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ABSTRACT 

The use of mobile devices has been steadily increasing, for example, smartphones 

are expected to be used by 69.4% of people worldwide by 2017 [1].  User expectations 

have also increased as the computational capabilities of mobile devices improve.  As a 

result, software applications need to perform ever more complex and data-intensive tasks 

to address user expectations.  Because of resource limitations in mobile devices (e.g., 

battery, limited network connectivity) we investigate the cloud computing paradigm as a 

means of augmenting mobile device capabilities. 

In this thesis, we first study the potential reduction in computation time for a 

mobile device application that offloads part or all of its execution to remote resources, 

such as a tablet, a laptop, a desktop, or a private/public cloud.  Second, we apply the actor 

model of concurrent computation to reconfigure a distributed application from the mobile 

device to the cloud.  Specifically, we use the SALSA actor programming language, which 

allows developers to easily create computationally intensive applications that can be 

broken apart and migrated to various computational resources.  Since SALSA programs 

compile down to Java byte code, we can readily run them in the Android Operating System 

through an extension to the SALSA language.  Lastly, we aim for a separation of concerns 

by specifying policies that govern when and where to move actors, separately from the 

functional application code.   

 Using our Mobile Cloud Computing using Actors (MobileCCA) approach, as 

applied to a face recognition task, we observed speedups on average of ~5x in the private 

cloud with respect to doing the computation on the mobile device.  Furthermore, we were 

able to perform the face recognition task on a database of 1000 faces for 400 people, a 

task beyond the resource capabilities of the mobile device alone.  MobileCCA therefore 

illustrates not only the potential to speedup computations in mobile devices and save 

battery, but also to enhance the power of mobile applications.
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1. Introduction 

1.1 Motivations 

The mobile device market has expanded greatly over the past years and shows no 

indication of slowing down.  As smartphones and tablets become more affordable there 

still proves to be growth potential in an already dominant market share.  Statisticians 

expect that smartphones will grow to 69.4% usage worldwide by 2017 [1].  Smartphones 

along with tablets provide users with the ability to run various applications without the 

shackles of a constant power source.  These devices, however, have limitations in the type 

of applications that can be run.  Smartphones have a limited CPU/GPU compared to that 

of a stationary computer or cloud.  Most importantly the battery can only handle so much 

before it requires a charge.  With these limitations we can see that a group of applications 

known as computationally expensive can run rather inefficiently on a mobile device when 

compared to other computational resources available, such as desktops and private/public 

clouds.  

Computationally expensive applications can include, face recognition, question 

and answering systems, video recognition, etc.  As the world moves towards mobile 

devices’ the requirement to run such applications is essential.  The problem that arises is 

how can we run these computationally expensive applications on mobile devices 

efficiently?  Mobile Cloud Computing provides an elegant solution: the ability to offload 

various tasks to private or public clouds for computation lessens the onus on mobile 

devices’ capabilities and introduces the idea of shared computing.   

Mobile Cloud Computing, however, requires application developers to choose 

when and where to offload certain computational tasks.  There are a number of Cloud-

based augmentation techniques that provide different ways for a system to handle a 

computationally expensive application [2].  This thesis focuses on the use of the actor-

oriented programming language SALSA with Mobile Cloud Computing [3].  We 

introduce a Cloud-based augmentation approach we call Mobile Cloud Computing using 

Actors (MobileCCA).  The idea behind the MobileCCA approach utilizes the dynamically 

reconfigurable property of SALSA actors when running mobile applications.   
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1.2 Contributions 

We have developed a cloud-based mobile augmentation strategy, known as 

MobileCCA.  By utilizing the actor model, we are able to create dynamically 

reconfigurable distributed applications that can be run on various computational resources.  

The natural mobility of actors allows for a cohesive use in Mobile Cloud Computing.  In 

devices that are dependent on battery and network connectivity, the ability to move actors 

dynamically can be important.  We have seen that because actors are an encapsulated state, 

the distribution and migration of actors can be accomplished much easier than with other 

techniques. 

We have created a number of policies to distribute actors based on certain 

requirements.  MobileCCA advocates for a separation of concerns for application 

developers.  Developers now only need to focus on the implementation of their 

applications.  The MobileCCA policies, separately specified, can then decide when and 

where to move actors.  By utilizing these policies with MobileCCA, dramatic changes in 

the environment and application can be handled. 

We have implemented the MobileCCA approach using the SALSA programming 

language.  In order to run SALSA code on the Android device, we created a SALSA add-

on to start a theater on the Android device.  In this thesis, we have extended the usability 

of Android SALSA by creating applications that can run on the Android device.  To test 

the advantages of MobileCCA implemented in SALSA we have created a useful 

application, face recognition.  This example application showed that MobileCCA provided 

a developer friendly approach to Mobile Cloud Computing. 

1.3 Structure of Thesis 

The structure of this thesis is as follows: In Chapter 2, we begin with an overview 

of Mobile Cloud Computing, the use of computational offloading, the actor model, and 

the SALSA programming language.  In Chapter 3, we look at the use of SALSA in mobile 

devices and how it can be incorporated into Mobile Cloud Computing.  Then, Chapter 4 

examines our approach known as Mobile Cloud Computing using Actors, and Chapter 5 

examines a computationally expensive application, face recognition.  In Chapter 6, we 
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review related work, and finally, Chapter 7 concludes this thesis and discusses future 

work.  



4 

2. Overview 

2.1 Mobile Cloud Computing 

Mobile devices by nature have their limitations; they are limited by their 

processing power, battery, and storage.  By leveraging the benefits of cloud computing, 

we are able to mitigate these limitations.  Cloud computing by the NIST definition is the 

model for on-demand access to a shared pool of configurable computing resources [4].  

