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ABSTRACT

Distributed actor garbage collection (GC) is a notoriously hard problem due to the

nature of distributed actor systems — no common clock, no coherent global informa-

tion, asynchronous and unordered message passing, autonomous behavior of actors,

and counter-intuitive actor marking to identify live actors. Most existing distributed

actor GC algorithms rely on First-In-First-Out (FIFO) communication, which con-

strains the actor model and is impractical with actor mobility; others depend on

stop-the-world synchronization, which is intrusive and impractical for users’ com-

putations. Existing actor GC algorithms ignore actor mobility and resource access

restrictions. Existing distributed passive object GC algorithms cannot be directly

reused because of the different semantics of passive objects and actors.

To overcome the problems that existing algorithms cannot solve, this thesis

presents a practical actor GC mechanism for distributed mobile actor systems. Our

approach starts formalizing garbage actors, and then we show two different but

similar transformation methods that prove the equivalence of actor GC and pas-

sive object GC. Two actor marking algorithms are derived from the transformation

methods — the back pointer algorithm and the N-color algorithm. The back pointer

algorithm has linear time complexity of O(E + V ) and extra space complexity of

O(E + V ), and the N-color algorithm has time complexity of O(E lg∗M) and extra

space complexity of O(M), given that E is the number of references, V , the number

of actors, and M , the number of unblocked and root actors. The N-color algorithm

only requires scanning the reference graph once while the back pointer algorithm

requires scanning it twice.

The thesis follows by describing our distributed mobile actor GC mechanism.

It consists of 1) an asynchronous, non-FIFO reference listing based algorithm which

supports hierarchical GC (local and global GC), 2) a new fault-tolerant, distributed

snapshot-based algorithm which collects cyclic and acyclic garbage in a partial set

of computing hosts, and 3) formal models and correctness proofs. Experimental

results have confirmed that our approach is practical and scalable.

ix



CHAPTER 1

Introduction

This chapter describes fundamental aspects of large-scale distributed computing,

garbage collection, and distributed actor garbage collection. A short description of

the problem to attack and the roadmap of the thesis are also included.

1.1 Large-Scale Distributed Computing

Distributed computing is a promising field: using a collection of distributed

computing resources is more cost-effective than using a single powerful supercom-

puter. Performance of applications can be improved by concurrently running several

processes in a coordinated way. Modern computing and networking resources have

improved dramatically in the past decades, and thus the size of distributed comput-

ing has increased into a world-wide scale. However, scientists eventually realize that

managing or developing distributed applications is not easy because of: 1) hetero-

geneous resources, 2) possible failures of resources and networking, 3) lack of shared

memory and a global clock, and 4) races among processes. An emerging requirement

of computing element mobility makes it more difficult — run-time reconfiguration

of the distributed system [62] can improve overall performance of applications but

complicates the design of resource management.

To overcome these rising problems of distributed computing, several object-

oriented computation models are introduced such as CORBA [74], DCOM [32], and

JAVA RMI [92]. These models make heterogeneous resources approachable for ap-

plication development and run-time access. On the other hand, several formalized

concurrent models keep being proposed since 1970s, such as CCS and π-Calculus by

Milner [68, 82], the Actor Model of Computation by Hewitt [44, 2], Join-Calculus

by Fournet and Gonthier [37], and Mobile Ambients by Cardelli and Gordon [19].

Different models may introduce different requirements of resource management be-

cause they support different semantics for computing. For example, systems based

on π-calculus may need distributed termination detection, object-oriented systems

1
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may require passive object garbage collection, and actor systems may demand actor

garbage collection.

Nowadays the performance-cost ratio of both networking and computing re-

sources keeps improving. These positive factors trigger the idea of large-scale com-

puting, which consists of thousands or even millions of distributed resources all

over the world. Unfortunately, the larger the computing scale is, the more difficult

the management and application development becomes. To reduce the efforts for

application developers and users, a friendly large-scale computing framework is ab-

solutely required, in which they can access computing power and resources simply

and transparently, without having to consider where the resources are and how the

computation takes place — such as SETI@Home [91] and Folding@Home [112].

Grid computing [34] is one of the studies that tries to solve the large-scale

computing problems by introducing the idea of virtual organizations [36], where

resources are protected and accessed transparently by trusted groups of users and

applications. Distributed system frameworks, such as Globus [34], Legion [43], and

IOS [62], are enabling technologies to develop grid computing systems. For instance,

a Globus-based system may follow the Open Grid Services Architecture (OGSA)

[35], which uses an XML-based standards to support transparency and layered ser-

vices for composability. Globus is an application toolkit, while Legion and IOS are

object- and actor-based distributed virtual operating systems running on virtual

machines [42].

An actor system is comprised of uniquely named, autonomous reactive objects,

namely the actors. Communication of actors is purely asynchronous, guaranteed, and

fair — they always send messages in a non-blocking manner. Even though messages

may arrive unordered, they are eventually delivered. Furthermore, an actor can ei-

ther send messages to its acquaintances, to whom it has explicit references, or some

predefined special actors such as the output service. An actor consists of an encap-

sulated thread of control, its internal state, and a message box to buffer incoming

messages. An actor is unblocked if it is processing a message or has messages in its

message box; otherwise it is blocked waiting for incoming messages. An actor buffers

incoming messages in its message box, and its thread of control keeps retrieving and
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Figure 1.1: An actor is a reactive entity which communicates with oth-
ers by asynchronous messages in a non-blocking manner. In
response to an incoming message, it can use its thread of con-
trol to 1) modify its internal state, 2) send messages to other
actors, 3) create actors, or 4) migrate to another computing
node.

processing them. In response to an incoming message, an actor can use its thread

of control to modify its encapsulated internal state, send messages to other actors,

create actors, or migrate to another computing node (see Figure 1.1).

The actor model of computation provides natural semantics for distributed

systems because it has several preferable features: purely asynchronous communi-

cation (non-blocking and unordered communication), and state encapsulation with

an internal thread. With these features, a distributed system can be easily reconfig-

ured at runtime — migration of an actor is as easy as migration of its encapsulated

state and its message box, without worrying about state corruption. Compared

to the synchronous object method invocation model (or the Remote Procedure Call

model), the actor model is more concurrent because actors do not block for any
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return value. Additionally, state encapsulation facilitates dynamic load balancing

[62] by reallocating the actors during computation. Many programming languages

have partial or total support for actor semantics, such as SALSA [100], ABCL [110],

THAL [54], and Erlang [5]. Some libraries also support the actor model of compu-

tation, such as Actor Foundry [75] and ProActive [7] for Java, Broadway [90] for

C++, IOS for MPI library [33], and Actalk [16] for Smalltalk.

1.2 Garbage Collection (GC)

Garbage collection (GC) is defined as a mechanism to reclaim memory space.

The problem of garbage collection caught people’s attention since the late 1950s

when high-level programming languages became more and more popular. These

high-level programming languages provide dynamic data structures, such as linked

lists. As a consequence, the size of objects might not be fixed at compile time.

Therefore, a mechanism to reclaim the memory space of garbage objects is required.

Manual garbage collection can solve this problem if an application does not require a

lot of dynamic memory allocation operations. As the size of the application becomes

larger and more complex, automatic garbage collection becomes preferable. There

are two reasons. Firstly, manual garbage collection is error-prone and thus causes

memory security issues. Secondly, manual garbage collection cuts against high-level

programming. From the perspective of software engineering, people should focus on

the development of functionalities, not on irrelevant concerns. Currently, garbage

collection usually refers to automatic garbage collection.

Objects can be either passive or active. Active objects relate to actors, and

we use actors to refer to them. One major difference between actors and passive

objects is the thread of control. A passive object is operated by external threads,

which can create new objects, add new references, or delete references. If an object

can be possibly manipulated by the external threads of control, it is live; otherwise

it is garbage. On the other hand, an actor has an internal thread, which can only

create new actors but cannot directly access other actors including the actors it

created. Both kinds of objects can become garbage, and require a garbage collection

mechanism to reclaim them. Without garbage collection, a system that supports
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dynamic object creation may crash because the memory is eventually full of garbage.

The actor system could be worse because garbage actors could consume computing

power. The requirements of a garbage collection mechanism are listed below:

• Liveness: All garbage is collected eventually.

• Safety: No live objects can be collected.

• Efficiency: The overhead of garbage collection must be acceptable.

1.3 Definition of Active and Passive Actor Garbage

The definition of garbage actors relates to the idea of whether an actor is doing

meaningful computation. Meaningful computation is defined as having the ability

to communicate with any of the root actors. By assuming that every actor has a ref-

erence to itself, an actor is live if it can either possibly: 1) receive messages from the

root actors or 2) send messages to the root actors. The ability of sending messages

depends upon the state of an actor — blocked or unblocked. Only unblocked actors

can send messages. The set of garbage actors is then defined as the complement of

the set of live actors. To formally describe actor garbage collection, we introduce

the following definitions:

• Blocked actor: An actor is blocked if it has no pending messages in its

message box, nor any message being processed. Otherwise it is unblocked.

• Reference: A reference indicates an address of an actor. Actor ap can only

send messages to Actor aq if ap has a reference pointing to aq, denoted as apaq.

• Inverse reference: An inverse reference is a conceptual reference in the

counter-direction of an existing reference.

• Acquaintance: Let Actor ap have a reference pointing to Actor aq. aq is an

acquaintance of ap, and ap is an inverse acquaintance of aq.

• Root actor: An actor is a root actor if it encapsulates a resource, or if it is

a public service — such as I/O devices, web services, and databases.
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The original definition of live actors is denotational because it uses the concept

of “potential” message delivery and reception. To make it more operational, we

assume instant message delivery and use the term “potentially live” [28] to define

live actors.

• Potentially live actors:

– Every unblocked actor and root actor is potentially live.

– Every acquaintance of a potentially live actor is potentially live.

• Live actors:

– A root actor is live.

– Every acquaintance of a live actor is live.

– Every potentially live, inverse acquaintance of a live actor is live.

With the concept of potentially live actors, we introduce the definition of active

garbage, which refers to the set of actors which is both potentially live and garbage.

Similarly, passive garbage refers to the set of actors which is not potentially live and

is garbage. The difference between active garbage and passive garbage is that active

garbage can change the actor reference graph. For instance, it can create/delete

references, and send messages. Garbage can also be classified as cyclic garbage and

acyclic garbage, depending on the referential relationship among actors. Without

considering the self reference to a garbage computing element (object/actor), the

garbage computing element is said to be cyclic garbage if it can follow references to

come back to itself. Otherwise it is acyclic garbage.

Acyclic passive garbage can be identified by a count for incoming references.

A zero count indicates that no one is referencing the computing element. If the

computing element is blocked or naturally passive (such as passive objects), then it

can be reclaimed safely. Algorithms based on this idea are called reference count-

ing/listing algorithms. However, the algorithms cannot be used for cyclic garbage

and active garbage, which requires a consistent local/global state to be identified.
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Figure 1.2: Actors 3, 4, and 8 are live because they can potentially send
messages to the root. Objects 3, 4, and 8 are garbage because
they are not reachable from the root.

1.4 Distributed Mobile Actor Garbage Collection

Uniprocessor and distributed garbage collection have been developed for decades.

However, literature for actor garbage collection is scarce. The problem of actor

garbage collection is different in nature from passive object garbage collection. Ac-

tor computations must be able to directly or indirectly provide results to a set of

predefined output devices, such as consoles, printers, file systems, and databases.

Actors may also obtain information from input devices, such as keyboards or sen-

sors, to output results if they can communicate with them. As a result, the input or

output devices are represented by a root set of actors. Actors that can directly or in-

directly communicate with the root set of actors are live. Figure 1.2 illustrates a key

difference between actor garbage collection and passive object garbage collection.

In actor-oriented programming languages, an actor must be able to access

resources which are encapsulated in service actors. To access a resource, an actor

requires its reference. This implies that actors keep persistent references to some

special service actors — such as the file system service and the standard output

service. Furthermore, an actor can explicitly create references to public services. For

instance, an actor can dynamically convert a string into a reference to communicate

with a service actor, analogous to accessing a web service by a web browser using

a URL. However, the resource access assumption is not always true, such as in

sandbox computing environments.

Previous distributed GC algorithms (including actor GC algorithms) rely on

First-In-First-Out (FIFO) communication which simplifies detection of a consistent
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global state. A distributed object GC algorithm either adopts: 1) a lightweight

reference counting/listing approach which cannot collect distributed mutually refer-

enced data structures (cycles), 2) a trace-based approach which requires a consistent

state of a distributed system, or 3) a hybrid approach.

The concept of migrating actors complicates the design of actor communication

— locality of actors can change, which means even simulated FIFO communication

with message redelivery is impractical, or at least limits concurrency by unnecessar-

ily waiting for message redelivery. FIFO communication is an assumption of existing

distributed GC algorithms. For instance, distributed reference counting algorithms

demand FIFO communication to ensure that a reference-deletion system message

does not precede any application messages.

Global state detection is required in distributed actor garbage collection. There

are two common approaches to use 1 — the stop-the-world approach which simply

stops everything for garbage collection, and the snapshot approach which detects

a causally consistent snapshot for garbage collection. Snapshot-based algorithms

greatly fit in the need of actor systems because they have less interference with

applications than the stop-the-world algorithms. However, when a snapshot-based

algorithm is applied to a mobile actor system, it encounters difficulties detecting

migrating actors because these actors are being transmitted over the network and

are therefore hard to detect. The end result is that global snapshots may be missing

actors or may contain duplicate actors; both views are inconsistent with the global

system state. In-transit messages cause three additional difficulties to detect actor

garbage in a distributed environment. Firstly, in-transit messages may carry refer-

ences that can affect the global state. Secondly, a reference to an actor can be deleted

while a message to it is in transit, because actor communication is non-blocking.

This implies that there may exist a blocked actor such that nobody knows about it

but it is live. In other words, following references to detect garbage is not reliable in

actor systems. Thirdly, actors communicate with each other by asynchronous and

non-First-In-First-Out (non-FIFO) messages, which violates preconditions of most

existing garbage collection algorithms and snapshot algorithms.

1A modified Dijkstra’s on-the-fly algorithm [31] could be a third possible solution for global
actor garbage collection.
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1.5 Problem Description

The purpose of this research is to design and to implement a practical dis-

tributed actor garbage collection mechanism for large-scale, mobile actor systems.

This research is based on the SALSA programming language [100] and the World-

Wide Computer (WWC) middleware [99].

We assume the distributed computing environment consists of numerous com-

puting nodes, and the computing nodes are connected by a network. Applications

running on the distributed computing environment follow the assumptions of the

actor model of computation. Actors are the basic computing elements of applica-

tions, and always communicate by sending guaranteed and unordered asynchronous

messages. The guaranteed message delivery is handled not by the garbage collection

mechanism, but by the communication middleware of the WWC. In other words,

hard failures are not considered. Although message delivery is unordered, partial

message execution order can be expressed with execution continuations. This is a

powerful feature provided by the SALSA programming language, and it does not

violate the assumptions of the actor model. Each actor is assumed to keep refer-

ences to some local roots — such as the standard input/output and the file system.

However, the references to the roots may not exist in sandbox computing hosts.

Our distributed actor garbage collection approach consists of three major sub-

components:

1. Formalization of the actor garbage problem and the actor marking algorithms:

This thesis provides a formal definition of the actor garbage collection prob-

lem, transformations from actor garbage collection into passive object garbage

collection, and new actor marking algorithms.

2. A non-blocking, non-FIFO reference listing based algorithm: the pseudo-root

approach. The algorithm keeps track of inverse references to support hierar-

chical garbage collection — independent collection of local and global garbage.

Actor migration is supported as well. It can also identify distributed acyclic

passive garbage. Furthermore, it considers in-transit messages in the reference

graph and thus simplifies the problem of consistent global state detection.
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3. A distributed snapshot-based actor garbage collection algorithm: The algo-

rithm does not require First-In-First-Out or blocking communication, nor mes-

sage logging. Furthermore, actor migration is allowed while capturing global

snapshots and partial snapshots can be safely used to collect garbage, therefore

not requiring comprehensive cooperation among all computing nodes.

1.6 Thesis Contributions

The thesis describes a comprehensive approach for distributed mobile actor

garbage collection. The main contributions of the thesis are listed as follows:

1. The thesis provides a formal definition of the actor garbage collection problem.

2. The thesis provides two new transformation methods from actor garbage col-

lection into passive object garbage collection and two corresponding new actor

marking algorithms. Assume E is the number of references, V is the number of

actors, and M is the number of unblocked and root actors. One of the mark-

ing algorithms only scans the reference graph twice, and it has linear time

complexity of O(E + V ) and extra space complexity of O(E + V ); the other

only scans the reference graph once, and it has time complexity of O(E lg∗M)

and extra space complexity of O(M).

3. The pseudo-root approach supports systems with asynchronous, non-FIFO

communication and maps in-transit messages and references into the actor

reference graph, making it unique in the family of reference counting/listing

algorithms. Furthermore, it supports actor migration. Thus it is not intrusive

and simplifies global state detection for actor garbage collection [105].

4. The thesis presents a non-intrusive distributed snapshot algorithm for actor

garbage collection. Migration and all mutation operations are allowed while

taking a snapshot. Consequently, it does not require comprehensive coopera-

tion of all computing hosts in the distributed system. It can support multi-level

hierarchical distributed actor garbage collection [106].

5. The thesis provides formal proofs of correctness.
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6. The actor garbage collection algorithms are implemented and form an integral

part of the SALSA programming language [109], which is used to develop

grid/pervasive computing applications [104].

1.7 Roadmap

The remainder of the thesis is organized as follows: Chapter 2 reviews a set

of important papers for both passive object garbage collection and actor garbage

collection. Chapter 3 discusses the problem of actor garbage collection from the per-

spective of the graph problem. It describes the relationship among actor garbage

collection and passive object garbage collection, shows two light-weight transforma-

tion methods to transform actor garbage collection to passive object garbage col-

lection, and provides two corresponding novel actor marking algorithms. Chapter 4

shows how we handle mobile actor garbage collection in a distributed environment

in a non-intrusive manner, where communication of both applications and systems

is asynchronous and non-FIFO. Two major algorithms are provided — the pseudo-

root approach and the distributed snapshot algorithm. Chapter 5 and Chapter 6

define formal computing models for the pseudo-root approach and the distributed

snapshot algorithm respectively, and they also provide proofs of the safety and live-

ness properties. Chapter 7 shows some experimental results of our implementation.

Chapter 8 contains concluding remarks and future work directions.

People who are interested in the definition and properties of actor garbage

collection should read Chapters 1, 2, and 3. For those who are interested in the

concept of distributed mobile actor garbage collection, Chapters 1, 2, 4, and 7 are

recommended. Formal models and proofs of properties of Chapter 4 can be found

in Chapters 5 and 6.



CHAPTER 2

Related Work

This chapter discusses local passive object garbage collectors, acyclic passive ob-

ject garbage detection protocols, distributed passive object garbage collection algo-

rithms, and actor garbage collection algorithms. Good surveys for passive object

garbage collection can be found in [48], [108], and [1].

2.1 Passive Object Garbage Collection for Shared Memory

Systems

Passive object garbage collection was originated from sequential environments.

Many techniques of sequential passive object garbage collection can apply to concur-

rent and distributed environments, and much related work reuses them in concurrent

and distributed environments. Passive object garbage collection for shared memory

systems includes: 1) sequential garbage collection and 2) concurrent and incremental

garbage collection. This field has been developed for a long time. In the past, re-

search on garbage collection was in the realm of functional programming languages,

such as Lisp. Right now even imperative programming languages such as C, C++

[10] and Java [41] support garbage collection.

2.1.1 Sequential Garbage Collection Techniques

Techniques for sequential garbage collection can be roughly divided into four

categories: 1) reference counting algorithms, 2) mark-and-sweep algorithms, 3) copy-

ing garbage collection algorithms, and 4) generational algorithms. Concepts of these

techniques are widely used in concurrent and distributed systems.

Reference Counting Algorithms

Reference counting algorithms were used in early programming languages and

current file system implementations. Reference counting algorithms, also referred

to as direct garbage collection algorithms, are based on counting the number of in-

12
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verse acquaintances (or incoming references) for each object. Such an object can

be deleted safely if it has a zero count because the mutator (the thread of control

of a user’s application) cannot reach it from the roots. The advantages of reference

counting algorithms are traditionally considered to be: 1) simplicity of implementa-

tion, and 2) low execution overhead of garbage collection. The drawback of reference

counting is that it cannot collect cyclic garbage. For instance, two garbage objects

can have references to each other, making each of them have a count of one. Such

cyclic garbage cannot be reclaimed by näıve reference counting algorithms. There

are several complex reference counting algorithms that detect cyclic garbage, but

they either depend on special functional programming language patterns [39], strong

assumptions of reference information, such as [18, 81], or expensive space and ex-

ecution time requirements for extra traversal of the reference graph, such as [22],

[60], and [6].

Mark-And-Sweep Algorithms

Mark-and-sweep algorithms are either based on breadth-first-search or depth-

first-search algorithms, traversing and marking objects from the roots in order to

identify live objects. Compared to reference counting algorithms, a näıve mark-and-

sweep algorithm has an advantage of low space overhead because it requires only

one extra bit for marking. Another advantage is that it can collect cyclic garbage

naturally. A disadvantage is that it requires long pause times to do garbage collec-

tion, which is not practical for many systems such as real-time systems, interactive

applications, and concurrent/distributed systems.

Copying Garbage Collection Algorithms

The concept of copying garbage collection algorithms is similar to that of

mark-and- sweep algorithms. Conceptually, a copying garbage collection algorithm

divides the memory storage into several regions. Every time the garbage collector

is invoked, it traces objects from roots, and moves them into another region. When

the traversal finishes, objects in the original region can be deleted safely. A typical

example is the semi-space algorithm [21, 8]. This algorithm requires two predefined

regions, Fromspace and Tospace. Fromspace is the region where objects reside and
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Tospace is empty at the beginning. Iterative copying starts from the roots and

follows the references to preserve every live object in Tospace. If no live object can

be found, the algorithm terminates. The advantage of copying garbage collection

algorithms is that they can compact the memory layout. The drawback of these

algorithms is that object copying has a performance penalty.

Generational Garbage Collection Algorithms

Generational garbage collection algorithms are based on the assumption that

young objects tend to become garbage young [96], with a late amendment that the

youngest tends to be live [88, 87]. This kind of algorithm is widely used in current

garbage collection. With the object life time assumption, memory space can be par-

titioned into several regions, each of which represents a different generation. When

the garbage collector is invoked, only one region is scanned. A generational garbage

collection algorithm can be either mark-and-sweep based or copying-based, but most

of them are copying-based. To avoid cross-generation garbage collection, every long-

lived surviving object must be eventually moved to the oldest region. Generational

garbage collection algorithms are complex. Issues of generational garbage collection

include: 1) how to determine the age of an object, 2) how to handle inter-generation

references, 3) strategies of moving surviving objects after garbage collection. Famous

examples include Mature Object Spaces (MOS) [46] (referred to as the train algo-

rithm), Appel’s generational collector [3], and Moon’s Ephemeral Collector [70] with

hardware garbage collection support. Generational garbage collection algorithms

are widely used in business products. They have short pause times for garbage col-

lection because only a small set of objects is scanned (incrementality). This feature

makes them practical for real-time systems and user interactive applications.

2.1.2 Concurrent and Incremental Garbage Collection Algorithms

For a multi-processor, shared memory machine, long pause times for stop-the-

world garbage collection are unacceptable because they restrict concurrency. To

avoid long pause times, garbage collection must be able to run in parallel with

users’ applications. The parallel execution introduces a coherence problem since

mutators compete with the garbage collector for reference reading and modification.
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For instance, a mutator can create a new reference in Object oa to another new

object, Object ob, while every reference of Object oa is just visited by a mark-and-

sweep based garbage collector. This situation can lead to erroneously reclamation of

Object ob since Object ob has no chance to be visited again. Every concurrent and

incremental garbage collector must take care of coherence. When garbage collection

is started, two strategies can be used to avoid such a coherence problem:

1. a reference cannot be added to an object, each of whose references has been

visited by the garbage collector, or

2. the original reference to an unvisited object cannot be removed.

