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ABSTRACT 
This paper describes the challenges of data mining uncertain 
water reservoir data based on past human operations in order to 
learn from them reservoir policies that can be automated for the 
future operation of the water reservoirs.  Records of human 
operations of water reservoirs often contain uncertain data. For 
example, the recorded amounts of water released and retained in 
the water reservoirs are typically uncertain, i.e., they are bounded 
by some minimum and maximum values. Moreover, the time of 
release is also uncertain, i.e., typically only monthly or weekly 
amounts are recorded. To increase the effectiveness of data 
mining of uncertain water reservoir data, temporal data mining 
with inflow and rainfall data from several prior months was used. 
The experiments also compared several different data 
classification methods for robustness in the case of uncertain data.  

Categories and Subject Descriptors 
H.2.8 [Database Application]:Data Mining. 

General Terms 
Measurement, Performance, Design and Standardization. 

Keywords 
Spatio-temporal data, uncertainty, history, water reservoir, 
classifiers and prediction. 

 

1. INTRODUCTION 
 
Water reservoir operators perform a complex task trying to 
balance the need to retain plenty of water for irrigation and other 
uses of water while preventing an overflow of the reservoir that 
could cause flooding of the surrounding area. As a result water 
reservoir operators accumulate a certain set of skills and 
knowledge that are not easy to express mathematically. Hence 
even though many water researchers studied water reservoir 
operations (see Section 2.1), there is currently no good automation 
of water reservoirs. 
 
 In this paper, we apply temporal data mining as a new approach 
to learn from human water reservoir operators. In theory, a data 

mining algorithm could learn general policies of handling the 
water reservoirs, and the learned policies could be automated in 
the future, avoiding occasional errors in human judgment and 
saving costs in human operators. In practice, the data mining task 
for water reservoirs is more complicated than for regular data 
mining tasks because water reservoir data is typically uncertain.  
For example, the recorded amounts of water released and retained 
in the water reservoirs are typically uncertain, i.e., they are 
bounded by some minimum and maximum values. Moreover, the 
time of release is also uncertain, i.e., typically only monthly or 
weekly amounts are recorded.  
Uncertain data occurs not only in water reservoir operations but 
also in a wide variety of other applications. Hence there is an 
increasing interest in data mining uncertain data. We argue in this 
paper that the challenge of data mining uncertain data can be 
overcome by the temporal data mining method introduced by 
Revesz and Triplet [14]. As shown in Figure 1, regular data 
classification considers only contemporary or immediately 
preceding temporal values, but temporal data classification 
improves the accuracy by considering the feature values 
pertaining to some n time units back in time.  
 

 
 

Figure 1. Temporal vs Regular Data Mining. 
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Revesz and Triplet [14] showed experimentally that temporal data 
classification greatly improves the performance of decision trees 
and SVMs (support vector machines) for weather forecasting 
when the input data contains usual measurement values of 
temperature wind direction, wind speed etc. That is, in the 
weather data the only uncertainty was associated with usual 
measurement errors.    
In contrast, reservoir operational data is uncertain primarily 
because of human recording practices. It is traditional to record 
only weekly and monthly data and ranges of water release and 
retention values. That practice makes reservoir data uncertain and 
its data mining more challenging than the data mining of simple 
weather data.  Our paper also consider more classifiers than [14], 
namely, we also investigate multilayer perceptron networks and 
Naïve-Bayes classifiers.  
This paper is organized as follows. Section 2 presents previous 
work while Section 3 describes the data sources and their 
temporal enhancements. Experimental results are presented in 
Section 4. Finally, the derived conclusions and potential future 
work are summarized in Section 5. 
 