 We can intuitively see that given the diverse network capabilities of a mobile 

devices, they can be easily coupled with cloud computing to provide an elegant solution 

to the devices’ limitations.  Through utilizing a cloud’s resources, mobile devices 

experience the following returns and restrictions: better battery life, enhanced processing 

power, increased data storage, broader network connectivity, decreased security, and 

increased cost.    

 

Table 2.1: Computational Resources Statistics 

Source CPU Speed 

(GHz) 

Cores/

Unit 

RAM 

(MB) 

Storage  

(GB) 

Battery 

(mAh) 

Samsung Galaxy 

S5 [5] 

2.5 4/1 2048 16/32 2800 

Samsung Galaxy 

Tab Pro 12.2 [6] 

1.9/1.3 4/2 3072 32 9500 

Amazon EC2 C3 

Large [7] 

2.8 2/3.5 3840 32 Constant 

Amazon EC2 C3 

X-Large [7] 

2.8 4/3.5 7680 80 Constant 

 

2.1.1 Better Battery Life 

One of the most important benefits from Mobile Cloud Computing is the ability to 

preserve battery on a mobile device.  From Table 2.1, it is obvious that one limiting factor 

for any mobile device is its battery.  Whether it is performing various computations, 
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transmitting data, or simply sitting on a table, when a mobile device is unplugged from its 

charger it is consuming battery.  By computational offloading, the mobile device is able 

to alleviate the workload of its CPU and therefore reduce battery consumption.  

Computation offloading is not trivial because by offloading to a cloud, we incur a network 

overhead.  Depending on the type of data that is being transmitted and the type of 

computation being performed, offloading may not be the best solution all of the time.   

2.1.2 Enhanced Processing Power 

Through private and public clouds, we obtain the use of high performance 

computational resources.  The natural mobility of mobile devices allows any user with 

network connectivity the access to a vast supply of computational power.  From Table 2.1, 

we can see that the Galaxy S5 and Tab Pro 12.2, a smartphone and tablet respectively, two 

top devices to date, still lag behind an average Amazon EC2 instance.  Amazon Elastic 

Compute Cloud (Amazon EC2), is a web service that provides resizable compute 

capability in the cloud [8].  Through offloading to the cloud, mobile applications can 

experience faster processing time.  For example in Chapter 5, we look at experimental 

results for the face recognition application.  To get a sense of the differences in processing 

power for each computational resource, we compare the face recognition application run 

solely on the mobile device vs. private cloud.   

2.1.3 Increased Data Storage 

In Table 2.1 although the mobile devices have comparable data storage to an 

average Amazon EC2 instance (C3 Large), it is important to note that it is not dedicated 

to the targeted application.  Mobile devices are constantly experiencing I/O whether it is 

background processes from the OS or other applications run by the user.  Mobile devices’ 

data storage can also be limited by personal data use: music, photos, and videos can take 

up a large portion of the storage and limit the amount of space an application can use.  For 

example in the face recognition application, a database of face images is required to train 

over.  In the mobile device the number of images that can be stored may be significantly 

lower than that in the private or public cloud, which leads to erroneous and high 

uncertainty results, as shown in Chapter 5. 
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2.1.4 Broader Network Connectivity 

The benefit of using a mobile device is the access to a number of wireless networks 

and telecommunication technologies.  Whether it is wireless internet, 3G, 4G, etc., within 

reason there is always some sort of network connectivity available to a user at all times.  

The 3G technology provides a greater coverage than 4G but is slower; 4G coverage has 

been growing as of late and provides similar speed with wireless internet but can consume 

more battery.  Wireless internet allows for high speed communication while having the 

lowest battery consumption amongst all options [9].  Compared to wireless networks, 3G 

and 4G allow for greater mobility, but can incur restrictions from the phone provider such 

as data limitations and bandwidth throttling.  Wireless networks can allow for fast 

connections for devices under the same network but can experience bandwidth and 

congestion problems. 

2.1.5 Decreased Security 

A pitfall of using Mobile Cloud Computing with mobile devices is the risk of 

security vulnerabilities.  When data is migrated to the cloud there is always the danger of 

losing it to adversaries.  Although cloud distributors are constantly trying to enhance their 

security, attacks as simple as phishing and brute force of personal accounts can lead to the 

loss of vulnerable data.   

2.1.6 Increased Cost 

With cloud computing you are paying for resources on-demand.  This brings the 

factor of budget into consideration when using Mobile Cloud Computing.  Although 

public clouds offer an increase in performance when dealing with applications, it is 

important to look at the cost-benefits of offloading.  Some applications can experience a 

marginal gain in performance when moving to public resources, and for a strict budget 

user this move can be illogical. 

2.2 Cloud-based Mobile Augmentation 

Cloud-based Mobile Augmentation is the model that leverages the use of cloud 

resources to optimize the computing capabilities of mobile device applications [2].    In 
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this thesis we look into the approach of computational offloading for Mobile Cloud 

Computing.   

2.2.1 Computation Offloading 

Computational offloading involves migrating computational tasks from the mobile 

device to another computational resource and performing the computation there, sending 

the results back when complete.  Defining tasks to offload can be done prior to execution 

or dynamically during runtime.  The question that arises is when to offload computation 

based on the statistics of the application and surrounding environment? 

 

 

Figure 2.1: Offloading Decision Graph [10] 
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Table 2.2: Cloud Application Feasibility Matrix [11] 

Applications Compute  

Intensity 

Network 

Bandwidth 

Network 

Latency 

Offload  

Decision 

Web-mail Low Low Low Never 

Social Networking Low Medium Medium Never 

Web browsing Low Low Low Never 

Online Gaming High Medium High Depends 

Chess High Low Low Always 

Face Recognition High Medium Medium Always 

Video Recognition High High High Always 

Question and Answer High Medium Medium Always 

 

 

Figure 2.1, extended from [10], represents a decision graph for offloading 

computation.  The decision equation for offloading computation is: 

if 
𝐶

𝑓𝑟𝑒𝑚𝑜𝑡𝑒
+

𝐷

𝐵
+ 𝐿 <

𝐶

𝑓𝑙𝑜𝑐𝑎𝑙
 then offload.                                (2. 1) 

The goal is to ensure that the time it takes to finish the computation on the remote 

machine plus the overhead of sending the data is less than doing the computation locally.  

