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ABSTRACT

Cloud computing brings significant benefits for service providers and service

users because of its characteristics: e.g., on demand, pay for use, scalable computing.

Virtualization management is a critical component to accomplish effective sharing

of physical resources and scalability. Existing research focuses on live Virtual Ma-

chine (VM) migration as a VM consolidation strategy. However, the impact of other

virtual network configuration strategies, such as optimizing total number of VMs for

a given workload, the number of virtual CPUs (vCPUs) per VM, and the memory

size of each VM has been less studied. This thesis presents specific performance

patterns on different workloads for various virtual network configuration strategies.

We conclude that, for loosely coupled CPU-intensive workloads, memory size and

number of vCPUs per VM do not have significant performance effects. On an 8-CPU

machine, with memory size varying from 512MB to 4096MB and vCPUs ranging

from 1 to 16 per VM; 1, 2, 4, 8 and 16VM configurations have similar running time.

The prerequisite of this conclusion is that all 8 physical processors be occupied by

vCPUs. For tightly coupled CPU-intensive workloads, the total number of VMs,

vCPUs per VM and memory allocated per VM become critical for performance.

We obtained the best performance when the ratio of total number of vCPUs to

processors is 2. Doubling memory size on each VM, for example from 1024MB to

2048MB, brings at most 15% improvement of performance when number of VMs is

greater than 2. Based on the experimental results, we propose a framework and a

threshold-based strategy set to dynamically refine virtualization configurations. The

framework mainly contains three parts: resources monitor, virtual network configu-

ration controller and scheduler, which are responsible for monitoring resource usage

on both virtual and physical layers, controlling virtual resources distribution, and

scheduling concrete reconfiguration steps respectively. Our reconfiguration approach

consists of four strategies: VM migration and VM malleability strategies, which are

at global level, vCPU tuning and memory ballooning, which are at local level. The

strategies evaluate and trigger specific reconfiguration steps (for example, double the

vii



number of vCPUs on each VM) by comparing current allocated resources and cor-

responding utilizations with expected values. The evaluation experimental results

of threshold-based strategy show that reconfiguration in global level works better

for tightly coupled CPU-intensive workloads than for loosely coupled ones. Local

reconfiguration including dynamically changing number of vCPUs and memory size

allocated to VMs, improves the performance of initially sub-optimal virtual network

configurations, even though it falls short of performing as well as the initially optimal

virtual network configurations. This research will help private cloud administrators

decide how to configure virtual resources for a given workload to optimize perfor-

mance. It will also help service providers know where to place VMs and when to

consolidate workloads to be able to turn on/off Physical Machines (PMs), thereby

saving energy and associated costs. Finally it let service users know what kind of

and how many VM instances to allocate in a public cloud for a given workload and

budget.
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1. Introduction

Cloud computing brings significant benefits for both service providers and

service users. For service users, they pay the computing resources only on demand

and without worrying about hardware, software maintenance or upgrade. For service

providers, with VMs, they can shrink or expand the utilization of physical resources

based on workloads’ requirements. Therefore, it is possible for providers to make

higher profit without affecting users’ satisfaction.

Thus, it is worthy to investigate more deeply into adaptive virtual network

management techniques. A high ratio of VMs to PMs enables sharing of resources

yet guaranteeing isolation between workloads. In contrast to physical resources,

VMs provide dynamic control on their system settings, i.e., vCPUs, virtual mem-

ory. It is possible to reallocate resources for each VM when necessary. Mature

virtualization infrastructures, like Xen and VMware, provide resource modulation

on VMs. For example in Xen, you can statically set memory size, number of vCPUs

for each VM in the configuration file when starting a VM; you can also change these

settings for a specific VM during runtime.

Although it is known that resource reallocation is possible in virtual infras-

tructure, no specific data shows how these settings impact workloads’ performance.

In previous preliminary paper [28], we studied the impact of VM granularity (which

affects VM/PM ratio) on two categories of workloads. Our performance evaluation

indicated that, for tightly coupled computational workloads, VM granularity indeed

affects the performance significantly; by contrast, the impact of VM granularity on

the performance of loosely coupled network intensive workloads is not critical. This

thesis continues the research on the impact of VM granularity on performance but

also considers the impact of different virtual network configurations, namely, the

number of vCPUs per VM and the allocated virtual and physical memory to each

VM. In other words, we tackle the following problem: given a class of workload,

what kind of virtual network configuration (i.e., number of VMs, number of vCPUs

per VM, memory size of each VM) optimizes the workload’s performance and the

1
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utilization of physical resources?

Once we get the concrete relationship between the virtual network configu-

rations and workloads’performance, it is good to build a real-time middleware to

monitor and reconfigure the virtualization settings of a cloud environment. Such

kind of middleware would benefit both public cloud providers and private cloud

owners a lot by providing better performance and resource utilizations than a static

configuration.

1.1 Cloud Computing

Cloud computing is an emerging distributed computing paradigm that promis-

es to offer cost-effective scalable on demand services to users, without the need for

large up-front infrastructure investments [3]. Through the use of virtualization,

cloud computing provides a back-end infrastructure that can quickly scale up and

down depending on workload [2].

From the view of users, it has the following outstanding advantages:

• Enable users to access data everywhere.

• Provide on-demand services.

• a more reliable and flexible architecture, more chances to guarantee QoS.

Ian Foster et al. give a more detailed definition for cloud computing [8]. They

also gives a comprehensive introduction and comparison for cloud computing and

grid computing, which helps people to get a better understanding about these two

paradigms. Kondo et al. give a quantified cost-benefits comparison between cloud

computing and desktop grids application, which also helps make a more clear view

of cloud [13].

All the organizations are impressed with the computing, storage and all such

powerful abilities of cloud computing systems. However, cloud computing is not

a universal method or architecture. It may give a low performance under some

inappropriate virtual configurations. The main disadvantages can be summarized

as follows:
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• It is hard to evaluate exactly how many compute instances, what kind of

instance and how many data transfers will be needed.

• The coordination between different virtual machines may degrade the perfor-

mance.

• In workloads’ level, it is nontrivial to separate the data into independent data

set.

• For individual customer or some small group, it is still very expensive to use

the public cloud computing services.

The first part in this thesis is aiming to overcome the above shortcomings and

give some light to both service providers and service users to make better use of

cloud computing.

1.2 Virtual Network Configurations

The virtual network configuration includes four parts: (1) VM migration (2)

VM malleability (3) vCPUs tuning and (4) memory ballooning.

A lot of work and research has been done on VM migration [9], [15], [24]. By

definition, it means migrating a VM from one host machine to a target machine,

aiming to make a good use of the physical resources in the whole environment and

improve performance for upper applications.

VM malleability referring to VMs split and merge, is more complex than vC-

PUs tuning and memory ballooning. Given a workload, an initial number of VMs

will be assigned to run it. To do VM splitting, we have to move parts of tasks to new

VMs; to do VM merging, we have to consolidate the sub tasks. It is easy to do VM

split and merge for loosely coupled workloads because the subtasks are relatively

independent between each other; and you can move them to anywhere you want.

For tightly coupled workloads, we have to consider the communication, the connec-

tion between subtasks; and promise the tightly coupled, frequently communicated

subtasks would move to the same VM. Therefore, this procedure will more or less

influence the workloads’ performance. The VM number controller in our framework
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will check whether there is any VM malleability instruction for every 1% work done

and it will execute above refining procedures if yes. The framework will consider to

consolidate more relative subtasks together onto the same VM.

For each VM, the number of virtual CPUs (vCPUs) and virtual memory size

are configurable. vCPUs tuning means to increase or decrease the number of vCPUs

of VMs; memory ballooning means expand or shrink the allocated memory size of

VMs. We have to specify the maximum number of vCPUs and maximum size

of virtual memory the VM could have in the configure file. Xen provides special

commands, ’vcpu-set’ and ’mem-set’, to change vCPUs and memory size at all

times including application run time; the only restriction is that the new vCPUs

number and memory size can not exceed the corresponding maximum values in the

configure file.

This thesis is organized as follows. Chapter 2 describes the impact of virtu-

alization strategies on performance. The autonomous framework to implement VM

malleability is proposed in Chapter 3. Chapter 4 describes the virtual machine re-

configuration strategies to dynamically and autonomously adjust the virtual network

configurations. In Chapter 5, we evaluate the performance evaluation of the strate-

gies described in Chapter 4. Related research is discussed in Chapter 6. Finally,

Chapter 7 concludes the thesis and discusses future work directions.



2. Impact of Virtualization on Cloud Computing

Performance

This chapter aims to find the relationship between virtual network configura-

tion strategies and performance of categories of workloads. We have built a testbed

for experimentations, performance evaluation, and strategies defining for virtual

network configurations.

2.1 Testbed Setup

In order to minimize the influence of other factors, for example bandwidth,

and to concentrate on the relationship between the virtual and physical layer, we

deploy most of out experiments on one server machine. The server is equipped with

a quad-processor, dual-core Opteron. The Opteron processors run at 2.2GHz, with

64KB L1 cache and 1MB L2 cache. The machine has 32GB RAM. The hypervisor

is Xen-3.4.1 and the operating systems of the VM instances are Linux 2.6.18.8 and

Linux 2.6.24-29.

2.2 Workloads

We study three different categories of workloads: the first one is Stars Distance

Computing, a loosely coupled CPU-intensive workload; the second is Heat Distribu-

tion problem, a tightly coupled CPU-intensive workload. They are both developed

in SALSA [26], using actors[1] to perform distributed sub tasks. Load-balancing is

taken into account in our experiments such that each actor is responsible for the

same amount of work. We also give a brief analysis for a loosely coupled external

network-intensive workload - a Web 2.0 system. Table 2.1 shows the corresponding

categories of the three workloads.

