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ABSTRACT

We introduce a framework using session types for denoting the relationships between multiple

actors in a system. We prove that ascribing to this framework guarantees deadlock freedom,

and demonstrate tests of how an implementation of such would work in the SALSA language.
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1. INTRODUCTION

Session types [1] can be used as a way to reason about the communications between two

processes. For example, one process could send(a), send(b), then either receive(c)

or receive(d), then end. The process opposite it would, in turn, have the session type:

receive(a), receive(b), (send(c) or send(d)), end. One important point to note is that

these two processes have dual session types, meaning that for one process and any state it

is in, the other process is in the opposite state. This creates a number of useful properties,

including the guarantee of deadlock freedom [2].

While previous work has been done in adapting session types into Erlang [3], we seek to

show the benefits of using an actor language with a significantly different structure, namely

SALSA [4]. One of the largest differences is the fact that messages are received individually

by message handlers in SALSA, meaning you are guaranteed to be able to receive a message

of any type at any time, but are unable to restrict the types of messages you can receive.

Contrast this with Erlang, in which upon receiving a message, the language allows the code

to block until it receives another message only of a specific type. Additionally, SALSA uses

tokens to elegantly wait for multiple messages being processed in parallel.

Deadlock is an important problem, as code that potentially enters deadlock may enter

an erroneous state and be unable to inform the user that it is unable to process informa-

tion. Session types are a good solution to this problem, as they model the communication

topology between two agents, and deadlock is fundamentally a problem caused by badly

formed communication topologies. Furthermore, session types will type check at compile

time, meaning it can provide these guarantees without the user needing to run code.

The main contributions of this thesis are threefold. First, we introduce a language,

which we call Session Typed FeatherWeight SALSA, that models session types and executes

similarly to FeatherWeight SALSA [4]. Next, we define the semantics of this language and

demonstrate how such a model would be able to detect deadlock. Finally, we prove that

defining the program like so guarantees our type checker is sound, and finds any potential

deadlock at compile time.

1



2. RELATED WORK

Mostrous and Vasconcelos [5] showed that it is possible to construct a program in an actor

language in a way that can use session types. To do this, they defined a featherweight version

of Erlang, and used the notion of unique references to verify the identity of the sender and

recipient. They explained how each function in their language would translate into session

types, and proved various properties about programs created under this framework. For

example, they defined how communications match, or become balanced, and that under

their environment this relationship would be preserved, thus guaranteeing type safety.

Neykova and Yoshida [6] showed how to use session types for a group of actors, rather

than just a pair. Their research hinges on establishing an overhead organization framework

that defines the session types between roles, and having the programs participating in the

session type choose the role they plan to fulfill.

Reynolds [7] introduced the notion of separation logic as an extension of Hoare logic,

specifically for reasoning about parallel programs. Separation logic denotes dependency on

certain portions of shared memory, and how interactions between those portions affects the

state of the other program threads.

Jacobs et. al. [8] used separation logic to form connectivity graphs based on a given

program. Each process was represented by a vertex, with directed edges marking dependen-

cies. From there, they were able to determine if the program had entered a deadlock state

by checking the graph for cycles, as that would indicate a cyclic dependency.

Carbone and Debois [2] proved that utilizing session types could prevent deadlock,

using the notion that a program that uses session types always maintains both progress

and preservation. They used π Calculus and the notion of dual types to show that the

dependency graph of a program would never enter deadlock if it adhered to session types.

Charalambides et. al. [9] introduced the notion of parameterized session types for multi-

party interactions. They showed how languages may be able to reason about asynchronicity,

while also verifying concurrent, parameterized programs. To do so, they created a language

of their own that could demonstrate such properties, and proved that every facet of session

types was upheld by how the language defined its interactions. From there, they formalized

their type checking and showed that the types were projectable, or able to be reduced to

simpler types, and proved the correctness of this result.
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3. MOTIVATING EXAMPLE

We explore a version of the dining philosophers problem with only two chopsticks and two

philosophers. The goal is for each philosopher to be able to continuously eat using the

chopsticks on either side of them, while also allowing the other philosopher to grab them

as well once they are finished. A common problem is for both philosophers to grab the left

chopstick first, then wait for the right chopstick, which will never be put down by the other

philosopher, causing both to starve. A common solution to this (per Dijkstra [10]) is to have

one philosopher prioritize their left chopstick, and the other to prioritize their right.

Section 3.2 shows the complete code for a well-written implementation of the dining

philosophers problem. The code as given ensures fairness between the two philosophers (one

philosopher will not eat over and over while the other is waiting for chopsticks), as well

as guaranteeing it is impossible for them to deadlock. We prove that this is the case, as

well as show that swapping the priority of the second philosopher’s chopsticks leads to the

possibility for deadlock.

Note that in a more minimal example, the chopsticks would act similarly to semaphores,

in that they would not queue up the next philosopher to grab automatically. However, the

communication topology of the more minimal example is more complex as a result, as at-

tempting to grab a chopstick results in either success or failure. Since our work focuses on

ensuring properties about the communication topology, our example focuses on the imple-

mentation of the problem with more straightforward session types (the fairness version), as

there is only one messaging result of attempting to grab a chopstick (success).

This program can be difficult to reason about, because it includes a variety of inter-

esting portions. For example, the program is designed to continuously loop, rather than

reach a terminal state; we will represent this in our session types using the Kleene star

(*). In addition, the program utilizes tokens, meaning we must find a way to denote that

the tokens have been received and the program can progress. This is done by treating the

tokens themselves as dependencies within the graphical representation, which unblock upon

reception of the corresponding message. Furthermore, the program features actors which

use internal variables to decide which control flow to take upon receiving certain messages.

We use Hoare logic [11] to guarantee each of these possibilities is accounted for. Finally,

the program is made up of four actors, rather than the two typical for session types. In

3
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order to reason about this, we represent the program as a whole using a multiparty session

type [6], which is set up within the initialization. Additionally, we model the changes in the

communication topology as a series of graphs where a cyclical dependency in one indicates

potential deadlock [2].