2. PREVIOUS WORK 
 

2.1 Current Water Reservoir Models 
 
Alshaikh and Taher [3], Chaves and Chang [7], Gates and 
Alshaikh [9], Neelakantan and Pundarikanthan [13], and 
Simonovic [15] evaluated the efficiency of simulation 
optimization frameworks by incorporating data driven models 
with optimization algorithms. In water resources, for 
development of optimal policies of system operation, different 
methodologies are employed such as mathematical  models, 
distributed physically-based models, and empirical models. 
Empirical models are currently the most frequent due to their 
evaluation techniques. Data-driven modeling (DDM) is to 
formulate a model based on existing characteristics. A data model 
is quantified by its ability to identify and establish the nature of 
connections between the features and the variables based on a 
given set of conditions or rules.  
 
Data-driven modeling has been used by Abebe et al. [1] for 
estimating missing precipitation data, by Abrahart and See [2] and 
by Dawson and Wilby [8] for rainfall-runoff modeling, by 
Bhattacharya et al. [4] for controlling water level, by Bhattacharya 
and Solomatine [5] for reconstructing stage-discharge 
relationships, by Hall and Minns [10] for classification of 
hydrologically homogeneous regions, by Nageshkumar and 
Dhanya [12] for rainfall prediction, by Solomatine et al., [16] for 
the classification of surge water levels in the coastal zone, and by 
Solomatine et al. [17] for  replicating the behavior of a 
hydrodynamic/hydrological river model. 
 
In addition to these approaches, data mining was also applied by 
some researchers in order to learn from the expert knowledge of 
the reservoir operators. Neelakantan and Pundarikanthan [13] and 
Chandramouli and Raman [6] introduced reservoir optimization 
techniques using the data clustering and rule mining. In addition, 
Sudha et al., [18] and Taghi Sattari et al., [19] used decision trees 
to devise irrigation reservoir rule curves. 
 

2.2 Classifiers 
We use classifiers to classify items that are described by a set of 
features and a set of labels. Each classifier maps the feature space 
X to a set of labels Y.  
 
A classifier is found using a training set. In the training set both 
the set of features and the set of labels are known. During the 
normal application of the classifier, only the features are known. 
We review below the classifiers that we have considered. 
   
2.2.1 Multilayer Perceptron 
The multilayer perceptron is an artificial neural network. The 
interesting feature about artificial neural networks is the fact that 
they have an adaptive learning technique that is employed, i.e., it 
changes and modifies its structure based on the input and the 
output values that are generated in the system during the learning 
phase. The multiplayer perceptron is a feed forward network that 
consists of several layers, namely, the input layer, the output 
layer, and numerous hidden layers. During normal operation or 
recall, the data flows from the input layer, through each of the 
hidden layers one-by-one, to the output layer.  
Multilayer perceptron networks also use back propagation for 
learning. Back propagation is carried out in two phases. In the 
first phase, the network is supplied with the training set to 
generate the activation functions which are then propagated 
backwards from the output layer to the input layer to formulate 
the difference between the expected and the current output. This 
phase is followed by a second phase, when the weights or 
connection strengths are modified by adding to the current weight 
and the above calculated difference to improve the output 
performance. The above two steps are repeated until the 
multilayer perceptron’s performance is satisfactory in that the 
outputs are close to the expected outputs for the training set.  
 
2.2.2 Naïve Bayes  
Due to the inherent property of the Naïve Bayes classifier to 
consider each of the features as independent entities, it can be 
used to design a prediction model for the water reservoir release. 
In addition, the Naïve Bayes classifier works upon the most-
likelihood mechanism and is a type of predictive modeling where 
a model is created or chosen to predict the probability of an 
outcome. These models typically consist of using detection of the 
future values based on training them with a training set. In 
general, one advantage of the Naïve Bayes classifier is that it 
performs well with a relatively small amount of training data. 
 
2.2.3 Decision Tree 
The decision tree is yet another predictive modeling-based 
classifier. Decision trees are one of the earliest classifiers. 
Decision trees provide a diagrammatic illustration of the results 
and an explanation for arriving at them. A decision tree is 
essentially composed of the following: 
 

 Internal nodes where various simple conditions, i.e., 
attributes compared with constants can be tested. 