2.2.1 Stars Distance Computing

The goal of this problem is to analyze three-dimensional data from the Sloan

Digital Sky Survey, in particular, stars from the MilkyWay galaxy. The program

5
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Table 2.1: Categories of workloads
Stars Heat Web 2.0 System

Loosely Coupled
√ √

Tightly Coupled
√

CPU-Intensive
√ √

Network-Intensive
√

computes the closest and farthest neighbor stars, which are the set of pairs of stars

that minimize and maximize pairwise distance respectively; the ideal hub stars,

which minimize the maximal distance to any other star; the ideal jail stars, which

maximize the minimal distance to any other star and the ideal capital stars, which

minimize the average distance to all other stars.

In this problem, each actor is responsible for computing a certain number

of stars and it holds the immutable data it needs, and therefore the actors are

independent from each other.

2.2.2 Heat Distribution

This problem simulates heat distribution on a two-dimensional surface. Sup-

pose the surface is a square grid and it has some size (for example, 122 by 122). The

initial temperature is 100 degrees for some coordinates (for example, {(y, 0)|30 <

y < 91}) and 20 degrees for all other points in the surface. The temperature for

a grid element at a given time step is the average of the grid element’s neighbors

at the previous time step (boundary elements remain constant over time.) This

workload simulates heat transfer for certain time steps to approximate equilibrium

temperatures.

In this problem, each Actor is in charge of specific sub blocks of the grid and

all the Actors have to communicate with others to get the neighbor temperatures

to update their boundary elements.

2.2.3 Web 2.0 System

The web system is built as a distributed system and serves to process continu-

ous requests from clients. Since the server nodes in the system are independent from

each other, the web system is a loosely coupled external network intensive workload.
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2.3 Benchmark Architecture

Figure 2.1 shows the architecture of our performance evaluation system. We

use Xen as our virtual machine manager. The virtual network configuration con-

troller is responsible for dynamically controlling and refining the total number of

VMs , vCPU number per VM and memory size allocated to each VM . The resource

usage monitor, running on both virtual and physical layers, periodically collects

CPU, memory consumption information.

PM1 PMn...PM2

Virtual Machine Manager

VM1 VMmVM3VM2 VM4 ...

Virtual Network 

Configuration Controller

Resource Usage

Monitor

CPU 

Measurer

Memory 

Measurer

Workload

Figure 2.1: Benchmark architecture

2.4 Experimental Design

The overall objective of our experiments is to quantify the slowdown or im-

provement of a given workload when the virtual network configurations are changed

in a fixed physical environment. Private cloud owners, service providers and service

users will all benefit from our experiments. Private cloud owners have the rights

to change virtual network configurations at any time. They will benefit by knowing

how to configure and place VMs for limited physical resources, when to consolidate

VMs to be able to turn off servers to save energy without effecting performance.
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Service providers will benefit by knowing the proper time and way to consolidate

VMs, thus to maximize profit but still keeping well-provisioned VMs to guarantee

service quality. finally Service users will know what kinds of (for example, small,

or large? high-memory or high-CPU?) and how many VM instances maximize a

workload’s performance under a given budget.

In order to find out the answers, we conduct overlapping experiments on the

workloads with different virtual network configurations:

• VMs and vCPUs

In this experiment, we make the memory size on each VM as a constant,

change total number of VMs from 1 to 16 and change vCPU number of each

VM from 1 to 16. We collect the workloads’ performance on every pair of VMs

and vCPUs per VM.

• VMs and virtual memory size

Similar to the first experiment, we make the vCPU on each VM as a constant,

for example 4, but change total number of VMs from 1 to 16 and change virtual

memory from 512MB to 4096MB. We collect the workloads’ performance on

every pair of VMs and Virtual Memory per VM.

• vCPUs and virtual memory size

Last, we make total number of VMs in our experimental environment as a con-

stant, for example 4, change vCPU and memory size on each VM as previous.

We collect the workloads’ performance on every pair of vCPU and Virtual

Memory setting.

2.5 Results and Analysis

Our experimental results show that for loosely coupled CPU-intensive work-

loads, the number of vCPUs and memory size have no significant impact on perfor-

mance. The prerequisite is the total number of vCPUs has to be greater than or

equal to the physical processors. For tightly coupled CPU-intensive workload, the
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virtualization settings become critical for performance. For loosely coupled network

intensive workloads, VM consolidation could be more efficiently applied.

2.5.1 Loosely Coupled CPU-Intensive Workload

Figure 2.2 shows the performance change on different number of VMs with

different number of vCPUs per VM. When the total number of vCPUs is less than

the number of physical processors, either increasing number of VMs or number

of vCPUs per VM will reduce the running time significantly; increasing number

of vCPUs of VMs alone cannot bring down running time as quickly as increasing

number of VMs.

After physical processors are all occupied, increasing number of VMs or vCPUs

per VM has no significant influence on performance. Instead, too many vCPUs (the

total number of vCPUs is greater than the number of actors) will decrease the

performance.

Performance on different number of VMs and different memory size of each

VM shows in Figure 2.3. In this experiment, we fix the number of vCPUs on each

VM as 4. Figure 2.3 indicates that adding VM instances or allocating more virtual

memory to each VM will not necessarily improve performance. On the contrary,

it may raise VM configuration exceptions and cause a downtime if servers do not

have enough physical memory to allocate. In our experiment, memory becomes a

bottleneck when number of VMs gets to 8.

Next, we will investigate how different number of vCPUs and different size of

memory per VM affect the performance of loosely coupled CPU-intensive workloads.

We fix the number of VMs in our environment as 4, Figure 2.4 presents the results.

The results indicate that allocating larger memory to VMs will not necessarily

improve performance; or we can say that smaller memory size of each VM will

not worsen performance. Adding more vCPUs per VM after all physical CPUs are

occupied is not workable either. It will worsen performance on the contrary, though

just a little bit.

For loosely coupled CPU-intensive workloads, we conclude that enough num-

ber of VMs or vCPUs has to be guaranteed to fully utilize physical processors.
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Figure 2.2: Performance of Stars running on different vCPUs, VMs
settings (512MB memory per VM

However, small number of VMs with large number of vCPUs per VM is not pre-

ferred since it cannot produce the best performance. The memory size allocated

to VMs, as long as it is enough to run the workloads, basically has no impact on

performance. CPU utilization is the main determining factor on performance.

These valuable results provide an important reference for both service provider-

s and service users in cloud environments. For service users, if the workload is loosely

coupled CPU-intensive, it is waste of money to request high-memory or high-CPU

instances. It is more worthy to request more VMs. Service providers will benefit

by knowing where, when and how to place VMs: first, the administrators need to

guarantee all physical processors will be occupied when place or consolidate VMs;

second, consolidation is only feasible when memory is enough. Private cloud owners

can learn how to configure virtual resources from the results for the loosely coupled



11

Figure 2.3: Performance of Stars running on different VMs, virtual mem-
ory settings (4vCPUs per VM)

computational workloads. First, ensure that the ratio of vCPU to CPU is greater

than 1 to guarantee a good performance; second, shrink memory to save energy and

resource consumption is feasible.

2.5.2 Tightly Coupled CPU-Intensive Workload

We also conduct three different but overlapping experiments on Heat Distri-

bution workload. The virtual memory on each VM is fixed to 1024MB. Figure 2.5

shows the performance change on different number of VMs and vCPUs. Different

from loosely coupled CPU-intensive workload, there exists a specific configuration

to obtain the best performance.

We assign equal amount of actors to each VM for this workload. The actors

first compute new temperatures for their own responsible scope, then communicate

with other surrounding actors to update the boundary. The number of VMs becomes

critical. Less VMs means more intense CPU competitions between actors on the
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Figure 2.4: Performance of Stars running on different vCPUs , virtual
memory settings (on 4VMs)

same VM; more actors per VM means more memory needed to save intermediate-

data. As a result, the computation step of each actor will become slow, such slow

computation plus limited memory will further influence the next communication

step; then slow communications between actors will affect the next computation

step in return. In one word, a high ratio of actors to VMs is dangerous because

it will lead to a very low performance. For example, in our experiment when we

have 2 VMs, no matter how many vCPUs per VM we have, running time is always

very long, even hang-up. Too many VMs or to say a low ratio of actors to VMs is

also inadvisable. In such case, context switching will become bottleneck because of

more communication between different VMs needed. For vCPU setting, it is also

not trivial. Less vCPUs per VM can not make full use of physical CPUs but more

vCPUs will make actors unable to fully utilize vCPUs. In our experiment, when

setting the total number of vCPUs 2 times physical processors, it presents the best
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running time.

Figure 2.5: Performance of Heat running on different VMs with varied
number of vCPUs (1024MB memory per VM)

The goal of this experiment is to investigate the impact of different number of

VMs and different memory size per VM on workloads’ performance. To get rid of

the influence of CPU, we set the number of vCPUs on each VM as 4. Thus, no idle

physical processors exist in this serial of experiments.

Figure 2.6 indicates the relationship between number of VMs and memory

size per VM is subtle. Higher memory size per VM is generally better except when

number of VMs in the environment grows. The performance improvement caused

by increasing memory size is inconsequential, especially when the number of VMs

reaches to a certain extent. For example, in our experiment when VM number is

greater than 2, performance improvement by only increasing virtual memory on
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every VM has been around 10%.

Memory becomes a bottleneck when the number of VMs is small. Less VMs

means more actors per VM thus more memories are needed for a VM to save all da-

ta and intermediate-results. The graph shows that 2 VMs with 512MB or 1024MB

memory per VM results in very bad performance, several times worse than other

configurations; allocating more memory to each VM to 2048MB or larger, the run-

ning time will decrease to some ideal point. However, keeping a large memory for

every VM is not reasonable either. The reasons are as follows. First, as number of

VMs grows, memory size becomes uncritical and performance improvement is not

significant by increasing memory size on VMs; second, creating new VMs becomes

unworkable due to lack of free physical memory; last, a VM with large memory

is not recommended for migration. In our experiment, when we have 8 VMs, the

largest memory we can allocate to each VM is 2048MB; while when having 16 VMs,

the largest memory can be allocated is 1024MB.