For Figure 2.1, we assume that performing the computation on the remote machine 

occurs instantaneously.  Therefore we can reduce Equation 2.1, to – 

if 
𝐷

𝐵
+ 𝐿 <

𝐶

𝑓𝑙𝑜𝑐𝑎𝑙
 then offload.                                            (2. 2) 

Now we strictly compare the network overhead time to the local computation time.  

There are three regions in the graph: the region that indicates you should never offload, 

the region where you should always offload, and the middle region where offloading 

depends on the bandwidth of your network connection [10].  In the “never offload” 

region, the communication overhead is large while the computation is fairly low.  This 

range represents network driven applications such as web browsing and social 

networking.  In the “always offload” region, computation is large and communication 
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overhead is fairly low.  Applications that would benefit from offloading include face and 

video recognition, and question and answer services.  Finally, the “middle region” 

depends on the application at hand.  For example for online gaming, responsiveness is 

crucial; therefore, we should only offload computation when it doesn’t affect gameplay.  

The type of game can be a factor when offloading especially when on a mobile device.  

Action and adventure games can lead to a large amount of data being transferred.  

Therefore offloading can reduce the responsiveness of the game.  Puzzle games, chess 

specifically, can benefit from offloading as very little data is being transferred, and the 

computation of chess moves can greatly benefit from being processed on a larger 

computational resource. 

 We can see that as the bandwidth of the connection increases, the “always 

offload” portion of the graph increases as well.  We can compare this to Mobile Cloud 

Computing by assuming 𝐵𝑀𝐴𝑋 = WiFI, and 𝐵𝑀𝐼𝑁 = 3G.  Latency is another factor for 

offloading decision.  If the average latency of an application is large, we can see that 

𝐿𝐴𝑉𝐺  will move down on the y-axis causing the portion of the “always offload” to 

decrease.   

2.2.2 Current Approaches 

There are various cloud-based mobile augmentation approaches that use 

computational offloading in Mobile Cloud Computing.   

CloneCloud [12] is a cloud-based mobile augmentation approach that involves 

cloning an entire mobile devices platform to the cloud.  This allows mobile applications 

to run locally on the device as well as remotely on the cloud’s VM.  This approach aids 

the developer as the same code is run on the device and cloud simultaneously.  Problems 

that arise are that cloning a mobile device can be expensive and data vulnerabilities appear 

when data is moved to the cloud.  CloneCloud is also strictly used on distant fixed clouds, 

like an Amazon EC2 instance.  This can hurt budget users as they cannot run the 

computation on their hardware or other mobile resources.  

 MOCHA [13] is a hybrid cloud computing approach that involves application 

partitioning and migration.  MOCHA has the ability to partition computationally intensive 

applications through two algorithms, and distribute them to various cloud resources.  The 
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fixed algorithm will distribute work equally to all resources, while the greedy algorithm 

will distribute to resources with the fastest response time.  Unlike CloneCloud, the ability 

to migrate partitioned applications reduces the overhead of migrating an entire mobile 

clone.  The problem of partitioning the application, however, is left to the developer. 

 Hyrax [14] is an approach that focuses on a cluster of mobile devices for 

computation offloading.  Similar to MapReduce [15], Hyrax allows a large dataset to be 

processed over a cluster of resources, in this case mobile devices.  Mobile devices are 

connected to a central server and issued various tasks to complete.  Devices can 

communicate with the central server to send back results, as well as with other mobile 

devices in the cluster.  This approach allows applications to be distributed to other mobile 

devices rather than cloud resources.  With this, however, the drawback of lower 

computational power and storage occurs.   

Table 2.3: Cloud-based Mobile Augmentation Approaches 

Approach CPU  

Alleviation 

Battery 

Prolonging 

Network 

Overhead 

Developer 

Concerns 

Security 

CloneCloud Medium Medium High Low Low 

MOCHA High High Medium High Medium 

Hyrax Low Low Medium Medium Medium 

MobileCCA High High Medium Low Medium 

 

 In Chapter 4 we describe the approach, MobileCCA, Mobile Computing using 

Actors, which involves the use of actor-based programming languages and the migration 

of actors. 

2.3 Concurrent Computing 

As opposed to sequential computing that requires tasks to end before a new one 

begins, concurrent computing allows tasks to be executed simultaneously during 

overlapping time periods.  However, the ability to separate tasks and execute them in 

parallel can sometimes reduce overall runtime.  Therefore, concurrent computing offers 

both advantages and disadvantages.  The benefits of concurrent systems is that tasks do 

not need to wait on others to complete to make progress [16].  Each computational task in 
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a given system has a separate execution point or “thread of control”.  Disadvantages of 

concurrent programs can occur based on the ways tasks interact with each other.  For 

programs that require each tasks to access shared memory, precautions need to be taken 

to prevent race conditions and deadlock.   

Concurrent programming consists of four basic approaches: sequential 

programming, declarative concurrency, atomic actions, and message passing.  In this 

thesis we focus on message passing.  Message passing sends messages to “actors” or 

“agents”, and assumes the infrastructure will allow the object to select and execute the 

appropriate code. 

