
OverView - Dynamic Visualization of Java-Based Highly

Reconfigurable Distributed Systems∗

Harihar Narasimha Iyer, Abe Stephens†, Travis Desell and Carlos Varela

Department of Computer Science

Rensselaer Polytechnic Institute

Troy, NY 12180, USA

http://www.cs.rpi.edu/wwc/

Abstract

Online visualization enables developers to test, de-
bug, and monitor the behavior of distributed systems,
while they are running. While important in software
development, online visualization of distributed sys-
tems is largely unaddressed by conventional tools. Dis-
tributed systems are often programmed using high-level
abstractions that facilitate reasoning about them, e.g.,
actors, processes, sessions, or ambients. OverView is
an entity specification language-driven Eclipse plug-in
for visualization of distributed systems that preserves
the high level of abstraction, and enables online visual-
ization of critical distributed system properties such as
component naming, location, remote communication,
and migration. OverView’s architecture is generic in
that different abstractions can reuse the visualization
module requiring changes only in the entity specifica-
tions that drive the visualization process.

1 Introduction

Visualizing, testing, and debugging distributed sys-
tems is a challenging task that is largely unaddressed
by conventional software tools. Many distributed sys-
tems are designed using abstractions that create a
unified view of the individual components and their
locations in the system. This unified view is espe-
cially useful when mobility is considered and system
components may be reconfigured during a program’s
lifespan. Conventional profiling and debugging tools
for Java environments, such as those distributed with
the Eclipse development platform restrict a developer
to examine one virtual machine at a time. To exam-
ine an entire distributed program with these tools a
developer must use multiple debugger instances, in-
dividually attaching each to a single virtual machine.

∗Work partially supported by an IBM Eclipse Innovation
Grant

†Currently affiliated with the University of Utah.

This division makes the global state of the system diffi-
cult to intuitively understand and complicates testing
because the unified view provided by the developer’s
original design is either obscured or not present.

Several problems arise when attempting to visual-
ize the online state of a distributed system designed
with high-level abstractions such as actors, processes,
or mobile ambients; since most tools lack first class
support for these abstractions. Conventional profilers,
for instance provide numerical summaries of dynamic
information such as the length of time spent execut-
ing a method or information at the level of objects and
classes. In order to analyze the system at the higher
level, developers must determine which lower level ob-
jects represent their higher-level abstractions at run-
time. This process is time consuming, and partially
decreases the utility of using the higher-level abstrac-
tion; especially if a considerable amount of visualiza-
tion is conducted.

Eclipse is an open source IDE that has an extensible
architecture. The IDE can be extended by providing
modules called plug-ins, which provide the developer
with a specific tool. Plug-ins are coded in Java and in-
tegrate well into the Eclipse Platform. OverView pro-
vides distributed systems developers and users with a
tool to view the global state of the system at any point
of time. It supports both online dynamic visualization
as well as an offline approach where the events in the
distributed system can be recorded and replayed at a
future time.

OverView tries to address the challenge of visual-
izing, testing, and debugging distributed systems by
providing a consistent global view of the entire sys-
tem. In dynamically reconfigurable distributed sys-
tems, some components may be migrated (manually
by programmers, or autonomously by middleware lay-
ers) to different locations due to load-balancies poli-
cies or failures in the underlying network topology.

1

Distributed

Visualization Program Online High Level

Tool Execution Visualization Abstractions

DejaVu Y N N
Jinsight N N N
Jive N Y N
Hy+ Y N N
OverView Y Y Y

Table 1: Different types of program visualization.

Model Entity Communication Container

Event

Actors Actor Message Send Theater
Mobile Process Channel Ambient

Ambients
Petri Nets Token Transition Place

RMI/CORBA Object Method JVM
Invocation

J2EE JavaBean HTTP Request Container

Table 2: Sample event types for distributed program-
ming models.

If the components of the distributed system migrate
from one location to the other, the plug-in will re-
flect these changes, allowing the user to analyze and
study the system. In the same way that the cod-
ing and debugging tools in Eclipse make writing soft-
ware more accessible by visually representing a pro-
gram’s static information, such as packages, classes,
and interfaces, as well as a program’s dynamic in-
formation, such as objects, threads, and invocation
stacks; OverView makes programming a distributed
system more accessible to the programmer by creat-
ing an analogous visual workspace with appropriate
distributed computing abstractions, including compo-
nent naming, location, remote communication, and
migration.

2 Related Work
Considerable work has been done in the visualiza-

tion and analysis of the execution of Java programs
(see, e.g. [7]). Jinsight [10] does visualization of trace
information produced by a special instrumented ver-
sion of the Java Virtual Machine. Similarly, Walker
et al. [14] use program event traces to visualize pro-
gram execution patterns and event-based object rela-
tionships like method invocations. All these systems
support only an offline mode where the trace of the
program execution gets visualized. Also they are not
designed for visualizing a distributed system.