A practical garbage collection algorithm for concurrent, shared memory sys-

tems can be either concurrent or incremental. Concurrent garbage collection was

first introduced by Steele’s compactifying algorithm [49], and widely discussed since

Dijkstra and his colleagues had published the on-the-fly algorithm [31]. The con-

cept of incremental garbage collection was introduced by Baker [8] in the context

of copying garbage collection. Generational garbage collection algorithms and ref-

erence counting based algorithms are considered as incremental garbage collection

algorithms as well. Concurrent garbage collection requires an independent thread

of control for the garbage collector, while incremental garbage collection distributes

the work of garbage collection among all other mutators and only a small portion of

garbage is collected to ensure that performance and availability of users’ applications

is not affected.

The Mostly Parallel Garbage Collection Algorithm

The goal of the mostly parallel garbage collection algorithm [15] is to shorten

the pause times of a mark-and-sweep based algorithm, which can also be extended

to a copying-based algorithm. The algorithm is designated to cooperate with the

virtual memory system in order to check if an object is modified during garbage

collection. The algorithm has six steps: 1) clear mark bits, 2) clear all virtual dirty

bits, 3) trace and mark from roots, 4) stop the world, 5) trace and mark from all

marked objects on dirty pages, and 6) restart the world. The algorithm is easy to
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understand and implement. Variations of the collector are reported in many papers

such as [9], and for the Java virtual machines of IBM [76] and SUN [78].

Yuasa’s Snapshot-At-Beginning Algorithm

Yuasa’s algorithm [111] is a mark-and-sweep based algorithm for the Kyoto

Lisp programming language. The concept of the snapshot-at-the-beginning strategy

is to preserve every reference at the beginning of garbage collection. The algorithm

requires a special reference updating function for mutators. For instance, a refer-

ence to some object, Object oa, is updated to point to another object, Object ob, by

the reference updating function during garbage collection. If Object oa has not yet

been visited by the garbage collector, Object oa is then moved to a special marking

stack to prevent erroneous reclamation. New objects allocated during garbage col-

lection are also preserved. The snapshot-at-beginning algorithm is very conservative

because it only collects the garbage which is produced before taking the snapshot.

The On-The-Fly Algorithm

The on-the-fly algorithm was proposed in [31], and is widely discussed, imple-

mented, and formally proved. The on-the-fly algorithm is a mark-and-sweep based

algorithm, that uses a tricolor abstraction to describe the states of objects during

garbage collection. In this algorithm, an object is painted either Black, Gray, or

White. Color Black indicates that an object has been completely visited — every

reference of that object is visited. Color Gray means that an object is visited but

not all of its references are visited. Color White is the initial color of objects at the

beginning of garbage collection. When garbage collection finishes, only White and

Black are left where White denotes garbage and Black denotes live objects. During

garbage collection, the reference updating function paints a newly referenced White

object Gray. Atomic reference updating is required for correctly performing this

algorithm.

Steele’s Algorithm

Steele’s algorithm [49] is also mark-and-sweep based. It uses locks to imple-

ment the reference updating function of the mutator. The concept of the algorithm
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is to recheck an object if any reference of the object is modified during garbage

collection. Newly created objects are checked as well during the marking phase.

Baker’s Incremental Copying Algorithm

Baker proposed an incremental copying algorithm [8] by modifying Cheney’s

copying algorithm [21]. The algorithm uses two regions, Tospace and Fromspace.

Objects are copied from Fromspace to Tospace while doing garbage collection. Newly

created objects are located in Tospace and marked visited, making them exempt

from garbage collection. The algorithm uses a read barrier to coordinate the mutator

and the collector, and the background collection is interleaved with object allocation.

A similar strategy can be found in [4], which uses virtual memory primitives instead

of heavy cooperation of mutators.

2.2 Distributed Passive Object Garbage Collection Algo-

rithms

The computing model of distributed passive object systems consists of a col-

lection of processes, also known as spaces or nodes. Each process has one to many

threads of control (mutators). Every object must reside in a process, and can be

remotely referenced by other objects. Some systems, such as Emerald [50, 51] and

Jocaml [23], support object migration by encapsulating objects in a message. The

communication model for users’ applications is mostly synchronous, in particular

based on remote procedure calls. However, the background communication, such

as garbage collection among processes, can be asynchronous with the FIFO order

assumption, or even completely unordered with incorporation of time-stamp-based

message redelivery mechanism (simulated FIFO communication).

In this section, several types of distributed garbage collection algorithms are

reviewed and categorized according to their features.

2.2.1 Reference Counting

Distributed reference counting (or listing) algorithms, also known as distributed

reference counting protocols, are inherently incremental and thus they do not re-
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quire complex synchronization for garbage collection. Typically, they require that

either a referenced object has to maintain a counter, or a reference table has to

keep track of every incoming/outgoing inter-node reference. Whenever an object is

referenced, its counter has to increment by one (or creates an inverse reference in

the reference table). One of their common disadvantages is that they cannot reclaim

cyclic garbage (mutually referenced objects) unless a hybrid strategy is used. These

reference counting algorithms are similar to our pseudo-root approach but they

tend to be more synchronous — most of them rely on First-In-First-Out (FIFO)

communication or time-stamp-based FIFO (simulated FIFO) communication at the

application level, and some of them are even totally synchronous by using remote-

procedure-call. Since actor communication is defined as asynchronous, unordered,

and message-driven, these algorithms cannot be reused directly by actor systems.

Figure 2.1 compares the algorithms which we are going to discuss in this subsection,

in terms of reference copying and deletion.

The Lermen-Maurer Protocol

The Lermen-Maurer protocol (see Figure 2.1.a) [59] is the first distributed

reference counting algorithm. It requires three messages per reference duplication,

and one per reference deletion. The application message with the reference to pass

and the increment system message to the object owner process are sent simultane-

ously. To avoid premature reference deletion, the object owner process must send

an acknowledgement to the application message receiver process. References can

only be deleted if the total number of received acknowledgements for the reference

is equal to the total number of receipts of the reference from application message

passing. The Lermen-Maurer protocol requires FIFO communication.

The Weighted Reference Counting Protocol

The weighted reference counting protocol (see Figure 2.1.b) [11, 107] avoids

sending increment messages, and only one decrement message is required for ref-

erence deletion in most cases. The algorithm requires that each object and each

reference maintain its weight. The weight of an object is always equal to the sum

of the total weights of the references to the object. A new object and the original
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Figure 2.1: A comparison on distributed acyclic garbage collection algo-
rithms. The figure explains how the reference sender process
passes a reference of Object B to the target process (reference
copy), and how a process deletes a reference of Object B and
then notifies the object owner process (reference deletion).

reference pointing to it are created with a predefined maximum weight. When a

reference is duplicated, the weight of the reference is divided into two positive new

values whose sum is equal to the original weight of the reference. One value is

assigned to the original reference and the other one to the new reference. When

a reference is deleted, a decrement message containing the weight of the reference

is sent to the object it points to. An object can be deleted safely when its weight

drops to zero. However, an alternative approach must be used while duplicating

a reference whose weight is 1, such as creating an indirect object with a value of

maximum weight and then dividing the value by two to the original reference and
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the copied reference. Corporaal et al in 1990 [26] use a similar approach using extra

reference tables instead of indirect objects.

The Indirect Reference Counting Protocol

The indirect reference counting algorithm (see Figure 2.1.c), proposed by Pi-

quer [77], avoids sending increment messages in order to minimize the number of

extra messages to send. The algorithm maintains a special data structure for each

reference which includes: 1) the number of duplications, 2) the parent pointer, and

3) the reference. The number of copies and the parent pointer are used to form an

inverted diffusion tree to present the history of reference duplications. The root is

the process that owns the object. The parent pointer is not used to point to the

parent object, but for the history of reference duplication. Only the leaf references

of the inverted diffusion tree can be deleted because the algorithm has to maintain

the inverted diffusion tree structure. Object migration is done by changing the par-

ent process to the migration destination. Deletion of references may produce extra

messages. The algorithm may preserve zombie references because they are not leaf

references.

The SSPC Protocol

The SSPC (Stub-Scion Pair Chains) protocol (see Figure 2.1.d) [85, 86] by

Shapiro et al. is a reference listing based protocol which uses the techniques of

time-stamps to ensure FIFO communication. Messages are re-delivered if the FIFO

order is violated by comparing the time-stamps. Synchronous communication of

users’ applications is assumed, but the protocol itself is asynchronous. Whenever

a reference is copied, an intermediate stub-scion pair is created to form an indirect

path to connect the reference receiver process to the reference owner process. The

SSPC protocol supports object migration by leaving an intermediate pointer at the

original process to the newly migrated object. Another background protocol can

be applied to reduce extra stub-scion pairs in a reference path to improve message

delivery performance and robustness.
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Birrell’s Protocol

Birrell’s protocol (see Figure 2.1.e) [12] is attributed as a remote-procedure-

call, reference listing based algorithm, and thus it is a synchronous algorithm. It

is used by Java RMI for distributed acyclic garbage collection. Upon reference

duplication, the original call with reference parameters to the reference receiver

process is made, following by another dirty call to the object owner process to

create a surrogate (a remote inverse reference) which handles incoming requests

to the referenced object. Reference deletion is implemented as a clean call which

notifies the object owner process to remove the surrogate of the object. Moreau et

al. [72] formalize the algorithm by a math model with correctness proofs, and also

extend the algorithm with non-FIFO communication semantics.

Moreau’s Protocol

Moreau’s protocol (see Figure 2.1.f) [71] is a reference listing based protocol

which requires point-to-point FIFO communication. Each process maintains a table

for outgoing references, and each object maintains a counter of inverse references.

Once a reference is passed to another process, the original process (sender) should

increase the counter of the reference and then send the message out. If a process

receives a message with a reference, it sends a special message inc-dec to the process

where the referenced object resides. Upon receiving the inc-dec message, a process

increases the counter of the referenced object and sends a dec message with the

identity of the referenced object to the original process (sender). A process should

then decrease the counter of the corresponding reference of the referenced object.

Deleting references is similar to the Lermen-Maurer protocol.

2.2.2 Complete Distributed Tracing

A complete distributed tracing algorithm periodically starts a phase of global

garbage collection. The major problems of complete distributed tracing are: 1)

long pause times for global synchronization, and 2) the requirement of complete

cooperation of all processes, which make it very sensitive to failures.
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Hughe’s Algorithm

Hughe’s algorithm [47] uses global time-stamp propagation from roots. Garbage

can be identified if an object has an earlier time-stamp than a certain global thresh-

old. The algorithms requires a local garbage collector for each process, and it as-

sumes: 1) a logical global clock, and 2) instantaneous message delivery. The algo-

rithm uses stop-the-world synchronization, and a distributed termination detection

algorithm to detect the end of global garbage collection.

2.2.3 Server-Based Tracing

A server-based tracing algorithm is hierarchical — it requires local garbage

collection for each process and global garbage collection for the whole distributed

system. The key feature of these algorithms is to identify distributed cyclic garbage

either by physically or virtually migrating objects (partial reference graph) to one

process, and let the process identify distributed garbage using a local object marking

algorithm. Its major problem is that the server becomes a performance bottleneck

in large-scale distributed systems.

The Ladin-Liskov Algorithm

The Landin-Liskov algorithm was first proposed in [61] and corrected in [55]

by using a simplified version of Hughe’s time-stamp algorithm to control the message

reception order. The server clock is used as the global clock. Local garbage collection

is performed at each process. A logically centralized server is designated to keep

track of: 1) inter-process incoming and outgoing references, 2) the paths containing

any inter-process incoming or outgoing reference, and 3) all local-root-reachable

objects and references. The server runs a local mark-and-sweep algorithm to detect

garbage and then notifies local garbage collectors.

2.2.4 Heuristic Migration and Tracing

Heuristics-based garbage collection was originated from Bishop’s partitioned

local garbage collection [13], in which the computing environment must support

object mobility. Garbage collection is hierarchical — it requires local garbage col-

lection. A heuristics-based algorithm starts from assuming an object is garbage,



23

then verifies it either by migration or distributed tracing. The problem of this

approach is the penalty of a failed verification — it could be significant. Thus accu-

rate heuristics is important to these algorithms. Most heuristics-based algorithms

are time-based (the näıve approach) or distance-based.

The Distance-Based Heuristics and Migration Verification Algorithm

The distance-based heuristics and migration verification algorithm was pre-

sented in [63]. According to the original paper, the distance of an object is “the

minimum number of inter-node references in any path from a persistent root to that

object, and the distance of an object unreachable from the persistent roots is infin-

ity.” The persistent roots are real roots; remotely referenced objects are not. This

algorithm requires distance propagation from every outgoing reference after each

local garbage collection phase terminates. Once a remote object receives such a

propagation message, it increases the distance inside the message by one, stores it,

and then locally propagates the distance to its local descendants. Since garbage is

detached from the persistent roots, its distance can only be increased. Once the

distance of an object is greater than a predefined threshold, the object is suspected.

The suspect objects and all its descendants are migrated to a single host to perform

local garbage collection.

The Distance-Based Heuristics and Back Tracing Verification Algorithm

Back tracing verification was proposed by Fuchs [40], which assumes bi-directional

references and ignores races among mutators and local garbage collectors. The idea

was enhanced by Maheshwari and Liskov [64] with a reference management strat-

egy. The Maheshwari-Liskov algorithm assumes a safe reference passing protocol,

which can be found in many distributed reference listing algorithms. Only objects

with outgoing references can be suspected because back tracing is defined to be

started from an outgoing reference. No objects can be collected if the back tracing

procedure identifies a root. Otherwise every back traced object is garbage.
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The Min-Max Marking Heuristics Algorithm

The min-max marking heuristics algorithm was proposed in [57], and based

on the work of [58] and [86]. The algorithm is complex, and requires four fields for

mark propagation among processes and objects, including: 1) the distance, 2) the

range of marking, 3) the mark generator identifier, and 4) the color. Only White and

Gray color are used, and White is the initial color. Local roots and some incoming

references (scions) are chosen to be the mark generators. The marking procedure

follows a strict order by first sorting the local roots, and then the incoming references

(scions) according to their marks. Outgoing references (stubs) store two marks,

others only one. During a phase of local garbage collection, each object is marked

twice. The first one follows the decreasing order, and then the increasing order. The

incoming reference (scion) is marked by the max mark, and colored Gray if the min

mark and the max mark are generated by two different sources (generators). If a

generator receives its own mark with White color, there exists cyclic garbage. This

approach cannot detect all cycles, and must use another approach, the optimistic

back-tracing which creates many sub-generators to perform verification. A sub-

generator is a generator that receives its Gray mark. During this phase, all incoming

references (scions) that receive the same Grey mark become sub-generators. A sub-

generator emits its White mark. When all sub-generators and the generator receive

the White mark, the cycle can be removed safely. The paper [57] dos not provide

correctness proofs.

The Trial Deletion Algorithm

Vestal proposed the trial deletion algorithm in [103]. The algorithm uses refer-

ence counting. Each object maintains an extra trial count. If an object is suspected

as garbage, it is virtually deleted by sending a simulated decrement message to de-

crease its trial count. If the trial count of an object drops to zero, the object must

be garbage. The algorithm does not work well if two trials happen in the same

garbage chain, and it cannot detect all cycles.
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2.2.5 Group Tracing

Group tracing algorithms are either based on static partitioning or heuris-

tic dynamic partitioning. These algorithms are devised for large-scale distributed

systems since garbage collection is limited to a small group of processes.

The Lang-Queinnec-Piquer Algorithm

The Lang-Queinnec-Piquer algorithm [56] uses a reference listing protocol and

local garbage collectors. It starts from defining hierarchical groups for global garbage

collection, and then identifies every object that participates in each of the groups.

Roots and inter-group referenced objects are marked hard. Other intra-group refer-

enced objects are marked soft. After identifying the hard objects, it performs global

mark propagation with the help of local garbage collectors. The global propagation

requires distributed termination detection. When the global marking is done, ob-

jects marked soft are cyclic garbage, and the group can be dismissed. This paper

also suggests the use of predefined hierarchical groups. Two major problems occur

in this approach: 1) the mutators must be stopped during the marking phase to

maintain correctness [65], and 2) no inter-group migration is allowed after group

identification. Since a garbage collection phase can take a long time, this approach

is not scalable.

The Rodrigues-Jones Dynamic Partitioning Algorithm

The Rodrigues-Jones dynamic partitioning algorithm [80] also uses a reference

listing protocol and local garbage collectors. The algorithm starts from suspecting

an object as garbage, traces from it, and then forms a group for global garbage

collection. During global marking, mutators must be suspended because it uses

the mostly parallel garbage collection algorithm [15] for local garbage collection.

Another problem is that overlapping partitions can occur, which either causes dead-

locks, or prevents progress. The authors choose the latter approach.

2.2.6 Distributed Generational Garbage Collection

Hudson et al. [45] proposed a generational collector where the address space

of each computing node is divided into several disjoint blocks (cars), and cars are
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grouped together into several distributed trains. Each train represents a generation

of objects, and forms a ring structure for distributed management. Objects can

only move from an older generation car to a younger generation car, and the oldest

car is eventually inspected. A car/train can be disposed of if there are no incom-

ing inter-car/inter-train references to it. The granularity of cars/trains affects the

performance.

2.2.7 Snapshot-Based Tracing

Snapshot-based algorithms are popular in actor garbage collection, but seldom

used in distributed passive object garbage collection. A benefit of snapshot-based

algorithms is that garbage tracing can be done in a concurrent manner, which enables

mutation during the global marking phase with the tradeoff of extra space.

The Distributed Cycles Detection Algorithm

The distributed cycles detection algorithm (DCDA) [101] uses asynchronous

local snapshots which have to be updated by local mutators to notify application

changes to the snapshot. The algorithm starts from suspecting an object as garbage,

and a heavy cycle detection message (CDM ) is then traversed among the snapshots

to see if a cycle exists. If any traversed object is modified by the mutators, the

current activity for global garbage collection must abort.

2.3 Equivalence of Passive Object Garbage Collection and

Distributed Termination Detection

Distributed termination detection [38, 29, 66] is a similar problem to passive

object garbage collection, where processes are reactive and communicate with each

other in a synchronous manner. A system consists of several processes, which are

connected by unidirectional channels as a strongly connected graph — there exists a

path from each process to every other process. A process is initially blocked (pas-

sive) or unblocked (active). Only unblocked processes can perform computations,

including sending application messages. Blocked processes can become unblocked by

receiving application messages. A system is ready for termination if 1) all processes
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are blocked and 2) there are no messages in transit.

Distributed Termination Detection

Most distributed termination detection algorithms depend on specific network

topologies, such as a computation tree [29] and a ring [30, 69]. For example, the

Dijkstra-Scholten algorithm [29] requires that processes form a computation tree,

which is also known as a diffusing tree because it always starts with a root process.

An internal process is marked unblocked if any of its children is marked unblocked;

otherwise it is marked blocked. The mark for a leaf process depends on its state. A

system can be terminated if the root is marked blocked.

A probe-based (or wave-based) algorithm uses an initiator process to send sys-

tem messages to pass to every process directly or indirectly. Dijkstra et al. [30]

proposed such a probe-based algorithm for ring topologies, where the initiator pro-

cess sends a White mark token which is a system message to its successor when

it becomes blocked. Every process is numbered and can only pass messages to its

successor, and the successor of the last process is the first process. All processes

are initially White, and a White process passes the token it receives to its successor.

Whenever an unblocked process sends an application message to another process, it

becomes Black, and passes the received token by marking it Black. If the initiator

process receives a White mark token, the system can be terminated correctly.

Szymanski et al. [94, 93] proposed a distributed termination detection algo-

rithm which uses distance and time heuristics. The length of the shortest path from

Process Px to Process Py is called a distance from Process Px to Process Py. The

greatest distance between any two processes is called the diameter, which is used as

the threshold to determine the termination condition. The initial shortest distance

state of a process is 0. All processes have to stop periodically at a logical time

barrier to calculate their shortest distance states from any unblocked process. A

process sends its shortest distance state as a token to its successors and then reads

tokens from its predecessors. Consequently, it sets its shortest distance state to be 0

if it is unblocked; otherwise, it chooses the minimum value of the input tokens and

its current shortest distance state, and then increments the value by one as its new
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shortest distance state. If the value exceeds the diameter of the system, the process

can terminate correctly, and all processes are guaranteed to terminate at the same

logical time.

Equivalence of Passive Object Garbage Collection and Distributed Ter-

mination Detection

Tel and Mattern [95] has shown that the distributed termination detection

problem for distributed computations can be modeled as an instance of the garbage

collection problem. Blackburn et al. [14] suggest a methodology to derive a dis-

tributed garbage collection algorithm from an existing distributed termination de-

tection algorithm, in which the distributed garbage collection algorithm developers

must design another algorithm to guarantee a consistent global state. All of the

above algorithms cannot be reused directly in actor systems because actors and

passive objects are different in nature.

2.4 Actor Garbage Collection

The definition of garbage actors is very different from passive object garbage

collection. For instance, the marking phase of passive object garbage collection

usually uses depth-first-search or breadth-first-search. Marking algorithms for actor

garbage collection include Push-Pull [53], Is-Black [53], Dickman’s graph partition

merging algorithm [28], and the actor reference graph transformation algorithm

[97, 98]. Most distributed actor garbage collection algorithms are snapshot-based

due to the autonomous nature of actors.

2.4.1 Actor Marking Algorithms

This subsection introduces various marking algorithms of actor garbage collec-

tion. Most of them are not as intuitive as the marking algorithms of passive object

garbage collection.

The Push-Pull and Is-Black Algorithms

The Push-Pull and Is-Black algorithms were proposed by Kafura, Mukherji,

and Nelson [53]. The Push-Pull algorithm is based on Nelson’s coloring rules [73],
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and it has two major functions, Pusher and Puller. The algorithm uses set oper-

ations instead of mark propagation. Three different sets are used: White, Gray,

and Black. Roots are initially put in Black, and others in White. Black means an

actor is live, Gray means an actor is blocked but can communicate with a root if it

can become unblocked, and White means that no live evidence is seen for an actor.

Pusher and Puller keep pushing and pulling different actors in and out of different

color sets. After the termination of the algorithm, actors in Black are live and others

are garbage.

Is-Black initially marks roots Black, and other actors White. The second

step is to mark all transitively root-reachable actors Black. The third step is to

transitively follow references from an unblocked White actor to find if it can reach

a Black actor. If so, mark Black every actor that is transitively reachable from

that actor, and then restart the third step. If no such case is found, the algorithm

terminates and all Black actors are live. Let N be the total number of actors, and

E be the total number of references. The time complexity is O(N ·E) for Push-Pull,

and O(N2) for Is-Black. The extra space complexity is O(N) for both of them.

Dickman’s Partition Merging Algorithm

Dickman proposed the partition merging algorithm [28] which treats all un-

blocked actors as potential roots. The first part of the algorithm constructs several

preliminary partitions of actors by traversing references from the potential roots,

and then merges them into several large partitions by a special X-node. Actors

in the same partition have the same status, which means all of them are either

garbage or live. The second part of the algorithm then verifies each partition from

the root actors using an Euler cycle traversal algorithm. The time complexity of

the algorithm is O(N + E), and the extra space complexity is O(N + E).

The Actor Reference Graph Transformation Algorithm

The actor reference graph transformation algorithm was proposed in [97, 98].

The key concept of the algorithm is to perform a garbage-preserving transformation

from the actor reference graph into a corresponding passive object reference graph.

All roots are merged into a single root initially. Every actor is then transformed
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into two objects — one represents the message box, and the other represents the

actor. If an actor is an unblocked actor or a root, a reference is added from the

message box object to the actor object. For any reference apaq, add three references

in the transformed graph: 1) a reference from the ap object to the aq object, 2)

a reference from the ap object to the message box object of aq, and 3) a reference

from the message box object of aq to the message box object of ap. The root in the

transformed reference graph is defined as the message box of the only root. A typical

object marking algorithm is then used to identify live actors. Its time complexity is

O(N + E) and the extra space complexity is O(N + E).