2.4 Actors 

2.4.1 Actor Model 

The actor model is one model of concurrent computation.  An “actor” is a unit of 

concurrent computation, where in response to a message the “actor” can: send messages 

to other “actors”, create “actors”, make local decisions, and designate its behavior for the 

next message it receives.   
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Figure 2.2: Actor Model Diagram [3] 

 

Figure 2.2 [3] illustrates an actor is an encapsulated state with its own thread of control 

and mailbox.  When in an encapsulated state there is no shared memory between actors, 

thus actors can migrate to different locations easily.  Actors can communicate by sending 

asynchronous messages to one another’s mailboxes.  Actors can reside in different 

locations, and therefore in order for actors to communicate in a distributed system they 

need to possess the mailing address of the other actors.  

 The actor model is an ideal candidate for use in Mobile Cloud Computing.  Actors 

can be created in various computational resources and executed concurrently.  Actors 

ensure a uniformity across all resources as the same behavior can be assigned to multiple 

actors. 
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2.4.2 SALSA Language 

SALSA (Simple Actor Language, System and Architecture) is a concurrent 

programming language that is based on the actor model.  Employing Java as its base 

language, SALSA has adhered to similar concepts. 

Table 2.4: Java vs SALSA Concepts 

Java SALSA 

packages modules 

classes behaviors 

objects actors 

methods messages 

 

Similar to package structuring in Java, actors with similar behaviors are grouped together 

in modules.  Behaviors represent the definition of actors, similar to classes representing 

the definition of objects.  The way objects call methods in Java, actors send messages, 

either to itself or to other actors.  For distributed systems SALSA actors are identified by 

a specific Universal Actor Name (UAN) and Universal Actor Location (UAL).    When 

an actor receives messages there is no guarantee that it will process them in the order at 

which they were sent.  The actor model naturally includes non-determinism, and SALSA 

provides solutions for this.  Token-passing and join continuations allows messages to 

block until the token has been passed from one actor to another.  When dealing with 

distributed applications the overhead of actor operations becomes a factor.  This includes 

actor creation, message sending, and migration.   
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Table 2.5: SALSA Operation Overhead [3] 

Operation Type Time 

Actor Creation Local actor creation 386 µs 

Message Sending Local message sending 148 µs 

LAN message sending 30 - 60 ms 

WAN message sending 2 - 3 sec 

Actor Migration LAN minimal actor migration 150 - 160 ms 

LAN 100 Kb actor migration 250 - 250 ms 

WAN minimal actor migration 3 - 7 sec 

WAN 100 Kb actor migration 25 – 30 sec 
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3. SALSA Language on Android Devices 

3.1 SALSA in Mobile Cloud Computing 

The benefits of using SALSA in Mobile Cloud Computing are: the number of 

devices SALSA can run on, the ability to dynamically reconfigure applications, and ease 

for developers. 

3.1.1 Heterogeneity in Devices 1 

The world is naturally heterogeneous, especially the technical world.  There are a 

mixture of operating systems, hardware, and devices.  Finding a way to perform 

computations on everything can be difficult.  SALSA provides a reasonable solution to 

this problem.  SALSA actors can be created or migrated to virtual machines, or theaters, 

on different computational resources.  A theater runs on the Java Virtual Machine (JVM); 

this implies that SALSA can run anywhere Java can be run.  This means SALSA actors 

can be on public and private clouds, desktops, laptops, and even tablets and smartphones.  

Whether it is Windows, Linux, or Mac OS X, Java can be run on virtually everything.  

Mobile devices are a little tougher; out of the top Mobile OS’s, Android, Windows, and 

IOS, Android is the only one that can run Java without problems.  Android [17] is a mobile 

operating system that runs Java-flavored code on the Dalvik Virtual Machine (DVM).  The 

DVM is a register-based virtual machine that aims to run on low memory, which makes it 

ideal for mobile devices. 

                                                 

This chapter is to appear in: S. Imai, P. Patel and C. A. Varela, "Developing Elastic 

Software for the Cloud," in Encyclopedia on Cloud Computing,  Hoboken, NJ, USA: 

Wiley, 2014. 
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Figure 3.1: SALSA to Java to Dalvik [18] 

Figure 3.1, edited from [18], represents the conversion of SALSA source code to Java 

source code.  It then converts from Java source code to Dalvik byte code that can run on 

the DVM.  Since SALSA actors run on the JVM, they can be made to run on Android 

devices.  With Android dominating the mobile device market share at 84.7% [19], SALSA 

can run on the majority of computational devices.  As technology is evolving, 

workarounds can be discovered to open SALSA to IOS and Windows Phones as well. 

3.1.2 Dynamic Reconfigurability 

Since SALSA actors have an encapsulated state, they can be migrated at ease 

without making adjustments to the overall application.  A migrate message can be sent to 

an actor, and when the actor receives and processes the migrate message they will serialize 

their state, mailbox, and thread of control.  When the actor migrates to the new UAL, the 

actor will de-serialize its state and mailbox, restart its thread, and begin to process 

messages again.  Applications can take advantage of this by load-balancing theaters that 

are not being fully utilized.  For example, Cloud Operating System (COS) [20] is a 

middleware for SALSA applications that is able to perform autonomous scalability based 

on the current workload of theaters.   

3.1.3 Ease for Developer  

When compared to other concurrent options, SALSA code can be written very 

optimally in terms of lines of code.   



 

     17 

Table 3.1: Lines of Code Comparison [3] 

Application Foundry SALSA Java 

Shared Code 40 10 34 

Basic Multicast 146 27 115 

Acknowledged Multicast 60 21 134 

Group-knowledge Multicast 73 24 183 

TOTAL 319 82 466 

 

Table 3.1 [3] represents the comparison of lines of code for four different applications.  

As shown above, SALSA is able to write the same application in the smallest amount of 

lines.  SALSA applications in turn will be more compact and therefore can be easier to 

comprehend. 