Figure 3.1 shows a simplified version of the program, where only one philosopher is

involved. Note that there is an ambiguous ordering of which chopstick is released first, yet

both traces lead back to the same state.

3.1 In Practice

Looking back at our dining philosophers example, we hope to see that a small change

in its setup (grabbing left instead of right) will lead to the type checker detecting deadlock

and vice versa.

When we initialize Philosopher p2, swapping the order of the chopsticks has no effect

on the session types themselves. However, when we check the initialization, we record the

state of the Philosopher with respect to its relationships to the Chopsticks. Specifically, it

records c2 as the first chopstick and c1 as the second (the opposite occurs in the well-written

case).

Additionally, the first get message sent as p2 must be to its first chopstick. The checker

asserts the message sent first is the same as the first message of the session type, and thus

will only be able to confirm a result if this is the case.

With this new setup, it will check all possible traces of the program. One such trace

is shown in Figure 3.2, which deadlocks. Hence, the type checker confirms the program

potentially enters deadlock, and can provide a trace that does so.

With the well-written setup, no such trace produces deadlock. A sample walk of the

well-written program is shown in Figures 3.3 and 3.4. In this case, it encounters a previously

cached state at every leaf node, meaning that no matter which trace it takes, it will always

be able to recurse.

3.2 Dining Philosophers Code

behavior Chopstick{
Phi losopher pa ;
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Phi losopher pb ;

boolean a ho ld ing ;

boolean b ho ld ing ;

boolean a wa i t ing ;

boolean b wai t ing ;

Chopstick ( ) {}

void s e tPh i l o s ophe r s ( Phi losopher a , Phi losopher b){
pa = a ;

pb = b ;

a ho ld ing = f a l s e ;

b ho ld ing = f a l s e ;

a wa i t ing = f a l s e ;

b wa i t ing = f a l s e ;

r e turn nu l l ;

}

//@ r e qu i r e s SessionType [ pa ] get ;

//@ r e qu i r e s SessionType [ pb ] get ;

//@ ensure s r e c e i v e [ pa ] get ;

//@ ensure s send [ pa ] ho ld ing ;

//@ ensure s SessionType [ pa ] ho ld ing ;

//@ ensure s SessionType [ pb ] get ;

//@ a l s o

//@ r e qu i r e s SessionType [ pa ] get ;

//@ r e qu i r e s SessionType [ pb ] ho ld ing ;

//@ ensure s r e c e i v e [ pa ] get ;

//@ ensure s SessionType [ pa ] ho ld ing ;

//@ ensure s SessionType [ pb ] ho ld ing ;

//@ a l s o

//@ r e qu i r e s SessionType [ pa ] get ;
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//@ r e qu i r e s SessionType [ pb ] r e l e a s e ;

//@ ensure s r e c e i v e [ pa ] get ;

//@ ensure s SessionType [ pa ] ho ld ing ;

//@ ensure s SessionType [ pb ] r e l e a s e ;

//@ a l s o

//@ r e qu i r e s SessionType [ pa ] get ;

//@ r e qu i r e s SessionType [ pb ] get ;

//@ ensure s r e c e i v e [ pb ] get ;

//@ ensure s send [ pb ] ho ld ing ;

//@ ensure s SessionType [ pa ] get ;

//@ ensure s SessionType [ pb ] ho ld ing ;

//@ a l s o

//@ r e qu i r e s SessionType [ pa ] ho ld ing ;

//@ r e qu i r e s SessionType [ pb ] get ;

//@ ensure s r e c e i v e [ pb ] get ;

//@ ensure s SessionType [ pa ] ho ld ing ;

//@ ensure s SessionType [ pb ] ho ld ing ;

//@ a l s o

//@ r e qu i r e s SessionType [ pa ] r e l e a s e ;

//@ r e qu i r e s SessionType [ pb ] get ;

//@ ensure s r e c e i v e [ pb ] get ;

//@ ensure s SessionType [ pa ] r e l e a s e ;

//@ ensure s SessionType [ pb ] ho ld ing ;

void get ( Phi losopher p){
a ho ld ing = a ho ld ing | | (p==pa && ! b ho ld ing ) ;

b ho ld ing = b ho ld ing | | (p==pb && ! a ho ld ing ) ;

a wa i t ing = p==pa && b ho ld ing ;

b wa i t ing = p==pb && a ho ld ing ;

i f (p==pa && a ho ld ing ){
token t0 = pa <− ho ld ing ( ) : wa i t f o r ( ) ;
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re turn nu l l ;

} e l s e i f (p==pb && b ho ld ing ) {
token t0 = pb <− ho ld ing ( ) : wa i t f o r ( ) ;

r e turn nu l l ;

} e l s e re turn nu l l ;

}

//@ r e qu i r e s SessionType [ pa ] r e l e a s e ;

//@ r e qu i r e s SessionType [ pb ] get ;

//@ ensure s r e c e i v e [ pa ] r e l e a s e ;

//@ ensure s SessionType [ pa ] get ;

//@ ensure s SessionType [ pb ] get ;

//@ a l s o

//@ r e qu i r e s SessionType [ pa ] r e l e a s e ;

//@ r e qu i r e s SessionType [ pb ] ho ld ing ;

//@ ensure s r e c e i v e [ pa ] r e l e a s e ;

//@ ensure s send [ pb ] ho ld ing ;

//@ ensure s SessionType [ pa ] get ;

//@ ensure s SessionType [ pb ] ho ld ing ;

//@ a l s o

//@ r e qu i r e s SessionType [ pa ] get ;

//@ r e qu i r e s SessionType [ pb ] r e l e a s e ;

//@ ensure s r e c e i v e [ pb ] r e l e a s e ;

//@ ensure s SessionType [ pa ] get ;

//@ ensure s SessionType [ pb ] get ;

//@ a l s o

//@ r e qu i r e s SessionType [ pa ] ho ld ing ;

//@ r e qu i r e s SessionType [ pb ] r e l e a s e ;

//@ ensure s r e c e i v e [ pb ] r e l e a s e ;

//@ ensure s send [ pa ] ho ld ing ;