2.4.2 Distributed Actor Garbage Collection

Only a few distributed actor garbage collection algorithms can be found in the

literature. In this subsection, four distributed actor garbage collection algorithms

are reviewed. Three of them are snapshot-based, and one uses stop-the-world syn-

chronization.

The most well known snapshot-based garbage collection algorithm was pro-

posed by Yuasa [111] as part of the Kyoto Lisp concurrent programming language,

designed for passive object garbage collection in shared memory systems. Dis-

tributed snapshot is more complicated because the requirement of detecting both the

state of processes (actors) and channels (in-transit messages). Two kinds of snap-

shot algorithms are used in distributed garbage collection — the Chandy-Lamport

algorithm [20] and the uncoordinated snapshot algorithm [89, 67].

The Global Push-Pull Algorithm

This global Push-Pull algorithm [52] uses hierarchical garbage collection — lo-

cal garbage collection for each computing node, and a global synchronization agent

located at some computing node. Once a global garbage collection phase begins,

the Chandy-Lamport snapshot algorithm is used to take a coherent global snapshot.

Distributed termination detection is required for the termination of distributed snap-

shot. Global marking by the global Push-Pull algorithm is performed when a global

snapshot is available. Another distributed termination detection has to be used to

detect the end of the global marking phase. The algorithm requires FIFO commu-
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nication for Chandy-Lamport snapshot algorithm to record the state of channels,

which violates the assumption of the actor model of computation.

The HDGC Algorithm

The hierarchical distributed garbage collection (HDGC ) algorithm [102] is a

Chandy-Lamport snapshot-based algorithm. It assumes a two-dimensional grid net-

work topology, FIFO communication, and a centralized synchronization service —

the GC-root actor. The FIFO communication assumption provides the ability to

clear communication channels by a special bulldoze message, which is used for tak-

ing global snapshot. Any message sent in a cleared channel is marked as new.

Inverse references are built during garbage collection for a distributed actor mark-

ing algorithm. The algorithm has five phases: 1) the pre-GC phase to start a global

snapshot, 2) the distributed scavenge phase to identify live actors in the snapshot, 3)

the local-clear initiation phase to notify each local collector to terminate the second

phase, 4) the local-clear phase to reclaim garbage, and 5) the post GC broadcast

phase to signal every computing node to terminate this phase of global garbage

collection.

The Time-Stamp-Vector Snapshot Algorithm

Puaut proposed an asynchronous, time-stamp-vector snapshot based algorithm

in [79], which uses a server for global garbage collection. Each computing node

maintains a time-stamp vector to simulate a global clock. FIFO communication is

assumed, but completely unordered communication is also possible by incorpora-

tion of time-stamp-based message redelivery mechanism. Local garbage collectors

send local reference graphs to a centralized server, as well as the time-stamps of the

last information received by the local garbage collectors. The server checks if the

combined snapshot is consistent according to the time-stamps. If this is not true,

nothing is done. Otherwise the server performs global garbage collection, and then

notifies each local garbage collector about garbage. This approach is not scalable

because: 1) the size of a message increases as the number of computing node in-

creases, and 2) the probability of obtaining a consistent global snapshot decreases

as the locality of references decreases.
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The Distributed Actor Reference Graph Transformation Algorithm

The distributed actor reference graph transformation algorithm [97] uses local

garbage collectors and a distributed mark-and-sweep algorithm. While performing

distributed actor garbage collection, the local garbage collector obtains information

from the local computing host where it resides, and then transforms the local actor

reference graph into a passive object reference graph. If two actors, namely ap and

aq, reside in different computing hosts and ap has a reference to aq, a message is

sent to aq’s computing host to indicate that it is referenced by ap. In such case,

ap has to be suspended until the message has been delivered. To guarantee safety,

the algorithm, in general, requires message delivery to cause temporary suspension

of the sender — whenever an actor sends a message to another actor, the actor

must be suspended until the message has been delivered. After the completion of

the transformation procedure, a suitable global marking algorithm such as Schelvis’

algorithm [84] is selected to identify distributed garbage. To conclude, the algorithm

and its implementation assume: 1) First-In-First-Out (FIFO) communication, 2)

temporary suspension of the message sender, and 3) a stop-the-world approach for

local garbage collectors.



CHAPTER 3

Equivalence of Actor Garbage Collection and Passive

Object Garbage Collection

In this chapter, we define passive object garbage collection and actor garbage collec-

tion as graph problems. Then we discuss the actor garbage collection problem based

on the reference graph without considering any distributed or concurrent comput-

ing issues such as in-transit messages. We will discuss: 1) transformation methods

from actor garbage collection to passive object garbage collection, and 2) two actor

marking algorithms derived from the transformation methods.

3.1 Transformation Methods

Both the passive object garbage collection and the actor garbage collection

problems can be represented as graph problems. This section reveals that they

can be transformed from one to the other. Properties and formal definitions of the

transformation methods are provided, and proofs can be found in Section 3.3. This

section will cover:

• the definition of passive object garbage collection,

• the definition of actor garbage collection,

• how passive object garbage collection can be transformed to actor garbage

collection, and

• two transformation methods and their implementations (algorithms) from ac-

tor garbage collection to passive object garbage collection.

3.1.1 Garbage in Passive Object Systems

The essential concept of passive object garbage lies in the idea of the pos-

sibility of object manipulation. Objects that can be manipulated by the thread

of control of the application are live; otherwise they are garbage. There are two

33
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possible manipulations in passive object garbage collection — direct and transitive

manipulations. Root objects are those which can be directly accessed by the thread

of control, while transitively live objects are those transitively reachable from the

root objects by following references. The problem of passive object garbage collec-

tion can be represented as a graph problem. To concisely describe the problem, we

introduce transitive reachability ; . The transitive reachability relation is reflective

(a ; a) and transitive ((a ; b)∧ (b ; c)⇒ (a ; c)). Then we use it to define the

passive object garbage collection problem.

Definition 3.1.1. Transitive reachability.

Entity (object or actor) oq is transitively reachable from op, denoted by

op ; oq,

if and only if op = oq ∨ (∃ou : opou ∧ ou ; oq)
2.

Otherwise, we say op Y; oq.

Definition 3.1.2. Live passive objects.

Given a passive object reference graph G = 〈V,E〉, where V represents objects and E

represents references, let R represent roots such that R ⊆ V : The problem of passive

object garbage collection is to find the set of live objects, Liveobject(G,R), where

Liveobject(G,R) ≡ {olive | ∃oroot : (oroot ∈ R ∧ olive ∈ V ∧ oroot ; olive)}

3.1.2 Garbage in Actor Systems

The definition of actor garbage is related to the idea of whether an actor is

doing meaningful computation, which is defined as having the ability to communicate

with any of the root actors, where root actors are I/O services or public services such

as web services and databases. We assume that every actor/object has a reference

to itself, which is not necessary true in the actor model. The widely used definition

of live actors [53] is based on the possibility of message reception from or message

delivery to the root actors — a live actor is one which can either receive messages

from the root actors or send messages to the root actors. The original definition of

2Notice that opou is defined as a reference from op to ou (see Section 1.3).
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live actors is denotational because it uses the concept of “potential” message delivery

and reception. To make it more operational, the state of an actor (unblocked or

blocked) and the referential relationship of actors must be used instead.

Definition 3.1.3. Potential message delivery from ap to aq.

Let the current system state be S. Potential message delivery from Actor ap to Actor

aq (or message reception of aq from ap) is defined as:

∃Sfuture : ap is unblocked and ap ; aq at Sfuture, S →
∗ Sfuture.

Now, consider two actors, ap and aq. If they are both transitively reachable

from an unblocked actor or a root actor, namely amid, message delivery from Actor ap

to Actor aq (or from aq to ap) is possible. The reason is that there exists a sequence

of state transitions such that amid transitively makes ap unblocked and transitively

creates a directional path to aq. As a result, ap ; aq is possible. The relationship of

ap and aq can be expressed by the may-talk-to relation, defined as ! (Definition

3.1.4). It is also possible that a message can be delivered from ap to another new

actor ar if (ap ! aq ∧ aq ! ar) because the unblocked actors can create a path

to connect ap and ar. The generalized idea of the may-transitively-talk-to relation,

!
∗ , is shown in Definition 3.1.5 to represent potential message delivery.

Definition 3.1.4. May-talk-to ! .

Given an actor reference graph G = 〈V,E〉 and {ap, aq} ⊆ V , where V represents

actors and E represents references, let R represent roots and U represent unblocked

actors such that R,U ⊆ V , then:

ap ! aq ⇐⇒ ∃au : au ∈ (U ∪R) ∧ au ; ap ∧ au ; aq.

We call ! the may-talk-to relation.

Definition 3.1.5. May-transitively-talk-to !
∗ .

Following Definition 3.1.4,

ap !
∗ aq ⇐⇒ ∃amid : ap ! aq ∨ (ap ! amid ∧ amid !

∗ aq).

We call !
∗ the may-transitively-talk-to relation.
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The definition of the set of live actors can then be concisely rewritten by using

the !
∗ relation:

Definition 3.1.6. Live actors.

Given an actor reference graph G = 〈V,E〉, where V represents actors and E rep-

resents references, let R represent roots and U represent unblocked actors such that

R,U ⊆ V . The problem of actor garbage collection is to find the set of live actors

Liveactor(G,R, U), where

Liveactor(G,R, U) ≡ {alive | ∃aroot : (aroot ∈ R ∧ alive ∈ V ∧ aroot !
∗ alive)}

3.1.3 Problem Equivalence

Transformation from Passive Object Garbage Collection to Actor Garbage

Collection

Let the passive object reference graph be G = 〈V,E〉 and the set of roots be

R. Let the transformed actor reference graph be G′ = 〈V ′, E ′〉, the set of roots be

R′, and U ′ be the set of unblocked actors. The problem of passive object garbage

collection can be transformed into the problem of actor garbage collection by assign-

ing V ′ = V , E ′ = E, R′ = R and U ′ = ∅. Then for any two objects or and oq, we

get (or ; oq ∧ or ∈ R) ⇐⇒ (or ; or ∧ or ; oq ∧ or ∈ R) ⇐⇒ (or !
∗ oq ∧ or ∈ R).

Therefore the set Liveobject(G,R) = Liveactor(G
′, R′, U ′).

Transformation from Actor Garbage Collection to Passive Object Garbage

Collection

Now, consider the backward transformation. Let the actor reference graph

be G = 〈V,E〉, R be the roots and U be the unblocked actors. If there exist

G′ = 〈V ′, E ′〉 and R′ such that Liveactor(G,R, U) = Liveobject(G
′, R′), we say the

actor garbage collection problem can be transformed into the passive object garbage

collection problem. The transformation problem has been solved and proven by

Vardhan and Agha [98] by changing V , E, and R. In the following subsections, we

will show that changing R is enough.
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Figure 3.1: An example of transformation by direct back pointers to un-
blocked actors and root actors.

3.1.4 Transformation by Direct Back Pointers to Unblocked Actors

In this subsection we propose a much easier approach to transform actor

garbage collection into passive object garbage collection, by making E ′ = E ∪

{aqau | au ∈ (U ∪ R) ∧ au ; aq}. See Figure 3.1 for example. Actors 2 and 3 have

back pointers to Unblocked Actor 1 because they are reachable from Actor 1. Actor

11 has a back pointer to Root Actor 9 and another one to Unblocked Actor 13 for

the same reason. Actor 3 does not have a back pointer to Actor 5 because Actor 5

is neither a root nor an unblocked actor. Notice that we use the term back pointers

to describe the newly added references and to avoid ambiguity with the term in-

verse references. Theorem 3.1.7 shows that the direct back pointer transformation

method is correct.

Theorem 3.1.7. Direct back pointer transformation.

Let the actor reference graph be G = 〈V,E〉, R be the set of roots, and U be the set

of unblocked actors. Let E ′ = E∪{aqau | au ∈ (U ∪R)∧au ; aq}, and G′ = 〈V,E ′〉

and R′ = R.

Liveactor(G,R, U) = Liveobject(G
′, R′)

3.1.5 Transformation by Indirect Back Pointers to Unblocked Actors

In this subsection we propose another similar approach to transform actor

garbage collection into passive object garbage collection, by making the reference
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Figure 3.2: An example of transformation by indirect back pointers to
unblocked actors and root actors.

set E ′ = E ∪ {aqap | au ∈ (U ∪ R) ∧ apaq ∈ E ∧ au ; ap}. See Figure 3.2 for

example. Actor 2 has back pointers to Unblocked Actor 1 and Actor 3 has back

pointers to Actor 2 because they are reachable from Actor 1. The newly added

back pointers will create a corresponding counter-directional path of a path from an

unblocked/root actor to another actor which is reachable from the unblocked/root

actor. Similarly, Actor 11 has a new counter-directional path to Root Actor 9 and

another one to Unblocked Actor 13.

Lemmas 3.1.8 and 3.1.9 are used to prove Theorem 3.1.10. Lemma 3.1.8 says

that if an actor is reachable from an unblocked/root actor, the indirect back pointer

transformation method guarantees that there exists an indirect inverse path from the

actor to the unblocked/root actor. Lemma 3.1.9 says that the set of live objects in

the transformed reference graph by the indirect back pointer transformation method

is a subset of the set of live actors. Theorem 3.1.10 shows that the indirect back

pointer transformation method is correct.

Lemma 3.1.8. Backward reachability to the unblocked/root actors in the newly

transformed graph.

Let the actor reference graph be G = 〈V,E〉, R be the set of roots, and U be the set

of unblocked actors. Let E ′ = E ∪ {aqap|au ∈ (U ∪ R) ∧ apaq ∈ E ∧ au ; ap}, and

G′ = 〈V,E ′〉 and R′ = R. Then in G′,

∀ax, ay : ax ∈ (U ∪ R) ∧ ax ; ay in G =⇒ ax ∈ (U ∪R) ∧ ay ; ax in G′.
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Lemma 3.1.9. Liveobject(G
′, R′) ⊆ Liveactor(G,R, U).

Let the actor reference graph be G = 〈V,E〉, R be the set of roots, and U be the set

of unblocked actors. Let E ′ = E ∪{aqap | ∃au : au ∈ (U ∪R)∧ apaq ∈ E ∧ au ; ap},

and G′ = 〈V,E ′〉 and R′ = R. Then in G′,

∀ax, ay : ax ∈ (R′) ∧ ax ; ay at G′ =⇒ ax ∈ (U ∪ R) ∧ ay !
∗ ax at G,

that is, Liveobject(G
′, R′) ⊆ Liveactor(G,R, U).

Theorem 3.1.10. Indirect back pointer transformation.

Let the actor reference graph be G = 〈V,E〉, R be the set of roots, and U be the set

of unblocked actors. Let E ′ = E ∪{aqap | ∃au : au ∈ (U ∪R)∧ apaq ∈ E ∧ au ; ap},

and G′ = 〈V,E ′〉 and R′ = R.

Liveactor(G,R, U) = Liveobject(G
′, R′)

3.2 Implementation of the Transformation Methods

This section introduces two algorithms derived from the transformation meth-

ods of Theorem 3.1.7 and Theorem 3.1.10. They are the back pointer algorithm and

the N-color algorithm.

3.2.1 The Back Pointer Algorithm

Either Theorem 3.1.7 or Theorem 3.1.10 can directly turn into an actor mark-

ing algorithm by simply adding new back pointers in the actor reference graph. Due

to their similarity, we only select Theorem 3.1.7 to model the back pointer algorithm.

In the algorithm (see Figure 3.3), actors are all initially marked White. Then

it first identifies all potentially live actors from root/unblocked actors by marking

them Gray and simultaneously adding new back pointers in the graph. With the

existing references and newly created corresponding back pointers, it transitively

identifies live actors from roots and marks them Black. After the termination of the

algorithm, any Black actor is live. An example is illustrated in Figure 3.4.
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Algorithm Back po inter
1 . a l l a c t o r s are i n i t i a l l y marked White
2 . for each unblocked/ root ac to r x do
3 . i f x .COLOR = White then
4 . x .COLOR← Gray
5 . ca l l DFS potent ia l root mark ing (x )
6 . for each root ac to r r do
7 . i f x .COLOR 6= Black then
8 . r .COLOR← Black
9 . ca l l DFS bid i rect ion mark ing ( r )

Procedure DFS potent ia l root mark ing ( Actor x )
1 . for each r e f e r e n c e (x , y ) held by x
2 . i f y .COLOR = White
3 . bu i ld a back po in t e r of (x , y ) in ac to r y
4 . y .COLOR← Gray
5 . ca l l DFS potent ia l root mark ing (y )

Procedure DFS bid i rect ion mark ing ( Actor x )
1 . for each r e f e r e n c e (x , y ) held by x do
2 . i f y .COLOR 6= Black then
3 . y .COLOR← Black
4 . ca l l DFS bid i rect ion mark ing (y )
5 . for each back po in t e r of ( z , x ) held by x do
6 . i f z .COLOR 6= Gray
7 . z .COLOR← Black
8 . ca l l DFS bid i rect ion mark ing ( z )


� �

Figure 3.3: The back pointer algorithm.

3.2.2 The N-Color Algorithm

The N-color algorithm (see Figure 3.5) comes from Theorem 3.1.7 with the

strategy of turning “a back pointer to an unblocked/root actor” into a color. A

root color is defined as 0. To avoid multiple colors in an actor, only one color is

allowed in each actor. Once different colors conflict in an actor, we combine the

colors by using disjoint set operations [24]. Since any color conflict implies the two

representive unblocked/root actors have the relation of !
∗ , we can conclude that

actors marked by any color in a disjoint set containing a root color are live.

Actors marked by the same colors may talk to each other because they are
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Figure 3.4: An example of the back pointer algorithm where W stands
for White, G stands for Gray, and B for Black. Only actors
marked by Color B are live.

directly reachable from the same unblocked actor. Color conflict implies the may-

transitively-talk-to relationship. Therefore, combining conflict colors is equivalent

to grouping the set of actors that may transitively talk to each other. If a root is

included in this set, every actor in the set may transitively talk to the root. As a

result, the algorithm is correct.

Let M be the number of unblocked actors. Three disjoint set operations are

used by the algorithm:

1. Create-Set(i) to create a set containing only one element i. Its amortized

time complexity is O(1).

2. Find-Set(i) to find the set containing i. Its amortized time complexity is

O(lg∗M) 3.

3. Union(i,j) to union one set containing i and another set containing j. Its

3lg∗, defined in [25], is a function which grows very slowly. For example, lg∗65536 = 4 and
lg∗(265536) = 5.
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Algorithm N color marking
1 . a l l a c t o r s are i n i t i a l l y marked −1
2 . for each root ac to r r do
3 . r .COLOR← 0
4 . ca l l DFS marking ( r , 0 )
5 . n ← the number of unblocked a c t o r s
6 . for i ← 0 to n do
7 . Create−Set ( i )
8 . cur rentCo lor ← 0
9 . for each unblocked acto r x do

10 . currentCo lor ← currentCo lor + 1
11 . i f x . c o l o r = −1 then
12 . x . c o l o r ← currentCo lor
13 . ca l l DFS marking (x , currentCo lor )

Procedure DFS marking ( Actor x , Color c )
1 . for each r e f e r e n c e (x , y ) held by x do
2 . i f y .COLOR = −1 then
3 . y .COLOR← c
4 . ca l l DFS marking (y , c )
5 . else i f Find−Set ( y .COLOR) 6= Find−Set ( c ) then
6 . Union (y .COLOR, c )


� �

Figure 3.5: The N-color algorithm.

amortized time complexity is O(lg∗M).

The N-color marking algorithm is shown in Figure 3.5 with an example in

Figure 3.6. It uses M + 2 colors to identify live actors. Let the initial color of

non-root actors be −1, and the initial color of roots be 0. Other normal colors are

ranging from 1 to M where each normal color represents a potentially live group.

By using the DFS or BFS algorithm, the joint vertices of groups can be identified.

The set operations make each color transitively point to the lowest color (including

0) it encounters during the marking phase. At the end of the marking phase, a color

belonging to the set containing color 0 is a root color. Each actor marked by a root

color is live.
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Figure 3.6: An example for the N-color algorithm. Actors marked by
Colors 0, 2, or 3 are live. Actors colored -1 and 1 are garbage.

3.2.3 Complexity Analysis

Let N be the number of actors, E the number of references in the system, and

M be the number of unblocked actors. The time complexity of the back pointer

algorithm is O(N + E), equal to the current known best [28]. The extra space

complexity is O(N + E) which is theoretically worse than the current best, O(N)

[53]. The back pointer algorithm requires scanning the reference graph twice.

The extra space complexity of the N-color algorithm is O(M+N) where O(M)

is for the disjoint set operations and O(N) is for marking, and thus makes it the

best among the actor marking algorithms. The algorithm (Figure 3.5) requires

tracing references in Lines 2–4 and Lines 9–13, making the time complexity O(E +

E lg∗M) = O(E lg∗M). Other pieces of the algorithm are at most O(N), which

means the time complexity of the algorithm is O(N + E lg∗M), very close to the

current known best. The N-color algorithm is also the best among the actor marking

algorithms for only scanning the reference graph once.

3.3 Proofs

Theorem 3.1.7 Direct back pointer transformation.



44

Let the actor reference graph be G = 〈V,E〉, R be the set of roots, and U be the set

of unblocked actors. Let E ′ = E∪{aqau | au ∈ (U ∪R)∧au ; aq}, and G′ = 〈V,E ′〉

and R′ = R.

Liveactor(G,R, U) = Liveobject(G
′, R′)

Proof. Let Liveactor(G,R, U) = {alive | ∃aroot : (aroot ∈ R ∧ alive ∈ V ∧ aroot !
∗

alive)} of G, and Liveobject(G
′, R′) = {olive | ∃oroot : (oroot ∈ R

′ ∧ olive ∈ V ∧ oroot ;

olive)} of G′.

Now, consider the first case, Liveactor(G,R, U) ⊆ Liveobject(G
′, R′). Let ar and al

be actors and ar ∈ R ∧ al ∈ V . Then in G:

ar !
∗ al =⇒

∃amid,1, amid,2, ..., amid,n : ar ! amid,1 ! amid,2 ! ... ! amid,n ! al =⇒

∃amid,1, amid,2, ..., amid,n, au,1, au,2, ..., au,n+1 : {au,1, au,2, ..., au,n} ⊆ (U ∪R) ∧ (au,1 ;

ar∧au,1 ; amid,1)∧ (au,2 ; amid,1∧au,2 ; amid,2)∧ ...∧ ((au,n+1 ; amid,n∧au,n+1 ;

al)).

The above statement is true in G′ because E ⊆ E ′. Since ∀ax, ay : ax ∈ (U∪R)∧ay ∈

V ∧ax ; ay =⇒ ay ; ax in G′, we know ∃amid,1, amid,2, ..., amid,n, au,1, au,2, ..., au,n+1 :

{au,1, au,2, ..., au,n} ⊆ (U ∪ R) ∧ ar ; au,1 ; amid,1 ; au,2 ; amid,2... ; amid,n ;

au,n+1 ; al.

Therefore Liveactor(G,R, U) ⊆ Liveobject(G
′, R′).

Now, consider the other case that Liveobject(G
′, R′) ⊆ Liveactor(G,R, U).

For any ar and al, ar ∈ R
′ ∧ al ∈ V

′ ∧ ar ; al in G′,

let {ax,1au,1, ax,2au,2, ..., ax,nau,n} ⊆ (E ′−E) and be part of ar ; al in G′, such that

(ar ; ax,1 ∧ ax,1au,1 ∈ (E ′ − E)) ∧ (au,1 ; ax,2 ∧ ax,2au,2 ∈ (E ′ − E)) ∧ ...

(au,n−1 ; ax,n ∧ ax,nau,n ∈ (E ′ − E)) ∧ au,n ; al.