3.2 Example Application 

3.2.1 Distributed Face Recognition 

Face recognition is an application that can be vastly improved by leveraging cloud 

computing resources. Rather than using a single device, such as a smartphone in this case, 

we can offload parts of the image processing to the cloud [2]. By using cloud computing, 

we can save battery in the mobile device, and we can also consider larger data sets. Using 

the SALSA programming language and the FaceRecognizer API from OpenCV [21], 

we can design a mobile phone application to recognize a face in a given image using a 

database of faces (see Figure 3.2). 
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Figure 3.2: Distributed Face Recognition using SALSA Actors 

 

The face recognition application consists of two stages, the training stage, and the 

prediction stage. The training stage trains a database of faces using the 

FaceRecognizer method defined in OpenCV. The prediction stage predicts a given 

face using the desired method with a certain confidence, 0 being the exact face, and infinity 

being completely unlike. When the database of faces is small, there is no need to offload 

computation because the phone can process the faces locally just as fast as it would take 

to offload to the cloud and process remotely. As the database grows, we run into the 

limitations mentioned above and offloading to the cloud can be beneficial. 

The distributed face recognition model consists of a “farmer actor” that creates N1 

“worker actors” in the cloud. While the farmer and worker actors reside in the cloud, a 

client on the mobile phone requests the farmer actor to recognize an unknown face. The 

farmer actor assigns each worker actor a range of faces (N2/N1 each) to train from the 

cloud face database containing N2 faces. The worker actors then predict the closest match 

to the unknown face based on their assigned database. The farmer actor collects the closest 

match from each worker actor and calculates the best candidate for the unknown face. 

Pseudo code for the client, farmer, and worker SALSA programs are shown in Figure 3.3, 

Figure 3.4, and Figure 3.5 respectively. 
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behavior FaceClient { 

    void act(String[] args) { 

        FaceFarmer farmer = (FaceFarmer) 

   FaceFarmer.getReferenceByName( 

                “uan://nameserver/facefarmer”); 

        Image unknownImage = new Image(args[0]); 

        farmer<-predictAll(unknownImage)@ 

            displayImage(token); 

    } 

} 
 

Figure 3.3: SALSA Pseudo Code for Face Recognition Client Actor 

 

behavior FaceWorker { 

    FaceRecognizer faceRecognizer; 

    void train(Image[] assignedDatabase) { 

        faceRecognizer.train(assignedDatabase); 

    } 

 

    ImageMetaData predict(Image testImage) { 

        // return the closest match 

        return faceRecognizer.predict(testImage); 

    } 

} 
 

Figure 3.4: SALSA Pseudo Code for Face Recognition Worker Actor 
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behavior FaceFarmer implements ActorService { 

    //CloudFaceDatabase contains N2 faces. 

    void act(String[] args) { 

        faceWorker[] workers = new faceWorker[N1]; 

        for (i = 0; i < N1; i++) { 

workers[i] = new faceWorker(new UAN(…)); 

workers[i]<-migrate(new UAL(…))@ 

workers[i]<-train( 

                    N2/N1 faces from CloudFaceDatabase); 

  

        } 

    } 

    Image predictAll(Image testImage) 

        join { 

            for (i = 0; i < N1; i++) 

                workers[i]<-predict(testImage); 

        }@getBestMatch(token)@currentContinuation; 

    } 

    Image getBestMatch(ImageMetaData[] closestMatches) { 

        // Find best match with the highest confidence. 

    } 

} 
 

Figure 3.5: SALSA Pseudo Code for Face Recognition Farmer Actor 

In Figure 3.5, note that a join block in the predictAll message handler is 

used to synchronize all the worker actors executing predict. After all the workers finish 

processing predict, the join block returns an object array ImageMetaData[], which 

contains prediction confidence from the workers. Finally, getBestMatch takes the 

array and finds the best matching image with the highest confidence.  In Chapter 5, we 

look at the results of the face recognition application. 
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4. MobileCCA 

4.1 Approach 

We describe Mobile Cloud Computing using Actors (MobileCCA) as a cloud-

based mobile augmentation strategy that uses the actor model for the offloading of 

computational tasks.  Specifically, we use SALSA as the actor programming language for 

the distribution of actors to different computational resources. 

 

We introduce a SALSA add-on for the Android OS that will run SALSA code on Android 

devices.  Application developers can now create SALSA applications that will be able to 

migrate to all SALSA compatible devices.  Although there are inherit limitations from 

Mobile Cloud Computing, through the use of actors, these limitations can be mitigated.  

Battery issues can be resolved by controlling the movement of actors to the mobile device.  

Storage capacity and processing power can be increased by utilizing actors in the private 

and public cloud.  Security vulnerabilities can be decreased by controlling the location of 

actors.  Finally, the cost of using the public cloud can be controlled by migrating actors to 

Figure 4.1: SALSA Actors Distribution  
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the cloud only if there is an allotted budget.  Policies can be implemented to control the 

distribution of actors and thus limit the computation on select devices and change the 

quality of service.   

4.2 Quality of Service Policies 

This section looks at several possible policies that can be used with MobileCCA.  

For example, these policies can include: battery-minded, security-minded, deadline-

minded, budget-minded, history-driven-minded, or a combination of a few.   

4.2.1 Battery-Minded 

The most important factor for Mobile Cloud Computing is reducing the 

consumption of battery.  MobileCCA’s approach to this is the migration of actors away 

from the mobile device.  Based on the current battery level of the device, actors can make 

decisions where to perform the computation.  For example as battery level deteriorate, the 

actors processing on the mobile device may begin to migrate away towards other 

resources.  A simple Battery-Minded policy can control the distribution of mobile actors 

with the following equation: 

𝐴𝑀𝑜𝑏𝑖𝑙𝑒 =
𝐵

𝑅 ∗ 𝐴𝑇𝑜𝑡𝑎𝑙
                                                    (4. 1) 

This controls the number of actors on the mobile device by its current battery status 𝐵.  