Jive [8] does on-line visualization of Java programs.
It is a software visualization system that has a frame-

work for dynamic analysis of program data.As in the
systems mentioned before, Jive also supports only
non-distributed systems.

DejaVu [2, 5] is a Deterministic Java Replay Util-
ity that supports understanding and debugging dis-
tributed Java applications through deterministic re-
play of non-deterministic execution. DejaVu does not
support dynamic visualization but rather a replay of
the execution of the different VMs. The Hy+ sys-
tem proposed in [3] helps to understand and debug a
distributed program by replaying traces recorded at
runtime. Snodgrass presents a method targeted to-
wards distributed debugging and monitoring in which
a programmer uses relational algebraic queries to track
run-time dynamics [11].

Most of the visualizations mentioned above show
fine-grained execution information about individual
classes and objects. They lack a mapping from the
low-level objects to high-level abstractions. Sefika et
al [9] allow the developer to utilize coarse-grained sys-
tem information to produce visualizations. In their
technique, a developer may introduce abstractions
into the system instrumentation process. The abstrac-
tions can then be used as a basis for several visualiza-
tions. Walker et al [14] describe a system, which does
visualization in terms of a high-level view of the sys-
tem that is selected by the user. It permits lightweight
changes to the abstraction used for condensing the dy-
namic information. Queries of dynamic program infor-
mation were used by Lencenvicius [6] to debug online
programs.

Our work is unique in that it supports both an on-
line and offline visualization of a distributed system.
It also allows an easy mapping of the high-level ab-
stractions through a specification language. Table 1
shows the different systems discussed above.

3 Entity Specification Language
OverView’s Entity Specification Language (ESL)

provides the ability to map high-level programming
abstractions to low level Java code. The user de-
fines entities, and events based on actions made by
those entities. We based these entities on the concepts
of distributed computing models, namely entity cre-
ation/deletion, containment, migration, state change,
communication and errors. By mapping these con-
cepts to low level Java code,the ESL provides a uni-
versal way to translate high level abstractions to low
level Java code.This provides a homogeneous model
for visualization. The simplicity of the ESL model is
reflected in the simplicity of the language, as shown in
Figure 1 and Figure 2.

The ESL provides three types of declarations for an

Entity ::= entity IDENTIFIER is N ame EntityBody

EntityBody ::= { UniqueByDeclaration (WatchDeclaration | WhenDeclaration)* }
UniqueByDeclaration ::= unique by Value ;

WatchDeclaration ::= watch IDENTIFIER is Value ;
WhenDeclaration ::= when (start | finish) MethodSpecification send EventDeclaration

[ExceptionSpecification , ExceptionSpecification] ;
MethodSpecification ::= IDENTIFIER ([Parameter (, Parameter)*])

ExceptionSpecification ::= on exception IDENTIFIER send EventDeclaration

Parameter ::= Name IDENTIFIER
Name ::= IDENTIFIER (. IDENTIFIER)*

EventDeclaration ::= EventType (([Value (, Value)*])
EventType ::= Creation | Deletion | Migration | Update | Communication | Error

Value ::= LITERAL
exception
| (entity | IDENTIFIER) (. ValuePart)+

ValuePart ::= IDENTIFIER [([Value (, Value)*])]

Figure 1: Entity Specification Language Grammar

entity Actor is salsa.language.Actor {
unique by entity.uan.toString();

when finish bind(UAN uan, UAL ual)
send Creation(ual.toString());

when finish bind(UAN uan) send
Creation(entity.ual.toString());

when finish finalize()
send Deletion();

when finish migrate(UAL ual)
send Migration(ual.toString())

on exception MigrationException
send Error(exception),

on exception MalformedUALException
send Error(exception);

when finish send(Message message)
send Communication(message.getTargetString());

}

Figure 2: ESL example for SALSA Actors.

entity:

• A unique by declaration provides the ability to
declare multiple objects as a single identity, as an
object in a distributed system may be represented
by multiple objects across various JVMs during
its life span. This declaration specifies a unique
string identifier to describe the entity.

• A contained by declaration provides support in
the visualization for one entity to be contained
within another and be visualized as such.

• A watch declaration specifies that a specific at-
tribute at the visualization level should reflect all
changes to a member of a specific Java instance.
This attribute will be monitored by OverView
and events will be sent to the visualization layer
whenever the monitored object or attribute is
modified.