In a word, it is safe to allocate a large memory on each VM; but when number

of VM grows, memory ballooning would be needed in order to keep reasonable

performance.

The last experiment is about the impact on workloads’ performance when

given different number of vCPUs and different virtual memory size on every VM.

We set the total number of VMs in the system as 4 and the results show in Figure

2.7. As mentioned before, running time becomes really long if the number of vCPUs

per VM is small, especially when memory size of VMs is also small. This is because

all actors will fall into a vicious circle due to low CPU utilization but high memory

consumption. In such case, either larger memory size or more vCPUs per VM will

make a improvement.

Figure 2.7 also presents we can find a configuration strategy to give the best

performance. In this experiment, 4 vCPUs per VM give the best performance if

given the same size of memory on VMs. More vCPUs will bring down performance

because of the increased context switches.

Our experimental results provide a transparent way for service users to know

what kind of instances they need for tightly coupled CPU-intensive workloads. Given
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Figure 2.6: Performance of Heat running on different VMs with varied
virtual memory size (4 vCPUs per VM)

cost budget, large VM instances will not necessarily give better performance; it may

not as effective as to request more small instances. Service users should avoid the

peek area as shown in our graph. Public cloud providers will benefit by knowing

where and how to place and consolidate VMs from the results. Same as before, the

administrators need to guarantee all physical processors will be used. Besides, they

also need to try not consolidating the VMs with large memory together. As for

private cloud owners, they can learn how to configure virtual resources for tightly

coupled CPU-intensive workloads. Since the relationship between number of VMs,

number of vCPUs per VM and the memory size of VMs is subtle, the private cloud

owners have to balance between the configuration strategies. Small number of VMs

with small number of vCPUs and small size of memory of each VM should always

be forbidden. The number of VMs should be the first thinking in order to stay clear

of the peak. Higher memory per VM is generally better but the improvement is not
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Figure 2.7: Performance of Heat running on different vCPUs and virtual
memory settings (on 4VMs)

significant. If large number of VMs is needed, the administrator should consider to

shrink the memory size on VMs.

2.5.3 Loosely Coupled Network-Intensive Workload

Figure 2.8 shows that VM granularity is not critical for performance of loosely

coupled network intensive workloads. It is easy to infer that the VM configurations

will not have significant influence on performance either. Therefore consolidation

would be more effectively applied for this category of workloads.

2.6 Resource Usage

In order to develop autonomous controllers for refining number of VMs, num-

ber of vCPUs and virtual memory size, we need to understand and solve following

key problems:
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Figure 2.8: The impact of VM granularity on network-intensive work-
load’s performance (results from [28])

• When do we need to reconfigure virtual resources?

Performing reconfiguration dynamically is not trivial, especially for VM mal-

leability. The actors have to be redistributed to new VMs. Live migration,

which will cause a down time [27] during execution, may be needed when

number of VMs grows or shrinks. Therefore, it is unreasonable to change the

virtual configuration constantly because it will degrade performance instead

of improving. To avoid changing settings back and forth, we need to find the

proper time to perform the reconfiguration.

• How to module or control virtual resources?

Even if we have already known the best time to make a change, what specific

and effective steps do we need to do? In some cases, allocating more vCPUs

is better to have more VMs since it can obtain a reasonable performance but

avoiding migration cost. While some times, creating or consolidating VMs is

a must to keep applications running. Virtual memory is another important

factor needed to consider when performing malleability. There is a subtle

relationship between different settings and performance. We need to find or
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create a module to proceed malleability.

• What is the impact of configuration changes on performance?

We have mentioned above, no matter vCPU or virtual memory adjusting or

VM number changing, they are not trivial. The aim of virtual network re-

configuration is to obtain benefits for both service provider and service user,

but unavoidably, such modulation on virtual resources also bring negative in-

fluence on performance. We need to understand the quantitative relationship

between without and with performing malleability.

To solve above problems, we need to analyze resources usage on both virtual

and physical layer. We developed a sub-module, Resource Usage Monitor which

runs on both PMs and VMs, to collect CPU and memory statistics during work-

loads’ execution. These statistics were collected and measured from the /proc file

system, during that 10ms interval. All experiments were repeated five times for

average usage. In our experiments, we collected the usage statistics on all kinds of

configuration strategies. However, we cannot present all of them here due to limited

space. We choose some typical settings which can sufficiently express the inside key

points.

2.6.1 Resource Usage of the Stars Workload

Figure 2.9 displays the measured CPU usage on 4 VMs when the VMs are

given different number of vCPUs.

In Figure 2.9(a), CPU utilization stays at 100% for a long time and is relatively

high during other time intervals. This demonstrates the VMs have a heavy workload

for low number of vCPUs configurations (i.e. 1vCPU per VM in our experiments).

In Figure 2.9(b), Figure 2.9(c) and Figure 2.9(d), the vCPUs are not as busy as Fig-

ure 2.9(a). But the throughput is relatively low for high number of vCPUs per VM

configurations; take Figure 2.9(d) for example, the CPU utilization is less than 20%

during a long time interval and only get 100% at some time points; the throughput

is lower when having 16 vCPUs per VM. Though we have low throughput for high

number of vCPUs configurations, the work load for each vCPU becomes relatively
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(a) 1vCPU (b) 2vCPU

(c) 4vCPU (d) 8vCPU

Figure 2.9: CPU usage of Stars on different vCPUs settings

light. That is why we get similar performance for different number of vCPUs virtual

configurations.

Service providers and private cloud owners should avoid the heavy CPU load

situation and make sure the physical processors are all occupied by the VM instances.

For service users, they will learn that the VM instances with multi-processors will not

necessarily bring better performance given loosely couple computational workloads.

The key here is the throughput of the CPUs.

In Figure 2.10, we demonstrate the memory usage (by percent) on 4 VMs

given different memory size to each VM.

Figure 2.10(a) has a relatively high memory utilization, greater than 40% for

most time. The utilization in Figure 2.10(b), which has a much larger memory

on every VM, falls into a very low utilization (< 10%). For the loosely coupled

computational workloads, no more additional memory is needed during runtime

once all data are loaded into memory at the start. Increasing memory size for each

VM thus will not bring any improvement on performance. It is a waste to allocate

large memory size for VMs.
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(a) 512MB Virtual Memory Size per VM (b) 4096MB Virtual Memory Size per
VM

Figure 2.10: Memory usage of Stars on different virtual memory settings

Figure 2.10 helps private cloud owners to know when memory ballooning is

needed: generally, high memory utilization means ballooning up is needed and low

utilization means memory ballooning down is needed. Service providers will benefit

by knowing how to consolidate VMs based on memory utilization: for example, con-

solidating the workloads of low memory consumption and high memory consumption

together will improve resource utilization but without influencing performance. The

results also let service users know that simply going for high-memory instances are

waste of money for loosely coupled computational workloads.

We have discussed the resource usage on different vCPU and virtual memory

VM configurations. Given fixed number of vCPUs and memory size per VM, what

kind of resource utilization we will have for different number of VMs? Figure 2.11

shows the corresponding CPU, memory utilization on 4 VMs and 8 VMs respectively.

They have similar CPU and memory utilization. Here it tells us that double

the resources (including CPU, memory) for loosely coupled computational workloads

will not necessarily improve performance, not even to speak double the performance.

2.6.2 Resource Usage of the Heat Workload

In our experiments, we collect CPU and memory usage statistics on all config-

urations. we cannot present all of them here due to limited space. We choose some

typical settings which can sufficiently express the inside key points.

Figure 2.12 displays the measured CPU usage on 4 VMs and each VM has

different number of vCPUs.
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(a) CPU utilization on 4VMs (b) CPU utilization on 8VMs

(c) Memory utilization on 4VMs (d) Memory utilization on 8VMs

Figure 2.11: CPU and memory usage of Stars on different VMs settings

(a) 1vCPU (b) 4vCPU

(c) 8vCPU (d) 16vCPU

Figure 2.12: CPU usage of Heat on different vCPUs settings
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In Figure 2.12(a), we can see that CPU utilization is high (> 90%) for almost

all the time. The utilization is generally less than 30% in Figure 2.12(d). This

demonstrates the VMs have a very high load for low number of vCPUs settings (i.e.

1vCPU per VM in our experiments) , but have a low throughput for high number

of vCPUs setting (16vCPUs per VM in our experiments). Figure 2.12(c), which has

8vCPUs per VM has better CPU utilization than Figure 2.12(d), but is still not

efficient enough. Figure 2.12(b), the 2vCPUs per VM setting is the best one among

others. It has a reasonable utilization (> 60%), not high as Figure 2.12(a) and also

not low as 8vCPU or higher setting. 2vCPUs per VM setting is not showing here.

It has very similar utilization with Figure 2.12(b).

These resource consumption data can help service providers and private cloud

owners know when they need to change their virtualization strategies. If CPU uti-

lization is very high during some time interval, private cloud owners should consider

to add more vCPUs for each VM; service providers may need to guarantee no more

CPU competition will come. On the other hand, if CPU utilization is very low in a

time interval, for private cloud owner, it is better to decrease the number of vCPUs;

for service providers, consolidation is feasible in order to save energy.

In Figure 2.13, we demonstrate the memory usage (by percent) on 4 VMs

given two different memory size of each VM.

(a) 512MB (b) 4096MB

Figure 2.13: Memory usage of Heat on different virtual memory settings

Figure 2.13(a) has a relatively high memory utilization, greater than 60% for

most time; The utilization in Figure 2.13(b), which has a much larger memory on

every VM, falls into a very low level (< 20%). As mentioned before, larger memory
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is generally better. However, to some extent it is a waste if the memory is too large.