For 𝑅 number of computational resources, we can divide the rest of the remaining actors 

equally.  Figure 4.2 shows an experiment with a mobile device and private cloud as the 

battery deteriorates.   
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Figure 4.2: Battery-Minded Policy Experiment 

4.2.2 Security-Minded 

When data is moved to the cloud there is always the possibility of vulnerabilities.  

The ability to control the location of the actors means that the user can control where their 

data will go.  Users confident with public cloud providers can allow the migration of actors 

to public resources, or restrict actors to stay within private boundaries.   

4.2.3 Deadline-Minded 

Applications that have an inherent state of progress can update the user with their 

estimated time of completion.  Therefore if an application is progressing faster than 

estimated it may be beneficial to scale down the computation to save money and energy.  

On the other hand, if an application is slower than expected, the computation can scale up 

and out towards public resources where the computation can complete faster.  A 

simulation of this policy consists of initially designating a number of actors for each 

computational resource.  In Figure 4.3, we designate five actors each to the mobile device 

and public cloud.  As the application progresses the actual completion percentage becomes 

lower than the estimated percentage by a certain threshold.  In this case we migrate some 

of the mobile actors to the cloud.  Eventually when the actual completion percentage goes 

ahead of the estimated percentage by a certain threshold, we can migrate the public cloud 

actors back to the mobile device to save cost. 
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Figure 4.3: Deadline-Minded Policy Simulation 

4.2.4 Budget-Minded 

Using the public cloud means that the user will incur a cost for the rented resources.  

Budgeted users can indicate a threshold of money that they would be willing to spend for 

an application.  A user would ideally like to spend as little as possible to complete an 

application, but the higher the budget ensures more leeway for the application to complete 

in a faster time.  Resource prediction algorithms can be used to estimate the progress of 

an application based on a subsection of work completed for a given monetary value.  

WECU [22] (Workload-Tailored Elastic Compute Units) is an extension of Amazon’s 

Elastic Compute Units, and is a cost-optimal resource prediction method.  By using 

WECU, we can provide a budget and deadline for the application.  Based on the number 

of tasks in a given application, WECU can provide an accurate resource configuration to 

complete the application within the restrictions.  An example of a Budget-Minded policy 

can be as simple as ensuring the CPU utilization for every actor in the public cloud is as 

high as possible.  This allows the user to obtain the best “bang for their buck”.  Since a 

user is paying for resources, using that resource to its full extent is important.  For example, 

an Amazon EC2 C3 Large instance can cost ~$0.10 per hour.  The number of actors 

located on a computational resource can correlate to the amount of CPU each individual 
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actor gets.  Since each actor is competing for resources, sending a large number of actors 

to the public cloud might not be the smartest configuration.  Context-switching and CPU 

contention can cause this configuration to provide a lower individual CPU utilization per 

actor, even though the total CPU utilization for the machine may be 100%. 

 

 

Figure 4.4: Budget-Minded Policy Simulation 

Figure 4.4 represents a simulation of a hypothetical public cloud actor configuration for 

an application.  We can see that initially having 10 actors on the public cloud provided a 

lower individual CPU utilization than that of 5 actors.  Having a policy in place to choose 

the correct number of actors to place in the public cloud can allow for an optimal use of 

the user’s budget. 

4.2.5 History-Driven-Minded 

We look at a group of applications that depend on certain data sets for computation.  

For example, in the Face Recognition application, recognition occurs based on the training 

phase over a database of faces.  The type of images in these databases can lead to a 

different confidence result.  A database of images in the mobile device can consist of 

friends and family, while the database in the private and public clouds can contain a 
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broader set of images like celebrities.  Testing an unknown image in all three 

computational resources can provide different results.  The overall goal of this application 

is to find the highest accuracy label to the unknown image.  With a History-Driven policy, 

actors can initially be distributed equally to all resources to obtain an overall sense of the 

databases.  If the unknown image is a family member, it would make sense for the mobile 

device to provide the lowest uncertainty result, and the private and public cloud to return 

lower quality results.  Therefore, we can migrate actors away from these lower quality 

resources towards the resource that provided the lower uncertainty result in the previous 

iteration of the application.  Figure 4.5 represents an experiment using this policy.  

Through five iterations of the application, prior history influences the locations of actors 

in the next iteration.  Initially, five actors are located in the mobile device, private cloud, 

and public cloud.  In iteration one, we can see that the mobile device provided the lowest 

uncertainty.  Therefore, in the next iteration, actors in computational resources that are a 

threshold away from the best confidence measure are moved to the lowest uncertainty 

computational resource. 
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Figure 4.5: History-Driven-Minded Policy Experiment 
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5. Face Recognition Application and Experimental Results 

5.1 Face Recognition 

In this chapter we take the Face Recognition application and examine the advantages 

of using the MobileCCA approach.  The Face Recognition application consists of a 

training phase that uses the Eigenface approach [23] to determine the uncertainty, or 

confidence, of an unknown image. Zero represents an exact image in the training database 

up to infinity for being completely different.  The application trains over a provided set of 

faces in its personal database and attempts to recognize the unknown face using that 

database. 