Since a reference aqap in (E ′ − E) implies that ap ∈ (U ∪ R) ∧ aq ∈ V ∧ ap ; aq,

we get ar ; ar ∧ (ar ; ax,1 ∧ au,1 ; ax,1) ∧ (au,1 ; ax,2 ∧ au,2 ; ax,2) ∧ ... ∧

(au,n−1 ; ax,n ∧ au,n ; ax,n) ∧ au,n ; al =⇒

ar ! ax,1 ∧ ax,1 ! ax,2 ∧ ... ∧ ax,n−1 ! ax,n ∧ ax,n ! al =⇒

ar !
∗ al.

Therefore Liveobject(G
′, R′) ⊆ Liveactor(G,R, U).
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Lemma 3.1.8 Backward reachability to the unblocked/root actors in the newly

transformed graph.

Let the actor reference graph be G = 〈V,E〉, R be the set of roots, and U be the

set of unblocked actors. Let E ′ = E ∪ {aqap|au ∈ (U ∪ R) ∧ apaq ∈ E ∧ au ; ap},

and G′ = 〈V,E ′〉 and R′ = R. Then in G′,

∀ax, ay : ax ∈ (U ∪ R) ∧ ax ; ay in G =⇒ ax ∈ (U ∪ R) ∧ ay ; ax in G′.

Proof. The lemma can be proven by induction. Let the minimal number of a refer-

ence set (a path) to make ax ; ay in G′ be n.

Basis: Let n = 0. ax ∈ (U ∪ R) ∧ ax ; ax which is true.

Induction step: Assume the lemma is true for n ≤ k. Then, consider n = k + 1.

Let ax ∈ (U ∪ R) ∧ ax ; az ∧ azay in G. Then we know ayaz ∈ E ′ by def-

inition. By the induction step, ax ∈ (U ∪ R) ∧ az ; ax in G′. Therefore,

ax ∈ (U ∪ R) ∧ az ; ax ∧ ayaz ∈ E ′ in G′ implies ax ∈ (U ∪ R) ∧ ay ; ax in

G′.

Lemma 3.1.9 Liveobject(G
′, R′) ⊆ Liveactor(G,R, U).

Let the actor reference graph be G = 〈V,E〉, R be the set of roots, and U be the set

of unblocked actors. Let E ′ = E ∪{aqap | ∃au : au ∈ (U ∪R)∧apaq ∈ E∧au ; ap},

and G′ = 〈V,E ′〉 and R′ = R. Then in G′,

∀ax, ay : ax ∈ (R′) ∧ ax ; ay at G′ =⇒ ax ∈ (U ∪ R) ∧ ay !
∗ ax at G,

that is, Liveobject(G
′, R′) ⊆ Liveactor(G,R, U).

Proof. The lemma can be proven by induction.

Let Path = {axa1, a1a2, ..., am−1am, amay} ⊆ E ′ such that ax ; ay and

|Path ∩ (E ′ −E)| = n.

Basis: Let n = 0. This implies that Path * (E ′−E). Since (Path ⊆ E ′)∧ (Path *

(E ′ −E)), we know Path ⊆ E. Therefore, ax ; ay at G =⇒ ax ; ax ∧ ax ; ay at

G =⇒ ax !
∗ ay at G.

Induction step: Assume the lemma is true for ∃k : 0 ≤ n ≤ k. Then, consider

n = k + 1.
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Path can be re-defined as Path1∪{avav+1}∪Path2, where Path1 = {axa1, a1a2, ..., av−1av},

avav+1 ∈ E
′, and Path2 = {av+1av+2, ..., amay}, such that

(|Path1 ∩ (E ′ − E)| = k) ∧ (avav+1 ∈ (E ′ −E)) ∧ (|Path2 ∩ (E ′ −E)| = 0).

First, consider avav+1:

(avav+1 ∈ (E ′ −E)) =⇒

∃au : au ∈ (U ∪R) ∧ (au ; av+1 at G) ∧ av+1av ∈ E =⇒

∃au : au ∈ (U ∪R) ∧ au ; av at G.

Second, consider av+1 ; ay and ∃au : au ∈ (U ∪ R) ∧ au ; av at G:

av+1 ; ay and ∃au : au ∈ (U ∪R) ∧ au ; av at G =⇒

∃au : au ; av ∧ au ; ay at G =⇒

av ! ay at G.

By induction hypothesis, we know ax !
∗ av at G. Because ax !

∗ av ∧ av !
∗ ay

at G, ax !
∗ ay at G is true for n = k + 1.

Therefore, the lemma is true by induction.

Theorem 3.1.10 Indirect back pointer transformation.

Let the actor reference graph be G = 〈V,E〉, R be the set of roots, and U be the

set of unblocked actors. Let E ′ = E ∪ {aqap | au ∈ (U ∪R) ∧ apaq ∈ E ∧ au ; ap},

and G′ = 〈V,E ′〉 and R′ = R.

Liveactor(G,R, U) = Liveobject(G
′, R′)

Proof. We can reuse the proof of Liveactor(G,R, U) ⊆ Liveobject(G
′, R′) in Theorem

3.1.7 and Lemma 3.1.8 to prove that Liveactor(G,R, U) ⊆ Liveobject(G
′, R′) in this

theorem. By Lemma 3.1.9, we know Liveobject(G
′, R′) ⊆ Liveactor(G,R, U). As a

result, Liveactor(G,R, U) = Liveobject(G
′, R′).



CHAPTER 4

A Distributed Actor Garbage Collection Mechanism for

Mobile Actor Systems

The chapter describes the proposed distributed mobile actor garbage collection

mechanism. The main purpose of our approach is to be non-intrusive to users’

applications. There are two parts in this chapter. The first part is the pseudo-root

approach which is an asynchronous, non-FIFO reference listing algorithm to sup-

port hierarchical garbage collection. The second part is the distributed snapshot

algorithm, which supports partial global garbage collection, that is, it requires co-

ordination of only a subset of the computing hosts. Formalized computing models

and correctness proofs can be found in Chapter 5 and Chapter 6.

4.1 The Pseudo-Root Approach

Together with reference listing, the core concept of the pseudo-root approach

is to integrate message delivery and reference passing into the reference graph rep-

resentation — using sender pseudo-roots and protected references. It thus enables

the use of unordered, asynchronous communication.

The pseudo-root approach is mainly devised to support actor programming

languages, which abide by the live unblocked actor principle — a principle which

says every unblocked actor should be treated as a live actor. Nevertheless the pseudo-

root approach can also be used by traditional actor marking algorithms without the

assumption of the live unblocked actor principle.

4.1.1 The Live Unblocked Actor Principle

Without program analysis techniques, the ability of an actor to access resources

provided by an actor-oriented programming language implies explicit reference cre-

ation to access service actors. The ability to access local service actors (e.g. the

standard output) and explicit reference creation to public service actors make the

following statement true: “every actor has persistent references to root actors”. This

47
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statement is important because it changes the meaning of actor garbage collection,

making actor garbage collection similar to passive object garbage collection. It leads

to the live unblocked actor principle, which says every unblocked actor is live. The

live unblocked actor principle is easy to prove. Since each unblocked actor is: 1) an

inverse acquaintance of the root actors and 2) defined as potentially live, it is live

according to the definition of actor garbage collection.

With the live unblocked actor principle, every unblocked actor can be viewed

as a root. Liveness of blocked actors depends on the transitive reachability from un-

blocked actors and root actors. Without considering in-transit messages, a blocked

actor, which is transitively reachable from an unblocked actor or a root actor, is

defined as potentially live. With persistent root references, such potentially live,

blocked actors are live because they are inverse acquaintances of some root actors.

This idea leads to the core concept of pseudo-root actor garbage collection.

4.1.2 Pseudo-Root Actor Garbage Collection

It is impossible to ignore in-transit messages in a distributed system and cor-

rectly perform actor garbage collection simply based on the actor reference graph.

As a consequence, we introduce the concept of sender pseudo-root actors and pro-

tected references for actor garbage collection. The pseudo-root actor garbage collec-

tion starts actor garbage collection by identifying some live (not necessarily root) or

even garbage actors as pseudo-roots. There are three kinds of pseudo-root actors:

1) root actors, 2) unblocked actors, and 3) sender pseudo-root actors. The sender

pseudo-root actor refers to an actor which has sent a message which not yet been

received. The goal of sender pseudo-roots is to prevent erroneous garbage collec-

tion of actors, either targets of in-transit messages or whose references are part of

in-transit messages. A sender pseudo-root always contains at least one protected

reference — a reference that has been used to deliver messages which are currently

in transit, or a reference to represent an actor referenced by an in-transit message

— which we call an in-transit reference. A protected reference cannot be deleted

until the message sender knows the in-transit messages have been received correctly.

Asynchronous communication introduces the following problem (see the left
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Figure 4.1: The left side of the figure shows a possible race condition of
mutation and message passing. The right side of the figure
illustrates both kinds of sender pseudo-root actors.

side of Figure 4.1): application messages from Actor ap to Actor aq can be in transit,

but the reference held by Actor ap can be removed. Stage 3 shows that Actor aq

and au are likely to be erroneously reclaimed, while Stage 4 shows that all of the

actors are possibly erroneously reclaimed. Our solution is to temporarily keep the

reference to Actor aq undeleted and identify Actor ap as live (Case 1 of the right

side of Figure 4.1). This approach guarantees liveness of Actor aq by tracing from

Actor ap. Actor ap is named the sender pseudo-root because it has an in-transit

message to Actor aq and it is not a real root. Furthermore, it can be garbage but

cannot be collected. The reference from ap to aq is protected and ap is considered

live until ap knows that the in-transit message is delivered.

To prevent erroneous garbage collection, actors pointed by in-transit refer-

ences must unconditionally remain live until the receiver receives the message. A

similar solution can be re-used to guarantee the liveness of the referenced actor: the

sender becomes a sender pseudo-root and keeps the reference to the referenced actor

undeleted (Case 2).

Let us assume the live unblocked actor principle. Using pseudo-roots, the

persistent references to roots can be ignored. Figure 4.2 illustrates an example of

the mapping of pseudo-root actor garbage collection. We can now safely ignore:

1) dynamic creation of references to public services and 2) persistent references to

local services. Notice that dynamic creation of references to public services implies

persistent references to the root set.
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Figure 4.2: An example of pseudo-root actor garbage collection which
maps the real state of the given system to a pseudo-root
actor reference graph.

Take Figure 4.2 for instance. Actors a1, a2, and a3 are live because they are

transitively reachable from Actor a0, which is directly identified as live by the live

unblocked actor principle. Similarly, Actors a4, a5, a7, and a8 are live as well. The

persistent references to the root set can be ignored in this case. Actors a8 and a9

are garbage because they cannot possibly become unblocked by receiving messages.

4.1.3 Imprecise Inverse Reference Listing

In a distributed environment, an inter-node referenced actor must be consid-

ered live from the perspective of local garbage collection because it can possibly

receive a message from a remote actor. To know whether an actor is inter-node ref-

erenced, each actor should maintain inverse references to indicate if it is inter-node

referenced. This approach is usually called reference listing. Maintaining precise

inverse references in an asynchronous way is performance-expensive. Fortunately,

imprecise inverse references are acceptable if all inter-node referenced actors can be

identified as live — an inter-node referenced actor can be thought of as a new kind

of pseudo-root actor (the global pseudo-root), or can be guaranteed to be transitively

reachable from some local pseudo-root actor to ensure its liveness.
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4.1.4 Actor Garbage Collection without the Live Unblocked Actor Prin-

ciple

Without the live unblocked actor principle, the pseudo-root approach still

supports actor garbage collection in a distributed environment by changing two

definitions:

• Sender pseudo-roots should be considered as unblocked actors.

• Global pseudo-roots should be considered as roots, and thus we call them global

roots. There are two kinds of global roots. The first kind of global root actor,

namely the unblocked-reachable global root, is transitively reachable from an

unblocked actor and has a reference pointing to a remote (or migrating) actor.

It must be considered live because it can possibly send a message to a remote

root actor. The second type of actor, the remotely referenced global root, has

an inverse reference pointing to a remote actor. The pseudo-root approach

cannot directly identify the unblocked-reachable global roots, which must be

handled by an actor marking algorithm.

The pseudo-root approach in actor garbage collection also guarantees that if

an actor is remotely referenced, either it may talk to an unblocked-reachable global

root, or it is a remotely referenced global root. Once an actor marking algorithm

follows the new definitions to identify live actors, all local garbage can be reclaimed,

including the actors which are potentially live and yet garbage.

4.1.5 Implementation of the Pseudo-Root Approach

To implement the pseudo-root approach, we propose the actor garbage de-

tection protocol. The actor garbage detection protocol, implemented as part of the

SALSA programming language [100, 109], consists of four sub-protocols — the asyn-

chronous ACK protocol, the reference passing protocol, the migration protocol, and

the reference deletion protocol. Messages are divided into two categories — the ap-

plication messages which require asynchronous acknowledgements, and the system

messages that not always require any acknowledgement.
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Figure 4.3: The actor garbage detection sub-protocols.

The Asynchronous ACK Protocol

The asynchronous ACK protocol is designed to help identifying sender pseudo-

roots. Each reference maintains a counter, the expected acknowledgement count.

A reference can be deleted only if its expected acknowledgement count is zero.

An actor is a sender pseudo-root if the total expected acknowledgements of its

references is greater than zero. The protocol is shown in the left upper part of

Figure 4.3, in which Actor sender sends a message to Actor receiver. The event

handler OnSend is triggered when an application message is sent; the event handler

OnReceive is invoked when a message is received. If a message to receive requires an

acknowledgement, the event handler OnReceive will generate an acknowledgement

to the message sender. The message handler ACK is asynchronously executed by

an actor to decrease the expected acknowledgement count of the reference to Actor

receiver held by Actor sender. With the asynchronous ACK protocol, the garbage

collector can identify sender pseudo-roots and protected references.

• A sender pseudo-root is one whose total expected acknowledgement count of

its references is greater than zero.
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• A protected reference is one whose expected acknowledgement count is greater

than zero. A protected reference cannot be deleted.

The Reference Passing Protocol

The reference passing protocol specifies how to build inverse references in an

asynchronous manner. The protocol is shown in the right upper side of Figure

4.3. A typical scenario of reference passing is to send a message M containing a

reference to c, from sender to receiver. Reference sender receiver and Reference

sender c are protected at the beginning by increasing their expected acknowledge-

ment counts. Then sender sends the application message M to receiver. Right

after receiver has received the message, it generates a special system message

invRefRegistration to c to register the corresponding inverse reference of Ref-

erence receiver c in c. Requiring invRefRegistration to be acknowledged is to

ensure that reference deletion of Reference receiver c always happens after c has

built the corresponding inverse reference. Two special acknowledgements from c to

sender, which can be combined into one, are then sent to decrease the counts of

the protected references sender c and sender receiver.

The Migration Protocol

The migration protocol is shown in the left lower side of Figure 4.3. Imple-

mentation of the protocol requires assistance from two special actors, remoteSystem

at a remote computing node, and localSystem at the local computing node. An

actor migrates by encoding itself into a message, and then delivers the message

to remoteSystem. During this period, messages to the migrating actor are stored

at localSystem. After migration, localSystem delivers the temporarily stored

messages to the migrated actor asynchronously. Every migrating actor becomes a

pseudo-root by increasing the expected acknowledgement count of its self reference.

The migrating actor decreases the expected acknowledgement count of its self refer-

ence when it receives the temporarily stored messages. The protocol can be simply

viewed as that the migrating actor sends a message to itself, and it will not receive

the message until it has finished migration.
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The Reference Deletion Protocol

The reference deletion protocol cleans corresponding inverse references of deleted

references. The protocol is shown in the right lower side of Figure 4.3. A reference

can be deleted if it is not protected — its expected acknowledgement count must be

zero. The deletion automatically creates a system message to the actor to which the

deleted reference points. The system message will trigger the corresponding inverse

reference deletion.

4.2 A Non-Intrusive Distributed Snapshot Algorithm for

Mobile Actor Garbage Collection

A snapshot algorithm executes in parallel with applications to obtain a consis-

tent view of a system, also referred to as the snapshot. In a distributed system, active

entities, such as MPI processes and actors, can send messages to affect each other,

which means a snapshot algorithm must take care of both in-transit messages and

each local state of the system. A snapshot must be causally consistent, but different

variations of snapshot algorithms have different requirements of causal consistency.

Actor garbage collection requires that no live actors can be collected (safety), and

garbage be eventually collected (liveness). Sometimes the ability to collect garbage

one chunk at a time (incrementality) is important when a system is large or it needs

interactivity. Snapshots are used in garbage collection [102, 79, 52, 101], as well as

in many other areas, such as distributed termination detection [69] and distributed

checkpointing for execution rollback [17, 83]. In this section, we will introduce the

problem of causal consistency, and then present a distributed snapshot algorithm to

support actor garbage collection in a partial set of the computing hosts. Currently

the algorithm only supports actor systems with the live unblocked actor principle.

Actor systems without the live unblocked actor principle require the design of a

security model. For instance, migrating actors can be treated as roots or unblocked

actors depending on the security policy. Thus we leave it for future work.
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Figure 4.4: Time lines to illustrate late and early messages. At the left
side, Actor a sends a message to Actor b at t1 and then its
state is recorded at ta (ta > t1); the state of Actor b is recorded
at tb and then it receives the message at t2 (t2 > tb). At the
right side, the state of Actor a is recorded at ta and then it
sends a message to Actor b at t1 (t1 > ta); Actor b receives it
at t2 and then its state is recorded at tb (tb > t2).

4.2.1 Causal Consistency

A snapshot algorithm must guarantee causal consistency of the obtained snap-

shot. The problem of causal consistency can be expressed by the order of message

sending, message reception, and local state logging. Let Actor a send an application

message at time t1 to a remote actor b, and Actor b receive the message at time

t2. Let ta and tb be the time points when a snapshot is taken for a and b respec-

tively. Note that t2 > t1 is always true because of the causal relationship of message

sending. There are two kinds of inconsistent snapshots caused by different orders of

message delivery (refer to Figure 4.4):

• Late message (in-flight message): If (t1 < ta) ∧ (tb < t2), the message

is said to be late. A late message does not affect causal consistency in actor

garbage collection because it is irrelevant to the recorded state of Actor b. It

is only important to a system which needs to replay messages right after a

global snapshot (i.e. system rollback upon failures).

• Early message (inconsistent message): If (ta < t1)∧(t2 < tb), the message

is said to be early. It is causally inconsistent because a message produced by

a future unrecorded state of Actor a affects the recorded state of Actor b.
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Mobile actor garbage collection must solve the early message problem. A

snapshot-based algorithm is both safe and live if either the snapshot does not contain

early messages, or early messages do not affect the safety and liveness properties.

4.2.2 Non-Intrusive Distributed Snapshot

Given a non-blocking, non-FIFO reference listing algorithm such as the pseudo-

root approach in Section 4.1, many actor garbage collection problems can be simpli-

fied:

1. In-transit messages and in-transit references are represented as part of the

actor reference graph to guarantee safety and liveness. For instance, a message

from Actor a to Actor b is represented as a reference from Live actor a to Actor

b, and the relationship is detectable in Actor a.

2. Remotely referenced actors can be identified by using inverse references.

3. Actor garbage collection does not stop applications.

Unfortunately, such a reference listing algorithm cannot identify distributed

mutually referenced actor garbage (distributed cycles). We propose a snapshot

algorithm for distributed actor garbage collection to solve this problem. The funda-

mental idea is to put a partial set of actors into a snapshot (the local actor reference

graph) at each computing node, and then to keep watching the collection until the

snapshot algorithm terminates. The snapshot may mutate whenever any actor be-

longing to the snapshot mutates. No new garbage is created in the snapshot by

mutation operations, but applications do create new garbage which will only be

detected at the next actor garbage collection phase. To generalize in one sentence,

the goal of the snapshot algorithm is to maintain a superset actor reference graph

G1 of the real actor reference graph G2 at the time that the snapshot algorithm

begins, where the set of pseudo-roots of G1 is a superset of that of G2 and the set of

references of G1 is also a superset of that of G2. The proposed snapshot algorithm

is safe because the set of garbage of G1 is a subset of that of G2, but it produces

floating garbage. Floating garbage refers to actors which become garbage during a
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garbage collection phase, but cannot be detected in that phase. Any garbage collec-

tor that uses this approach cannot detect floating garbage of G1, but it can detect

the floating garbage in the next garbage collection cycle because garbage cannot

become live any longer.

The distributed snapshot algorithm consists of two parts: local state logging

and global synchronization. Local state logging is performed by local garbage col-

lectors, and we assume the state of every selected actor in the local snapshot is

correct at the beginning of the snapshot. A global agent is assigned to initialize

and to terminate the snapshot, where two global synchronizations are enough for

a causally consistent global snapshot — one to trigger local state logging and the

other one to terminate local state logging. Unlike other distributed snapshot-based

algorithms, our algorithm does not require message logging. Instead, monitoring

mutation operations is enough.

Local State Logging

Local state logging is triggered by a global synchronization agent, which re-

quests the local garbage collector to form a closed group of actors and then starts

to monitor mutation operations on that closed group. Newly created actors are

automatically excluded from the closed group; migrating or migrated actors are seg-

regated by the local snapshot procedure. Reference deletion is not logged because

we want to ensure that a live actor remains live by following the original path from

the beginning to the end of local state logging. The state logging procedure for local

snapshot has to ensure that: 1) deleted references, including inverse references, are

logged in the local snapshot, 2) migrating or migrated actors are segregated dynam-

ically from the closed group and their acquaintances become remotely referenced.

Figure 4.5 shows an example of how local state logging works. At the beginning of

local state logging, Actor a is referenced by Actor c; Actor b is referenced by Actor

a. Actor a and Actor b are put in a closed group for state logging. At the second

stage, Actor a becomes unblocked to execute something, and the snapshot should

detect the event. At the third stage, Actor a deletes Reference ab. Although Actor b

becomes garbage at this stage, it is live in the local snapshot because it is reachable
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Figure 4.5: An example of local state logging. The upper part demon-
strates the actor reference graph in the real world, while the
lower part illustrates how local state logging works.

from a pseudo-root (unblocked) actor, Actor a. At the last stage, Actor a migrates

away, and local snapshot should reflect the fact that Actor a is missing. Meanwhile,

all its acquaintances should become remotely referenced because the local snapshot

must not produce new garbage. At this stage, no actor in the local snapshot is

garbage. Actor a is not garbage either because it does not belong to the closed

group. The local state logging algorithm is modeled as a special actor which re-

sponds to a global garbage collection request from the global synchronization agent.

Note that it does not stop any mutation operations, including migration.

Global Snapshot Synchronization

The global synchronization agent is devised to coordinate a meaningful global

snapshot among several computing nodes. Since each computing node logs local

state independently, global synchronization must be used to ensure that no early

messages or migrating actors can be received before the state logging starts. This

goal can be achieved by enforcing the participating local snapshots to have a common

overlapping time range during local state logging. An overlapping time range also

ensures that no actor can appear more than once at the participating local snapshots

with the help of local state logging. Let the common overlapping time range start

at time t1 and finish later to become available for global snapshot merging. The set
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Algorithm d i s t r i bu t ed snap sho t
1 . c r e a t e a unique task number T
2 . for each computing node X do
3 . asynchronously execute l o ca l mon i t o r (T)
4 . //each may r ep l y YES or NO
5 . wait until
6 . 1) every computing node has r ep l i ed , or 2) timeout
7 . for each computing node X which r e p l i e s YES do
8 . asynchronously execute l o ca l snap sho t (T)
9 . //each may r ep l y OK or FAILED

10 . wait until
11 . 1) a l l computing nodes have r e p l i e d OK, or 2) timeout


� �

Figure 4.6: The distributed snapshot algorithm. A meaningful global
snapshot consists of the local snapshots of the computing
nodes that reply ’OK’.

of garbage at each local snapshot is fixed after t1. Our algorithm also guarantees

that the set of global garbage in the global snapshot, combined by the participating

local snapshots, is fixed after t1. To prevent some kind of temporary failures from

stopping global garbage collection, the synchronization agent can use a time-out to

keep the global snapshot going. The pseudo-code is shown in Figure 4.6 and Figure

4.7.