Figure 2.13 helps private cloud owners to know the proper time for memory

ballooning. The first concern is the starting point in the graph: if memory utilization

is already high at the beginning, it is more likely we need to allocate a larger memory.

The second concern is the memory utilization during runtime: if it stays at a high

percentage, we need to allocate more memory to VMs. The results also let service

users know that large instances are waste of money in some cases.

We have discussed the resource usage on different vCPU and virtual memory

configurations. Given fixed number of vCPUs and memory size per VM, what kind

of resource utilization we will have for different number of VMs? Figure 2.14 shows

the corresponding CPU, memory utilization on 4 VMs and 8 VMs respectively.

(a) CPU utilization on 4VMs (b) CPU utilization on 8VMs

(c) Memory utilization on 4VMs (d) Memory utilization on 8VMs

Figure 2.14: CPU and memory usage of Heat on different VMs settings

First, memory is not a bottleneck in these two cases and they have similar

utilization. The 8VMs configuration has a better CPU utilization. It is also a

proven fact that it improves the performance about 15% by increasing VM number

from 4 to 8. Here it tells us we need to weight and balance between resource

and performance. We double the resources (including CPU, memory) but get 15%

rewards on efficiency.



3. Cloud Operating System Autonomous Framework

Virtualization yields many benefits into modern systems. Virtual machine mal-

leability, which can be cost or performance aware, brings more flexibility, efficiency

and transparency into the virtual environment. In this section we will present a

common framework to autonomously perform virtual network reconfiguration based

on profiled information.

Figure 3.1: Framework of autonomous virtual network reconfiguration

El Maghraoui et al. presented a framework for dynamic reconfiguration of

scientific application [16], [18] and [17]. In this thesis, we will focus on the dynamic

virtual network reconfiguration on lower level - Virtual Machines.

24
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To accomplish VM malleability, we limit workloads to be reconfigurable (mi-

gratable) distributed applications. We have mentioned in the introduction chapter,

VM malleability includes VM split and VM merge two directions. To split a VM,

we create new VMs and migrate part of the workload to the newly created VMs.

To merge VMs, we migrate the workload into a single VM and destroy the empty

VMs.

Figure 3.1 shows the common autonomous framework.

3.1 Scheduler

Scheduler is the most important part in the framework. It acts as a master

for all the other components. It gathers resource usage information from bottom

monitor module and accepts the VM malleability suggestions from the controller

layer; Moreover, it takes virtual network reconfiguration strategies and the SLAs as

input to make overall decision. After that, it calls the Controllers to perform their

corresponding work.

3.2 Virtual Machine Manager

We installed Xen virtualized server to provide virtualization in our environ-

ment. Nowadays, Xen itself provides dynamic reconfiguration on VM settings, like

vCPU number and memory size. Besides, Xen support live migration to dynamically

move one VM from a host machine to a target machine.

Our aim is to implement autonomous VM malleability, however Xen only

provides command-line interface to change the settings. This is not what we wanted.

We developed a module, called virtual machine manager to autonomously perform

virtual network reconfigurations. It is a simple wrapper which wraps Xen commands

into it meanwhile provides interface to upper level.

We use the commands vcpu-set to change vCPU number on VMs; use mem-set

to change the memory allocations. Each VM is configured with a maximum vCPU

number and memory size at the beginning. The virtual machine manager receives

instructions from upper controller to call the corresponding commands to change

resource configuration dynamically.
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3.3 Resource Usage Monitor

The resource usage monitor reads CPU and memory statistics from the /proc

file system on every VM and PM. Then it will calculate the corresponding utiliza-

tions and return them to the scheduler module.

This resource usage monitor module plays as a helper role for main compo-

nents. It helps to identify whether to perform virtual network reconfiguration based

on current resource status.

3.4 Virtual Network Configuration Controllers

We developed three resource controllers. They are independent from each oth-

er and are responsible for vCPU, virtual memory size and VM number adjustment

respectively.

They gather the information of resource usage from resource usage monitor

and determine new VM allocations (or configuration) for next reconfiguration peri-

od. The criteria for virtual network reconfiguration is established by the scheduler

module. The controller needs to get an affirmative reply from the scheduler to make

any change.

3.5 Interface to Public Cloud

This module is optional in the framework. It provides an interface to create

VMs in a public cloud, such as Amazon EC2. It is highly possible that our private

cloud is not enough to meet application execution requirements. In such case, our

scheduler will estimate how many public resources we need and create corresponding

VM images to request more VMs. The critical point here is the interrelation between

cost and increased performance from this.



4. Virtual Network Reconfiguration Strategies

Our experiments and collected data have proved that proper resource utiliza-

tion is key to performance. Therefore, it is possible to define a strategy set to trigger

virtual network reconfiguration autonomously by monitoring the resources utiliza-

tion on both virtual and physical layers. In this chapter, we will discuss a simple

but effective threshold-based strategy. The thresholds in the strategy set mean the

threshold of resource utilization. Table 4.1 shows the summary of our strategy set.

Actually, there is a preferred order for the four strategies, from global strategies

to local ones. The VM migration strategy usually comes to the first thought because

we want to achieve load balance in a cloud environment, so as to make better

use of the physical resources. For a given workload, the number of VMs is the

most important factor for performance. Therefore, having the right number of VMs

through VM malleability become our second thought. Then we go into the local

strategies. The order of vCPUs tuning and memory ballooning is depended on the

category of the workload. If it is CPU-intensive, vCPU tuning should be considered

first; if it is a memory-intensive workload, the memory ballooning should come first.

For the resources utilization of both virtual and physical layers, we define an

expectation value range for it, for example 70% − 80%. If the current resource

utilization goes into this range, the framework do nothing and the whole system

goes into a temporary stable status; if the resource utilization goes out of the range,

namely less than the minimum value of the range or greater than the maximum

value of the range, then the framework will be triggered to perform virtual network

reconfigurations.

4.1 VM Migration and Fine Tuning Strategy

The system strategy is based on the physical resource consumption data. It

helps to make the most correct virtual network reconfiguration direction at the

beginning.

Let Mt be the total memory size the servers have and Mo be the memory

occupied by operating system. Then Mr = Mt −Mo is the adjustable memory. Let

27
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Table 4.1: Overview of threshold-based strategy
Strategy Formula

VM Migration
Memory oriented CPU oriented
VMn → (migrate VMs),

if rM > rSME

VMn →,
if rC > rSCE

VM Malleability
Virtual Memory oriented vCPU oriented

VMn/2,
if µM < µEmin

& Mn
∼= Ml;

2VMn,
if µM > µEmax & Mn

∼= Mh

VMn/2,
if µV < µV Emin

& Vn ∼= Vl;
2VMn,

if µV > µV Emax & Vn ∼= Vh

Memory Ballooning
Stable State Fluctuate State
max(Ma(1 + dM),Mm),

if µM < µEmin
;

Ma +Mc,
if µM > µEmax

Mn + n×Mna(1 + d′M)

vCPUs Tuning
Va/2, if µV < µV Emin

;
2Va, if µV > µV Emax

Mv be the total memory size of all VMs, then the occupy rate of memory in the

system is

rM = Mv

(Mt−Mo)
.

We have another expectation value range for the system memory utilization,

define it as rSME. If rM < rSMEmin
, the minimum value of the range rSME, that

means we have enough free physical memory resource to distribute. We have proved

that more memory is generally better. In such case, we can allocate certain amount

of memory, say Mb, to each VM. If rM > rSMEmax , the maximum value of the

range rSME, the memory usage has been reaching the upper critical point. It is not

possible to allocate more memory on VMs, the only way we can do is to migrate the

VMs to some relatively idle physical machines to release the stress of current VMs.

The strategy for physical CPU resource is similar. We define an expectation

value range for CPU utilization rSCE and let rC be the CPU utilization we collect

from /proc files. If rC < rSCEmin
, the minimum value of the range rSCE, tuning

up vCPU number on each VM or creating more VMs is feasible; If vice versa,

rC > rSCEmax , the maximum value of the range rSCE, that means the server is

really busy with computing. We will definitely have a very high vCPU utilization.
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However, tuning up vCPU or creating more VMs will only make servers overburden

at this time. One solution is to migrate some VMs onto other idle servers or to

request VM instances in public cloud through the corresponding interface.

Another measure value of System Strategy is the average performance. Sched-

uler will calculate the average performance for the time interval when a new 1%

(configurable) of work loads finishes. If it is lower than expected (a history or

domain expert value), Scheduler will check the current resources throughput and

propose corresponding measures to improve performance. For example, it will con-

centrate on CPU utilization for loosely coupled computational workloads and make

it not to stay at 100% but also not very low; For tightly coupled CPU-intensive

workloads, it needs to make the resources utilization in a reasonable range and al-

locating new VMs is necessary if utilization is already rational. In a cloud system,

the administrators can get different performance and utilization results by setting a

loose or tight threshold.

4.2 VM Malleability Strategy

First, VM malleability means the ability to change the ratio of VMs/PMs

dynamically. VM malleability uses two procedures: VM split and VM merge. One

VM can be split to multiple VMs, and subtasks are migrated to the new VMs

accordingly. Multiple VMs can be merged to one VMs with the sub tasks also being

merged.

LetMl andMh be the lowest and highest memory size on each VM respectively.

Let Vl and Vh be the possible least and most vCPU number on each VM. These are

all empirical values obtained from previous experiments. Memory less than Ml will

cause JVM fails to run and more than Mh will influence future normal operations;

while vCPU number more than Vh and less than Vl will highly influence workload’s

performance.

In previous sections, we have discussed the strategies for memory ballooning

and vCPU tuning. VM number adjustment comes from after memory ballooning

and vCPU tuning fail to reach the expectation. That means the only thing we can

do is to adjust the total number of VMs. The strategy works as follows.
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Let VMn(t) be the total VM number in the system at time t. If µM is less than

µEmin
and Mn is already getting to the critical point Ml, then we need to decrease

the VM number VMn(t) to half on each VM; if vice versa, µM is greater than µEmax

and Mn is already getting to the critical point Mh, we will double the VM number.