5.2 Experimental Results 

Table 5.1: Computational Resource for Face Recognition Application 

Computational Resource CPU (GHz) # Cores Memory (GB) Storage (GB) 

Samsung Galaxy S4 1.9 4 2 16 

Private Cloud (Shared) 4 8 16 256 

Public Cloud  

Amazon EC2 C3 Large 

(Dedicated) 

2.8 2/3.5 3.75 32 

 

Using the resources in Table 5.1, we first get a baseline for the Face Recognition 

application by writing the application in Java and running it separately on the mobile 

device and private cloud.  Then we use the SALSA version using 1 Actor to get a 

comparison.  For the actual face images we will be using the Georgia Tech face database 

[24] with 10 people.  We perform experiments with 100 faces (10 faces per person), 50 

faces, (5 faces per person), and 20 faces (2 faces per person).  Each image on average is 

~50 kB.  For each experiment we select an image from each of the 10 people and perform 

the face recognition application.  If the correct person is identified we mark the charts with 

the uncertainty as a bar, if the application provides an incorrect result we do not include 

an uncertainty bar for that person label.  The time in milliseconds is noted as a line for 

each person trial regardless of the recognition correctness. 
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5.2.1 Results on Mobile Device and Private Cloud using Java & SALSA 1 Actor  

 

 Figure 5.1: Execution Time for Java vs. SALSA 1 Actor with a 100 Face Database  

 

Figure 5.2: Execution Time for Java vs. SALSA 1 Actor with a 50 Face Database 

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7 8 9 10

Ti
m

e 
(m

s)

Person Label

Execution Time for Java vs. SALSA 1 Actor
100 Face Database

Java on Mobile Device SALSA 1 Actor on Mobile Device

Java on Private Cloud SALSA 1 Actor on Private Cloud

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10

Ti
m

e 
(m

s)

Person Label

Execution Time for Java vs. SALSA 1 Actor
50 Face Database

Java on Mobile Device SALSA 1 Actor on Mobile Device

Java on Private Cloud SALSA 1 Actor on Private Cloud



 

     30 

 

Figure 5.3: Execution Time for Java vs. SALSA 1 Actor with a 20 Face Database 

 

Figure 5.4: Uncertainty for the Java vs. SALSA 1 Actor Experiments  
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In this section we perform the face recognition application on both the mobile 

device and private cloud.  We run the experiments using the Java and SALSA version of 

face recognition.  In these experiments we compare the results of using a sequential Java 

version vs. SALSA with 1 Actor.  From  Figure 5.1, Figure 5.2, Figure 5.3, and Figure 

5.4, we can make some deductions from the application.  We see that as the number of 

faces in the database decreases the execution time decreases and the uncertainty on 

average increases.  As we move computation to the private cloud we can also see a 

significant reduction in execution time.  We can see that for a 100 face database on the 

mobile device we were not able to compute any of the unknown images.  This could be 

due to the fact that the 1 actor was carrying too much data (100 references to faces) for the 

SALSA theater to handle on the mobile device.   

 The benefits of using SALSA is that with the altering of a single variable (number 

of actors), the application can run concurrently.  This proves to be much easier than writing 

a concurrent version of Face Recognition in Java. In Figure 5.5 - Figure 5.12, we look at 

the results from using 5 and 10 actors on both the mobile device and private cloud.  This 

entails that each actor will receive a portion of the face database to train over and return a 

result based on that subsection of data.  When all actors have finished computation, the 

“Farmer” actor will decide which actor provided the lowest uncertainty result.  It is 

important to see that we are now running completely different applications than before.  

Since each actor is receiving a subsection of the face database the computations occurring 

is different.  We therefore see changes in the uncertainty of a predicated image. 
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5.2.2 Results on Mobile Device and Private Cloud using SALSA 5 Actors  

 

Figure 5.5: Execution Time for SALSA 5 Actors with a 100 Face Database 

 

Figure 5.6: Execution Time for SALSA 5 Actors with a 50 Face Database 
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Figure 5.7: Execution Time for SALSA 5 Actors with a 20 Face Database 

 

Figure 5.8: Uncertainty for the SALSA 5 Actors Experiments 
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5.2.3 Results on Mobile Device and Private Cloud using SALSA 10 Actors  

 

Figure 5.9: Execution Time for SALSA 10 Actors with a 100 Face Database 

 

Figure 5.10: Execution Time for SALSA 10 Actors with a 50 Face Database 
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Figure 5.11: Execution Time for SALSA 10 Actors with a 20 Face Database 

 

Figure 5.12: Uncertainty for the SALSA 10 Actors Experiments 
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5.2.4 Averaged Results on Mobile Device and Private Cloud 

 

Figure 5.13: Average Time for Java vs. SALSA 1 Actor for 100, 50, and 20 Faces 

 

Figure 5.14: Average Time for SALSA 5 Actors for 100, 50, and 20 Faces 
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Figure 5.15: Average Time for SALSA 10 Actors for 100, 50, and 20 Faces 

 

Figure 5.16: Average Uncertainty for 100, 50, and 20 Faces 
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 In Figure 5.13, Figure 5.14, Figure 5.15, and Figure 5.16, we can see that as we increase 

the number of actors, the execution time reduces. We do, however, incur more false 

predictions, especially as the number of faces decreases.  This could be because each actor 

has a smaller database of faces to train over and therefore the predications become less 

accurate.  The more faces in the database provides a smaller standard deviation for 

uncertainty and therefore leads to more accurate results.  For databases of size 50 and 20, 

as the actors increase although we may incur more false predictions the predictions that 

are correct have an extremely low uncertainty. 

5.2.5 Averaged Results on Private Cloud and Public Cloud 

For this experiment, we look at the Face Recognition application on the public 

cloud.  Using an Amazon EC2 C3 Large instance, we perform the Java vs. SALSA 

experiments on the cloud.  We can see that using the same face database (Georgia Tech 

face database with 100, 50, and 20 faces [24]), would provide results similar to that of the 

private clouds.  Instead we can utilize the increased data storage capacity of the cloud.  We 

perform the Face Recognition application using 1000 faces from the Labeled Faces in the 

Wild database [25].  The images in this database average 20 kB in size.  Unlike the 

previous experiments where the database had an equal amount of faces per person, this 

face database has ~400 people with a random number of faces per person.  When running 

the applications on the mobile device it is interesting to see that every experiment failed 

with an OutOfMemory error.  This supports our notion that mobile devices cannot run 

all applications due to the lack of computational power.  Using the same conditions we 

run the same experiment on the private cloud.  Due to the enhanced processing power of 

this particular private cloud, the results favored this computational resource.  This 

establishes the notion that public clouds are not necessarily the most powerful 

computational resource in every case.   
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Figure 5.17: Average Time for Java vs. SALSA 1 Actor for 1000 Faces 