• A when declaration describes triggers for events,
based on actions performed by the entity. start
and finish designate if the event should be trig-
gered at the beginning or end of the method in-
vocation (or a constructor). The declaration then
proceeds to describe the event sent to the visual-
ization, as well as the values that the event will
contain. The optional on exception designation
specifies what action to take if an exception is
thrown by the watched method or constructor.

The six events that can be specified with a when
declaration are:

• Creation(String containerId) This specifies
the creation of an entity, taking the container or
entity that is contained by as an argument.

• Deletion() This specifies a deletion of an entity.

• Migration(String targetContainerId) This
specifies that an entity has moved from one con-
tainer to another, taking the container which the
entity has moved to as an argument.

• Communication(String entityId) This speci-
fies that communication occured between two en-
tities, and takes the entity communicated with as
an argument.

• Error(Exception exception) This specifies
that an error occured at some entity and takes
the exception thrown as an argument.

• Update(String item, Object value) This
specifies that the state of an entity has been up-
dated, along with the value that was updated and
the identifier for that object. These events are
usually used behind the scenes by the watch dec-
laration. The arguments for this event are the
name of the part of the state that was changed,
as well as the value that is has now become.

Figure 2 shows a sample entity specification for the
Actor Model [1], using the SALSA Language [13]. In
the SALSA language, an actor binds to a location,
thus entering the distributed system. After this, the
actor can migrate to other locations in the system.
Currently, OverView requires IDs for entities be Java
Strings, so the specification reflects this. The spec-
ification also designates how exceptions are sent to
the visualization layers. The entity keyword denotes
that the following identifiers are values or method lo-
cals to that entity, if this keyword isn’t used, the first
identifier is assumed to refer to the arguments of the
method which sends a trigger.

4 OverView Architecture
OverView has a highly modular event-based archi-

tecture. It consists of four layers: a data collection
layer, an event profiling layer, a data-mapping layer
and visualization layer (see Figure 3). The entity spec-
ification language is used to map high-level concur-
rency abstractions into lower-level Java threads, net-
work connections and objects.

The data collection layer (DCL) connects to the
specified JVMs (Java Virtual Machines) using JPDA
(Java Platform Debug Architecture) connections. The
data collection layer is responsible for maintaining the
connections throughout the course of the visualization.
The event-profiling layer (EPL) communicates to the
different JVMs through the data collection layer. EPL
gets the information from the ESL and translates them

Figure 3: Layered Architecture of OverView.

into Java debugging events like method entry and exit
events. Then it sets the requests for these events in the
JVMs. When the desired event occurs in the JVM, it
sends an event back to the EPL. This event is analyzed
by the EPL and the required data is extracted from the
JVM. The ESL again provides EPL with the necessary
information as to how and what information to extract
when the event occurs.

The data that is gathered from the events is passed
to the Data Mapping Layer (DML), which modifies
a data structure which we refer to as RawData. The
RawData has data structures to hold the entity state
attributes and the entity-entity relationships. The
events that are passed on to the DML from the EPL
get mapped to specific changes in the RawData struc-
ture.

The final layer in the architecture is the visualiza-
tion layer (VL). The input to VL is the RawData,
which gets modified by the DML. The visualization
layer takes the RawData and presents it to the users
in the form of diagrams. VL has two modes of pre-
sentation to the user: online and offline. In the first
mode, the RawData gets visualized in real-time. The
VL also provides the user with the option to record the
events and to visualize them at a later point in time.

Figure 4: Snapshot of the OverView History View.

This second mode of visualization allows the user to
analyze the events at a pace convinient to them.

5 Preliminary Implementation and

Results

OverView has been implemented as an Eclipse
Plug-In. The system developer uses the ESL to spec-
ify the events that he is interested in visualizing and
how to get that information. Before program visu-
alization can begin, the connections to the different
VMs are made using the JPDA architecture. JPDA
uses Java Debug Wire Protocol (JDWP) to communi-
cate between the VM and the DCL. One of the main
issues with the current implementation is the suitabil-
ity of JPDA as a tool for collecting information from
different VMs. From our experiments, we have found
that JPDA fails to provide necessary information un-
der certain circumstances. This could lead to the state
of the system being misrepresented by OverView. An-
other factor was the speed of execution of the sys-
tem. Using JPDA to gather information considerably
slows down the speed of execution of the whole sys-
tem. In order to improve on these aspects, we are
considering Java byte-code instrumentation as an al-
ternative to JPDA to get information from the various
VMs. This would amount to inserting byte code into
proper places in the user classes at load time to send
the required information to OverView as specified in
the ESL. The communication between the DCL and
the VMs would then be handled by a custom proto-
col. However, an advantage of using JPDA is that
we could more easily extend OverView as a debugging
and distributed systems management framework.