While for vCPUs, if µV is less than µV Emin
and Vn is already getting to the critical

point Vl, then we need to decrease the VM number VMn to half on each VM; if vice

versa, µV is greater than µV Emax and Vn is already getting to the critical point Vh,

we will double the VM number.

To do VM malleability, the scheduler will check the output of the VM mal-

leability strategy when every 1% job has been done and send out VM splitting

or merging instruction (based on the strategy results) to VM number controller.

Meanwhile the scheduler will stop running the workload temporally and migrate

corresponding actors forward to new VMs or back to the same VM, and then re-

sume the execution. This modulation is also iterative. The Scheduler will check

memory and CPU utilization under the new configuration and take further adjust-

ment, either memory ballooning or vCPU tuning or VM number change based on

corresponding memory and CPU utilization.

In summary, the new number of VMs VMn(t+ 1) is defined as:

VMn(t+ 1) =

VMn(t)/2, ifµM < µEmin
∧Mn

∼= Ml

VMn(t)× 2, ifµM > µEmax ∧Mn
∼= Mh

(4.1)

if the virtual memory size is the most important factor for performance.

Or

VMn(t+ 1) =

VMn(t)/2, ifµV < µV Emin
∧ Vn ∼= Vl

VMn(t)× 2, ifµV > µV Emax ∧ Vn ∼= Vh

(4.2)

if the number of vCPUs per VM is the most important factor for performance.
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4.3 Memory Ballooning Strategies

We distinguish the cloud computing environment into stable condition and the

fluctuant situation. Here fluctuation indicates that new workloads come into the

system or existing workloads finish. The framework has to rearrange the resource

allocation in order to get to a temporary steady state. Under stable condition, the

strategy aims to bring all workloads to the ideal or optimum state.

Before entering the main body, let us define the new adjusted memory on each

VM as Ma(t + 1), a function of time t. Next we will discuss the corresponding

strategies in two different states.

4.3.1 Stable Condition

First we will discuss about memory ballooning in stable conditions, which

means the amount of workloads in the environment are immutable.

Let Ma(t) be the memory allocated at time t and Mu be the average usage for

current workload at some time, then

µM = Mu

Ma(t)

is the VM’s average memory utilization during the time interval. There is an expec-

tation value range for the memory utilization, define it as µE. After calculating µM ,

the Scheduler will check whether it is greater or less than the expectation value µE.

if µM is less than µEmin
, the minimum value of the range µE, that means now we have

low memory utilization and we need to shrink the memory on each VM. Here we

have another important parameter, the allowed deviation of needed memory, dM .

It is used to guarantee every VM has surplus memory to prevent out-of-memory

exception. Theoretically, the new memory size after shrinking would be

Ma(t+ 1) = Ma(t)× (1 + dM).

We also need to take the history memory usage values on each VM into con-

sideration. Let Mm be the maximum values of desired memory among all VMs in

the past, the actual new memory on each VM would be

Ma(t + 1) = Ma(t)× (1 + dM) if it is greater than Mm or Ma(t + 1) = Mm if

it is less than Mm.
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Next, we have to deal with the situation when µM is greater than µEmax , the

maximum value of range µE. In such case, the memory utilization is kind of high, we

need to allocate more memory for each VM to promise the smooth future execution.

Another parameter is needed to help with adjusting the virtual memory size.

Mc is an empirical constant to add upon current memory. Now the size of the virtual

memory on each VM should be Ma(t+ 1) = Ma(t) +Mc.

In summary,

Ma(t+ 1) =

max{Ma(t)× (1 + dM),Mm}, ifµM < µEmin

Ma(t) +Mc, ifµM > µEmax

(4.3)

4.3.2 Fluctuate State

Next, we will discuss the corresponding strategy in fluctuate state. When new

actors (new workloads or more actors added into the same workloads) arrives, the

system passes from steady state to fluctuate state. In such case, the memory on each

VM should be increased to let the new actors to fulfill their tasks. Let Mna be the

pre-defined memory size for each actor. Mna, which can be adjusted dynamically,

is an empirical value learning from history memory usage. Now the virtual memory

on each VM should be

Ma(t) + n×Mna × (1 + d′M),

where Ma(t) is the allocated memory at time t for each VM in steady state, n is the

number of new actors arrive into the VM, and d′M is the allowed deviation for new

actors (generally it is larger than dM).

4.4 vCPU Tuning Strategy

In this section, we will talk about the corresponding vCPU tuning strategies.

Here we don’t need to consider different environment states for vCPU tuning. First

we define the new vCPU number on each VM as Va(t+ 1), a function of time t.

Let Va(t) be the vCPU number specified on each VM for current workload, and

µV be the average CPU utilization during the time interval. There is an expectation
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value range for CPU utilization, define it as µV E. The Scheduler will check whether

µV is greater or less than the expectation value µE. If µV is less than µV Emin
, the

minimum value of the range µV E, that means now we have low CPU utilization

and we need to decrease vCPU number per VM. If µV is greater than µV Emax , the

maximum value of the range µV E, it means we need to add more vCPUs to share

the responsibility.

This adjustment is not a single-step but rather an exponential modulation

process. If µV is less than µV Emin
, we will decrease the vCPU number to half on

each VM; and double vCPUs if µV is greater. Next, the scheduler will check the

new CPU utilization after some time interval to see the whether it satisfies our

expectation. If yes, the scheduler will stop tuning vCPU for a moment; if no, the

scheduler has to continue tuning up or down the vCPU number by following the

”half” or ”double” rule. One prerequisite is that the vCPU number should not be

less than physical CPUs on all VMs.

In summary,

Va(t+ 1) =


Va(t)
2
, ifµV < µV Emin

Va(t)× 2, ifµV > µV Emax

(4.4)

The resource usage monitor continues to check µV .



5. Performance Evaluation

In this chapter, we will show how the threshold based strategy works to refine

the virtual network configurations. First we will apply this strategy to some simple

cases, for example, vCPUs tuning, memory ballooning for VMs and the mixed cases.

Next, we will test the strategy on VM merging and splitting and analyze whether

we can benefit from the adjustment. Last, we will apply the strategy on some more

complex cases, which may integrate vCPU tuning, memory ballooning, VM merging

or splitting, and VM migration together, sometimes even adjust these configurations

repeatedly. We will compare the cost and benefit by adopting this strategy into a

virtual system at workloads’ runtime.

5.1 Evaluation of Simple Scenario

In the simple scenario, we will deploy the threshold based strategy on dynam-

ically VM configuration changing, which includes changing the number of vCPUs,

the size of virtual memory on each VM.

5.1.1 Evaluation of vCPUs Tuning

The workloads for evaluating vCPUs tuning is Stars Distance Computing. In

the experiment, we set the number of VMs as 4 and the memory size of each VM

as 1024MB. Table 5.1 shows the performance of different vCPUs per VM.

The utilization of CPU is very high (100% for most tim) when we have only

1vCPU per VM. The Scheduler receives the CPU consumption from Resource Usage

Monitor and finds the average utilization is greater than the threshold; therefore,

vCPUs tuning instruction is passed to vCPU Controller. We can see from Table 5.1

that the new running time is shorter than 1vCPU per VM configuration but still

longer than 4vCPU one.

Table 5.1: Evaluation of threshold-based strategy on vCPUs tuning
the number of vCPUs per VM 1vCPU 2vCPUs 1vCPU→2vCPUs

running time 65.9s 37.5s 50s
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Table 5.2: Evaluation of threshold-based strategy on memory ballooning
the memory size per VM 512MB 1024MB 512MB→1024MB

running time 29.6s 22.5s 24.1s

Figure 5.1 shows the corresponding CPU usage on 1vCPU, 2vCPUs and au-

tomatic vCPUs tuning VM configurations. We can see that the CPU usage with

automatic tuning is between the 1vCPU and 2vCPUs settings. It accords with the

performance changing after vCPU tuning.

(a) 1vCPU (b) mix vCPUs (c) 4vCPUs

Figure 5.1: CPU usage on different vCPU settings

If we allocate a high number of vCPUs per VM, the Scheduler will send a vCPU

tuning down instruction to vCPU Controller because of low utilization (based on

the threshold we set in Scheduler). However, this adjustment will not bring any

performance improvement for loosely coupled workloads. The administrator can

avoid this kind of adjustment by changing the CPU utilization threshold. If the

workload is tightly coupled, for example Heat Distribution, we will get a better

performance from better CPU utilization by tuning up or down the number of

vCPU per VM.

5.1.2 Evaluation of Memory Ballooning

The workloads for evaluating memory ballooning Heat Distribution. In this

experiment, we set the number of VMs as 4 and the number of vCPUs of each VM

as 4. Table 5.2 shows the performance of different memory settings.

The utilization of memory is higher than our expectation (reasonable memory

usage threshold) for 512MB per VM setting. The Scheduler receives the memory

consumption from Resource Usage Monitor and checks available memory of the
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under PMs. If the PMs have enough memory to allocate, the Scheduler passes

memory ballooning instruction to Virtual Memory Controller to balloon up virtual

memory for each VM. We can see from Table 5.2 that the new running time is

shorter than 512MB memory configuration but still longer than 1024MB one.

Figure 5.2 shows the corresponding memory usage on 4VMs for 512MB, 1024M-

B and automatic memory ballooning VM configurations. We can see that the mem-

ory usage with automatic tuning is increasing at first then decreasing at the point

around 50%. The turning point happens when the virtual memory changes from

512MB to 1024MB for each VM.

(a) 512MB (b) mix memory (c) 1024MB

Figure 5.2: Memory usage on different memory settings

If the memory allocated to each VM is very large and thus have a very low uti-

lization, the Scheduler will send a memory ballooning instruction to Virtual Memory

Controller to reduce the memory size. The memory usage will first grow slowly then

increase sharply to a higher point and then grow slowly again. The first turning

point happens when virtual memory changes from a larger memory to a smaller one.