 Branches which corresponds to the values of the 
attributes. 

 Finally, the leaves that assign a class to the input data. 
 

Revesz and Triplet [16] used the temporal data classification to 
design a simplified version of weather forecast where the forecast 
used only two classes, namely warm or cold temperature.  



We propose to extend the idea of temporal data classification to 
devise a more extensive data mining technique with a larger 
number of classes. We use the extended temporal data mining 
algorithms propose to predict the amount of water that needs to be 
released from a reservoir. The performance of each of the 
classifiers using the temporal data classification method is 
compared to identify which combination gives the most accurate 
prediction.  
 

 
 
 

 
 
 
 

 
 
 
 

3. THE DATA SOURCE 
 

3.1 Data Base 
 
For testing the effectiveness of the various methods, we 
considered as a case study the Cauvery river basin in South India. 
The Cauvery River extends over a length of about 1200 km, and 
the watershed extends over an area of more than 80 square km. 
The major reservoir of this river basin is the Mettur reservoir, in 
Tamil Nadu State. A hydrological database was developed after 
collating the data observations over a period of time. Some of 
these observations were carried out manually, while other 
observations were recorded using sophisticated sensors of stream 
and rain gauges. The release from the reservoir is a decision 
variable dependent on the current storage, the inflow, and to 
certain a extent the rainfall in the watershed. Monthly rainfall, 
inflow, storage and  

water release data have been obtained for 36 years, or 432 months 
collected by the Public Works Department (PWD) of Tamil Nadu 
State, which has been regularly monitoring these variables. Data 
collection was also carried out by off-site measurements which 
consist of sampled data over a period of time or data converted 
from manual recordings into a set of samples. These collected 
data were provided to us by the PWD of Tamil Nadu State.  
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
The original data contained a very small interval of data that 
coincided with the same timelines.  A total of 120 rows were 
found to be consistent with all the values and their respective 
timestamps. These numerical values were then categorized into a 
range of possible values (bins). We have considered an equal 
width binning of data. Data processing to understand reservoir 
operations were done on the equal width bin data.  
 
Data is usually split into three datasets: (a) training, (b) testing and 
(c) validation. In the training phase, using only the training 
dataset, the data mining algorithm finds a classifier. The accuracy 
of the classifier that is found is tested using the testing data. The 
training can be repeated until accuracy of the classifier reaches the 
minimum acceptable limit. The performance of tested data mining 
algorithm on mapping unused data (not used for training and 
testing) is evaluated during the validation phase. 
 

MONTH 
 
 

YEAR RAINFALL(R) INFLOW(I) STORAGE(S) RELEASE(L) 

Aug 81 251_500 20001_30000 60001_70000 20001_30000 

Sep  81 501_more 160001_more 60001_70000 120001_140000 

M RM-2 IM-2 S M-2 L M-2 R M-1 I M-1 S M-1 L M-1 R I S L 

Aug 251_ 
500 

20001_ 
30000 

60001_ 
70000 

20001_ 
30000 

501_ 
more 

160001_ 
more 

60001_ 
70000 

120001_ 
140000 

101_150 70001_ 
80000 

80001_ 
100000 

70001_ 
80000 

Sep 501_ 
More 

160001_ 
more 

60001_ 
70000 

120001_ 
140000 

101_ 
150 

70001_ 
80000 

80001_ 
100000 

70001_ 
80000 

101_150 70001_ 
80000 

80001_ 
100000 

70001_ 
80000 

Table 2. Temporal data representation of the Reservoir dataset 
 

Table 1. Data representation depicting the sample instances in the Reservoir Dataset. 
 



Since measurements may often be noisy, an attempt to maximize 
the fit to the training data may lead to the model capturing not 
only the process but also the noise - a phenomenon known as 
over-fitting. An over-fitted model may not perform well on a new 
dataset. Validation can give some guarantee that the over-fitting 
problem is avoided.  
In the present work, a model is built using the training data and is 
tested with the testing data. These two datasets have identical 
statistical distributions as they are randomly chosen from all the 
available data.  