4.2.3 Discussion on Correctness

In any distributed system, the two most common scenarios to erroneously

reclaim live actors are 1) the race between reference creation (passing) and reference

deletion, and 2) detection of in-transit messages and references. These challenges

are handled by the pseudo-root approach because 1) every in-transit reference and

message has a representative reference in a pseudo-root actor (the message sender),

and 2) the safety property of referenced actors.

Reference and pseudo-root state preservation by the snapshot algorithm guar-

antees the maximum reachability from pseudo-root actors and thus ensures safety

of forward DFS or BFS marking. Early messages cannot happen before taking local

state monitoring because the enforcement of the overlapping time range — every

participating computing host has to start local state monitoring before the time
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// Local Snapshot Actor :
1 . Working List L ← EMPTY
2 . Group of Actors P ← EMPTY
3 . Snapshot Table ST ← EMPTY

Procedure l o c a l mon i t o r (Task T)
1 . i f l o c a l h o s t s t a t u s = Cannot take a snapshot then
2 . r ep ly NO
3 . else
4 . L . pushTask (T)
5 . i f s i z e (L) = 1 then
6 . obta in a c l o s ed group of a c t o r s P
7 . for each ac to r A in P
8 . i f A = NULL then
9 . remove A from P // A has migrated away

10 . else
11 . enable s t a t e l o g g i n g of A
12 . r ep ly YES

Procedure l o c a l snap sho t (Task T)
1 . i f L . f i nd (T) = FALSE then
2 . r ep ly FAILED
3 . else
4 . Snapshot S ← empty
5 . for each ac to r A in P do
6 . S . recordActor (A)
7 . for each ac to r A in P do
8 . stop s t a t e l o g g i n g of A
9 . // save S in to the snapshot t a b l e ST by

10 . // denot ing the working l i s t L on i t ( Line 11)
11 . ST . add (L , S )
12 . L . c l e a r ( )
13 . r ep ly OK


� �

Figure 4.7: The local snapshot actor.
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Figure 4.8: Nine possible migration detection scenarios.

that the first participating computing host finishes taking a local snapshot.

Snapshots obtained by the distributed snapshot algorithm are composable.

With the overlapping time range, a path from any pseudo-root actor to any logged

actor must exist in the merged global snapshot. To avoid inconsistency from dupli-

cate actors, the snapshot algorithm must ensure that each logged actor is unique,

which is also guaranteed by the enforcement of the overlapping time range. Fig-

ure 4.8 illustrates nine possible scenarios of migration events among different hosts.

Events M3 and M7 are trivial. Events M4, M5, and M6 do not create duplicate

actors because local state monitoring does not add new actors. In either Event M2

or Event M8, the migrating actor cannot be detected by its original host. In Event

M1, no actor can be detected because the actor is migrating (in transit) while taking

snapshot. Event M9 is not possible because the global synchronization mechanism

enforces a common overlapping time range. Therefore, the snapshot algorithm is

safe.

The liveness property of the distributed snapshot algorithm is conditional —
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each blocked actor must be selected for local state monitoring. The reason is that

the set of blocked actors is a superset of garbage actors. With a periodical garbage

collection event, garbage will be eventually reclaimed.



CHAPTER 5

Correctness of the Pseudo-Root Approach

In this chapter, we define the model of the pseudo-root approach, and then prove

the safety and liveness properties of the pseudo-root approach.

5.1 The Computing Model of the Pseudo-Root Approach

To implement the concept of protected references, we introduce the data struc-

ture of actor references, which consists of three elements — the source and target

addresses to describe which actor holds a reference to another actor, a counter to

track the expected incoming acknowledgements, and a boolean variable to indicate

if a reference has been deleted at the application level. Then we define a set of mes-

sages along with their explanations. These notations help define the actor system

with the pseudo-root approach, which is an abstract machine with a given initial

state, identified by a set of actor names, a mapping relations from actor references

to their meta-data, a set of inverse references, and a set of in-transit messages.

Definition 5.1.1. The meta-data map of actor references.

A meta-data map (function) of actor references is described as

R ≡ {(a0a1 7→ 〈n0, d0〉), (a2a3 7→ 〈n1, d1〉), ...}.

Its domain, dom(R) = {a0a1, a2a3, ...}, is a set of actor references while its range,

{〈n, d〉 | n ∈ N ∧ d ∈ {true, false}}, is the meta-data of the actor reference, where

• n is an integer to keep track of expected incoming acknowledgements, and

• d ∈ {true, false}, where false denotes a normal reference, and true denotes

a reference deleted at the application level.

Definition 5.1.2. The extended meta-data map of actor references.

For a given meta-data map of references R, R′ = R{(aiaj 7→ 〈n, d〉)} is defined as

the extended map, such that R′(aiaj) = 〈n, d〉 and R′(x) = R(x) for x 6= aiaj.

63
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Definition 5.1.3. Message

Let x be a unique id. A message

msg ≡ mx〈ai, aj〉 (Regular message from ai to aj.)

| mackx〈ai, aj〉 (Acknowledgement for Reference aiaj.)

| mrx〈ah, ai, aj〉 (Reference passing, from ah to ai with a

reference to aj.)

| mirx〈ah, ai, aj〉 (Inverse reference registration, initialized

by ah to register aiaj.)

| mdx〈ai, aj〉 (Deletion message of the inverse reference

of aiaj.)

| mmx〈ai〉 (Migration of ai.)

Definition 5.1.4. Actor system configuration

An actor system configuration

S ≡ 〈A,R, IR,M〉,

is a 4-tuple where

• A is the set of actor names, {a0, a1, ...}.

• R is the map from actor references to their meta-data.

• IR is the set of inverse reference, {a0a1, a2a3, ...}
4.

• M is the set of messages, {msg0, msg1, ...}.

The initial state is defined as

S0 ≡ 〈{ainit}, {(ainitainit 7→ 〈0, false〉)}, {ainitainit}, ∅〉.

A state of the actor system can change to another state by transition rules.

Following the actor model, the transition rules of the proposed abstract machine

can be classified into two categories. The first type consists of the spontaneous

transitions by unblocked/root actors, including actor creation, reference passing,

actor-exit (to migrate out), reference deletion at the application or the GC level,

4a0a1 ∈ IR implies that a1 has an inverse reference to a0.
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and message sending. The other type of transitions consists of the message-driven

transitions, including actor-enter (to migrate into), reference reception, inverse ref-

erence registration, acknowledgement, and inverse reference deletion. They are the

consequent transitions triggered by the spontaneous transitions. We define two dif-

ferent reference deletion transition rules because of the idea of protected references,

in which a deleted protected reference must remain visible to garbage collectors

but invisible to applications — the application-level reference deletion transition

makes the reference invisible to the application, while the GC-level reference dele-

tion transition deletes the reference physically and will trigger the deletion of the

corresponding inverse reference. The name of a transition rule follows the format,

op(p1, p2, ...), where op is the identification of the transition rule and p1, p2, ... are

parameters. The transition rules are shown below:

Definition 5.1.5. Transitive relationship on actor system configurations.

The transition notation, →, is defined as:

Spontaneous transitions:

• AC(ai, aj): Actor creation of aj by ai.

〈A,R, IR,M〉
AC(ai,aj)
−−−−−→

〈A∪{aj}, R{(aiaj 7→ 〈0, false〉), (ajaj 7→ 〈0, false〉)}, IR∪{aiaj , ajaj},M〉,

where aj is fresh ∧ ai ∈ A.

• RC1(ah, ai, aj): Reference passing from ah to ai with a reference to aj .

〈A,R{(ahai 7→ 〈n0, false〉), (ahaj 7→ 〈n1, false〉)}, IR,M〉
RC1(ah,ai,aj)
−−−−−−−−→

〈A,R{(ahai 7→ 〈n0 + 1, false〉), (ahaj 7→ 〈n1 + 1, false〉)}, IR,M ∪

{mrx〈ah, ai, aj〉}〉,

where x is fresh ∧ {ah, ai, aj} ⊆ A.

• MM1(ai): Actor-exit of ai.

〈A,R{(aiai 7→ 〈n, false〉)}, IR,M〉
MM1(ai)
−−−−−→

〈A−{ai}, R{(aiai 7→ 〈n+ 1, false〉)}, IR,M∪{mmx1〈ai〉, mackx2〈ai, ai〉}〉,

where x1 and x2 are fresh ∧ ai ∈ A.
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• MS1(ai, aj): Message sending from ai to aj .

〈A,R{(aiaj 7→ 〈n, false〉)}, IR,M〉
MS1(ai,aj)
−−−−−−→

〈A,R{(aiaj 7→ 〈n+ 1, false〉)}, IR,M ∪ {mx〈ai, aj〉}〉,

where x is fresh ∧ {ai, aj} ⊆ A .

• RDA(ai, aj): Application-level reference deletion of aj at ai.

〈A,R{(aiaj 7→ 〈n, false〉)}, IR,M〉
RDA(ai,aj)
−−−−−−→

〈A,R{(aiaj 7→ 〈n, true〉)}, IR,M〉,

where {ai, aj} ⊆ A ∧ ai 6= aj.
5

• RD1(ai, aj): GC-level reference deletion of aj at ai.

〈A,R{(aiaj 7→ 〈0, true〉)}, IR,M〉
RD1(ai,aj)
−−−−−−→

〈A,R, IR,M ∪ {mdx〈ai, aj〉}〉,

where x is fresh ∧ {ai, aj} ⊆ A . 6

Message-driven transitions:

• RC2(ah, ai, aj): Reference reception of aj by ai, initialized by ah.

〈A,R, IR,M ∪ {mrx〈ah, ai, aj〉}〉
RC2(ah,ai,aj)
−−−−−−−−→

〈A,R{(aiaj 7→ 〈1, false〉)}, IR,M ∪ {mirx1〈ah, ai, aj〉}〉,

where aiaj and x1 are fresh ∧ {ah, ai, aj} ⊆ A.

• RC3(ah, ai, aj): Inverse reference registration at aj from ai, initialized by

ah.

〈A,R, IR,M ∪ {mirx〈ah, ai, aj〉}〉
RC3(ah,ai,aj)
−−−−−−−−→

〈A,R, IR∪{aiaj},M ∪{mackx1〈ai, aj〉, mackx2〈ah, ai〉, mackx3〈ah, aj〉}〉,

where x1, x2, and x3 are fresh ∧ {ah, ai, aj} ⊆ A.

• MM2(ai): Actor-enter of ai.

〈A,R, IR,M ∪ {mmx1〈ai〉}〉
MM2(ai)
−−−−−→

〈A ∪ {ai}, R, IR,M〉.

5We assume an actor always keeps a reference to itself and thus self-reference deletion is im-
possible.

6GC-level reference deletion only happens when the reference to delete is removed by the ap-
plication and no longer protected.
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• MS2(ai, aj): Message reception of aj from ai.

〈A,R, IR,M ∪ {mx〈ai, aj〉}〉
MS2(ai,aj)
−−−−−−→

〈A,R, IR,M ∪ {mackx1〈ai, aj〉}〉,

where x1 is fresh ∧ {ai, aj} ⊆ A.

• RD2(ai, aj): Inverse reference deletion of aiaj .

〈A,R, IR ∪ {aiaj},M ∪ {mdx〈ai, aj〉}〉
RD2(ai,aj)
−−−−−−→

〈A,R, IR,M〉,

where {ai, aj} ⊆ A.

• ACK(ai, aj): Decreasing expected acknowledgements for aiaj .

〈A,R{(aiaj 7→ 〈n, d〉)}, IR,M ∪ {mackx〈ai, aj〉}〉
ACK(ai,aj)
−−−−−−−→

〈A,R{(aiaj 7→ 〈n− 1, d〉)}, IR,M〉,

where d ∈ {true, false} ∧ {ai, aj} ⊆ A.

The pseudo-root actors play important roles in the pseudo-root approach since

they are the starting point to identify live actors. Unblocked actors and root actors

can be identified easily by garbage collectors, while the sender pseudo-root actors

and the global pseudo-root actors are implementation dependent. As a consequence,

definitions for the sender pseudo-root actors and the global pseudo-root actors are

mandatory. We first define sender pseudo-roots, and we defer the definition of

global pseudo-root actors (Definition 5.3.2) until we define the partial view of an

actor system (Definition 5.3.1).

Definition 5.1.6. Sender pseudo-root actors.

An actor, ap, is a sender pseudo-root actor in an actor system 〈A,R, IR,M〉 if and

only if

∃aq : (R(apaq) = 〈n, d〉 ∧ n > 0).

5.2 Safety and Liveness Properties of the Pseudo-Root Ap-

proach

The discrete timeline of the actor system can be identified by the order of

executed transitions (events) because only transitions can change the state of the
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actor system. The timeline helps chronological reasoning about an actor system. It

is defined by a set of ordered time points:

Definition 5.2.1. Timeline of an actor system.

A timeline of a given actor system consists of time points, where a time point, t, of

the timeline of the given actor system S, is the time period from the time that the tth

transition occurs and right before the (t+1)th transition happens. The original point

of the timeline is 0, representing the time period when the initial state S0 exists.

The computing model of the pseudo-root approach maintains paired refer-

ences in most cases, which means an actor reference usually has a corresponding

inverse reference. Under some circumstances, some references exist without their

corresponding inverse references or some inverse references exist without their cor-

responding actor references. However, the pseudo-root approach guarantees the

following property all the time — if an actor aq is pointed by an unpaired actor

reference, then there exists a sender pseudo-root actor ap which has a paired refer-

ence pointing to aq. To formally describe the property, we introduce the following

definitions:

Definition 5.2.2. Paired references, unpaired references, and unpaired inverse ref-

erences of an actor.

Let S = 〈A,R, IR,M〉 be the state of the actor system at time point t. Let aq ∈ A.

• Paired references to aq at time t:

PRS(S, aq) ≡ {apaq | apaq ∈ dom(R) ∧ apaq ∈ IR}.

• Unpaired references to aq at time t:

URS(S, aq) ≡ {apaq | apaq ∈ dom(R) ∧ apaq /∈ IR}.

• Unpaired inverse references from aq at time t:

UIRS(S, aq) ≡ {apaq | apaq /∈ dom(R) ∧ apaq ∈ IR}.

Definition 5.2.3. Inverse reference registration messages and inverse reference

deletion messages of an actor.

Let S = 〈A,R, IR,M〉 be the state of the actor system at time point t. Let aq ∈ A.
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• Inverse reference registration messages for aq at time t:

MIRS(S, aq) ≡ {mirx〈ap1, ap2, aq〉 | mirx〈ap1, ap2, aq〉 ∈M}.

• Inverse reference deletion messages for aq at time t:

MDS(S, aq) ≡ {mdx〈ap, aq〉 | mdx〈ap, aq〉 ∈M}.

There are some invariants of the pseudo-root approach which can be used for

theorem proofs. Lemma 5.2.4 says that the total number of UIRS(S, aq) is always

equal to the total number of MDS(S, aq) which will be used in the liveness property

proof.

Lemma 5.2.4. Let S = 〈A,R, IR,M〉 be an actor system configuration and aq ∈ A.

In the actor system, the following equation is true:

|UIRS(S, aq)| = |MDS(S, aq)|.

Proof. The only two transitions that can affect |UIRS(S, aq)| or |MDS(S, aq)| are

RD1 and RD2. RD1 increments |UIRS(S, aq)| and |MDS(S, aq)| by one and RD2

decrements |UIRS(S, aq)| and |MDS(S, aq)| by one. Thus they don’t affect the

equation. Because the initial state of the actor system follows the equation and no

transition can change the equation, |UIRS(S, aq)| = |MDS(S, aq)|must be true.

Lemma 5.2.5 says that the expected acknowledgement count of an actor ref-

erence can never be decremented to a negative number. In fact, it is equal to the

total number of some set of messages. The equation can be used to prove Lemma

5.2.6, which says that a reference must exist if some messages exist.

Lemma 5.2.5. The expected acknowledgement count equation.

Let the configuration of the actor system be S = 〈A,R, IR,M〉. Let R(aiaj) = 〈n, d〉.

Then

n = |{mrx〈ai, am, aj〉 | mrx〈ai, am, aj〉 ∈M}| +

|{mrx〈ai, aj, am〉 | mrx〈ai, aj , am〉 ∈M}| +

|{mirx〈ai, am, aj〉 | mirx〈ai, am, aj〉 ∈M}| +

|{mirx〈ai, aj, am〉 | mirx〈ai, aj, am〉 ∈M}| +

|{mirx〈am, ai, aj〉 | mirx〈am, ai, aj〉 ∈M}| +

|{mx〈ai, aj〉 | mx〈ai, aj〉 ∈M}| +

|{mackx〈ai, aj〉 | mackx〈ai, aj〉 ∈M}|
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Proof. The proof can be achieved by examining the transitions and the initial

state. The initial state 〈{ainit}, {(ainitainit 7→ 〈0, false〉)}, {ainitainit}, ∅〉 confirms

the lemma. Now, consider the transitions:

• Transition AC(ai, aj) creates a reference with n = 0 and makes the right side

of the equation zero.

• TransitionRC1(ai, am, aj), RC1(ai, aj , am),MM1(ai) where i = j,MS1(ai, aj),

or RC2(am, ai, aj) increases both sides of the equation by one.

• Transition RC2(ai, aj, am), RC2(ai, am, aj), RC3(ai, aj, am), RC3(ai, am, aj),

RC3(am, ai, aj), or MS2(ai, aj) converts a message to another message de-

scribed in the right side of the equation, which still follows the equation.

• Transition ACK(ai, aj) decreases both sides of the equation by one.

• Other transitions have no effect on the equation.

Lemma 5.2.6 says that if there exists mrx〈ai, am, aj〉, mrx〈ai, aj, am〉 (an in-

transit message containing a reference), mirx〈ai, am, aj〉,mirx〈ai, aj, am〉,mirx〈am, ai, aj〉

(an in-transit inverse reference registration message), mx〈ai, aj〉 (an in-transit reg-

ular message), or mackx〈ai, aj〉 (an in-transit acknowledgement), then there exist a

protected reference aiaj and a pseudo-root ai.

Lemma 5.2.6. Existence of actor reference.

Let the configuration of the actor system be S = 〈A,R, IR,M〉. Let the expected

acknowledgement counter equation be:

n = |{mrx〈ai, am, aj〉 | mrx〈ai, am, aj〉 ∈M}| +

|{mrx〈ai, aj, am〉 | mrx〈ai, aj , am〉 ∈M}| +

|{mirx〈ai, am, aj〉 | mirx〈ai, am, aj〉 ∈M}| +

|{mirx〈ai, aj, am〉 | mirx〈ai, aj, am〉 ∈M}| +

|{mirx〈am, ai, aj〉 | mirx〈am, ai, aj〉 ∈M}| +

|{mx〈ai, aj〉 | mx〈ai, aj〉 ∈M}| +

|{mackx〈ai, aj〉 | mackx〈ai, aj〉 ∈M}|

Then the following statement is true:
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Figure 5.1: Lemma 5.2.7: safe imprecise inverse references.

n > 0 =⇒ R(aiaj) = 〈n, d〉.

Proof. The lemma can be proven by contradiction. Let the current time of the

system be te. Let aiaj /∈ dom(R) at time te. Since n > 0 at te, ∃ts : aiaj ∈ dom(R)

at time ts and aiaj /∈ dom(R) at time ts+1, such that ts < te and ts is the closest

point to te (no re-creation allowed). Since the reference has been deleted and never

re-created during ts to te, n = 0 at ts and ts+1, implying no message of the right

side of the equation is in transit. Consequently, n = 0 at te which contradicts the

assumption. Therefore, aiaj ∈ dom(R) at time te. By Lemma 5.2.5, R(aiaj) = 〈n, d〉

for some d and proves the lemma.

From the perspective of the safety property of a reference listing algorithm, a

referenced actor, namely aq, must have at least one inverse reference to figure out it

is referenced. The pseudo-root approach guarantees Lemma 5.2.7, which is used to

prove the safety property (Theorem 5.2.8). Then we will use Lemma 5.2.4 to prove

the liveness property (Theorem 5.2.9). Figure 5.1 illustrates Lemma 5.2.7.

Lemma 5.2.7. Safe imprecise inverse references.

Let S = 〈A,R, IR,M〉 be an actor system configuration and {ap, aq} ⊆ A. The

following statement is true at any time:

apaq ∈ URS(S, aq) =⇒

∃a0, a1, ..., am : a0aq ∈ PRS(S, aq) ∧

(R(a0aq) = 〈n0, d〉 ∧ n0 > 0) ∧

(mirxi〈ai, ai+1, aq〉 ∈M where i = 0 to m− 1 and am = ap).
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Proof. To prove the lemma by induction, we need to build a partial order of ref-

erence creation. The first references to Actor aq are either created by the actor

creation transition or at the initial state of the actor system because Actor aq is

the initial actor. With the existence of the first references to aq, they can be dupli-

cated by the reference passing transition RC1. Then the nth RC2 transition of aq,

RC2(aw1, aw2, aq), creates the nth reference to aq, where {aw1, aw2} ⊆ A.

Basis: Prove the lemma for n = 1 (the first references).

First, the initial configuration of an actor system does not have any unpaired ref-

erences. Second, the actor creation transition does not create unpaired references.

Therefore, the basis is true.

Induction step: Assume ∃k : n ≤ k the lemma is true. Now, consider a (k+1)th

reference in any actor system.

Let RC1(au, ap, aq) be the transition to initialize reference creation of apaq,

and RC2(au, ap, aq) be the transition to create apaq. That is, ∃Ss, S1, S2, S3 :

Ss

RC1(au,ap,aq)
−−−−−−−−→ S1 →

∗ S2
RC2(au ,ap,aq)
−−−−−−−−→ S3 →

∗ S. Let the corresponding time of

Ss, S1, S2, S3, and S be ts, t1, t2, t3, and t. Now, consider auaq at ts, a reference

whose order is less than k + 1. There are two possible cases:

• auaq ∈ PRS(Ss, aq) at ts: Message mrx1〈au, ap, aq〉 created by Transition

RC1(au, ap, aq) will not be consumed until the system transits to S3. Let

R(auaq) = 〈nu,q, d〉. According to Lemma 5.2.5, nu,q ≥ 0 between ts and t2,

which also means RD1(au, aq) cannot happen. S2
RC2(au ,ap,aq)
−−−−−−−−→ S3 makes Mes-

sage mrx1〈au, ap, aq〉 to be consumed and then Message mirx2〈au, ap, aq〉 to

be produced, which means nu,q ≥ 1 at t3. We know apaq ∈ URS(S, aq) at t,

which means mirx2〈au, ap, aq〉 is still at t, implying nu,q ≥ 1 by Lemma 5.2.5.

Therefore, the following property is guaranteed at t: auaq ∈ PRS(S, aq) ∧

(R(auaq) = 〈nu,q, d〉 ∧ nu,q > 0) ∧ (mirx2〈au, ap, aq〉) ∈M .

• auaq ∈ URS(Ss, aq) at ts: There are two sub-cases:

Sub-Case 1: Assume (mirx〈au, ap, aq〉) is not consumed before t, and let

R(auaq) = 〈nu,q, d〉. According to Lemma 5.2.6, nu,q > 0, and thus auaq is at

t. According to the induction assumption, ∃a0, a1, ..., am : a0aq ∈ PRS(S, aq)

∧ (R(a0aq) = 〈n0, d〉∧n0 > 0) ∧ (mirxi〈ai, ai+1, aq〉 ∈ M where i = 0 to m−1
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and am = au). We know apaq ∈ URS(S, aq) at t, which means mirx2〈au, ap, aq〉

is at t and proves this sub-case.