For tightly coupled CPU-intensive workloads, the performance will change following

the memory changes; the performance has no significant change for loosely couple

computational workloads. Therefore, the administrators can set a loose threshold

for loosely coupled workloads but set a tight threshold for tightly coupled workload-

s. In a summary, the administrator can get what they expect, for example better

performance, better utilization or a balance between these two by setting different

threshold in the Scheduler.
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5.1.3 Evaluation of VM Malleability

To evaluate the strategy on VM malleability, we run both Stars and Heat

workloads in our framework. In this experiment, Table 5.3 shows the performance

of different memory settings.

We set the number of VMs as 2, memory size as 512MB and number of vCPUs

as 4 for initial state of Heat workload. The performance under such virtual network

configurations is beyond our acceptable value range. Yet increasing memory size

or number of vCPUs will not improve performance significantly. The Scheduler

first checks whether the number of VMs is still lower than the highest expectation.

meanwhile it will also check whether there are enough resources in PMs by sending

request to Resource Usage Monitor. If reply is yes, Scheduler then sends a VM

splitting instruction to VM number Controller.

Next we set the number of VMs as 16, memory size as 1024MB and number of

vCPUs as 4 for initial state of Heat workload. The performance is bad under such

configuration and the resource usage is lower than the threshold we set. Decreasing

memory size or number of vCPUs per VM is not reasonable according to the history

data, it is better to merge the VMs.

For loosely coupled computational workloads, the purpose of doing VM mal-

leability is for energy saving or resources relief. The resource consumption does not

have a severe change for tightly coupled workloads, we have to set a very harsh

threshold in order to stimulate Scheduler. Table 5.3 shows that the running time

after splitting or merging is a little bit longer than the static configurations.

A noticeable thing here is: creating new VMs and migrating actors, which are

expensive than vCPU tuning and memory ballooning alone or together, will affect

the performance in some extent.

The evaluation results tell us that the threshold based strategy really works.

VM malleability is feasible here, especially for loosely coupled workloads though

the performance will be effected a little bit. Both private cloud owners and service

providers can benefit from this framework and strategy. Private cloud owners do not

need to spend a lot of resources and time on monitoring execution; they can control

the performance and resource utilization by adjusting threshold. Service providers
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Table 5.3: Evaluation of threshold-based strategy on number of VMs
Virtual Network Configurations Running Time (Heat) Running Time (Stars)

2VMs 114.8s 15.3s
2VMs→4VMs 53.4s 16.6s

4VMs 15.4s 15.5s
16VMs 27.8s 14.9s

16VMs→8VMs 24.0s 16.3s
8VMs 16.5s 15.4s

can benefit from consolidating VMs properly and timely: for example, suppose

we have 4VMs running for a loosely coupled workloads, consolidate another 4VMs

together will have no bad influence as long as the resources in the PMs are enough.

5.2 Evaluation of Complex Scenario

In this scenario, we concentrate our evaluation experiments on Heat workload

and we will see the performance and utilization change after virtual network con-

figurations modulating. The system will finally get to some relatively ideal point

through memory ballooning, vCPU tuning and VM malleability or even regulating

back and forth. We set the number of VMs as 2 and each VM has 4vCPUs, the

memory size of each VM is 512MB.

(a) CPU Usage (b) Memory Usage

Figure 5.3: CPU and memory usage of Heat on its initial state

Scheduler calculates the average performance of the first 1% tasks for the

initial state and finds it is in low efficiency. Thus, it asks Resource Usage Monitor

for the resources utilization. Figure 5.3 shows the CPU and memory usage for the

initial state. The CPU usage is high at the beginning but the slope of memory usage
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Table 5.4: Evaluation of threshold-based strategy for complex scenario
Virtual Network Configurations Running Time

2VMs with 4vCPUs and 512MB memory per VM 114.8s
Intermediate State (4→8vCPUs, 512→4096MB memory) 47.2s

2VMs with 8vCPUs and 4096MB memory per VM 18.1s
Final Stable State (2→4VMs, 8→4vCPUs, 4096→512MB memory) 29.3s

4VMs with 4vCPUs and 512MB memory per VM →8VMs 12.7s

line is steep. Thus the Scheduler will first send out memory ballooning instructions

and meanwhile allocate more vCPUs on each VM to make a better throughput.

The Scheduler keep trying and checking until it reaches a satisfied performance, in

this scenario, the virtual network configuration is 2VMs with 8 vCPUs and 4096MB

memory.

Figure 5.4 shows the CPU and memory usage when the performance gets to

some reasonable point. There is no significant improvement for CPU throughput.

The performance is not good enough though the new memory is enough. At this

point, the Scheduler will turn to split VMs, in this example, to 4VMs first; mean-

while, the Scheduler will also decrease memory size and number of vCPUs on each

VM. In this scenario, we get a perfect performance and resource utilization virtual

network configuration, that is 4VMs with 512MB memory and 4vCPUs of each VM.

(a) CPU Usage (b) Memory Usage

Figure 5.4: CPU and memory usage of Heat on its intermediate state

Table 5.4 summarizes the performance of different virtual network configura-

tions for the complex scenario.

We will not show the evaluation results for VM consolidating or merging here,

since it is a much easier procedure than VM splitting. When the CPU and memory
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utilization are both very low, on the promise of reasonable performance, the Sched-

uler will consolidate the actors onto some of the VMs and save others for future use

or just shut down to save resources.

5.3 Evaluation with VM Migration

VM migration, by definition, is to migrate a VM from the host machine to the

target machine. Therefor, we introduce another server machine into this scenario.

The second machine is equipped with a quad-processor, single-core Opteron, which

runs at 2.2GHz, with 64KB L1 cache and 1MB L2 cache. The RAM size is 16GB

and the communication between different servers is at 10GB/sec bandwidth and

7µsec latency infiniband, and 1GB/sec bandwidth and 100µsec latency Ethernet.

In our framework, whether an when to perform VM migration is mainly de-

cided by System Strategy, but it is still based on an overall consideration. In order

to trigger the system strategy, we run another application on the first server. This

application has a very long running time and meanwhile uses a lot of CPU and

memory resources. We still choose Heat workload to evaluate the efficiency of VM

migration but expand the size of it to 720*720 with 2000 iterations. We set the

number of VMs as 6 and each VM has 4vCPUs, the memory size of each VM is

2048MB.

(a) CPU Usage (b) Memory Usage

Figure 5.5: CPU and memory usage of Heat on before migration

Under such virtual network configurations, the utilization of vCPUs or virtual

memory are both far lower than threshold. Figure 5.5 shows the CPU and memory

usage on 6 VMs for Heat workload. From the graph, we can see that the utilization
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Table 5.5: Evaluation of threshold-based strategy for VM migration
without migration on same server 104.3s

with migration 83.3s
without migration on two servers 69.3s

of virtual resources is already very low and it is no need to allocate more. However,

the utilization of physical processors and memory are on the contrary higher than

expectation and the performance collected by system strategy is much worse com-

pared to the history data. Integrate all data together, the system strategy decides to

do VM migration and output the decision and concrete migration steps to the sched-

uler. The scheduler has all the resources configuration information of the servers

and it is always chasing for a load balance state. Therefore, in this experiments,

2VMs will be migrated to the second server. Xen provides a command migrate

to migrate a VM from host machine to target machine; and it also supports live

migration by provide an option -l in this command.

Before migration, the scheduler will check the configuration of VMs, especially

the memory allocated to VMs. Larger memory will cost more time to finish migra-

tion. In this experiment, the memory of each VM is 2048MB and the utilization

shows in Figure 5.5 is only 30%. Thus, it is advisable to shrink the memory size.

In spite of shrinking the memory size to 1024MB, it still costs some time to

migrate. Another impact factor is the communication between machines. Heat is a

tightly coupled CPU-intensive workload, actors communicate frequently to switch

boundary data. The communication speed between actors on different machines

apparently is slower than on the same machine. In a word, VM migration brings

some bad effects while improving performance.

Table 5.5 summarizes the performance before and after migration, and running

on different servers from the beginning.



6. Related Work

Virtualization management, which refers to the abstraction of logical resources

away from their underlying physical resources in order to improve agility, flexibil-

ity, reduce costs and thus enhance business value [23], is a critical component to

accomplish effective sharing of physical resources and scalability. Barham et al.

present an x86 virtual machine monitor, which calls Xen, to let multiple commodity

operating systems to share the underlayer hardware and promise not influencing

any performance or functionality [4]. VMware is another mature VM hypervisor in

virtualization market. Recently, Eucalyptus [21] is also popular in the cloud market.

Xen is open-source and famous for its almost equivalent performance as the baseline

Linux system, therefore, we choose Xen as our virtual hypervisor.

Existing works on virtual network management mainly focus on VM migra-

tion [15], [9], [24], [7]. Clark et al. introduce live migration and achieves impressive

performance with minimal service downtimes by carrying out the majority of mi-

gration while keeping OSes running [7]. Hansen et al. present two prototypes that

allow application and the underlayer operating system migration together [9]. Sa-

puntzakis et al. show that efficient capsule (the state of running computer across a

network, including the state in its disks, memory, CPU registers, and I/O devices)

migration can improve user mobility and system management [24]. The results of

our experiments in this thesis will help to get more efficient capsule thus help make

a better migration. Nelson et al. present a system that implements totally trans-

parent migrations [20]. It allows a running VM to be migrated and the migration

is transparent to remote clients, applications and the underlayer operating systems.