//@ ensure s SessionType [ pa ] ho ld ing ;
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//@ ensure s SessionType [ pb ] get ;

void r e l e a s e ( ) {
a ho ld ing = a wa i t ing ;

b ho ld ing = b wai t ing ;

a wa i t ing = f a l s e ;

b wa i t ing = f a l s e ;

i f ( a ho ld ing ) {
token t0 = pa <− ho ld ing ( ) : wa i t f o r ( ) ;

r e turn nu l l ;

} e l s e i f ( b ho ld ing ) {
token t0 = pb <− ho ld ing ( ) : wa i t f o r ( ) ;

r e turn nu l l ;

} e l s e re turn nu l l ;

}
}

behavior Phi losopher {
Chopstick f i r s t ;

Chopstick second ;

i n t s t i c k s ;

Ph i lo sopher ( Chopstick f i r s t , Chopstick second ){
t h i s . f i r s t = f i r s t ;

t h i s . second = second ;

t h i s . s t i c k s = 0 ;

}

//@ r e qu i r e s SessionType [ f i r s t ] ho ld ing ;

//@ r e qu i r e s SessionType [ second ] get ;

//@ ensure s r e c e i v e [ f i r s t ] ho ld ing ;

//@ ensure s send [ second ] get ;
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//@ ensure s SessionType [ f i r s t ] r e l e a s e ;

//@ ensure s SessionType [ second ] get ;

//@ a l s o

//@ r e qu i r e s SessionType [ f i r s t ] r e l e a s e ;

//@ r e qu i r e s SessionType [ second ] ho ld ing ;

//@ ensure s r e c e i v e [ second ] ho ld ing ;

//@ ensure s send [ f i r s t ] r e l e a s e ;

//@ ensure s send [ second ] r e l e a s e ;

//@ ensure s send [ f i r s t ] get : r e l e a s e [ s e l f , f i r s t ] : r e l e a s e [

s e l f , second ] ;

//@ ensure s SessionType [ f i r s t ] r e l e a s e ;

//@ ensure s SessionType [ second ] r e l e a s e ;

void ho ld ing ( ) {
s t i c k s = ( s t i c k s +1)%2;

i f ( s t i c k s==0) {
token t0 = f i r s t <− r e l e a s e ( ) : wa i t f o r ( ) ;

token t1 = second <− r e l e a s e ( ) : wa i t f o r ( ) ;

token t2 = f i r s t <− get ( s e l f ) : wa i t f o r ( t0 , t1 ) ;

r e turn nu l l ;

} e l s e

token t0 = second <− get ( s e l f ) : wa i t f o r ( ) ;

r e turn nu l l ;

}
}

I n i t {
//@ Actor c1 ;

c1 = new Chopstick ( ) ;

//@ Actor c2 ;

c2 = new Chopstick ( ) ;

//@ Actor p1 ;
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p1 = new Phi losopher ( c1 , c2 ) ;

//@ Actor p2 ;

p2 = new Phi losopher ( c1 , c2 ) ;

token t1 = c1 <− s e tPh i l o s ophe r s (p1 , p2 ) : wa i t f o r ( ) ;

token t2 = c2 <− s e tPh i l o s ophe r s (p1 , p2 ) : wa i t f o r ( ) ;

//@ SessionType (p1 , c1 ) send get ; r e c e i v e ho ld ing ; send

r e l e a s e ; ∗ ;

//@ SessionType ( c1 , p1 ) r e c e i v e get ; send ho ld ing ; r e c e i v e

r e l e a s e ; ∗ ;

//@ SessionType (p1 , c2 ) send get ; r e c e i v e ho ld ing ; send

r e l e a s e ; ∗ ;

//@ SessionType ( c2 , p1 ) r e c e i v e get ; send ho ld ing ; r e c e i v e

r e l e a s e ; ∗ ;

//@ SessionType (p2 , c1 ) send get ; r e c e i v e ho ld ing ; send

r e l e a s e ; ∗ ;

//@ SessionType ( c1 , p2 ) r e c e i v e get ; send ho ld ing ; r e c e i v e

r e l e a s e ; ∗ ;

//@ SessionType (p2 , c2 ) send get ; r e c e i v e ho ld ing ; send

r e l e a s e ; ∗ ;

//@ SessionType ( c2 , p2 ) r e c e i v e get ; send ho ld ing ; r e c e i v e

r e l e a s e ; ∗ ;

//@ Message (p1 , c1 ) get ;

c1 <− get ( p1 ) : wa i t f o r ( t1 , t2 ) ;

//@ Message (p2 , c1 ) get ;

c1 <− get ( p2 ) : wa i t f o r ( t1 , t2 ) ;

}
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Figure 3.1: The chain of events of a single Philosopher in the DP example; top
to bottom, left to right. The large blue nodes are actors, and
include an asterisk while processing. The smaller red nodes are the
session types between actors, with the label noting the type of
message in the session type. Directed edges model a dependency;
either an actor placing a message in transit, an actor waiting to
place a message in transit, or an actor waiting to receive a message
in transit. Note that due to multiple interleavings, the model splits
before returning to unified state, and thereafter looping.
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Figure 3.2: The chain of events leading to a possible deadlock scenario in the
DP problem; top to bottom, left to right. The large blue nodes are
actors, and include an asterisk while processing. The smaller red
nodes are the session types between actors, with the label noting
the type of message in the session type. Directed edges model a
dependency; either an actor placing a message in transit, an actor
waiting to place a message in transit, or an actor waiting to receive
a message in transit. Note that the last frame contains a cyclic
dependency.
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Figure 3.3: The chain of events of two Philosophers in the DP example; top to
bottom, left to right. Second half of sequence on next page (Figure
3.4). The large blue nodes are actors, and include an asterisk while
processing. The smaller red nodes are the session types between
actors, with the label noting the type of message in the session
type. Directed edges model a dependency; either an actor placing a
message in transit, an actor waiting to place a message in transit,
or an actor waiting to receive a message in transit.
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Figure 3.4: The chain of events of two Philosophers in the DP example; top to
bottom, left to right. First half of sequence on previous page
(Figure 3.3).The large blue nodes are actors, and include an asterisk
while processing. The smaller red nodes are the session types
between actors, with the label noting the type of message in the
session type. Directed edges model a dependency; either an actor
placing a message in transit, an actor waiting to place a message in
transit, or an actor waiting to receive a message in transit.