Sub-Case 2: Assume (mirx〈au, ap, aq〉) has been consumed between t3 and t,

which means ∀Sx : auaq ∈ PRS(Sx, aq) where Sx is an actor system con-

figuration existing on a time point from t3 to t. Let R(auaq) = 〈nu,q, d〉.

Since apaq ∈ URS(S, aq) is at t, mirx2〈au, ap, aq〉 is at t. By Lemma 5.2.5,

nu,q > 0. By Lemma 5.2.6, R(auaq) = 〈nu,q, d〉. Therefore, the following prop-

erty is true at t: auaq ∈ PRS(S, aq) ∧ (R(auaq) = 〈nu,q, d〉 ∧ nu,q > 0) ∧

mirx2〈au, ap, aq〉 ∈M .

To conclude, the lemma is true by induction.

Theorem 5.2.8. Safety property.

Let S = 〈A,R, IR,M〉 be an actor system configuration and {ap, aq} ⊆ A. Let the

current time be t. The following statement is always true:

apaq ∈ dom(R) =⇒ ∃au : auaq ∈ IR

Proof. If apaq ∈ URS(S, aq) at t is true, ∃a0 : a0aq ∈ PRS(S, aq) is also true by

Lemma 5.2.7, implying a0aq ∈ IR. Otherwise, apaq ∈ PRS(S, aq) at t must be true,

implying apaq ∈ IR is true. Both cases confirm the theorem.

Theorem 5.2.9. Liveness property.

Let S = 〈A,R, IR,M〉 be an actor system configuration. Let aq ∈ A such that aq is

not a pseudo-root actor at current time point t. The following statement is true at

any time:

∄ap : R(apaq) = 〈np, dp〉 at S =⇒ ∃Sfuture : S →∗ Sfuture ∧

(|UIRS(Sfuture, aq)| = 0 at Sfuture).

Proof. Let S →∗ Sfuture where the time point of Sfuture is tfuture. Since aq is not a

pseudo-root actor, it cannot execute any spontaneous transition. Thus ∄ap : apaq ∈

dom(R) is always true for any state after S. By Lemma 5.2.4, |UIRS(S, aq)| =

|MDS(S, aq)| at t. Thus there exist |UIRS(S, aq)| inverse reference deletion mes-

sages of aq, which will trigger |UIRS(S, aq)| inverse reference deletion transitions



74

of aq. With the fairness assumption of the actor model of computation, all those

inverse reference deletion transitions will eventually occur at a future state Sfuture,

making |UIRS(Sfuture, aq)| = 0.

5.3 The Pseudo-Root Approach Properties in a Distributed

Environment

The pseudo-root approach can be used to support local marking in a dis-

tributed environment, that is, performing actor marking in a partial view of an

actor system to identify all local garbage. With the concept of the partial view, we

can define the global pseudo-root actors which are treated as roots. The pseudo-root

approach guarantees Theorem 5.3.3 to be true. It says that if an actor in a partial

view is referenced by another actor outside the partial view, the actor is either a

global pseudo-root actor or is directly reachable from a sender pseudo-root actor in

the partial view (see Figure 5.2).

Definition 5.3.1. Partial view of an actor system.

Let S = 〈A,R, IR,M〉, and V = 〈A′, R′, IR′〉. V is a partial view of S if and only

if

A′ ⊆ A ∧

(∀ap : ap ∈ A ∧ R(apaq) = 〈n1, d1〉 =⇒ R′(apaq) = 〈n2, d2〉) ∧

(∀aq : aq ∈ A ∧ apaq ∈ IR =⇒ apaq ∈ IR
′).

Definition 5.3.2. Global pseudo-root actor.

Let V be a partial view of S, where V = 〈A′, R′, IR′〉. Actor aq is a global pseudo-root

actor of V if and only if

∃ap : ap /∈ A
′ ∧ aq ∈ A

′ ∧ apaq ∈ IR
′.

Theorem 5.3.3. One-step back-tracing safety.

Let V be a partial view of S, where V = 〈A′, R′, IR′〉 and S = 〈A,R, IR,M〉.

∃ap, aq : ap /∈ A
′ ∧ aq ∈ A

′ ∧ R(apaq) = 〈n, d〉 =⇒

∃aw : (awaq ∈ IR
′ ∧ aw /∈ A′) ∨ (R′(awaq) = 〈n′, d′〉 ∧ n′ > 0 ∧ aw ∈ A

′).
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Figure 5.2: Theorem 5.3.3: one-step back-tracing safety.

Proof. Let the current time be t. Now, consider the following two cases:

• Case 1: Let apaq ∈ PRS(S, aq) at t, which means (apaq ∈ IR). aq ∈ A
′ implies

(apaq ∈ IR
′).

• Case 2: Let apaq ∈ URS(S, aq) at t. By Lemma 5.2.7, ∃a0 : a0aq ∈ PRS(S, aq)

∧ (∃n0 : R(a0aq) = 〈n0, d〉 ∧ n0 > 0). Now condiser two sub-cases. First,

a0 ∈ A′ implies (R′(a0aq) = 〈n0, d〉 ∧ n0 > 0). Second, a0 /∈ A′ implies

a0aq ∈ IR
′.

Therefore, the theorem is true.

5.4 Actor Garbage Collection without the Live Unblocked

Actor Principle

The live unblocked actor principle is not always true in actor garbage col-

lection. The pseudo-root approach also supports actor marking algorithms in this

context. In a local host, we re-define sender pseudo-root actors as unblocked actors.

Global pseudo-root actors are re-defined as global roots, consisting of the remotely

referenced global roots and the unblocked-reachable global roots. Remotely ref-

erenced global roots are defined in Definition 5.3.2. Theorem 5.4.1 is the safety

property of local actor marking. It says that if an actor is remotely referenced, it

either has an inverse reference to figure out it is remotely referenced (the remotely
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referenced global root), or it is reachable from an unblocked actor and the unblocked

actor can reach an unblocked-reachable global root (see Figure 5.3).

Theorem 5.4.1. One-step back-tracing and forward validating safety.

Let V be a partial view of S, where V = 〈A′, R′, IR′〉 and S = 〈A,R, IR,M〉.

∃ap, aq : ap /∈ A
′ ∧ aq ∈ A

′ ∧ R(apaq) = 〈n, d〉 =⇒

∃a0 : (a0aq ∈ IR
′ ∧ a0 /∈ A

′) ∨

(∃a1, a2, ..., au : R′(a0aq) = 〈n0, d0〉 ∧ n0 > 0 ∧ a0 ∈ A
′

∧ R′(aiai+1) = 〈ni, di〉 ∧ au /∈ A
′ where i = 1 to u− 1).

Proof. Let us consider two cases:

• Case 1: Let apaq ∈ PRS(S, aq), which means (apaq ∈ IR). aq ∈ A
′ implies

(apaq ∈ IR
′).

• Case 2: Let apaq ∈ URS(S, aq). By Lemma 5.2.7, ∃a0, a1, ..., am : a0aq ∈

PRS(S, aq) ∧ (R(a0aq) = 〈n0, d〉 ∧ n0 > 0) ∧ (mirxi〈ai, ai+1, aq〉 ∈ M where

i = 0 to m−1 and am = ap), which implies (R(aiai+1) = 〈ni, di〉∧ni > 0 where

i = 1 to m−1 and am = ap) by Lemma 5.2.6. Now condiser the following two

sub-cases.

First, let a0 ∈ A
′, which implies R′(a0aq) = 〈n0, d〉 ∧ n0 > 0. Let A0 to u−1 =

{a0, a1, ..., au− 1} ⊆ A′. Notice that m ≥ u ≥ 0 because (a0 ∈ A′ ∧ am /∈
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A′). R(aiai+1) = 〈ni, di〉 ∧ ni > 0 where i = 1 to m − 1 and am = ap) and

(A0 to u−1 ⊆ A′) implies (R′(aiai+1) = 〈ni, di〉 ∧ au /∈ A
′ where i = 1 to u− 1).

Thus the theorem is true for this sub-case.

Second, a0 /∈ A
′ implies a0aq ∈ IR

′.

Therefore, the theorem is true.



CHAPTER 6

Correctness of the Distributed Snapshot Algorithm

In this chapter we describe a formal model of the distributed snapshot algorithm

for actor garbage collection. First we define the model of local state logging, and

then use the reachability relationship to prove safety and liveness of local garbage

collection based on the local snapshot. We then formalize snapshot composition,

and provide safety and liveness proofs for snapshot composition. Proofs of lemmas

can be found in Section 6.4.

6.1 The Computing Model of the Snapshot Algorithm

Reachability from an actor to another actor is important for garbage collection.

We defined it in Chapter 3 as the transitive reachability relation, ;, and it will

be used in this chapter. Then we will introduce the snapshot (actor configuration),

some common terms for the snapshot, and the mutation operations on the snapshot.

Definition 6.1.1. Actor configuration (snapshot).

An actor configuration (snapshot),

S = 〈V,E, PS, IR〉,

is a 4-tuple where

• V is a set of actor names.

• E is a set of references. E = {xy | x ∈ V ∧ xy is a reference.}

• PS is a set of pseudo-roots. It consists of unblocked actors, roots, and sender

pseudo-root actors, but excludes global pseudo-roots. PS ⊆ V .

• IR is a set of inverse references pointing to external actors. IR = {xy | y ∈

V ∧ x /∈ V }.

78
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Definition 6.1.2. Receptionists, actor references, local actor references, and exter-

nal inverse references.

Let S be an actor configuration and Actor a ∈ S.V . Then we define the set of

receptionists (remotely referenced actors) S.RE, actor references a.ref , local actor

references a.lref , and external inverse references a.xir.

• S.RE = {y | xy ∈ S.IR}.

• a.ref = {ay | ay ∈ S.E}.

• a.lref = {ay | ay ∈ S.E ∧ y ∈ S.V }.

• a.xir = {xa | xa ∈ S.IR}.

Definition 6.1.3. Transitive relationship (mutation operation) on actor configura-

tions.

Let S be an actor configuration (snapshot) and Actor a ∈ S.V . Then, → is defined:

• a.MI: Actor migration.

〈V,E, PS, IR〉
a.MI
−−−→ 〈V − {a}, E − a.ref, PS − {a}, IR ∪ a.lref − a.xir〉.

• a.CR(b): Reference creation.

〈V,E, PS, IR〉
a.CR(b)
−−−−→ 〈V,E ∪ {ab}, PS, IR〉.

• a.CA(b): Actor creation.

〈V,E, PS, IR〉
a.CA(b)
−−−−→ 〈V,E ∪ {ab}, PS, IR〉.

• a.MR: Message reception.

〈V,E, PS, IR〉
a.MR
−−−→ 〈V,E, PS ∪ {a}, IR〉.

• a.IRR(b): Inverse reference registration.

〈V,E, PS, IR〉
a.IRR(b)
−−−−−→ 〈V,E, PS, IR ∪ {ba}〉.

To concisely describe relationships of actors under mutation operations in

snapshots, we introduce the following definitions:

Definition 6.1.4. Transitive state transition.

Let S1 and S2 be actor configurations.
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S1 →
∗ S2 ⇐⇒ (S1 = S2) ∨ (∃Sx : (S1 −→ Sx) ∧ (Sx →

∗ S2)).

Definition 6.1.5. Constrained reachability at actor configurations

Let a and b be actor names, and S be an actor configuration.

a ; b at S ⇐⇒ ((a = b) ∧ (a ∈ S.V )) ∨

(∃x : (ax ∈ a.lref) ∧ (x ; b at S)).

Otherwise, we say a Y; b at S.

Definition 6.1.6. Constrained live actors at actor configurations.

Let a be an actor name, and S be an actor configuration.

Live(a) at S ⇐⇒ (∃x : (x ∈ S.PS ∪ S.RE) ∧ (x ; a at S)).

Otherwise, we say ¬Live(a) at S.

Definition 6.1.7. Migration during snapshot state transition.

Let a be an actor name. Let Ss →
∗ Se.

Migrated(a, Ss, Se)⇐⇒ ∃Si, Sj : Ss →
∗ Si

a.MI
−−−→ Sj →

∗ Se.

Otherwise, we say ¬Migrated(a, Ss, Se).

The snapshot mutation operations correspond to real-world computations but

have a different effect. Therefore, they are restricted by the actor model — only live

actors can become unblocked; only unblocked and root actors can compute; only live

actors can become referenced. We formalize these restrictions using the following

propositions, where Ss and Se are actor configurations:

Proposition 6.1.8. Initial state of MI operation.

Ss
a.MI
−−−→ Se =⇒ (a ∈ Ss.PS).

Proposition 6.1.9. Initial state of CR operation.

Ss

a.CR(b)
−−−−→ Se =⇒ ((a ∈ Ss.PS) ∧ (Live(b) at Ss)).
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Proposition 6.1.10. Initial state of CA operation.

Ss

a.CA(b)
−−−−→ Se =⇒ ((a ∈ Ss.PS) ∧ (b /∈ Ss.V )).

Proposition 6.1.11. Initial state of MR operation.

Ss
a.MR
−−−→ Se =⇒ (Live(a) at Ss).

Proposition 6.1.12. Initial state of IRR operation.

Ss

a.IRR(b)
−−−−−→ Se =⇒ ((Live(a) at Ss) ∧ (b /∈ Ss.V )).

6.2 Safety

In this section, we are going to present the safety property in both local and

distributed computing environments.

6.2.1 Local State Logging

A local actor configuration never produces new garbage as the state mutates.

The reason is that the model neither deletes references nor makes any actor blocked,

except for actor migration. A migration operation breaks references and actors from

the actor configuration. Meanwhile, it results in some actors to be referenced by an

external actor, the migrating actor. We will prove that the local state logging model

is correct. That is, we show that a migration operation does not affect reachability

of actors from pseudo-roots, as formalized in Lemma 6.2.1. Therefore, migration

does not add new garbage in the local snapshot.

Two actor configurations are used in the following lemmas and theorems, where

Ss is the initial configuration, Se is the final configuration of the local snapshot, and

Ss →
∗ Se. We will use Ss and Se directly without re-defining them again.

Lemma 6.2.1. Alternative guaranteed reachability for state transition.

(a ; b at Ss) ∧ (a Y; b at Se) =⇒

(Migrated(b, Ss, Se)) ∨ (∃yx : ((x ; b at Se)∧(yx ∈ Se.IR)∧(Migrated(y, Ss, Se)))).

With Lemma 6.2.1, we now prove that the set of garbage is stable in the actor

configuration during local state logging, as shown in Theorem 6.2.5. Theorem 6.2.5
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directly turns into Corollary 6.2.6, which guarantees a stable set of local garbage

during local state logging.

Lemma 6.2.2. Live(a) at Se =⇒ Live(a) at Ss.

Lemma 6.2.3. Migrated(a, Ss, Se) =⇒ Live(a) at Ss.

Lemma 6.2.4. Live(a) at Ss =⇒ ((Live(a) at Se) ∨ Migrated(a, Ss, Se)).

Theorem 6.2.5. Coherent live actors in a local snapshot.

Live(a) at Ss ⇐⇒ (Live(a) at Se) ∨ (Migrated(a, Ss, Se)).

Proof. The proof is trivial by Lemma 6.2.2, 6.2.3, and 6.2.4.

Now, we can prove safety of local snapshot-based actor garbage collection. An

actor is live at the beginning of local state logging if and only if it is live at the end

or it has migrated.

Corollary 6.2.6. The stable property of the set of garbage actors of a local snapshot.

¬Live(a) at Ss ⇐⇒ (¬Live(a) at Se) ∧ (¬Migrated(a, Ss, Se)).

Proof. The proof is trivial by Theorem 6.2.5.

6.2.2 Global Snapshot

Independent local state logging cannot reclaim global cyclic garbage. A coor-

dinated action of local state logging is required to guarantee a causally consistent

global snapshot. Let us assume that there are lots of computing nodes participat-

ing in a global snapshot activity. Figure 6.1 explains how global synchronization

works. Now, consider the synchronization pseudo-code in Figure 4.6. Let ts be the

time the last computing node replies YES (line 6), and te the time the last com-

puting node finishes local snapshot (line 11). When a computing node finishes

a local snapshot, the local actor configuration should remain the same. Let Ss,i

be the actor configuration of the local group of the computing node i at time tx,

where ts ≤ tx ≤ te. Let Se,i be the local actor configuration at time te. Local actor

configurations at te can be obtained easily for garbage collectors because they never
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Figure 6.1: Different phases of global synchronization.

change again, while configurations at tx are only used for proofs because they are

volatile. Note that Ss,i →
∗ Se,i.

With the restriction of global synchronization, the algorithm guarantees that

no actor can appear more than once among the participating local actor configura-

tions.

Lemma 6.2.7. No actor appears more than once among coordinated local actor

configurations.

Let S1, S2, ..., Sm be coordinated local actor configurations.

∀i, j : (Si.V ∩ Sj .V = ∅) where (i 6= j) ∧ (m ≥ i, j ≥ 1).

A global snapshot is composed of several different local snapshots. We in-

troduce the real-world actor configuration to represent the computing state, and

the snapshot-composition operation to compose local snapshots by identifying some

local outgoing inverse references as global internal inverse references.

Definition 6.2.8. Real-world actor configuration.

A real-world actor configuration,

R = 〈V,E, PS, ∅〉,

is a special 4-tuple actor configuration which always represents the current state of

the real world computations.
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Figure 6.2: The relationship of mutation operations, snapshots, and the
snapshot-composition operation. There are two actor config-
uration sets in the figure — one is {Ss,i |m ≥ i ≥ 1} at time tx,
and the other is {Se,i |m ≥ i ≥ 1} at time te, where Ss,i →

∗ Se,i

and tx and te are defined in Figure 6.1 as time points.
SS = (Ss,1 ‖ Ss,2 ‖ ... ‖ Ss,m), and SE = (Se,1 ‖ Se,2 ‖ ... ‖ Se,m).

Definition 6.2.9. Binary snapshot-composition operation.

Let Sx = 〈Vx, Ex, PSx, IRx〉 and Sy = 〈Vy, Ey, PSy, IRy〉. Then

Sx ‖ Sy = 〈Vx ∪ Vy, Ex ∪Ey, PSx ∪ PSy, (IRx − Ey) ∪ (IRy −Ex)〉,

where Vx ∩ Vy = ∅.

The composition operation on actor configurations is closed (∀Si, Sj : Si ‖ Sj

is also an actor configuration), commutative (Si ‖ Sj = Sj ‖ Si), and associative

((Si ‖ Sj) ‖ Sk = Si ‖ (Sj ‖ Sk)). The relationship of mutation operations, local

snapshots, and the snapshot-composition operation are shown in Figure 6.2. Notice

that SS does not directly transit to SE , and only the set {Se,i |n ≥ i ≥ 1} is

observable.

The snapshot-composition operation can possibly identify new garbage which

cannot be detected in each member of a snapshot set independently. However,

the non-blocking, non-FIFO reference listing algorithm, such as the pseudo-root

approach, has to guarantee Proposition 6.2.10 to solve inconsistency of two actor

configurations (Figure 6.3) — one has a reference to the other one and the other

one does not have a corresponding inverse reference. Then we prove that garbage

in the global snapshot remains stable (safety).

Proposition 6.2.10. Consistency guarantee of remote references and inverse ref-

erences.
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Let a and b be actor names, S and S1 ... Sm be coordinated actor configurations,

and R be the real-world actor configuration, then

(a ∈ R.V ) ∧ (b ∈ S.V ) ∧ (ab ∈ R.E) ∧ (ab /∈ S.IR) =⇒

(∃r : (r ∈ S.PS) ∧ (rb ∈ S.E)) ∨

(∃r, Si : (r ∈ Si.PS) ∧ (rb ∈ Si.E) ∧ (rb ∈ S.IR) where m ≥ i ≥ 1) ∨

(∃r : ((rb ∈ S.IR) ∧ (∀Si : rb /∈ Si.E) where m ≥ i ≥ 1)).

Let us assume the pseudo-root approach is used. Let Actors {a, b} ⊆ R where

R is the real-world configuration. Assume S.V contains Actor b, and Actor a has

a reference to Actor b in the real world. By Theorem 5.3.3 (the one-step back

tracing safety), Actor b must have an outgoing inverse reference to a sender pseudo-

root actor, or it is referenced by a local sender pseudo-root actor. Either case is

detectable and reflected in S. This is because local state logging mimics the real-

world computations, except reference deletion and state change from pseudo-root

(unblocked) to blocked. Let the sender pseudo-root actor be r. If Actors r and b are

in the same snapshot, their relationship is detectable. If r is in another participating

snapshot Si, then Si must have the information of Reference rb and S has the

information of the inverse reference of rb. If Actor r is not in any of the participating

snapshots, Reference rb is not detectable in any of the participating snapshots but

S still contains the information of the inverse reference of rb. Therefore, Proposition

6.2.10 must be true.

The following lemmas and theorems require the concept of constrained paths
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to describe the relationship of actor reachability in a snapshot:

Definition 6.2.11. Constrained path and its reference set.

Given S = 〈V,E, PS, IR〉, we define a constrained path P of a1 ; an at S,

P = a1a2...an at S

if and only if ∀i : aiai+1 ∈ S.E where n > i ≥ 1, and we define the reference set of

P as

PathSet(P ) =
⋃n−1

i=1 {aiai+1}.

To avoid redundant description, we define the following variables and then use

them directly in the proofs: Let R be the real-world actor configuration. Let Ss,1,

Ss,2, ..., and Ss,m be coordinated local snapshots. Let SS = (Ss,1 ‖ Ss,2 ‖ ... ‖ Ss,m)

and SE = (Se,1 ‖ Se,2 ‖ ... ‖ Se,m), where Ss,i →
∗ Se,i, m ≥ i ≥ 1. Let P be a path

of x ; a at SS s.t. PathSet(P ) contains the maximal inter-snapshot references of

all paths of x ; a at SS. Let the reference set be PathSet(P ).IR. That is, the size

of PathSet(P ).IR, {cd | cd ∈ PathSet(P ) ∧ (∃i : cd ∈ Ss,i.IR where m ≥ i ≥ 1)},

is maximal.

Lemma 6.2.12. Actors which are reachable from a migrated actor at a local snap-

shot are reachable from some global pseudo-root at the merged global snapshot.

(a ; b at Ss,1) ∧ (a Y; b at Se,1) =⇒

Migrated(b, Ss,1, Se,1) ∨ (∃z : (z ∈ SE.RE) ∧ (z ; b at SE)).

Lemma 6.2.13. If an actor is garbage at the beginning of the snapshot procedure,

then the actor must be garbage in the real world.

((¬Live(a) at SS) ∧ (a ∈ SS.V )) =⇒ (∄y : (y ∈ R.PS) ∧ (y ; a at R)).

Lemma 6.2.14. (Live(a) at SS ∧ |PathSet(P ).IR| = 0) =⇒ (Live(a) at SE).

Lemma 6.2.15. Live(a) at SS =⇒ (Live(a) at SE) ∨ (∃i : Migrated(a, Ss,i, Se,i),

m ≥ i ≥ 1).

Lemma 6.2.16. (Live(a) at SE) ∨ (∃i : Migrated(a, Ss,i, Se,i), m ≥ i ≥ 1) =⇒

Live(a) at SS.
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Theorem 6.2.17. Coherent live actors in a global merged actor configuration.

Live(a) at SS ⇐⇒ (Live(a) at SE)∨ (∃i : Migrated(a, Ss,i, Se,i), m ≥ i ≥ 1).

Proof. The proof is trivial by Lemma 6.2.15 and 6.2.16.

Corollary 6.2.18. The stable property of the set of garbage actors in a global partial

snapshot.

¬Live(a) at SS ⇐⇒ ((¬Live(a) at SE)∧ (∄i : Migrated(a, Ss,i, Se,i), m ≥ i ≥ 1).

Proof. This follows trivially from Theorem 6.2.17.

6.3 Liveness

The liveness proof of our snapshot model utilizes the property of stable garbage

during local state logging. If a garbage collector is periodically activated and all

non-pseudo-root actors are selected, garbage is eventually collected.

Theorem 6.3.1. Conditional liveness of local garbage collection.