Hines et al. describe the post-copy based live virtual machine migration, which

means the memory transfer will be deferred until the processor state has been sent

to the target host [11]. Different from [11], Bradford et al. introduce a system that

pre-copies local persistent state to the target host when VMs are still running on

original host [6]. Some paper focus on live migration which supports continuous

device access [12], [14].
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Besides, our results are important middleware level references for cloud ser-

vice providers to decide where and how to place VMs, thus to improve resources

utilization. Much work has been done on workload level to improve resource uti-

lization. Tirado et al. presents a predictive data grouping scheme to scale up and

down servers dynamically, aiming to improve resource utilization and implement

load balance [25]. Their forecasting model is based on access history. It works for

a mature portal web site, like the music portal LastFM mentioned in this paper.

Wu et al. propose resource allocation algorithms for SaaS providers to help them to

minimize infrastructure cost and SLA violations [30]. The main method is to decide

where and which type of VMs to be initiated. Marshall et al. proposes ’a cloud

infrastructure that combines on-demand allocation of resources with opportunistic

provisioning of cycles from idle cloud nodes to other processes by backfill VMs’,

targeting to improve the utilization of Infrastructure Clouds [19].

Some paper make contributions to resource management level in virtual envi-

ronments. Beloglazov et al. focus on providing more efficient VM consolidation to

optimize resource usage [5]. Based on adaptive utilization threshold, they propose

a method to consolidate VMs dynamically. Jin Heo et al. use feedback control to

implement dynamic memory allocation in consolidated environment and they also

take Xen virtual machines for research and experiments [10]. Sandpiper, presented

in paper [29], successfully automates the hotspots monitoring, detecting tasks; the

system implements both black-box and gray-box approaches to resolve the server

hotspots problem. Zhao et al. present MEB (memory balancer) to successfully pre-

dict the memory needed for a virtual machine and reallocate memory according to

the prediction. MEM will help improve the overall throughput of system, thus help

improve resource utilization [31].

As mentioned before, the framework in this thesis could help private cloud

owners and service providers to save cost and energy. Usually, people also care

about the power saving for a system. For example, Petrucci et al. introduce and

evaluates an approach for power management in a cluster system [22].



7. Discussion

7.1 Conclusion

In this thesis, we study three different categories of workloads on various vir-

tual network configuration strategies (i.e., number of VMs, number of vCPUs per

VM, memory size of each VM). For the loosely-couple CPU-intensive workloads,

VM configurations changing has no significant influence on performance as long as

one prerequisite is met; that is the total number of vCPUs should not be less than

that total number of physical CPUs. While for the tightly coupled CPU-intensive

workload, like Heat, we got a more subtle relationship between VM configurations

and workloads’ performance. There exists an optimal configuration to get the best

performance; generally larger memory brings better performance but it is worth

to notice that double or even triple memory size brings around 10% improvement

on performance. Virtual network configuration is not critical for performance of

external network-intensive workloads.

We also collect the resource usage information for the two workloads. These

data further help us to understand the impact of different virtual network config-

urations on workloads’ performance. There exists a configuration to have the best

resource usage; the best resource utilization configuration gives the best performance

to tightly coupled CPU-intensive workloads; for the loosely coupled computational

workloads, different resource utilizations show similar performance.

Service providers, service users and private cloud owners will all benefit from

our experiments. They can treat our results as virtual network configuration refer-

ences to timely adjust their VM configurations or VM requests so as to make better

performance, save cost or save energy.

Based on the experimental results, we built an autonomous framework and

proposed a threshold based strategy to implement virtual network reconfiguration,

that is to dynamically refine the virtual network configurations for a given work-

load. We also built several experiments to evaluate the framework and the strategy.

Our results show that they work very well at improving performance and resource
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utilization when the initial virtual network configuration of the workloads is not ide-

al. The performance or resource utilization may be not as good as the new virtual

configuration but it is much better than the initial configuration. The cloud ad-

ministrators can balance between resource consumption and performance by setting

different threshold values.

The framework and the threshold-based strategy will help private cloud owners

and service providers to make a better use of their resources to improve workloads’

performance and meanwhile to save cost and energy. In reality, the scale of the

workloads submitted to a cloud computing environment is much larger than the

benchmarks in our experiments, the difference of performance, resource consumption

or cost on different virtual network configurations is significant. Therefore, it is

important to know the impact of different virtual network configurations in an cloud

environment for service users, service providers and private cloud owners.

7.2 Future Work

In next steps, we will choose more typical workloads to find the relationship

between virtual network configurations and workloads’ performance. Also, we will

expand our testbed infrastructure to a large scale environment, which needs to con-

sider unbalanced hardware configuration. Moreover, we will design more strategies

to support virtual network reconfiguration and give the evaluation and comparison

for these strategies. For the strategies evaluation, we will consider the scenarios

of requesting new VM instances from public clouds and compare the performance

improvement of doing this with cost spent on this decision.
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APPENDIX A

Cloud Operating System v0.1: VM Malleability Code

The following chapter provides the main algorithmic codes that implement

autonomous VM malleability. It contains three Classes: MalleabilityController,

TheaterInfo, and JobInfo. (Please check online of our lab Worldwide Computing

Laboratory)

pub l i c c l a s s M a l l e a b i l i t y C o n t r o l l e r {
p r i v a t e St r ing nameServer = n u l l ;

p r i v a t e Vector<TheaterInfo> t h e a t e r s =

new Vector<TheaterInfo >() ;

p r i v a t e Vector<JobInfo> j obs =

new Vector<JobInfo >() ;

s t a t i c p r i v a t e M a l l e a b i l i t y C o n t r o l l e r i n s t ance =

new M a l l e a b i l i t y C o n t r o l l e r ( ) ;

p r i v a t e S t r i n g B u f f e r out = new S t r i n g B u f f e r ( ) ;

p r i v a t e long startTime = 0 ;

p r i v a t e long endTime = 0 ;

p r i v a t e i n t maxJobNum = 2 ;

p r i v a t e i n t migrat ion = 0 ;

s t a t i c pub l i c M a l l e a b i l i t y C o n t r o l l e r g e t In s tance ( )

{
r e turn in s t ance ;

}

pub l i c void r e s e t ( )

{
j obs . c l e a r ( ) ;

startTime = 0 ;

49
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endTime = 0 ;

out = new S t r i n g B u f f e r ( ) ;

f o r ( i n t i = 0 ; i < t h e a t e r s . s i z e ( ) ; i++)

{
t h e a t e r s . get ( i ) . r e s e t ( ) ;

}
}

pub l i c i n t workingJobNumber ( )

{
i n t r e t = 0 ;

f o r ( i n t i = 0 ; i < j obs . s i z e ( ) ; i++)

{
i f ( ! j obs . get ( i ) . i s F i n i s h e d ( ) ) r e t++;

}
r e turn r e t ;

}

pub l i c void r e s e t S e l e c t i o n ( )

{
f o r ( i n t i = 0 ; i < t h e a t e r s . s i z e ( ) ; i++)

{
t h e a t e r s . get ( i ) . s e t S e l e c t i o n ( f a l s e ) ;

}
f o r ( i n t i = 0 ; i < j obs . s i z e ( ) ; i++)

{
j obs . get ( i ) . s e t S e l e c t i o n ( f a l s e ) ;

}
}

pub l i c void s e l e c t T h e a r t e r ( i n t i )
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{
r e s e t S e l e c t i o n ( ) ;

t h e a t e r s . get ( i ) . s e t S e l e c t i o n ( t rue ) ;

}

pub l i c Object f i n d S e l e c t O b j e c t ( )

{
f o r ( i n t i = 0 ; i < t h e a t e r s . s i z e ( ) ; i++)

{
i f ( t h e a t e r s . get ( i ) . i s S e l e c t t i o n ( ) )

re turn t h e a t e r s . get ( i ) ;

}
f o r ( i n t i = 0 ; i < j obs . s i z e ( ) ; i++)

{
i f ( j obs . get ( i ) . i s S e l e c t i o n ( ) )

re turn jobs . get ( i ) ;

}
r e turn t h i s ;

}

pub l i c void setTheater ( Vector<Str ing> u r l s )

{
t h e a t e r s . c l e a r ( ) ;

f o r ( i n t i = 0 ; i < u r l s . s i z e ( ) ; i++)

{
Theater In fo t = new Theater In fo ( ) ;

t . s e t I d ( i ) ;

t . s e tUr l ( u r l s . get ( i ) ) ;

t h e a t e r s . add ( t ) ;

}
}
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pub l i c i n t getMigrat ion ( ) {
r e turn migrat ion ;

}

pub l i c void se tMigra t i on ( i n t migrat ion ) {
t h i s . migrat ion = migrat ion ;

}

pub l i c i n t getMaxJobNum ( ) {
r e turn maxJobNum ;

}

pub l i c void setMaxJobNum( i n t maxJobNum) {
t h i s . maxJobNum = maxJobNum ;

}

pub l i c S t r i n g B u f f e r getOut ( ) {
r e turn out ;

}

pub l i c void setOut ( S t r i n g B u f f e r out ) {
t h i s . out = out ;

}

pub l i c S t r ing getNameServer ( ) {
r e turn nameServer ;

}

pub l i c void setNameServer ( S t r ing nameServer ) {
t h i s . nameServer = nameServer ;
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}

pub l i c Vector<TheaterInfo> getTheaters ( ) {
r e turn t h e a t e r s ;

}

pub l i c void se tTheate r s ( Vector<TheaterInfo> t h e a t e r s ) {
t h i s . t h e a t e r s = t h e a t e r s ;

}

pub l i c Vector<JobInfo> getJobs ( ) {
r e turn jobs ;

}

pub l i c void se tJobs ( Vector<JobInfo> j obs ) {
t h i s . j obs = jobs ;

}

pub l i c void c rea teJobs ( i n t num)

{
f o r ( i n t i = 0 ; i < num; i++)

{
j obs . add (new JobInfo ( ) ) ;

}
}

pub l i c i n t getNextTheater ( i n t jobID )

{
i n t minTheater = −1;

synchron ized ( t h i s )