4. LANGUAGE SYNTAX AND SEMANTICS

The first portion of the type checker program (Pseudocode in Section 4.3.1) is dedicated

to making sure that the code itself matches the specifications, and confirming the Hoare

triples found in each of the specifications. We make sure each annotation progresses exactly

one session type by one stage (specifically, the stage corresponding to the message handler

following it). Additionally, if the message handler has any branches, we guarantee there is

Table 4.1: Syntax for Session Typed FeatherWeight Salsa. Note that I and R
symbolize initialization (including actor creation) and the
annotations, respectively, and are formally defined in Table 4.3.

A ::= { true, false, null, ...} Atoms
N ::= { 0, 1, 2, ...} Natural numbers
X ::= { self, x, y, z, ...} Variables
D ::= { a, b, c, ...} Actor names
T ::= { t, t0, t1, ...} Tokens
M ::= { m, n, o, ...} Message names
B ::= { A, B, C, ...} Behavior names
F ::= { +, *, ==, ...} Primitive operations

V ::= A | N | X | D | T Values

E ::= Expressions
V

| F (E, ..., E) Function application
| E;E Sequencing
| if (E) {E} else E Conditional execution
| token T = E <-M(E, ..., E) Message send

:waitfor(T, ..., T )
| return E Set token; get ready

H ::= R B M(B X, ..., B X) Message handlers
{X = E; ...;X = E;E; ...;E; }

C ::= B(B X, ..., B X) Constructors
{this.X = X; ...;this.X = X; }

Be ::= behavior B Behaviors
{B X; ...;B X;C H...H}

P ::= Be Be ... Be I Programs

15
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at least one annotation corresponding to each possible trace, such that all cases are covered.

The second portion (Pseudocode in Section 4.3.2) is dedicated to determining the

types of messages each actor can process. For each method within an actor, it inspects

each corresponding Hoare triple. It retains a list of the possible starting states from which

a program can enter this method (i.e. at what step within a local session type have they

progressed to), as well as the corresponding messages sent (including sender and recipient

information) and the state the program ends on.

From there, the type checker generates a full set of all the possible actions the program

can take, in no given order. It first collects data on the maximum number of actors and

session types, then uses this data combined with the results of the previous step to create

a chunk of data denoting a singular option. This chunk includes the starting states over

the whole program before the message is consumed, the message consumed, the messages

that would be sent following the control flow of this option, and the ending state that the

program would be left in.

The third portion (Pseudocode in Section 4.3.3) takes this set of options, as well as

the program’s overall starting state and messages in transit, and recursively checks if it is

possible for the program to consume an option. This occurs if the program’s state and the

option’s starting state match (utilizing pattern matching if possible), as well as checking the

received message has been sent and not yet received. If these conditions are met, the state

of the session types are updated, as well as the list of messages in transit. Additionally, the

fact that this state-message pair has been processed gets recorded, and any future copies

of the same pair immediately return the same result. If there is ever a cyclical dependency

within a strongly connected component without outgoing edges, the program alerts the user

of the iteration order that caused this; otherwise, the program will eventually run out of

states to check, thus guaranteeing the program is deadlock-free.

This type checker is guaranteed to terminate, despite having potentially exponential

time. There are a finite number of traces (note that ”trace” here refers to the static modeling

of the communication topology, rather than the potentially infinite amount of dynamic traces

which include runtime parameters), which means the tree detailing all walks of the program

must also be finite when caching previous states. This does, however, grow exponentially,

leading to a non-polynomial runtime in the worst case.
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4.1 Session Typed FeatherWeight Salsa

We combine all these portions into one package (Pseudocode in Section 4.3.4), and

run it on a modified featherweight version of the SALSA language, known as Session Typed

FeatherWeight SALSA. Table 4.1 shows the syntax of this language, and Section 3.2 demon-

strates how to convert and annotate the dining philosopher’s problem into this framework.

An important detail is that the only functions we need are primitive operations; all other

functions and loops can be reduced to a message send. Note that since none of our primitive

operations block the actor, this means all message handlers are guaranteed to eventually

complete their processing and return the actor to the ready state.

Note that there are a few changes from the original implementation of FeatherWeight

Salsa. Notably, all actor creation is done during the initialization of a program, which guar-

antees we work on a fixed set of actors and a fixed communication topology. The initialization

is syntactic sugar for a unique actor which performs the same code, but is kept separate from

the rest of the program in accordance with multiparty session types. If a program has an

upper bound on the number of actors created and dynamic communications between them,

this can be (inefficiently) modeled in our language by defining each possibility within the

initialization and simulating the actor creations and communications. Additionally, we ne-

cessitate a set of requirements before each message handler, corresponding to the annotations

for that message.

In terms of the semantics for this language, shown in Table 4.2, we largely borrow from

FeatherWeight Salsa. In short, α is a map of actor names to actor states, µ is a multiset of

messages, and β is the table of actor behaviors. Note that due to removing dynamic actor

creation, the (FS-Init) rule is the only way new actors are made. The notation ⌊R ▷ e◁⌋a
denotes that actor a is currently running, and is processing instruction e. The notations ↓t
and ↑t denote a token being set and created, respectively. Lastly, the notation β(B,m)= B’

m(B̄ x̄) {f̄ = ē; ē’;} ∀v ∈ v̄′ ∪ v̄′′ : v /∈ T represents that behavior β has a message handler

for m with the corresponding text.

4.2 Annotations

We expand on FeatherWeight Salsa [4], the syntax of which is shown in Table 4.3. We

add an annotation before each message handler H, which we will label R. Each annotation

includes the session types before the message handler, the type of message being received,
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Table 4.2: Operational semantics for Session Typed FeatherWeight Salsa. The
left column denotes the rule name, right column denotes
parameters, and center column denotes the resulting reduction.