The VL consists of two Eclipse views. The World

View gives a high level view of the entire system. It vi-
sualizes the different containers with the entities inside
them making it highly suitable to view entity migra-
tions across the system. The containers are visualized
as rectangles with their identifiers below them and the
entities are shown as circles inside the containers. The
color of the entity is a representation of the ”state” of
the entity. For example, an entity, which needs more
computational resources, will be displayed as a red cir-
cle, and an entity which has low resource usage, will be
displayed in blue. The World View also provides the
user with the choice to record the events in the execu-
tion. A ”Start Record” and a ”Stop Record” option
in the World View facilitates this. The History View
can be invoked to visualize and analyze the program
execution in an off-line mode. The History View can
be used along with the World View even while the pro-
gram is executing. Therefore it is possible to visualize
the events that already occurred during the execution
of the current program.

We tested our implementation on distributed pro-
grams written using the SALSA programming lan-
guage [13]. OverView was able to visualize the ac-
tor creation and migration successfully in the different
trail runs. It could also capture the state changes of
actors, which was specified as the change in the mail-
box size of the actor. Figure 4 shows a screenshot of
the initial version of the plug-in.

6 Discussion
In this paper, a brief description of the OverView

Eclipse plug-in has been presented. The initial pro-
totype of OverView does visualization of creation and
migration of distributed entities in the network. Un-
derstanding global state is a critical step in develop-
ing robust distributed systems with reliability guar-
antees. OverView not only enables the visualization
of distributed systems during run-time, but also en-
ables experimentation with new language constructs
for high level distributed systems programming. Pro-
gramming abstractions for coordination may include
hierarchical actor groups [12] and different notions of
distributed transactions [4]. The ability to control and
manipulate the components of these systems at run-
time is also an important and desirable feature; the
architecture described here presents a highly extensi-
ble first step to that eventual goal.

References
[1] G. Agha. Actors: A Model of Concurrent Compu-

tation in Distributed Systems. MIT Press, 1986.

[2] B. Alpern, J. Choi, T. Ngo, M. Sridharan, and
J. Vlissides. A Perturbation-Free replay platform

for Cross-Optimized multithreaded applications.
pages 23–23.

[3] M. P. Consens, M. Z. Hasan, and A. O. Mendel-
zon. Visualizing and querying distributed event
traces with hy+. In Applications of Databases,
pages 123–141, 1994.

[4] J. Field and C. Varela. Toward a program-
ming model for building reliable systems with dis-
tributed state. In Proceedings of the First Inter-
national Workshop on Foundations of Coordina-
tion Languages and Software Architectures (FO-
CLASA)., Brno, Czech Republic, August 2002.

[5] R. Konuru, H. Srinivasan, and J.-D. Choi. Deter-
ministic replay of distributed java applications.
pages 219–228.

[6] R. Lencevicius, U. Hölzle, and A. K. Singh. Dy-
namic query-based debugging. Lecture Notes in
Computer Science, 1628:135–??, 1999.

[7] W. D. Pauw, E. Jensen, N. Mitchell, G. Sevitsky,
J. Vlissides, and J. Yang. Software visualization,
state-of-the-art survey. LNCS 2269, 2002.

[8] S. P. Reiss. Jive: Visualizing java in action
demonstration description. 2003.

[9] M. Sefika, A. Sane, and R. Campbell.
Architecture-Oriented Visualization. In Proc.
ACM Conf. on Object-Oriented Programming
Systems, Languages and Applications (OOP-
SLA), volume 31:10, pages 389–405, 1996.

[10] G. Sevitsky, W. D. Pauw, and R. Konuru. An in-
formation exploration tool for performance anal-
ysis of java programs. March 2001.

[11] R. Snodgrass. A relational approach to monitor-
ing complex systems. 6:2:157–196, May 1988.

[12] C. Varela and G. Agha. A Hierarchical
Model for Coordination of Concurrent Ac-
tivities. In P. Ciancarini and A. Wolf,
editors, Third International Conference on
Coordination Languages and Models (CO-
ORDINATION ’99), LNCS 1594, pages
166–182, Berlin, April 1999. Springer-Verlag.
http://osl.cs.uiuc.edu/Papers/Coordination99.ps.

[13] C. Varela and G. Agha. Programming dynam-
ically reconfigurable open systems with SALSA.
ACM SIGPLAN Notices, 36(12):20–34, 2001.

[14] R. J. Walker, G. C. Murphy, B. N. Freeman-
Benson, D. Wright, D. Swanson, and J. Isaak.
Visualizing dynamic software system information
through high-level models. In Conference on
Object-Oriented, pages 271–283, 1998.