Let each local garbage collector be periodically activated, and use the local snapshot

for actor garbage collection. If every non-pseudo-root actor is always selected, all

local garbage is eventually identified by trace-based algorithms (DFS or BFS).

Proof. Since the set of local garbage actors is a subset of the local non-pseudo-

root actors, all garbage actors are selected into the snapshot for garbage collection.

According to Corollary 6.2.6, all garbage in this cycle can be identified and reclaimed

in this cycle of garbage collection. The floating garbage produced during the current

cycle can be identified at the next cycle because garbage actors cannot execute

mutation operations.

A global garbage collector can use a distributed tracing algorithm to identify

global garbage, including distributed cycles. Liveness of global garbage collection

based on the snapshot algorithm can be proven in a similar manner of Theorem

6.3.1, and thus we skip the proof.

Theorem 6.3.2. Conditional liveness of distributed garbage collection that uses the

snapshot algorithm.
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Let the global garbage collection mechanism be periodically activated, and use the

proposed snapshot algorithm for distributed actor garbage collection. If every non-

pseudo-root actor is always selected for snapshot, all garbage is eventually identified

by distributed trace-based algorithms (DFS or BFS).

6.4 Proofs

In this section, we provide proofs for the proposed snapshot computing model.

The proofs for local state logging properties can be found in Section 6.4.1; the proofs

for global snapshot algorithm properties are described in Section 6.4.2.

6.4.1 Local State Logging Properties

Two actor configurations are used in the following lemmas, where Ss is the

initial configuration, Se is the final configuration of the local snapshot, and Ss →
∗ Se.

We will use Ss and Se directly without re-defining them again in this Subsection.

To concisely describe a sequence of state transitions excliuding migration, we

provide the definition of no-migration transitive state transition:

Definition 6.4.1. No-migration transitive state transition.

Let S1 and S2 be actor configurations.

S1
(6=MI)
−−−−→

∗

S2 ⇐⇒

(S1 = S2) ∨ ((∀a : S1
mo
−→ Sx where mo 6= a.MI) ∧ (Sx

(6=MI)
−−−−→

∗

S2)).

Similarly,

S1
(6=a.MI)
−−−−−→

∗

S2 ⇐⇒

(S1 = S2) ∨ ((S1
mo
−→ Sx where mo 6= a.MI) ∧ (Sx

(6=a.MI)
−−−−−→

∗

S2)).

Lemma 6.2.1 Alternative guaranteed reachability for state transition.

(a ; b at Ss) ∧ (a Y; b at Se) =⇒

(Migrated(b, Ss, Se)) ∨ (∃yx : (x ; b at Se)∧(yx ∈ Se.IR)∧(Migrated(y, Ss, Se))).

Proof. The only operation to remove a reference or an actor from a snapshot is MI.

There are two cases to be considered:
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• Case 1: Let (b /∈ Se.V ). Since the only operation to remove b is b.MI, then

there must exist Si, Sj s.t. Ss →
∗ Si

b.MI
−−−→ Sj →

∗ Se, where b ∈ Si.V ∧b /∈ Sj.V .

Then Migrated(b, Ss, Se).

• Case 2: Let (b ∈ Se.V ). Because (a Y; b at Se), there exists a reference

at Ss and it is removed by a MI operation during state transitions, making

a Y; b. This case can be proven by induction. Let the number of performed

MI operations be n during state transitions where n ≥ 1.

Basis: Prove that the statement is true for n = 1.

Let Ss →
∗ Si

y.MI
−−−→ Sj →

∗ Se where ((a ; y) ∧ (x ; b) ∧ (yx ∈ Si.E))

and (a Y; b at Sj). Therefore, 1) x ∈ Sj.RE, 2) x ; b at Sj , and 3)

yx ∈ Sj.IR. Because no more MI is performed, ((x ; b at Se) ∧ (yx ∈

Se.IR) ∧ (Ss →
∗ Si

y.MI
−−−→ Sj →

∗ Se)) which proves the basis.

Induction step: Assume the statement is true for n where k ≥ n ≥ 1, and

show that it is true for n = k + 1.

Let Si be the state right before the last MI is performed. That is,

∃y : Si
y.MI
−−−→ Sj . Because (b ∈ Se.V ), b.MI cannot be the last MI

operation.

Let yx be the reference removed by the last MI, y.MI. According to

the induction hypothesis, ∃zw, Sk, Sm : ((w ; y ; x ; b at Si) ∧(zw ∈

Si.IR) ∧ (Ss →
∗ Sk

z.MI
−−−→ Sm →

∗ Si)). Now, consider the following

sub-cases:

Sub-case 1: Let (w ; b at Sj), which means ((w ; b at Sj) ∧ (zw ∈

Sj.IR) ∧ (Ss →
∗ Sk

z.MI
−−−→ Sm →

∗ Sj)). Since (Sj

(6=MI)
−−−−→

∗

Se) do

not remove any references or actor names, ((w ; b at Se) ∧ (zw ∈

Se.IR) ∧ (Ss →
∗ Sk

z.MI
−−−→ Sm →

∗ Se)). Thus the lemma is true for

Sub-case 1.

Sub-case 2: The concept of this sub-case is shown in Figure 6.4. Let

(w Y; b at Sj). Since ((w ; b at Si) ∧ (w Y; b at Sj)) and only one

MI is performed during (Si
y.MI
−−−→ Sj

(6=MI)
−−−−→

∗

Se), the statement can

be proven by re-using the basis.
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Figure 6.4: Sub-case 2 of the induction step of the proof for Lemma 6.2.1.

Therefore, one can conclude that the statement is true by induction.

Lemma 6.2.2 Live(a) at Se =⇒ Live(a) at Ss.

Proof. The statement can be proven by contradiction. Assume the statement is

wrong, which means (¬Live(a) at Ss) =⇒∀y : (y ∈ (Ss.PS∪Ss.RE))∧(y Y; a at Ss).

According to Proposition 6.1.8, 6.1.9, 6.1.10, 6.1.11, and 6.1.12, a cannot execute

any mutation operation, and must remain the same state at Se. By proposition

6.1.9, y cannot create a reference to a because (Live(a) at Ss) is required. Therefore,

(∀y : (y ∈ (Se.PS∪Se.RE))∧(y Y; a at Se)) =⇒ (¬Live(a) at Se), which contradicts

the premise.

Lemma 6.2.3 Migrated(a, Ss, Se) =⇒ Live(a) at Ss.

Proof. (Migrated(a, Ss, Se) implies (∃Si, Sj : Ss →
∗ Si

a.MI
−−−→ Sj →

∗ Se)). By

Proposition 6.1.8, a ∈ Si.PS. By Definition 6.1.5 and 6.1.6, Live(a) at Si. By

Lemma 6.2.2, Live(a) at Ss.

Lemma 6.2.4 Live(a) at Ss =⇒ ((Live(a) at Se) ∨ Migrated(a, Ss, Se)).

Proof. By Definition 6.1.5, Live(a) at Se ⇐⇒ ∃x : (x ∈ (Se.PS ∪Se.RE))∧ (x ; a

at Se). By Definition 6.1.7, Migrated(a, Ss, Se)⇐⇒ (∃Si, Sj : Ss →
∗ Si

a.MI
−−−→ Sj →

∗

Se). Assume the statement is wrong, which means:

Assumption 1: ∀x : (x ∈ (Se.PS ∪ Se.RE)) ∧ (x Y; a at Se) and
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Assumption 2: ∀Si, Sj : Ss →
∗ Si

a.MI
−−−→ Sj →

∗ Se is false, which means a ∈ Se.V

Let z ∈ Ss.V and (z ∈ (Ss.PS∪Ss.RE))∧ (z ; a at Ss) from the premise. One can

conclude from Assumption 1 and Assumption 2 that (z ∈ (Se.PS∪Se.RE))∧(z Y; a

at Se). By using Lemma 6.2.1, we know that (z ; a at Ss) ∧ (z Y; a at Se) implies

either:

Conclusion 1: ∃Si, Sj : Ss →
∗ Si

a.MI
−−−→ Sj →

∗ Se, or

Conclusion 2: ∃dc : ((c ; a at Se)∧ (dc ∈ Se.IR)∧ (∃Si, Sj : Ss →
∗ Si

d.MI
−−−→ Sj →

∗

Se)).

Conclusion 1 contradicts Assumption 2. Conclusion 2 contradicts Assumption 1

because ∃c : c ∈ Se.RE ∧ (c ; a at Se). Therefore, the lemma is true.

6.4.2 Global Snapshot Algorithm Properties

We define the following variables and then use them directly in this subsec-

tion: Let R be the real-world actor configuration. Let Ss,1, Ss,2, ..., and Ss,m be

coordinated local snapshots. Let SS = (Ss,1 ‖ Ss,2 ‖ ... ‖ Ss,m) and SE = (Se,1 ‖

Se,2 ‖ ... ‖ Se,m), where Ss,i →
∗ Se,i, m ≥ i ≥ 1. Let P be a path of x ; a at SS s.t.

PathSet(P ) contains the maximal inter-snapshot references of all paths of x ; a at

SS. Let the reference set be PathSet(P ).IR. That is, the size of PathSet(P ).IR,

{cd | cd ∈ PathSet(P ) ∧ (∃i : cd ∈ Ss,i.IR where m ≥ i ≥ 1)}, is maximal.

Lemma 6.2.7 No actor appears more than once among coordinated local actor

configurations.

Let S1, S2, ..., Sm be coordinated local actor configurations.

∀i, j : (Si.V ∩ Sj .V = ∅) where (i 6= j) ∧ (m ≥ i, j ≥ 1).

Proof. Only migration can cause an actor to appear twice in different locations. Let

computing node i and j be two arbitrary computing nodes whose final local actor

configurations are Si and Sj respectively. Let a be in computing node i, and then

migrate to j. Also let tsi be the time computing node i starts state logging, tei the

time computing node i finishes state logging, tsj the time computing node j starts

state logging, and tej the time computing node j finishes state logging. Let the
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time to migrate from node i be tsmig, and to arrive at node j be temig. Now, let us

consider all possible cases that a will appear in both Si and Sj.

Case 1: tsmig > tei.

Now, consider three sub-cases:

Sub-case 1.1: temig > tej .

a cannot be logged in Sj .

Sub-case 1.2: tej ≥ temig ≥ tsj.

Sj cannot include any new actor during this period of time.

Sub-case 1.3: tsj > temig (an early message of migration).

Considering tsj > temig, temig > tsmig, and tsmig > tei, we get tsj > tei.

However, the global synchronization mechanism guarantees that tei ≥ tsj

because snapshot termination must wait for a consensus of all partici-

pating computing nodes. Therefore, this sub-case is impossible due to a

contradiction.

Case 2: tei ≥ tsmig ≥ tsi.

The MI operation guarantees that {a} /∈ Si.V .

Case 3: tsi > tsmig.

a cannot be logged in Si.

Lemma 6.2.12 Actors which are reachable from a migrated actor at a local

snapshot are reachable from some global pseudo-root at the merged global snapshot.

(a ; b at Ss,1) ∧ (a Y; b at Se,1) =⇒

Migrated(b, Ss,1, Se,1) ∨ (∃z : (z ∈ SE .RE) ∧ (z ; b at SE)).

Proof. According to Lemma 6.2.1, one of the following statements is true.

Case 1: ∃Sj, Sk : Ss,1 →
∗ Sj

b.MI
−−−→ Sk →

∗ Se,1 by Definition 6.1.7.

Case 2: ∃Sj , Sk, wx : ((x ; b at Se,1) ∧ (wx ∈ Se,1.IR) ∧ (Ss,1 →
∗ Sj

w.MI
−−−→ Sk →

∗

Se,1)).
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Figure 6.5 helps understand the proof. If Case 1 is true, the statement to

prove is also true. Now, consider Case 2. Let S ′
E = (Se,2 ‖ Se,3 ‖ ... ‖ Se,m). Let

Sj , Sk be the actor configurations and wx be the reference to make Case 2 true.

Because w ∈ Ss,1.V and no duplicate actor name is allowed (Lemma 6.2.7), we

know (w /∈ Ss,i.V where m ≥ i > 1). Consequently, w /∈ Se,i.V where m ≥ i > 1

because no mutation operation can add any new actor name. Since (w /∈ Se,i.V

where m ≥ i > 1), we get (wx /∈ Se,i.E where ∀i : m ≥ i > 1), which also

implies that wx /∈ S ′
E.E. From Case 2 we know (wx ∈ Se,1.IR), and thus we get

wx ∈ (Se,1.IR− S
′
E .E).

Now let us compose Se,1 and S ′
E . We find that (wx ∈ (Se,1 ‖ S

′
E).IR), which

is equal to (wx ∈ SE.IR). Therefore, (x ∈ SE.RE). Case 2 also says that (x ; b

at Se,1), indicating (x ; b at SE .E). By replacing x with z, we finish the proof.

Lemma 6.2.13 ((¬Live(a) at SS)∧ (a ∈ SS.V )) =⇒ (∄y : (y ∈ R.PS)∧ (y ; a

at R)).

Proof. Assume the lemma is wrong, which means (∃y : (y ∈ R.PS) ∧ (y ; a

at R)) =⇒ (∃w, x, y : (y ; w at R) ∧ (wx /∈ SS.E) ∧ (x ; a at SS)). Since

wx ∈ SS.IR =⇒ ((x ∈ SS.RE)∧(x ; a at SS)) =⇒ Live(a) at SS which contradicts

the premise, we know wx /∈ SS.IR. According to Proposition 6.2.10, (∃z : (z ∈

SS.IR ∪ SS.PS) ∧ (z ; a at SS)) =⇒ (Live(a) at SS) which also contradicts the

premise.

Lemma 6.2.14 (Live(a) at SS ∧ |PathSet(P ).IR| = 0) =⇒ (Live(a) at SE).
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Proof. Let a ∈ Ss,1.V without losing generality. |PathSet(P ).IR| = 0 implies that

(PathSet(P )∩Ss,1.IR)∪(PathSet(P )∩Ss,2.IR)∪ ...∪(PathSet(P )∩Ss,m.IR) = ∅.

Consequently, ∃x : (x ∈ (SS.PS ∪ SS.RE)) ∧ (x ; a at Ss,1).

Case 1: Now, consider the case that x ; a at Se,1.

Sub-case 1.1: Let (x ∈ SS.PS), which implies (x ∈ Ss,1.PS) since (x ; a at

Ss,1). Because x ∈ Se,1.V , no migration operation is executed. Since (x ∈

Ss,1.PS), we know (x ∈ Se,1.PS) such that ((x ∈ (SE.PS ∪ SE.RE)) ∧

(x ; a at SE)), implying Live(a) at SE .

Sub-case 1.2: Let x ∈ SS.RE. This implies that ∃zx : (zx ∈ Ss,1.IR)∧ (zx /∈

Ss,i.E where m ≥ i ≥ 1). x ∈ Se,1.V implies that Ss,1
6=x.MI
−−−−→

∗

Se,1.

Therefore, (x ∈ Se,1.V ) which also implies ∃zx : (zx ∈ Se,1.IR) ∧ (zx /∈

Se,i.E where m ≥ i ≥ 1). Then ∃zx : zx ∈ SE.IR. To conclude,

∃x : (x ∈ SE.IR) ∧ (x ; a at SE), implying Live(a) at SE.

Case 2: Now, consider the case that x Y; a at Se,1. According to Lemma 6.2.1,

either Migrated(a, Ss,1, Se,1) which means ∃Sma, Smb : Ss,1 →
∗ Sma

a.MI
−−−→

Smb →
∗ Se,1, or

∃Sma, Smb, cw : ((w ; a at Se,1)∧ (cw ∈ Se,1.IR)∧ (Ss,1 →
∗ Sma

c.MI
−−−→ Smb →

∗

Se,1)). Because (c ∈ Ss,1.V ), we know (c /∈ Ss,i.V where m ≥ i ≥ 2), which also

means that c /∈ Se,i.V where m ≥ i ≥ 2. (c /∈ Se,i.V where m ≥ i ≥ 1) implies

(∀d : cd /∈ Se,i.E where m ≥ i ≥ 1). Since cw ∈ Ss,1.IR and (∀d : cd /∈ Se,i.E

where m ≥ i ≥ 1), we get cw ∈ SE .IR which also means w ∈ SE .RE. There-

fore, (w ∈ (SE .PS ∪ SE .RE)) ∧ (w ; a at SE), implying Live(a) at SE .

Lemma 6.2.15 Live(a) at SS =⇒ (Live(a) at SE) ∨ (∃i : Migrated(a, Ss,i, Se,i),

m ≥ i ≥ 1).

Proof. Let a ∈ Ss,1.V without losing generality. Let |PathSet(P ).IR| = n.

Basis: The case of n = 0 is proven by Lemma 6.2.14.

Induction step: For each k ≥ 0 assume the statement is true, and prove the case
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n = k + 1.

Let pq be any inter-snapshot reference of x ; a at SS s.t. ((x ; p at SS)∧

(q ∈ Ss,1.V )∧ (∃j : p ∈ Ss,j.V where m ≥ j ≥ 2)∧ (q ; a at Ss,1)). Consequently,

the induction assumption indicates either 1) Live(p) at SE , or 2) ∃i, Sms,i, Sme,i :

(Ss,i →
∗ Sms,i

p.MI
−−−→ Sme,i →

∗ Se,i), m ≥ i ≥ 1 by Definition 6.1.7.

These cases are discussed as follows:

Case 1: (∃f : (f ∈ (SE.PS ∪ SE.RE)) ∧ (f ; p at SE)). There are two sub-cases

to deal with:

Sub-case 1.1: Let q ; a at Se,1. This means Live(a) at SE .

Sub-case 1.2: Let q Y; a at Se,1. By Lemma 6.2.12, we know

• ∃Sms,1, Sme,1 : Ss,1 →
∗ Sms,1

a.MI
−−−→ Sme,1 →

∗ Se,1, or

• Live(a) at SE .

Case 2: Now, consider that ∃i, Sms,i, Sme,i : (Ss,i →
∗ Sms,i

p.MI
−−−→ Sme,i →

∗ Se,i),

m ≥ i ≥ 1. There are two sub-cases:

Sub-case 2.1: Assume q ; a at Se,1. Let Ss,i have transited to Sms,i and Ss,1

have transited to Sms,1 at time tx. Notice that Ss,i →
∗ Sms,i →

∗ Se,i and

Ss,1 →
∗ Sms,1 →

∗ Se,1.

Sub-case 2.1.1: Assume pq ∈ Sms,1.IR. Since q ∈ Se,1, we get pq ∈ Se,1.IR.

Because p ∈ Ss,i.V and no duplicate actor name is allowed (Lemma 6.2.7),

we know (p /∈ Ss,j.V where m ≥ j ≥ 1). Consequently, p /∈ Se,i.V where

m ≥ i ≥ 1 because no mutation operation can add any new actor name.

Since (p /∈ Se,i.V where m ≥ i ≥ 1), we get (pq /∈ Se,i.E where m ≥ i ≥ 1).

Therefore, (q ∈ SE .RE ∧ q ; a at SE) =⇒ Live(a) at SE .

Sub-case 2.1.2: Assume pq /∈ Sms,1.IR. According to Proposition 6.2.10, there are

three cases to consider as follows:

• Let (∃r : (r ∈ Sms,1.PS) ∧ (rq ∈ Sms,1.E)) be true. If (∃Srms,1, Srme,1 :

Sms,1 →
∗ Srms,1

r.MI
−−−→ Srms,1 →

∗ Se,1) is true, we can prove the statement
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by Lemma 6.2.12. Otherwise, r.MI has never been executed. Therefore,

((r ∈ Se,1.PS) ∧ (r ; q ; a at Se,1)), which implies Live(a) at SE.

• Let (∃r, Sms,j : (r ∈ Sms,j.PS) ∧ (rq ∈ Sms,j.E) ∧ (rq ∈ Sms,1.IR)

where Sms,j 6= Sms,1) be true. First assume ∃Srms,j , Srme,j : Sms,j →
∗

Srms,j
r.MI
−−−→ Srms,j →

∗ Se,j. Since rq ∈ Sms,1.IR and q ∈ Sms,1.V , we

know rq ∈ Se,1.IR. Because ∀Se,newj : r /∈ Se,newj.V where m ≥ newj ≥ 1

and rq ∈ Sms,1.IR, we get rq ∈ SE .IR. Therefore, (q ∈ SE .RE)∧ (q ; a

at SE), indicating Live(a) at SE . Now, consider the other case that r.MI

has never been executed. We find that (r ∈ SE.PS) ∧ (r ; q ; a at

SE), implying Live(a) at SE .

• Let ∃r : ∀Smsi : (rq ∈ Sms,1.IR) ∧ (rq /∈ Smsi.E) where Smsi 6= Sms,1

be true, which implies that (rq ∈ Se,1.IR) ∧ (∀Se,i : rq /∈ Se,i.E) where

Se,i 6= Se,1. Therefore, (q ∈ SE .RE) ∧ (q ; a at SE), implying Live(a)

at SE .

Sub-case 2.2: Let q Y; a at Se,1. Sub-case 2.2 can be proven by reusing the proof

of Lemma 6.2.14.

We conclude the statement is true by induction.

Lemma 6.2.16 (Live(a) at SE) ∨ (∃i : Migrated(a, Ss,i, Se,i), m ≥ i ≥ 1) =⇒

Live(a) at SS.

Proof. The lemma can be proven by contradiction. Assume ¬Live(a) at SS where

a ∈ SS.V . By Lemma 6.2.13, we get (∀y : (y ∈ R.PS) ∧ (y Y; a at R)). Since

local state logging corresponds to the real world computing, Actor a cannot execute

any mutation operations, which means ¬Live(a) at SE and thus contradicts the

premise.



CHAPTER 7

Experimental Results

The proposed distributed mobile actor garbage collection algorithms are imple-

mented in the SALSA programming language [109], where the pseudo-root approach

is part of the core SALSA library and the distributed snapshot algorithm is imple-

mented as an optional, logically centralized service. In this chapter, we use several

types of applications to measure the performance of our implementation of the mo-

bile actor garbage collection mechanism.

7.1 Actor Garbage Collection in SALSA

SALSA (Simple Actor Language, System and Architecture) is an actor-oriented

programming language designed and implemented to introduce the benefits of the

actor model while keeping the advantages of object-oriented programming. Ab-

stractions include actors (active objects), asynchronous message passing, universal

naming, migration, and advanced coordination constructs for concurrency. SALSA

is pre-processed into Java and hence preserves many of Java’s useful object oriented

concepts — mainly, encapsulation, inheritance, and polymorphism. Because each

actor maintains an encapsulated state, SALSA uses strict pass-by-value communica-

tion. 7 SALSA abstractions enable the development of dynamically reconfigurable

applications. A SALSA program consists of universal actors that can migrate to

other computing nodes at run-time.

SALSA provides actor garbage collection, which identifies actor garbage and

let the Java garbage collector reclaim it. In case of active garbage, the thread of

control of a garbage actor is destroyed first, and then the rest is handled by the

Java garbage collector. Intra-actor garbage produced by updating references (the

assignment operation) is handled by the Java garbage collector as well.

7Actor references (Actor names) are first-class and therefore they can also be passed by value.
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Actor GC Mechanism to Measure

To understand the impact of actor garbage collection, we measure actor garbage

collection using four different mechanisms: NO-GC, GDP, LGC, and CDGC. By us-

ing these mechanisms, we can understand the overhead each actor garbage collection

algorithm imposes on the actor system. The mechanisms are described as follows:

• No-GC : Data structures and algorithms for actor garbage collection are not

used.

• GDP : The local garbage collector is not activated. Only the garbage detection

protocol (the implementation of the pseudo-root approach) is used.

• LGC : The local garbage collector is activated every n seconds or in the case

of insufficient memory (n=2 for the tests in this chapter).

• CDGC : The logically centralized garbage collector is activated every m sec-

onds or in the case of insufficient memory (m=20 for the tests in this chapter).