(FS-Seq) with (e →s e’)
α, ⌊R ▷ e◁⌋a∥µ∥β 7→ α, ⌊R ▷ e′◁⌋a∥µ∥β

(FS-Send) with (fresh t’; t’ ∈ T )
α, ⌊R▷token t = a’ <- m(v̄):waitfor(t̄)◁⌋a∥µ∥β 7→
α, ⌊R{t’/t}▷null◁⌋a∥µ ⊎ {((t̄) : a′ ⇐ m(v̄) ↑t′)}∥β

(FS-Rtrn)
α, ⌊B(v̄):R▷return v◁ ↓t⌋a∥µ∥β 7→ α, ⌊B(v̄)⌋a∥µ{v/t}∥β

(FS-Recv) with (β(B,m)=
B’ m(B̄ x̄){f̄ = ē; ē’;}
∀v ∈ v̄′ ∪ v̄′′ : v /∈ T )

α, ⌊B(v̄)⌋a∥{((v̄′′) : a ⇐ m(v̄′) ↑t)} ⊎ µ∥β 7→
α, ⌊(B(ē) : ē′){(v̄, v̄′, a)/(f̄ , x̄,self)} ↓t⌋a∥µ∥β

(FS-Init) with (fresh α; α ∈ X
fresh µ; µ ∈ M)

∅∥∅∥β 7→ α∥µ∥β

any messages being sent, and finally the session types after the message handler.

In addition, we designate an Initializer actor I, which creates a finite set of actors,

defines the session types between them, and sends the initial message(s) While we may be

able to expand session types to dynamic actor creation in the future, doing so creates a

multitude of issues beyond the scope of our current research, such as dynamic session type

creation, recursive loop invariants, the usage of actor references as variables, and avoiding

the Halting Problem.

Note: we assume the program makes progress whenever it recurses. If we did not have

this assumption, we would have to account for cases such as livelock, where recursion occurs

but no progress is made. Since this is outside the scope of our work, we exclude it from our

analysis.

In terms of the semantics of our type system, defined in Table 4.4, γ represents the

graph structure between actors, with [a◁m]b meaning actor a points towards message m with

respect to its relationship with actor b. τ represents the graph structure for tokens, with

m[a,b] ▷ m1[c,d] representing that the message m from a to b relies on the token of message

m1 from c to d. Finally, σ represents the set of messages the system has yet to process being

sent.

We break our type system into two main rules. The first, (ST-Recv), details the
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Table 4.3: Syntax of the annotations and initializer in Session Typed
FeatherWeight Salsa. Note that this table reuses any definitions
from Table 4.1.

Rst ::= \\@ requires SessionType[X] M Precondition Session Types
| Rst Rst

En ::= \\@ ensures receive[X] M Received Message
| En Es

Es ::= \\@ ensures send[X] M Sent Message(s)
Est ::= \\@ ensures SessionType[X] M Postcondition Session Types

| Est Est
R ::= Rst Rv E Est Requirements

| Rst En Est
| R \\@ also R

Ac ::= \\@ Actor X; Actor creation
X = new B(E, ..., E);

Im ::= E <-M(E, ..., E):waitfor(T, ..., T ) Initialization messages
St ::= \\@ Session Type(X, X) Ms; *; Session Type Declaration
Ms ::= send M Session Type Step

| receive M
| Ms; Ms

Am ::= \\@ Message(X, X) M ; Activation messages
E <-M(E, ..., E):waitfor(T, ..., T )

I ::= Init{Ac...Ac Im...Im St...St Am...Am} Initialization Actor

Table 4.4: The typing rules of the session types, detailing the transitions
possible from the graphical model. The left column denotes the rule
name, right column denotes parameters, and center column denotes
the resulting reduction.

(ST-Recv) with (m → m’;
m[a,b]▷X /∈ τ)

γ ∪ [a▷m]b ∪ [b▷m]a ∥ τ ∪X ▷m[a, b] ∥ σ

7→ γ ∪ [a◁m’]b ∪ [b▷m’]a ∥ τ ∥ σ ∪ {m[a, c],m[a, c] ▷ m1[d, e]}
(ST-Send) with (∃ m1[c, d])

γ ∪ [a◁m]b ∥ τ ∥ σ ∪ (m[a,b], m[a, b] ▷ m1[c, d])

7→ γ ∪ [a▷m]b ∥ τ ∪m[a, b] ▷ m1[c, d] ∥ σ
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Table 4.5: The static semantics, detailing the annotations’ Hoare triples. The
left column denotes the rule name, right column denotes
parameters, and center column denotes the resulting reduction (pre
and post conditions on top, code on bottom).

(HT-Recv) with (m1 ∈ M)
∅ 7→ \\@ ensures receive[X] m1

B m1(BX, ..., BX){X = E; ...;X = E;E; ...;E; }
(HT-Send) with (m1 ∈ M)

∅ 7→ \\@ ensures send[X] m1

token T = E < −m1(E, ..., E)
(HT-If) with (r1, r2 ∈ R,

r1 = R(e1), r2 = R(e2))
pre(r1) \\@ also pre(r2)7→ post(r1) \\@ also post(r2)

if (E){e1}else e2
(HT-Types) with (m1 = m2 ̸= m3

or (m1 = m3

and m1 7→ m2))
\\@ requires SessionType[X] m1 7→ \\@ ensures SessionType[X] m2

B m3(BX, ..., BX){X = E; ...;X = E;E; ...;E; }

behavior when the system processes a message being received. It assumes that the subsequent

message type of the system after m is m’, and that message m has no tokens it relies on.

The second, (ST-Send), details the behavior of the system as it processes messages being

sent. If it has tokens, this step only takes place after each of the corresponding messages has

been sent, preserving an order for the tokens.

Additionally, we define the static semantics of our annotations. Since our annotations

only detail the communication topology, only certain portions of code are relevant to the

Hoare triples, namely the message handler name, and any message sends. (HT-Recv) ensures

the message corresponding to the message handler is received, and (HT-Send) does the same

with sent messages and the message send syntax. (HT-If) details that if a message handler

includes branches (with r1 = R(e1) denoting r1 is the annotation for e1), it must include at

least one separate annotation for each branch, and if there are multiple annotations, there

must be a branch corresponding to each one. Lastly, (HT-Types) ensures the session types

outside the one being received do not get modified, and the one being received does get

modified to its next stage.



