavoidable without a special synchronization mechanism
between multiple data streams. Figure 10(b) shows a sig-
nature of out-of-sync input data streams. As shown in the
graph, the error becomes consistently large at around 30 sec-
onds of the simulation time. This is because the variable a’s
input data stream becomes consistently one second behind
the variable b’s input data stream. Figure 10(c) suggests
more critical failure of the variable a’s input data source. At
around 50 seconds of the simulation time, the error starts
growing linearly. This linear increase of the error explains
that the input data stream of the variable a stops coming
after 50 seconds of the simulation time, which potentially
means that a critical failure occurred at the source of the
variable a. Similarly, Figure 10(d) suggests that a critical
failure occurred at the source of the variable b.

-3

-2

-1

0

1

2

3

0 20 40 60 80 100 120

Time [sec]

(a) Error signature for Scenario A (b) Error signature for Scenario B

-0.5

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120

Time [sec]

-50

0

50

100

150

0 20 40 60 80 100 120

Time [sec]
-150

-100

-50

0

50

0 20 40 60 80 100 120

Time [sec]

(c) Error signature for Scenario C (d) Error signature for Scenario D

Figure 10: Error signatures generated by the twice

application

As we can see from the graphs, errors behave differently
depending on the input data streams, thus those error sig-
natures could tell us valuable information about potential
failures in the data sources.

4.2 Real Data Inputs - Flight Planning

4.2.1 Experimental Setup

The second author is a general aviation private pilot
and we conducted a simulation with the flightplan pro-
gram based on his actual flight from Albany, New York to
Tipton, Maryland (near Washington D.C.) on April 3rd,
2012. air_speed and air_angle were manually collected
during the flight, whereas ground_speed and ground_angle

were automatically collected from online data [2]. We have
to use weather forecast information for wind_speed and
wind_angle from [6] since we could not record the actual
wind information during the flight.

Note that air_speed and air_angle are sparsely given as
shown in Figure 11 since they were manually recorded while

operating the aircraft, and also the density of wind_speed
and wind_angle is not very high as we have previously
seen in Table 1. Unlike other data, ground_speed and
ground_angle are given every minute.

✤

✣

✜

✢

#air_speed ,air_angle
42.748 , -73.802~41.476 , -75.483::162 ,246
41.476 , -75.483~41.000 , -76.000::161 ,239
41.000 , -76.000~40.100 , -76.300::161 ,221
40.100 , -76.300~39.600 , -76.300::166 ,215
39.600 , -76.300~39.500 , -76.400::165 ,213
39.500 , -76.400~39.085 , -76.759::135 ,204

Figure 11: Formatted data for airspeed and air angle
from the April 3rd flight

Just like the previous section with the twice application,
we test the following four different scenarios including three
simulated error conditions.

• Scenario A: No error is added. Use the real data only.

• Scenario B: Simulate an airspeed sensor (called pitot
tube) icing failure. If the airspeed sensor is iced, typ-
ically the airspeed suddenly drops in a few seconds,
and then it keeps reporting a constant value.

• Scenario C: Simulate a GPS failure. GPS loses satel-
lites and keeps reporting 0s as the values for both
ground speed and ground angle.

• Scenario D: Simulate both an airspeed sensor icing fail-
ure and a GPS failure mentioned above.

For all the scenarios, we run the program in the simulation
mode with SimulationService that returns the location and
time based on the actual flight path. To specify the start
time and end time of the simulation, we run the program
with the option -DtimeSpan="2012-04-03 1404∼2012-04-

03 1545" for the 1 hour and 41 minutes flight.

4.2.2 Results

Figure 12 plots the error and crab angle from the flight
planning application for Scenario A (no errors). Looking at
the graph, we notice that the error is large at the beginning
of the flight (around 0∼9 minutes) and also at the end of
the flight (around 90∼100 minutes). The reason is inaccu-
racy of the airspeed, which is illustrated in Figure 13(a) in
which we plot the airspeed, ground speed, calculated ground
speed, and error separately from the outputs of the flight-
plan application to analyze the reasons of the error. In the
graph, we see that the airspeed is almost constant whereas
actual ground speed changes dynamically at the time of de-
parture and landing. In general, airspeed is supposed to
change a lot when departing and landing; however, since
airspeed was manually recorded and these periods are the
busiest for flying the airplane, it is not accurate. Conse-
quently, inaccuracy in airspeed makes the calculated ground
speed erroneous since it is directly related to the airspeed
according to the equation (2). Despite the large error when
departing and landing, the error stays relatively low around
10∼90 minutes, and that fact suggests PILOTS’ data se-
lection/interpolation methods work well during this period

since the relationship presented by the equation (2) holds
well.

In the case of Scenario B, Figure 13(b) shows that the
error suddenly increases at around 40 minutes caused by a
sudden drop of the airspeed (150 to 50 knots in two min-
utes). Unlike Scenario B, Scenario C shows a different error
signature as shown in Figure 13(c). From the graph, we
can see that the ground speed suddenly drops from 170 to
0 knot at around 40 minutes and that causes the error to
drop accordingly. When we have both failures, we get an er-
ror signature as shown in Figure 13(d). This error signature
tells us that the errors for Scenario B and C do not cancel
out, but they are emerged as a combination of the individ-
ual error signatures. This result potentially means that we
may be able to tell the causes of multiple errors from one
combined error signature.

As we can see from the graphs, there is a clear distinction
between the error signatures. These results encourage us to
pursue automated reasoning about data errors and recovery.