 
4. EXPERIMENTAL RESULTS 
 

The following are the feature variables that are taken into 
consideration: 
 

 Storage: The amount of water in the reservoir at a given 
time (measured in Million Cubic Feet, Mcft). 

 Rainfall: The amount of precipitation that actually 
takes place (measured in mm). 

 Inflow: The actual amount of water that reaches the 
reservoir after rainfall through any water source (Mcft). 
 

In addition, the label variable is the following: 
 

 Release: The amount of water that is released from the 
reservoir. To have a finite number of labels, we consider 
only a finite number of range values as possible labels 
(Mcft).  

 
An important factor that is to be considered for estimating the 
release is that it satisfies the mass balance equation, which is 
given below: 

 
Storage in next month (St+1) = Current Storage (St) +           

Inflow (It) – Release (Rt) – 
Evaporation (Et) 

 
In addition, the release is a function of storage, inflow and 
demand. Therefore,  
 

Release = f (storage, inflow, demand) 
 

The above two equations are used to estimate the release in data-
driven modeling apart from data mining.  

 
 
4.1 Preprocessing 
 
The data obtained was not in the form that was easy for data 
mining. We had to simplify the number of bins and make sure that 
they have equal width. Different size bins or too small bins may 
result in over-fitting. The simplified input data set was a relation 
with rows of the form (Month, Year, Rainfall, Inflow, Storage, 
and Release). Some sample rows are shown in Table 1 (basic 
data) and Table 2 (limited history data).  
 
Weka 3.6, a user-friendly data mining tool, was used to 
implement the classification for reservoir operation. In the data 
pre-processing stage, all the data sets have been linearly converted 

into intervals to lower the chance of over-fitting. In the present 
study, the release is identified as the label (also called the 
dependent or decision variable). Data mining results in a classifier 
that finds the release value as an interval or range.     
In Weka 3.6, the numerical data for the labels (release) were 
converted to nominal values as required by its data mining 
algorithms. 
 

4.2 Discussion 
 
As already mentioned, the data was split into two sets; the training 
data and the testing data. The training data were used to obtain 
some classifier. The classifier’s performance was evaluated on the 
testing data. In our experiments for Table 3, we used 70% of the 
available data for training, and 30% of the data for testing. We 
used the k-fold cross validation strategy (for the present study the 
value of k is found to be optimal at 5 folds) implemented in Weka 
3.6. In this type of validation, the random sampling of the training 
and the testing data is repeated 5 times.  
 
Experiments show that the reservoir release classifier is more 
accurate when history is taken into consideration as shown in 
Table 2. Considering each month as a separate instance (as in 
Table 1) results in missing out all the details that can be harvested 
if the data pertaining to earlier months are also considered in 
predictions. Temporal data mining aims to identify future release 
values based several previous values.  
 
Consider the following motivational example for the use of 
temporal data. Suppose the current month’s storage, rainfall and 
inflow were usual, but the previous month’s release was low. 
Then the current release should be higher than average to provide 
enough water down the river. Temporal data mining can capture 
this scenario, but regular data mining, which only looks at the 
current values could lead to less than optimal result. Therefore, 
our temporal data, as shown in Table 2, looked back two 
additional months beside the current month. 
 
We have measured the performance accuracy of the 
classifiers using the Root Mean Square (RMS) error 
measure, extended in the following way.  
 
Let (a1, a2, a3, a4…) be the set of actual values measured as 
readings.  RMS also uses predicted values. We take the middle of 
the interval values as the predicted value p.  We now have a set of 
predicted values (p1, p2, p3, p4…) corresponding to each possible 
release interval.    
 