21

4.3 Type Checker Pseudocode

Note: For the sake of brevity, any trivial edge cases (for example, empty program) are

skipped within this pseudocode. This is not the case in actual implementations.

4.3.1 Annotation Checking

c h e c k i n i t i a l i z a t i o n ( program ){
i n i t i a l i z a t i o n = program . f i nd (” I n i t ”) ; // I n i t Actor

a c t o r s = [ ] ;

f o r ”\\@ Actor a” in i n i t i a l i z a t i o n {
a s s e r t (” a = new B ( . . . ) ” in i n i t i a l i z a t i o n ) ;

a c t o r s . append ( a ) ;

}

s t ype s = [ ] ;

//Actor a conta in s r e f e r e n c e to b in i t s s t a t e

c o n t a i n s r e f ( a , b , s t r i n g i n i t ){
a s s e r t ( behavior ( a ) . c o n t a i n s s t a t e ( behavior (b) ) ) ;

r e turn (” a = new B ( . . . , b , . . . ) ” or ”a <− i n i t msg ( . . . , b ,

. . . ) ”) in i n i t ;

}
f o r ”\\@ Ses s i on Type (a , b) x ; y ; z ; . . . ; ∗ ; ” in

i n t i t i a l i z a t i o n {
a s s e r t ( c o n t a i n s r e f ( a , b , i n i t i a l i z a t i o n ) ) ;

f o r i in ( x ; y ; z ; . . . ; ) {
i f ( i == ”send m”)

{ a s s e r t ( behaviour (b) . c on ta in s hand l e r (m) )}
i f ( i == ” r e c e i v e m”)

{ a s s e r t ( behaviour ( a ) . c on ta in s hand l e r (m) )}
}
s t ype s . append ( ( a , b ) x ; y ; z ; . . . ; ∗ ; ) ;

}
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f o r s type in s t ype s {
a s s e r t ( s t ype s . conta in s ( dual ( s type ) ) ) ;

}

msgs = [ ] ;

f o r ”\\@ Message (a , b) m” in i n i t i a l i z a t i o n {
a s s e r t (”b <− m( . . . ) ” in i n i t i a l i z a t i o n )

a s s e r t ( s t ype s [ ( a , b ) ] [ 0 ] = ” send m”)

}

r e turn ( actor s , s types , msgs ) ;

}

c h e c k h o a r e t r i p l e s ( program , actors , s t ype s ){
f o r behavior B {
f o r message handler H {
f o r annotat ion A{

recv = A. f i nd (”\\@ ensure s r e c e i v e [ a ] msg type (H) ”) ;

sender = recv . g e t s ende r ( ) ;

f o r ”\\@ requ i r e s Se s s i on Type [ a ] m” in A {
a s s e r t ( s t ype s [ s e l f , a ] . conta in s (m) ) ;

i f ( a == sender ) {
a s s e r t (m == msg type (H) ) ;

n ex t s type = s type s [ s e l f , a ] [ s t ype s [ s e l f , a ] .

l o c [m]+1 ] ;

a s s e r t (”\\@ ensure s Se s s i on Type [ a ] n ex t s type ”

in A) ;

}
e l s e a s s e r t (”\\@ ensure s Se s s i on Type [ a ] m” in A) ;

}
sends = A. f i n d a l l (”\\@ ensure s send [ a ] m: wa i t f o r [m1[ c , d ] ,

m2[ e , f ] , . . . ] ” ) ;
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sends . r ew r i t e a s (” token t = a<−m( . . . ) : wa i t f o r ( t1 , t2 , . . . )

”) ;

a s s e r t ( sends in t r a c e T) ;

}
f o r t r a c e T{

sends = T. f i n d a l l (” token t = a<−m( . . . ) : wa i t f o r ( t1 , t2 ,

. . . ) ”) ;

sends . r ew r i t e a s (”\\@ ensure s send [ a ] m: wa i t f o r [m1[ c , d ] ,

m2[ e , f ] , . . . ] ” ) ;

a s s e r t ( sends in annotat ion A) ;

}
}
}

}

4.3.2 Option Generation

g e n e r a t e l o c a l o p t i o n s ( program , actor s , s t ype s ){
opt ions = [ ]

f o r behavior B {
behav i o r op t i on s = [ ]

f o r message handler H {
f o r annotat ion A{

recv = A. f i nd (”\\@ ensure s r e c e i v e [ a ] msg type (H) ”) ;

s t a r t = A. f i n d a l l (”\\@ requ i r e s Se s s i on Type [ a ] m”) ;

sends = A. f i n d a l l (”\\@ ensure s send [ a ] m: wa i t f o r [m1[ c ,

d ] , m2[ e , f ] , . . . ] ” ) ;

end = A. f i n d a l l (”\\@ ensure s Se s s i on Type [ a ] m”) ;

behav i o r op t i on s . append (Option ( recv , s t a r t , sends , end

) ) ;

}
}
opt ions . append ( behav i o r op t i on s ) ;
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}
r e turn opt ions ;

}

g en e r a t e g l o b a l o p t i o n s ( opt ions , actor s , s t ype s ){
g l o b a l o p t i o n s = [ ]

f o r ac to r a {
a opt i on s = opt ions [ type ( a ) ] ;

s t = s type s . get ( a ) ;

f o r opt ion in a opt i on s { g l o b a l o p t i o n s . append ( g l o b a l i z e (

option , a , s t ) ) ;

}
}
r e turn g l o b a l o p t i o n s ;

}

4.3.3 Model Checking

ch e ck va l i d op t i on ( option , s t a t e ) {
r e turn s t a t e . s t ype s . conta in s ( opt ion . s t a r t ) && s t a t e . msgs .

conta in s ( opt ion . recv ) ;

}

s tep ( option , s t a t e ) {
s t a t e . s t ype s . update progre s s ( opt ion . end ) ;

s t a t e . msgs . remove ( opt ion . recv ) ;

s t a t e . msgs . add ( opt ion . sends ) ;

r e turn s t a t e ;