7.2 Actor GC Overhead with Respect to Application Tests

We developed three different benchmark applications using SALSA 1.0.0 to

measure the impact of our local actor garbage collection mechanism. These applica-

tions are Fibonacci number (Fib), N queens number (NQ), and Matrix multiplication

(MX). Each application is executed on a dual-core processor Sun Blade 1000s ma-

chine, equipped with two 750 MHz processors and 2 GB of RAM. The operating

system used was SunOS 5.10 and the Java VM was Java HotSpot Client VM (build

1.4.1). The applications are described as follows:

• Fibonacci number (Fib): Fibonacci number, abbreviated as Fib, takes one

argument k and then computes the k-th Fibonacci number concurrently. It

is a coordinated tree-structure computation. When k ≤ 30, the application

sequentially computes the k-th Fibonacci number.

• N queens number (NQ): N queens number, abbreviated as NQ, takes one

argument to calculate the total solutions of the N queens problem by creating

(N −1)× (N −2) actors for parallel execution and one actor for coordination.
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• Matrix multiplication (MX): Matrix multiplication, abbreviated as MX, re-

quires two files for application arguments, each of which contains a matrix.

The application calculates one matrix multiplication of the given two matrices.

We also developed four distributed benchmark applications. They are per-

formed on four dual-core processor Sun Blade 1000s machines. The distributed

benchmark applications are described as follows:

• Distributed Fibonacci number with locality (Dfibl): Dfibl optimizes the num-

ber of inter-node messages by locating four sub-computing-trees at each com-

puting node.

• Distributed Fibonacci number without locality (Dfibn): Dfibn distributes the

actors in a breadth-first-search manner.

• Distributed N queens number (DNQ): DNQ equally distributes the actors to

four computing nodes.

• Distributed Matrix multiplication (DMX): DMX divides the first input ma-

trix into four sub-matrices, sends the sub-matrices and the second matrix to

four computing nodes, performs one matrix multiplication operation, and then

merges the data at the computing node that initializes the computation.

The local experimental results are shown in Table 7.1, and the distributed

results are in Table 7.2. Each result of a benchmark application is the average of

ten execution times. Notice that Real represents the total real execution time to get

the computing result, while CPU represents the total CPU time of both processors

to get the computing result. CPU time can be bigger than Real time because the

machine to test has two CPUs and CPU time is equal to the sum of the individual

CPU time. The average GDP real time overhead of local experimental results is

20.5%; the average GDP CPU time overhead of local experimental results is 16%;

the average LGC+GDP Real time overhead of local experimental results is 24%; the

average LGC+GDP CPU time overhead of local experimental results is 19%; the

average LGC+GDP+CDGC Real time overhead of experimental results is 19%;
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Table 7.1: Application performance on a dual-core processor Sun Blade
1000s machine (measured in seconds).

GDP LGC+GDP
Application(Arguments) NO-GC GDP LGC+GDP OVERHEAD OVERHEAD

/Number of Actors (Real/CPU) (Real/CPU) (Real/CPU) (Real/CPU) (Real/CPU)

Fib(38)/109 1.70/2.57 2.14/3.07 2.13/3.08 25%/20% 25%/20%
Fib(41)/465 5.09/8.66 6.20/10.21 6.63/10.54 22%/18% 30%/22%
NQ(13)/133 1.84/2.16 2.42/2.55 2.55/2.79 32%/18% 39%/29%
NQ(15)/183 6.72/11.58 7.63/12.84 7.97/13.30 14%/11% 19%/15%
MX(1002)/3 1.84/1.93 2.16/2.24 2.16/2.24 17%/16% 17%/16%
MX(1502)/3 2.63/2.84 2.97/3.17 3.03/3.20 13%/11% 15%/13%

Table 7.2: Application performance in a distributed environment. Real
time is measured in seconds.

Application(Arguments) LGC+GDP+CDGC
/Number of Actors NO-GC LGC+GDP+CDGC OVERHEAD

Dfibl(39)/177 1.722 2.091 21%
Dfibl(42)/753 3.974 4.957 25%
Dfibn(39)/177 3.216 3.761 17%
Dfibn(42)/753 8.527 9.940 17%
DNQ(16)/211 13.120 17.531 34%
DNQ(18)/273 426.151 461.757 8%
DMX(1002)/5 6.165 6.715 9%
DMX(1502)/5 39.011 38.955 0%

7.3 Overhead Breakdown

There are totally four kinds of mutation operations in actor garbage collection:

actor creation, actor reference passing, actor reference deletion, and actor migration.

To understand if the actor garbage collection mechanism is intrusive or not, we also

measure the effect on loops containing multiplication and division operations. Since

the extra execution time required for actor reference deletion and actor reclamation

is handled by Java virtual machines, we do not provide any overhead breakdown

for them. However, their overheads should be proportional to the overhead of actor

creation because the Java garbage collector needs to reclaim extra objects 8 produced

by actor creation. All testing applications used in this section were developed using

SALSA 1.1.1.

7.3.1 Overhead Breakdown of Local Actor GC in a Uniprocessor Envi-

ronment

The experiments were performed on a Dell Inspiron 600m laptop, equipped

with a 1.6 GHz Intel Pentium M processor and 512 MB of RAM. The operating

8The total size of the required objects is fixed in the experiments.
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Table 7.3: Actor creation (ms) and its overhead (%) in a uniprocessor
environment.

ACTOR GDP LGC+GDP
CREATION NO-GC GDP LGC OVERHEAD OVERHEAD

EMPTY ACTOR 0.872 1.001 1.382 15% 58%
1 KB STATE 1.412 1.423 1.743 1% 23%
10 KB STATE 1.873 1.913 2.443 6% 30%

Table 7.4: Message passing (µs) and its overhead (%) in a uniprocessor
environment.

MESSAGE GDP LGC+GDP
PASSING NO-GC GDP LGC OVERHEAD OVERHEAD

EMPTY PARAMETERS 6.97 7.13 7.212 2% 3%
1 KB PARAMETERS 57.68 59.08 59.68 2% 3%
10 KB PARAMETERS 59.3 59.28 60.7 0% 2%

system used was Microsoft Windows XP, and the Java VM was Java HotSpot(TM)

Client VM (build 1.5.0 06-b05, mixed mode). Experimental results are shown in

Tables 7.3, 7.4, 7.5, and 7.6.

Table 7.3 shows the overhead of actor creation. The overhead is relatively huge

while creating a small actor because each actor maintains a data structure for the

actor referential relationship. The ratio of the extra data structure for actor garbage

collection goes down while the size of a newly created actor increases. Table 7.4

shows the overhead of message passing. Table 7.5 shows the overhead of reference

passing. The overhead is almost 100% for local actor garbage collection because

each reference passing event generates at least 3 extra messages. Table 7.6 shows

the overhead of a regular computation, represented by the multiplication-division

computation whose overhead is negligible. The minus-overhead could be attributed

to the behavior of the operating system or the Java VM. A -1% overhead should be

considered as a precision problem of measurement.

Table 7.5: Reference passing (ms) and its overhead (%) in a uniprocessor
environment.
REFERENCE GDP LGC+GDP

PASSING NO-GC GDP LGC OVERHEAD OVERHEAD

1 REFERENCE 0.549 1.094 1.118 99% 104%
10 REFERENCES 0.577 1.156 1.202 94% 102%
100 REFERENCES 0.691 1.348 1.384 95% 100%
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Table 7.6: Multiplication-division (Secs) and its overhead (%) in a
uniprocessor environment, where each actor performs several
loops, each of which contains a double-precision multiplication
operation and a double-precision division operation.

GDP LGC+GDP
MUL-DIV NO-GC GDP LGC OVERHEAD OVERHEAD

3 × 108 LOOPS
IN 1 ACTOR 7.971 7.971 8.181 0% 3%

3 × 107 LOOPS
IN 10 ACTOR 7.971 7.972 8.116 0% 2%
3 × 106 LOOPS
IN 100 ACTOR 8.052 8.082 8.146 0% 1%
3 × 105 LOOPS
IN 1000 ACTOR 8.692 8.603 8.933 -1% 3%

7.3.2 Overhead Breakdown of Local Actor GC in a Concurrent Envi-

ronment

We used the same mechanisms and applications in Subsection 7.3.1 to measure

the overhead of local actor garbage collection in a concurrent environment. The

experiments were performed on an IBM pSeries 655 machine, equipped with four

1.7 GHz IBM POWER4 processors and 4 GB of RAM. The operating system used

was IBM AIX 5.3, and the Java VM was Classic VM (build 1.4.2, J2RE 1.4.2 IBM

AIX 5L for PowerPC). Experimental results are shown in Tables 7.7, 7.8, and 7.9.

We decided not to show the experimental results of the multiplication-division (ms)

and its overhead because it highly depends on the scheduling policy of the operating

system and the Java VM — in some cases the system with actor garbage collection

can outperform the system without actor garbage collection by almost 100%, while

in some cases the system with actor garbage collection can have more than 50%

overhead.

The actor garbage collection overhead in the concurrent system shows a sig-

nificant improvement compared to the uniprocessor environment, shown in Tables

7.7, 7.8, and 7.9. We attribute it to the scheduling policy of the native operating

system — the operating system wisely uses another idle processor for concurrent ac-

tor garbage collection, which avoids CPU time contention with users’ applications.

The minus-overhead in Table 7.7 shows that the scheduling policy of the operating

system (or the Java VM) can have high influence on the performance of concurrent

applications.
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Table 7.7: Actor creation (ms) and its overhead (%) in a quad-core pro-
cessor environment.

ACTOR GDP LGC+GDP
CREATION NO-GC GDP LGC OVERHEAD OVERHEAD

EMPTY ACTOR 7.594 6.222 6.43 -18% -15%
1 KB STATE 4.611 4.717 5.191 2% 13%
10 KB STATE 4.446 5.015 5.442 13% 22%

Table 7.8: Message passing (µs) and its overhead (%) in a quad-core pro-
cessor environment.

MESSAGE GDP LGC+GDP
PASSING NO-GC GDP LGC OVERHEAD OVERHEAD

EMPTY
PARAMETERS 9.914 9.924 9.948 0% 0%

1 KB
PARAMETERS 86.6 85.73 87.64 -1% 1%

10 KB
PARAMETERS 86.74 86.15 86.44 -1% 0%

7.3.3 Overhead Breakdown of Actor GC in a Cluster Environment

The overhead of actor migration, message passing, and reference passing are

evaluated in this subsection. We used two IBM pSeries 655 machines (intra-cluster)

to measure the overhead of actor garbage collection. Experiments results are shown

in Tables 7.10, 7.11, and 7.12. The major overhead still comes from reference pass-

ing, on average 18% (Table 7.12). The overhead shown in Tables 7.10 and 7.11 is

negligible.

Table 7.9: Reference passing (ms) and its overhead (%) in a quad-core
processor environment.
REFERENCE GDP LGC+GDP

PASSING NO-GC GDP LGC OVERHEAD OVERHEAD

1 REFERENCE 0.818 0.948 0.957 16% 17%
10 REFERENCES 0.852 0.985 0.993 16% 17%
100 REFERENCES 0.929 1.067 1.113 15% 20%

Table 7.10: Actor migration (ms) and its overhead (%) in a distributed
environment.
ACTOR GDP LGC+GDP

CREATION NO-GC GDP LGC OVERHEAD OVERHEAD

EMPTY ACTOR 158.875 157.755 158.7 -1% 0%
1 KB STATE 160.005 159.15 158.91 -1% -1%
10 KB STATE 159.855 159.605 159.095 0% 0%



104

Table 7.11: Message passing (ms) and its overhead (%) in a distributed
environment.
MESSAGE GDP LGC+GDP
PASSING NO-GC GDP LGC OVERHEAD OVERHEAD

EMPTY
PARAMETERS 0.149 0.149 0.149 0% 0%

1 KB
PARAMETERS 0.251 0.251 0.251 0% 0%

10 KB
PARAMETERS 0.336 0.337 0.336 0% 0%

Table 7.12: Reference passing (ms) and its overhead (%) in a distributed
environment.
REFERENCE GDP LGC+GDP

PASSING NO-GC GDP LGC OVERHEAD OVERHEAD

1 REFERENCE 1.063 1.237 1.236 16% 16%
10 REFERENCES 1.152 1.322 1.326 15% 15%
100 REFERENCES 1.221 1.398 1.409 15% 15%

7.4 Scalability Test

In this section, we evaluate the overhead of our mobile actor garbage collection

mechanism using a scalable application, namely the maximum likelihood evaluation

fitter (MLE fitter), to evaluate a large set of data, where likelihood is defined as the

product of the probabilities of observing each event (the input data set) given a set

of fit parameters. We used SALSA 1.1.1 to develop the application.

7.4.1 The Maximum Likelihood Evaluation (MLE) Fitter

According to particle physics, particles which make up our universe have wave-

like behavior and thus their identities and properties can be determined by partial

wave analysis (PWA) [27]. To discover the identities and properties of particles,

and the forces and interactions between these particles, scientists use a particle

accelerator to create a high energy collision of particles. The collision may produce

a spray of particles. Some of the particles can live long enough to be observed, while

some may decay 9 into other kinds of particles after an extremely short time, making

them impossible to be observed. The existence of the short lived particles can only

be inferred from correlations in the final state particles into which they decay. There

are many ways of reaching the final system through various intermediate states, and

9Particle decay refers to the transformation of a fundamental particle into other fundamental
particles.
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each possibility must be considered. By varying the amount of each intermediate

state to fit the observed final state, PWA can determine the identities of the short-

lived particles.

The purpose of the fits is to find the most probable intermediate states. The

fits are done using maximum likelihood evaluation (MLE). The likelihood is defined

as the product of the probabilities of observing each event given a set of fit param-

eters. In practice, people usually use the negative logarithm likelihood to find the

minimum value, which represents the maximum likelihood. In our case, the equation

is described as:

− ln(L) = −
n

∑

i

ln
(

∣

∣ψp
αψ

d
α(τi)

∣

∣

2
)

− nψp
αΨαα′ψp∗

α′ (7.1)

where the sum over i runs over all events in the data set, and the sums over the

repeated αs, the fit parameter index, are implicit. The ψp
α are the complex fit pa-

rameters, related to the amount of the intermediate state α produced. The ψd
α(τi)

is the identity (quantum amplitude) for the ith event with angles τi assuming in-

termediate state α. The possibility of non-interfering data has been ignored here.

While physically important, it is a detail which further complicates the expression

for the likelihood, yet serves no illustrative purpose for the discussion at hand. The

second term on the right hand side is the normalization integral, where any known

inefficiencies of the detector are taken into account. The total number of events in

the data being fit is n; and Ψαα′ is the result of the normalization integral, done

numerically before the fit is performed.

We used the simplex algorithm, which finds the most probable fit and itera-

tively improves the output, in our implementation of the MLE fitter. Finding the

best fit parameters to a typical data set requires a given set of initial fit parameters

and hundreds or even thousands of trials. In our case the MLE fitter evaluates the

maximum likelihood of a given set of complex amplitudes and the observed events

from collisions of particles. The execution time of the MLE fitter can be improved

by using distributed computing if calculating the summation term of the negative

logarithm likelihood equation requires a long time to finish. For example, if n in
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Equation 7.1 is large enough (> 105).

7.4.2 Results

The test was performed in a cluster consisting of 15 computing hosts, consisting

of three 4-dual-core 2.2 GHz Opteron machines (8 processors each) with 32 GB of

RAM and twelve 4-single-core 2.2 GHz Opteron machines with 16 GB of RAM. The

logically centralized actor garbage collector was running on another 2-single-core 2.2

GHz Opteron machine. The operating system used was Linux 2.6.15, and the Java

VM was Java HotSpot Server VM (build 1.5.0 08-b03, mixed mode).

We used a set of 9053 × 26 events and 7 complex number parameters as the

input for the MLE fitter. The MLE fitter used a static load balancing approach to

distribute data to each theater 10, where for each processor a theater is started to

host actors. The MLE fitter is sensitive to any delay at any theater because the

execution time per fit function call is the longest execution time per fit function

call among all the participating theaters. Our experiments show that the overall

overhead of our implementations is on average 24% for 64 or more theaters, and on

average 13% for 32 or less theaters (see Figures 7.1 and 7.2). The MLE fitter running

on 64 or more theaters has relatively bad performance, which can be attributed to

the execution time per function call being down to 1 second, making it relatively

sensitive to any kind of interruption.

10A theater can be thought of as the virtual machine of the SALSA programming language.



107

32

16

8

4

2

1

0.5
6432168421

E
x
e
c
u
ti
o
n
 T

im
e
 p

e
r 

F
u
n
c
ti
o
n
 C

a
ll 

(s
)

Number of Processors

NO-GC
GDP

GDP+LGC
GDP+LGC+CDGC

Figure 7.1: Execution time per fit function call vs. the total number
of processors. Four kinds of mechanisms are used to evalu-
ate the implementation of our actor garbage collection algo-
rithms.



108

Figure 7.2: Breakdown of the actor garbage collection mechanism.



CHAPTER 8

Conclusions and Future Work

8.1 Conclusions

We have proposed a theory for distributed mobile actor garbage collection.

We first described the definition of actor garbage collection and two actor marking

algorithms. Then we described how and why our approach can handle mobile actor

garbage even though the communication of both the applications and the systems

is asynchronous and non-FIFO. The computing models, properties, and proofs were

provided as well.

In the first part of the thesis, we redefined actor garbage from the perspective

of the reference graph, we showed transformation methods between actor garbage

collection and passive object garbage collection, and we devised two actor marking

algorithms. The first one is the back pointer algorithm which scans the reference

graph only twice for marking, and has linear time complexity of O(V +E) and extra

space complexity O(V +E). The other one is the N-color algorithm which relies on

disjoint set operations. It only requires one extra marking variable in each actor,

and it only scans the reference graph once. It has time complexity of O(E lg∗M)

where M is the number of unblocked actors and lg∗M is very close to a constant.

The second part of the thesis described how our approach can handle dis-

tributed mobile actor garbage collection in a non-intrusive manner. We introduced

the concept of pseudo-roots, making actor garbage collection easy to implement. We

also formally described the reference listing based algorithm — the pseudo-root ap-

proach. Unlike existing actor garbage collection algorithms, the proposed algorithm

does not require FIFO communication or stop-the-world synchronization. Further-

more, it supports actor migration. With the help of the pseudo root approach, the

proposed distributed snapshot algorithm can detect a casually consistent snapshot

for actor garbage collection by two global synchronization events even when some

computing hosts are uncooperative. As a consequence, it can tolerate partial fail-

ures in the actor systems. Snapshots can be composed in any order and thus the
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algorithm can support multi-level hierarchical distributed actor garbage collection.

We provided formal computing models and used them to reason about and prove

correctness properties of the mobile actor garbage collection algorithms.

8.2 Future Work

This section provides several possible directions for future work.

8.2.1 Resource Access Restrictions and Security Policies

Future research focuses on the idea of resource access restrictions, which is part

of distributed resource management and security policies. These issues are essential

to the design philosophy of a distributed system. For example, an unblocked actor

with migration ability could be live or garbage depending on different resource access

restrictions. If the actor is universally prohibited from accessing roots, it can be

garbage. On the other hand, it is definitely live if it can possibly migrate to a

computing host that supports root accesses. More precisely, an actor in a fully

restricted sandbox environment should be considered live if it can possibly migrate

to a computing host that provides root accesses, such as input/output services.

Another example is that an unblocked actor is live if it can create root actors. All

these factors affect the design of distributed actor garbage collection. By applying

the resource access restrictions to actors, the live unblocked actor principle may

not be true — not every actor has references to the root actors, and potentially

live actors can be garbage. Thus they can change the semantics of actor garbage

collection.

From the perspective of actor garbage collection, the only interest of the se-

curity model is whether an actor is able to access a root through any reference,

including any persistent reference 11. For example, an actor may directly obtain a

persistent reference to the local output service while it is created. We said that an

actor is fully restricted if it does not have any persistent reference to any root, nor

11A persistent reference is one which can be obtained through actor migration to a remote
computing host or actor creation in a local computing host. The persistent reference cannot be
deleted while the actor holding the reference is in the computing host where the actor obtains the
persistent reference.
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can it obtain such persistent references through actor migration or actor creation.

Actors which are not fully restricted are equal to those following the live unblocked

actor principle. Notice that the set of active garbage is a subset of fully restricted

actors.

Actor migration can be used for runtime system reconfiguration, which can

help dynamic load-balancing. It is preferable to have the ability to collect mobile

active garbage and the middleware support of automatic actor migration in today’s

grid or pervasive computing environments — the ability to collect mobile active

garbage can save computing power while the middleware support of automatic actor

migration can potentially improve total execution time of an application. Without

program analysis techniques, a possible solution to support both of them is to guar-

antee these mobile actors to be always fully restricted. This can be done by only

migrating actors among sandbox computing hosts that do not provide any persistent

reference.

8.2.2 Large-Scale Applicability

Testing the distributed actor garbage collection algorithms by using more ap-

plications in large-scale distributed environments is necessary to further evaluate

scalability and performance. The experimental results confirmed that the proposed

distributed actor garbage collection algorithms can scale to hundreds of processors.

Our next goal is to test it on a distributed environment, consisting of thousands of

processors which are connected by a wider area network. Furthermore, streamlining

the implementation of the local reference passing mechanism should be a priority

for efficiency.

8.2.3 Extension of the Distributed Snapshot Algorithm

The thesis only considers the live unblocked actor principle for the distributed

snapshot algorithm. We conjecture that the computing model of the distributed

snapshot algorithm can support a system without the live unblocked principle by

only adding a new set of roots, which is a subset of the pseudo-root set, PS. How-

ever, unblocked actors with migration ability must be considered as roots, or must
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be temporarily immobile while taking a snapshot. Otherwise, they are hard to de-

tect and may cause a race condition — no actor gets collected because the snapshot

algorithm cannot capture the migrating actors even though the migrating actors

are active garbage. Similar problems can happen for actor creation because ac-

tive garbage may keep creating garbage actors. To conclude, precisely specified

privileges of actors (or applications) are required to collect active garbage by the

proposed distributed snapshot algorithm.

A possible solution to extend the distributed snapshot algorithm is: 1) to

treat all mobile unblocked actors as roots (pseudo-roots) and 2) to forbid actors

creating root actors arbitrarily. There are two advantages of this solution. First, it

is still non-intrusive. Second, it is correct if there exists any possibility that an actor

can obtain persistent references through actor migration. However, the first rule of

the solution precludes the ability to collect active garbage even though actors only

migrate among sandbox computing hosts which do not provide any persistent root

references.

Another possible solution to extend the distributed snapshot algorithm is to

make the algorithm intrusive — the ability of actor migration is restricted while

taking a snapshot, and arbitrary root actor creation is forbidden as well. Newly

created actors can be ignored. If an actor exists in the actor system before the

global snapshot procedure starts, it must be selected for local state monitoring even

though it is currently migrating to another computing host. To record the global

snapshot correctly, two approaches can be used. The first approach is to maintain

a snapshot of the migrating actor in the original computing host before the actor

migrates, and the migrating actor cannot perform any mutation operation (including

migration) unless the original computing confirms that the actor is no longer under

local state monitoring. The second approach is to prolong the required time of

taking a global snapshot until all migrating actors finish actor migration. Those

newly migrated actors cannot perform any computation unless they are put into

some actor groups for local state monitoring. Actor migration must be temporarily

denied while taking a global snapshot.
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8.2.4 Using Static Analysis for Actor Garbage Collection

Static program analysis enables the possibility to collect active garbage even

if the application runs on a computing environment with the live unblocked actor

principle. For example, actors that do not use any of the persistent references are

candidates for active garbage. Furthermore, static program analysis can detect some

simple scenarios of distributed infinite loops among actors that cannot potentially

use any of the persistent references. In such case, those actors can be reclaimed

(terminated) immediately. Static program analysis can also identify the static refer-

ential relationship among different types of actors, which can be potentially used to

infer the runtime referential relationship. The master-worker application is a typi-

cal example — the worker types of actors are garbage if the master types of actors

become garbage.
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