Further, let Nc be the total number of labels (i.e., the total number 
of possible water release range values), and suppose that the 
classifier is trained using n instances. Then we calculate the RMS 
value as follows: 
 
 
= ݎݎݎ݁ ܵܯܴ  ඨ∑ (ܽ   −  )ୀଵ ଶ

ܰ − 1  

  
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Classifier method Total No of 
Instances 

to be 
classified 

Correctly 
Classified 
instances 

Root mean 
square error 

Naïve bayes (Training) 84 70 0.121 

Naïve bayes (Testing) 36 13 0.2330 

Multilayer Perceptron (Training) 84 74 0.1138 

Multilayer Perceptron (Testing)  36 15 0.2284 

Decision trees (Training) 84 82 0.0088 

Decision trees (Testing) 36 10 0.2548 

Table 3. Performance Measures of Different Classifier Methods 
 

Fig. 2 Comparison of regular and temporal classification using the Naïve Bayes classifier 

Fig. 3   Comparison of regular and temporal classification using the Multilayer Perceptron Classifier 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This aggregated RMS error value is the measure of the degree of 
performance, i.e. the degree to which the classifier correctly 
predicts the required value. The performance of each of the 
classifiers using the temporal data is listed in Table 3. As shown 
in Table 3, the Multilayer Perceptron classifier had the most 
accurate performance on the testing data because it had the lowest 
RMS error value, namely 0.2284. 
 
Figures 2, 3 and 4 depict the performance comparison using the 
Naïve Bayes, the Multilayer Perceptron and the Decision Tree 
classifiers. All of these indicate a visible difference in the RMS 
values between using regular vs. temporal data mining. Though 
the regular data presents a comparatively lower RMS error to 
begin with, this cannot be taken as a valid state to measure the 
performance because only very few percentages of data (between 
10 and 25 percent) were considered. This is of little significance 
because the dataset consists of 120 instances and a model built 
using 10% of the data, i.e., 12 instances, cannot be substantiated. 
For larger training data, the temporal data mining shows better 
results than regular data mining in terms of decreased RMS error 
values.  

Interestingly, all the classifiers display an improvement, strongly 
backing up the theory that the history of the reservoir data does 
contain valid information to help design a valid classifier for 
regulating water release from the reservoir. 

 

5. CONCLUSION AND FUTURE WORK 
 
We have studied uncertain spatio-temporal data mining for the 
purpose of deriving operations for water quantity release. We  
 

have extended the algorithm suggested by Revesz and Triplet [14] 
to model the reservoir operation data using temporal data mining. 
Experiments show that the uncertain temporal data mining 
approach is an effective and efficient method. In particular, we 
overcome the challenge of dealing with complicated reservoir 
operational strategies using instead a simple approach of data 
mining to learn the expert knowledge of human operators of the 
water reservoir. Our temporal data mining showed a significant 
improvement over regular data mining.  
 
As experimentally demonstrated, the proposed data-mining 
approach also delivers good performance when trained with 
relatively few instances, which is in contrast to the normal belief 
that a large training data is required for accuracy. The proposed 
model has been proved to be effective in predicting the water 
release quantity, which can lead to development of automated 
water reservoir operations, thus providing a cost-effective 
management of water reservoirs. Our study also suggests a small 
training data requirement for similar data mining problems, not 
only other water reservoirs, but in general where the labels are a 
large set of interval values. 

 

5.1 Future Work 
 
The data mining modeling here is carried out based on the data 
from only a single reservoir on the Cauvery River. However, in 
reality, there may be a system of reservoirs that affect each other. 
That is, the release of one reservoir may add to the inflow, beside 
rainfall, to the inflow of other downstream reservoirs. A more 
comprehensive modeling needs to consider a system of reservoirs 
with their spatial relationships.  

Fig. 4 Comparison of regular and temporal classification 
using the Decision Tree classifier 



Further experiments may answer the question whether the 
accuracy can be improved if the training data is larger or contains 
more historical data in each row.  
Implementing the exhaustive approach to include all the related 
watershed data, such as, temperature and evaporation rates, could 
also improve the accuracy of the water reservoir release model. 
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