}

check model ( opt ions , s ta te , p r e v s t a t e s ){
i f ( f i n d c y c l e ( s t a t e ) ) re turn Fal se ;

f o r opt ion in opt ions {



25

i f ( c h e ck va l i d op t i on ( option , s t a t e ) && ( ( option , s t a t e )

not in p r e v s t a t e s ) ){
p r e v s t a t e s . append ( ( option , s t a t e ) ) ;

t e s t = check model ( opt ions , s tep ( option , s t a t e ) ,

p r e v s t a t e s ) ;

i f ( ! t e s t ) r e turn Fal se ;

}
}
r e turn True ;

}

4.3.4 Full Type Checker

type check ( program ){
actor s , s types , msgs = c h e c k i n i t i a l i z a t i o n ( program ) ;

c h e c k h o a r e t r i p l e s ( program , actors , s t ype s ) ;

opt ions = g en e r a t e g l o b a l o p t i o n s ( g e n e r a t e l o c a l o p t i o n s (

program , actors , s t ype s ) , actor s , s t ype s ) ;

p r e v s t a t e s = [ ] ;

check model ( opt ions , State ( actors , s types , msgs ) , p r e v s t a t e s

) ;

}



5. PROOFS

Definition 1 (Deadlock): We define deadlock as a state in which a subset of actors are all

waiting to receive messages only from other actors in the same subset, and the messages

between them are not in transit.

Lemma 1 (Cycles): Per our directed graphical representation, a cycle in a sink strongly

connected component represents a deadlock.

Proof: Since each directed edge [a◁m]b marks the direction of a dependency, a cycle

marks a cyclic dependency. If this is located in a sink component c, then the only outgoing

edges of each node in c are to another node in c. Based on our definition of deadlock, this

means all actors in c are waiting on messages from other actors in c. In addition, we can

guarantee that the messages are not in transit, as all live messages are either sink nodes (as

both the receiver and sender point to them immediately after (ST-Send): [a◁m]b and [b◁m]a

by structural induction on γ), or waiting on a token m[a,b] ▷ m1[c,d]. Since Lemma 2 shows

these tokens will eventually get set as the program progresses, every message in transit will

eventually become a sink node. Since we know there are no sink nodes in c, as well as no

outgoing edges that could represent a token dependency, there must be no live messages in

c, and therefore it must be in deadlock.

Corollary 1 (Progress): At each successful step we look at, the program makes progress

towards reaching its recursive state.

Proof: By the way each message requirement R is structured, it ensures the program

receives exactly one message at that time step (corresponding to the message in the message

handler). Since each session type has a finite number of steps to reach the Kleene Star and

makes progress once it reaches that point, this will progress at least one session type forwards.

Per our semantics, (ST-Recv) only occurs when message m is available to transition to m’,

which we have established as making progress. In doing so, it adds a finite number of

messages to sigma, and since (ST-Send) decreases the size of σ by one, there will be a finite

amount (or less) of (ST-Send) steps before the next (ST-Recv), thus making progress.

Corollary 2 (Preservation): At each step we look at, the structure of the graphical repre-
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sentation of the program remains intact.

Proof: At every annotation, the only differences between the preconditions and post-

conditions are an increment of a single session type, a single message gets received, and

a variable number of messages are sent. Since our program updates the graph with the

received message and the new session type, the graph itself remains intact. We also add

the sent messages to the list of live messages, and mark their corresponding session types as

having been sent. Per our semantics, the number of edges in γ remains constant at each step.

In (ST-Send), it only changes the direction of a single edge, and in (ST-Recv), it replaces

one pair of edges corresponding to m ([a▷m]b ∪ [b▷m]a) with one pair of edges corresponding

to m’ ([a◁m’]b ∪ [b▷m’]a).

Lemma 2 (Tokens): The unique nature of tokens prevents them from causing any deadlock.

Proof: In Session Typed FeatherWeight Salsa, each token is created ’fresh’, meaning

it has not been used anywhere up until that point. Since the only way to create a token is

to attach it to a message, the same applies to messages that are waiting on tokens. By the

Well-Ordering Principle, there must be an oldest live message m that was created before all

other live messages. Since any tokens that m may have to wait for would be attached to

older messages, those messages must not be live. Since message handlers cannot block while

receiving a message, we can say that all of m’s tokens will be set. This means that m can

be received by its designated actor, and that progress can be made.

Lemma 3 (Traces): The type checker looks at every possible trace of the program to

determine if any lead to deadlock.

Proof: At every time step t of the type checker, we look at the list of live messages

and choose one to analyze for deadlock. This essentially models what occurs if you perform

a single (ST-Recv) step, followed by (ST-Send) until σ is empty. Doing so guarantees the

largest amount of options for (ST-Recv), meaning we cover all results (it moves tokens

from σ to τ , and transitions more elements of γ to have edges pointing to the message,

which (ST-Recv) needs two of, instead of pointing away). If no deadlock is found in any

trace including time step (t+1), we backtrack to t and try every other message that can be

received. This performs a depth-first search on the ordering of received messages (caching is

used to prune the search in the event of duplicates). Since each trace is given by the possible
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interleavings of message handlers, this will cover every possible trace.

Corollary 3 (Receives): Each annotation progresses a single session type by one stage;

namely, by receiving the message correlated to the message handler.

Proof: Due to the nature of Session Typed FeatherWeight Salsa, each actor only

receives one message m at a time before becoming ready to receive any other message. Since

the session types represent a series of sent and received messages, and each message can

only correspond to one session type, receiving m must progress the session type between its

sender and recipient by one stage exactly, and no other session type. This is modeled very

succinctly in our semantics by definition of (ST-Recv).

Corollary 4 (Sends): Each annotation notes all possible messages sent depending on the

branching of the message handler.