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

C
ra

b
 A

n
g

le
 [

d
e

g
re

e
]

E
rr

o
r

[k
n

o
t]

Time [min]

 error

 crab angle

Figure 12: Error and output generated by the
flightplan application

5. RELATED WORK
Spatio-temporal constraint logic programming has been

proposed. STACLP [7] offers first-class support for repre-
senting and reasoning about spatial and temporal data. A
similar logic language to STACLP, MuTACLP [5][1], has
been applied to GIS for spatio-temporal reasoning [8]. Both
STACLP and MuTACLP are implemented based on a Pro-
log system. Programming languages that support proba-
bilistic reasoning have also been proposed. PRISM[9] is a
logic-based language that integrates logic programming and
stochastic reasoning including parameter learning. PRISM
is capable of parameter learning from a given set of data and
estimates the probability to best explain the data. PRISM is
also built on top of a Prolog system. Our programming lan-
guage is also highly declarative and generates code to help
understand and reason about spatio-temporal data streams.

6. CONCLUSIONS
We presented the design and implementation of PILOTS,

a programming language for spatio-temporal data streaming
applications. The language enables to specify in a declara-
tive (high-level) manner the mathematical relationship be-
tween data streams. We also illustrated different methods
that can be combined to interpolate and select the data.
These methods enable developers to declaratively specify
how to convert potentially heterogeneous data streams—i.e.,
streams using different scales in space and time—into homo-
geneous data streams amenable to processing and analysis.

-200

-150

-100

-50

0

50

100

150

200

0 10 20 30 40 50 60 70 80 90 100

S
p

e
e

d
 &

 E
rr

o
r

[k
n

o
t]

Time [min]

-200

-100

0

100

200

0 10 20 30 40 50 60 70 80 90 100

S
p

e
e

d
 &

 E
rr

o
r

[k
n

o
t]

Time [min]

(a) Error signature for Scenario A

(b) Error signature for Scenario B

(c) Error signature for Scenario C

-200

-100

0

100

200

0 10 20 30 40 50 60 70 80 90 100

S
p

e
e

d
 &

 E
rr

o
r

[k
n

o
t]

Time [min]

-200

-100

0

100

200

0 10 20 30 40 50 60 70 80 90 100

S
p

e
e

d
 &

 E
rr

o
r

[k
n

o
t]

Time [min]

(d) Error signature for Scenario D

 airspeed

 ground

speed

calculated

ground

speed

 error

Figure 13: Error signatures and speed information
generated by the flightplan application

An important goal of this work is to enable spatio-
temporal data analyses that detect errors in input data
streams with high probability. This is accomplished by
explicitly modeling redundancy in the input data streams
allowing application developers to not only specify output
data streams but also to specify mathematically the relation-
ship between redundant data as error streams. These error
streams can be seen as signatures that characterize different
input data error conditions with high probability.

We used PILOTS to uncover the error signatures of a
trivial application (twice) illustrating clearly distinguishable
patterns on different kinds of failure (out of synchronization
and data stream loss failures). We subsequently used PI-
LOTS to model the relationship between air speed, ground
speed, and wind speed of an actual general aviation flight be-
tween Albany, NY and Washington, DC. We computed the
error signatures for (i) normal conditions, (ii) a simulated
pitot tube failure (affecting the airspeed data stream), (iii)
a simulated GPS constellation failure (affecting the ground
speed data and ground angle stream,) and (iv) a simulta-
neous failure of the pitot tube (ii) and GPS system (iii).
These error signatures illustrate that patterns can be used
to discover with high likelihood the source of potential data
errors.

Future work includes modeling more complex data rela-
tionships in aviation and navigation systems, discovering er-
ror signatures for common data error conditions, using er-
ror signatures as a means to semi-automate error recovery
and reason about spatio-temporal data streams, and apply-
ing the programming model and language to other domains
generalizing it as appropriate.

ACKNOWLEDGMENTS

We would like to thank Jaemyeong Eo and Yazmin Feliz for
their help on creating test data. This research is partially
supported by Air Force Office of Scientific Research Grant
No. FA9550-11-1-0332.

7. REFERENCES
[1] P. Baldan, P. Mancarella, A. Raffaetà, and F. Turini.

MuTACLP: A language for temporal reasoning with
multiple theories. In Computational Logic: Logic
Programming and Beyond’02, pages 1–40, 2002.

[2] FlightAware. Flight track log for N756VH on
03-Apr-2012 (KALB-KFME).
http://flightaware.com/live/flight/N756VH/

history/20120403/1800Z/KALB/KFME/tracklog.

[3] S. Imai and C. A. Varela. A programming model for
spatio-temporal data streaming applications. In
Dynamic Data-Driven Application Systems (DDDAS
2012), pages 1139–1148, Omaha, Nebraska, June 2012.

[4] JavaCC Development Group (Open Source Project
under BSD License). Java compiler compiler (javacc) -
the java parser generator. http://javacc.java.net/.

[5] P. Mancarella, G. Nerbini, A. Raffaetà, and F. Turini.
MuTACLP: A language for declarative GIS analysis.
In Computational Logic’00, pages 1002–1016, 2000.

[6] NOAA’s National Weather Service. Forecast winds
and temps aloft.
http://aviationweather.gov/products/nws/winds/.

[7] A. Raffaetà and T. W. Frühwirth. Spatio-temporal
annotated constraint logic programming. In PADL’01,
pages 259–273, 2001.

[8] A. Raffaetà, F. Turini, and C. Renso. Enhancing GISs
for spatio-temporal reasoning. In Proceedings of the
10th ACM international symposium on Advances in
geographic information systems, GIS ’02, pages 42–48,
New York, NY, USA, 2002. ACM.

[9] T. Sato and Y. Kameya. Parameter learning of logic
programs for symbolic-statistical modeling. In Journal
of Artificial Intelligence Research(JAIR), volume 15,
pages 391–454, 2001.

[10] Wikipedia. Air France Flight 447. http:
//en.wikipedia.org/wiki/Air_France_Flight_447.