{
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i n t min = 100000;

f o r ( i n t i = 0 ; i < t h e a t e r s . s i z e ( ) ; i++) {
i f ( t h e a t e r s . get ( i ) . getJobs ( ) . s i z e ( )

< min) {
Theater In fo t = t h e a t e r s . get ( i ) ;

i f ( t . getMaxJobNum ( ) <=

t . workingJobNumber ( ) )

cont inue ;

min = t . workingJobNumber ( ) ;

minTheater = i ;

}
}
i f ( minTheater != −1) t h e a t e r s . get ( minTheater ) .

addJob ( jobs . get ( jobID ) ) ;

}
r e turn minTheater ;

}

pub l i c i n t migrate ( i n t jobID )

{
synchron ized ( t h i s )

{
i f ( migrat ion == 0) re turn −1;

JobInfo job = jobs . get ( jobID ) ;

Theater In fo thea t e r = t h e a t e r s .

get ( job . getTheaterID ( ) ) ;

i n t currentNum = thea t e r . workingJobNumber ( ) ;

i f ( currentNum <= 1) re turn −1;

i n t min = currentNum − 1 ;

i f ( migrat ion == 1) min = 1 ;
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i n t minTheater = −1;

f o r ( i n t i = 0 ; i < t h e a t e r s . s i z e ( ) ; i++)

{
i f ( i == job . getTheaterID ( ) ) cont inue ;

i n t num = t h e a t e r s . get ( i ) .

workingJobNumber ( ) ;

i f (num < min)

{
min = num;

minTheater = i ;

}
}
i f ( minTheater != −1)

{
thea t e r . removeJob ( job ) ;

t h e a t e r s . get ( minTheater ) . addJob ( job ) ;

}
r e turn minTheater ;

}
}

pub l i c void s ta r tJob ( i n t jobID )

{
j obs . get ( jobID ) . s ta r tJob ( ) ;

}

pub l i c void endJob ( i n t jobID )

{
j obs . get ( jobID ) . endJob ( ) ;

}
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pub l i c void updateJob ( i n t jobID , i n t percent , i n t t o t a l )

{
j obs . get ( jobID ) . s e tPercent ( percent ) ;

j obs . get ( jobID ) . s e tTota l ( t o t a l ) ;

}

}

The codes wr i t t en in SALSA to dea l with m a l l e a b i l i t y :

Object updateJob ( i n t i , I n t e g e r percent )

{
Object o = n u l l ;

model . updateJob ( i , percent − 1 , 100 ) ;

i f ( percent . intValue ( ) > 100)

{
model . endJob ( i ) ;

s ta r tJob ( ) ;

f i n i sh edJob++;

i f ( f i n i sh edJob == workers . l ength )

{
pr in tResu l t ( ) ;

}
r e turn o ;

}
e l s e

{
i n t next = model . migrate ( i ) ;

i f ( next != −1)

{
c a l s [ i ]<−migrate (new UAL( ”rmsp ://” + model .
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getTheaters ( ) . get ( next ) . getUr l ( )

+ ”/a” + getUrlID ( ) ) )@

c a l s [ i ]<−doWork( percent . intValue ( ) )@

updateJob ( i , token ) ;

}
e l s e

{
c a l s [ i ]<−doWork( percent . intValue ( ) )@

updateJob ( i , token ) ;

}
}
r e turn o ;

}

pub l i c c l a s s JobInfo {
p r i v a t e St r ing name = ” job ” ;

p r i v a t e long startTime = 0 ;

p r i v a t e long endTime = 0 ;

p r i v a t e i n t theater ID = 0 ;

p r i v a t e i n t percent = 0 ;

p r i v a t e i n t h i s to ryTheate r [ ] = new i n t [ 1 0 2 ] ;

p r i v a t e long historyTime [ ] = new long [ 1 0 2 ] ;

p r i v a t e double h i s torySpeed [ ] = new double [ 1 0 2 ] ;

p r i v a t e double speed = 0 ;

p r i v a t e double to ta lSpeed = 0 ;

p r i v a t e boolean s e l e c t i o n = f a l s e ;

p r i v a t e boolean changeSe l e c t i on = f a l s e ;

pub l i c boolean isOnJob ( i n t job )
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{
i f ( job == JOBNUM) return ture ;

e l s e re turn f a l s e ;

}

pub l i c void S e l e c t i o n ( boolean s t a t e )

{
s e l e c t i o n = s t a t e ;

}

pub l i c void changeSe l e c t i on ( boolean s t a t e )

{
changeSe l e c t i on = s t a t e ;

}

pub l i c void s ta r tJob ( )

{
startTime = System . nanoTime ( ) ;

h i s to ryTheate r [ 0 ] = theaterID ;

historyTime [ 0 ] = startTime ;

h i s torySpeed [ 0 ] = 0 ;

}

pub l i c void endJob ( )

{
endTime = System . nanoTime ( ) ;

speed = 0 ;

}

pub l i c boolean i s F i n i s h e d ( )

{
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re turn endTime != 0 ;

}

pub l i c i n t getPercent ( ) {
r e turn percent ;

}

pub l i c void se tPercent ( i n t percent ) {
h i s to ryTheate r [ percent ] = theaterID ;

historyTime [ percent ] = System . nanoTime ( ) ;

speed = historyTime [ percent ] −
historyTime [ t h i s . percent ] ;

speed /= percent − t h i s . percent ;

speed /= 1e9 ;

h i s torySpeed [ percent ] = speed ;

to ta lSpeed += speed ;

t h i s . percent = percent ;

}

pub l i c boolean i s S e l e c t i o n ( ) {
r e turn s e l e c t i o n ;

}

pub l i c void s e t S e l e c t i o n ( boolean s ) {
t h i s . s e l e c t i o n = s ;

}

pub l i c double getSpeed ( ) {
r e turn speed ;

}
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pub l i c void setSpeed ( double speed ) {
t h i s . speed = speed ;

}

pub l i c long getStartTime ( ) {
r e turn startTime ;

}

pub l i c void setStartTime ( long startTime ) {
t h i s . startTime = startTime ;

}

pub l i c long getEndTime ( ) {
r e turn endTime ;

}

pub l i c void setEndTime ( long endTime ) {
t h i s . endTime = endTime ;

}

pub l i c i n t getTheaterID ( ) {
r e turn theater ID ;

}

pub l i c void setTheaterID ( i n t theater ID ) {
t h i s . theater ID = theaterID ;

}
}

pub l i c c l a s s Theater In fo {
p r i v a t e St r ing u r l = n u l l ;
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p r i v a t e long startTime = 0 ;

p r i v a t e long endTime = 0 ;

p r i v a t e i n t id = 0 ;

p r i v a t e Vector<JobInfo> j obs = new Vector<JobInfo >() ;

p r i v a t e boolean s e l e c t i o n = f a l s e ;

p r i v a t e boolean changeSe l e c t i on = f a l s e ;

p r i v a t e i n t y = 0 ;

p r i v a t e i n t h = 0 ;

p r i v a t e i n t maxJobNum = −1;

pub l i c boolean isOnTheater ( i n t thea t e r )

{
i f ( th ea t e r == THEATERNUM) return true ;

e l s e re turn f a l s e ;

}

pub l i c void changeSe l e c t i on ( i n t x , boolean s t a t e )

{
boolean found = f a l s e ;

f o r ( i n t i = 0 ; i < j obs . s i z e ( ) ; i++)

{
JobInfo job = jobs . get ( i ) ;

boolean b = job . isOnJob ( x ) ;

job . changeSe l e c t i on ( s t a t e ) ;

i f (b ) found = true ;

}
changeSe l e c t i on = s t a t e && ! found ;

}

pub l i c void i s S e l e c t e d ( i n t x , boolean s t a t e )

{
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boolean found = f a l s e ;

f o r ( i n t i = 0 ; i < j obs . s i z e ( ) ; i++)

{
JobInfo job = jobs . get ( i ) ;

boolean b = job . isOnJob ( x ) ;

job . s e l e c t i o n ( s t a t e ) ;

i f (b ) found = true ;

}
s e l e c t i o n = s t a t e && ! found ;

}

pub l i c void addJob ( JobInfo job )

{
job . setTheaterID ( id ) ;

j obs . add ( job ) ;

}

pub l i c void removeJob ( JobInfo job )

{
f o r ( i n t i = 0 ; i < j obs . s i z e ( ) ; i++)

{
i f ( j obs . get ( i ) == job )

{
j obs . remove ( i ) ;

r e turn ;

}
}

}

pub l i c boolean i s S e l e c t i o n ( ) {
r e turn s e l e c t i o n ;
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}

pub l i c void s e t S e l e c t i o n ( boolean s ) {
t h i s . s e l e c t i o n = s ;

}

pub l i c i n t getMaxJobNum ( ) {
i f (maxJobNum == −1)

{
r e turn M a l l e a b i l i t y C o n t r o l l e r . g e t In s tance ( ) .

getMaxJobNum ( ) ;

}
r e turn maxJobNum ;

}

pub l i c void setMaxJobNum( i n t maxJobNum) {
t h i s . maxJobNum = maxJobNum ;

}

pub l i c S t r ing getUr l ( ) {
r e turn u r l ;

}

pub l i c void s e tUr l ( S t r ing u r l ) {
t h i s . u r l = u r l ;

}

pub l i c long getStartTime ( ) {
r e turn startTime ;

}
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pub l i c void setStartTime ( long startTime ) {
t h i s . startTime = startTime ;

}

pub l i c long getEndTime ( ) {
r e turn endTime ;

}

pub l i c void setEndTime ( long endTime ) {
t h i s . endTime = endTime ;

}

pub l i c i n t get Id ( ) {
r e turn id ;

}

pub l i c void s e t I d ( i n t id ) {
t h i s . id = id ;

}

pub l i c Vector<JobInfo> getJobs ( ) {
r e turn jobs ;

}

pub l i c void se tJobs ( Vector<JobInfo> j obs ) {
t h i s . j obs = jobs ;

}
}