Proof: In our type checker, we analyze all possible traces of an individual message

handler, depending on the branches it takes within if-statements. Since we make sure there is

at least one annotation for each trace, we guarantee the user has marked the postconditions

for each trace, since sent messages only matter for the postconditions. Per Definition 2 the

difference in session types changes by one stage, and by definition the message received is that

of the message handler. Therefore, the only remaining annotation that changes depending

on the trace of a message handler is the sent messages. However, this is encapsulated in the

definition of (ST-Recv): σ ∪ {m[a, c],m[a, c] ▷ m1[d, e]}

Lemma 4 (Cycle Existence): If a program can enter deadlock, there is a trace in which the

graphical model forms a cycle.

Proof: Since our model encapsulates every interaction (sends, receives, branches, etc.),

and deadlock can only be formed by a cyclic dependency made up of these interactions, a

trace corresponding to deadlock can only be represented by a cycle in the graph.

Proof 1 (Deadlock): If a program can enter deadlock, the type checker finds a cycle in the

model and vice versa.

Proof: Per Lemma 1 and Lemma 4, a cycle indicates deadlock, and the presence of

deadlock indicates a cycle. Since our type checker analyzes every possible trace, it must
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encounter the trace including a cycle at some point if the program can deadlock. If the

program cannot deadlock, then no trace will include a cycle, and the type checker will

terminate (due to caching) and confirm the program is deadlock-free.



6. CONCLUSION

We have shown that it is possible to represent SALSA programs as a sequence of session

type interactions, and have proved that representing them as such can guarantee certain

programs never deadlock, as well as show the sequence of actions that can lead to deadlock

otherwise. The full code implementation of our work is located at:

https://github.com/wilkersona/deadlock freedom

6.1 Future Work

This work focuses specifically on deadlock, but has the potential to be expanded to-

wards situations such as livelock. Since in our work we assume an actor looping through

its session types makes progress, adding notation for situations in which such loops make

progress or not could potentially flag livelock as well. One idea of how to accomplish this

would be to mark goal states in the annotations, and translate this information into the tree

of communication traces.

We also do not explore spaces with a dynamic number of actors. This would necessitate

the ability to create session types dynamically, which significantly increases the complexity

of verifying programs on a global scale. This may be possible by defining the roles each

session type is defined between, or having a subset of safe actors. However, being able to

verify such properties at compile time is highly related to the Halting Problem, which is

known to be impossible.

Currently we do not automatically generate the annotations nor verify that they en-

capsulate the corresponding program. Creating the session types and proving correctness

would be incredibly helpful for larger, more complex programs.
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APPENDIX A

EXAMPLE PROGRAM: THREAD RING

behavior ThreadRing {
ThreadRing r e c i p i e n t ;

ThreadRing ( ) {}

void s e tRec i p i en t ( ThreadRing new re c i p i en t ){
r e c i p i e n t = new re c i p i en t ;

r e turn nu l l ;

}

//@ ThreadRing loop ;

//@ r e qu i r e s SessionType [ 0 ] send loop ;

//@ r e qu i r e s SessionType [ 1 ] r e c e i v e loop ;

//@ ensure s r e c e i v e [ 1 ] loop ;

//@ ensure s send [ 0 ] loop ;

//@ r e qu i r e s SessionType [ 0 ] send loop ;

//@ r e qu i r e s SessionType [ 1 ] r e c e i v e loop ;

//@ a l s o

//@ r e qu i r e s SessionType [ 0 ] r e c e i v e loop ;

//@ r e qu i r e s SessionType [ 1 ] send loop ;

//@ ensure s r e c e i v e [ 0 ] loop ;

//@ ensure s send [ 1 ] loop ;

//@ r e qu i r e s SessionType [ 0 ] r e c e i v e loop ;

//@ r e qu i r e s SessionType [ 1 ] send loop ;

void loop ( i n t n){
token t0 = r e c i p i e n t <− loop (n+1) : wa i t f o r ( ) ;

r e turn nu l l ;

}
}
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I n i t {
//@ Actor t r0 ;

t r0 = new ThreadRing ( ) ;

//@ Actor t r1 ;

t r1 = new ThreadRing ( ) ;

//@ Actor t r2 ;

t r2 = new ThreadRing ( ) ;

//@ Actor t r3 ;

t r3 = new ThreadRing ( ) ;

//@ Actor t r4 ;

t r4 = new ThreadRing ( ) ;

//@ Actor t r5 ;

t r5 = new ThreadRing ( ) ;

//@ Actor t r6 ;

t r6 = new ThreadRing ( ) ;

//@ Actor t r7 ;

t r7 = new ThreadRing ( ) ;

//@ SessionType ( tr0 , t r1 ) send loop ; ∗ ;

token t0 = tr0 <− s e tRec i p i en t ( t r1 ) : wa i t f o r ( ) ;

//@ SessionType ( tr1 , t r2 ) send loop ; ∗ ;

token t1 = tr1 <− s e tRec i p i en t ( t r2 ) : wa i t f o r ( ) ;

//@ SessionType ( tr2 , t r3 ) send loop ; ∗ ;

token t2 = tr2 <− s e tRec i p i en t ( t r3 ) : wa i t f o r ( ) ;

//@ SessionType ( tr3 , t r4 ) send loop ; ∗ ;

token t3 = tr3 <− s e tRec i p i en t ( t r4 ) : wa i t f o r ( ) ;

//@ SessionType ( tr4 , t r5 ) send loop ; ∗ ;

token t4 = tr4 <− s e tRec i p i en t ( t r5 ) : wa i t f o r ( ) ;

//@ SessionType ( tr5 , t r6 ) send loop ; ∗ ;

token t5 = tr5 <− s e tRec i p i en t ( t r6 ) : wa i t f o r ( ) ;

//@ SessionType ( tr6 , t r7 ) send loop ; ∗ ;

token t6 = tr6 <− s e tRec i p i en t ( t r7 ) : wa i t f o r ( ) ;
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//@ SessionType ( tr7 , t r0 ) send loop ; ∗ ;

token t7 = tr7 <− s e tRec i p i en t ( t r0 ) : wa i t f o r ( ) ;

//@ Message ( tr7 , t r0 ) loop ;

token t8 = tr0 <− loop (0 ) : wa i t f o r ( t0 , t1 , t2 , t3 , t4 , t5 , t6 ,

t7 ) ;

}