 

Figure 5.18: Average Time for SALSA 5 Actors for 1000 Faces 
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Figure 5.19: Average Time for SALSA 10 Actors for 1000 Faces 

 

Figure 5.20: Average Uncertainty for 1000 Faces 
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5.2.6 Improvements by utilizing MobileCCA 

Table 5.2: Speedup of Time for Java vs. SALSA 

  Speedup 

Experiment  Face 

Database 

Mobile Device   Private 

Cloud 

Public 

Cloud 

Java vs. SALSA 1 

Actor 

1000 - 0.902 0.931 

100 - 1.055 - 

50 0.851 0.897 - 

20 0.397 0.729 - 

Java vs. SALSA 5 

Actors 

1000 - 1.795 1.888 

100 1.998 1.365 - 

50 1.575 0.946 - 

20 0.473 0.946 - 

Java vs. SALSA 10 

Actors 

1000 - 2.999 3.413 

100 2.386 1.524 - 

50 1.724 0.558 - 

20 0.408 0.134 - 
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Table 5.3: Reduction of Uncertainty for Java vs. SALSA 

  Reduction  

Experiment

  

Face 

Database 

Mobile 

Device   

Private 

Cloud 

Public 

Cloud 

Misses 

Java vs. SALSA 

1 Actor 

1000 - 1 1.001 0 

100 - 0.996 - 0 

50 1.006 1 - 30 

20 0.745 1 - 30 

Java vs. SALSA 

5 Actors 

1000 - 1.231 1.360 0 

100 1.192 1.144 - 0 

50 1.538 1.538 - 40 

20 1.380 1.854 - 60 

Java vs. SALSA 

10 Actors 

1000 - 1.864 1.906 0 

100 1.112 1.077 - 0 

50 2.290 2.290 - 60 

20 5.408 7.267 - 70 

 

 Table 5.2 and Table 5.3 represent the speedup of time and reduction of uncertainty 

in terms of confidence respectively for the Java vs. SALSA experiments.  In both tables 

we see that when comparing Java vs. SALSA with 1 actor there is no benefit since we 

must take into consideration the overhead of migrating the actor.  We observe that when 

we increase the number of actors we see a speedup in time and a reduction in uncertainty 

of results.  This is due to the fact that the application is now running concurrently and that 

the database of faces that each actor has is smaller.  Although we incur a lower uncertainty, 

it is important to see that we also incur more misses since there is a smaller database of 

faces and thus smaller images to test against. 
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Table 5.4: Mobile Device to Private Cloud Average Speedup 

Type Mobile Device to Private Cloud  

Average Speedup 

Java 5.00 

SALSA 1 Actor 7.85 

SALSA 5 Actors 5.11 

SALSA 10 Actors 2.06 

Total Average 5.00 

 

Table 5.5: Private Cloud to Public Cloud Average Speedup 

Type Private Cloud to Public Cloud  

Average Speedup 

Java 0.80 

SALSA 1 Actor 0.83 

SALSA 5 Actors 0.85 

SALSA 10 Actors 0.91 

Total Average 0.85 

 

 Table 5.4, and Table 5.5 represents the average speedup of moving from one 

computational resource to another.  Based on the computational resources used in these 

experiments, Table 5.1, we can see a ~5x speedup by moving from the mobile device to 

the private cloud.  Moving from the private cloud to the public cloud we actually saw an 

increase in execution time.  This is due to the fact that this particular private cloud is more 

powerful than the public cloud. 

Conclusions drawn from these experiments are that clearly the private and public 

cloud was the best choice to migrate computation.  With a larger storage capacity, more 

images can be added to the database leading to more accurate results.  We also see that 

having a large amount of faces on the mobile device may not be the best option.  Not only 

is the storage capacity smaller but the computation time is much greater than that of the 

private cloud.  What is interesting to see is that smaller amount of faces on the mobile 
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device provides low uncertainty results when used with multiple actors. This fits well with 

the use and safety of data on mobile devices.  Friends and family’s faces can be located 

on the mobiles device while broader faces can be located on private and public clouds 

such as friends of friends, strangers, celebrities, etc.  This way actors can be sent to the 

phone as well as other resources and provide a broad search of the unknown face while 

still being efficient.   
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6. Related Work 

6.1 Mobile Local Resources 

Similar to Hyrax, mentioned in Section 2.2.2, N. Fernando et al. [26] introduces an 

approach that does not require the need to build an infrastructure to offload heavy 

computational work.  Instead of using known cloud services such as Amazon EC2, a local 

cloud is created using nearby mobile devices. 

 This mobile cloud is a conceivable idea considering the popularity of smart 

phones.  Smart phones have integrated Bluetooth allowing the transfer of agents to occur 

even when Wi-Fi or 3G is unavailable.  The natural mobility of mobile devices allows this 

mobile cloud to appear in any locations.  A “home” mobile cloud can exist for your 

family’s mobile devices grouped together, and can easily be moved to a “work” mobile 

cloud with your colleague’s mobile devices.  The cost-benefit analysis is still used to 

accurately determine which devices are good candidates.  Cost-benefit analysis is simply 

a middleware to gather statistics based on some factors including limited battery power, 

limited cellular signal, data access fees and availability of local resources.   

This approach is similar to ours in the sense that they are creating “mobile clouds” 

out of various mobile devices in a vicinity, but through MobileCCA we do not limit 

ourselves strictly to this.  The ability to control the movement of actors allows us to 

simulate these “mobile clouds” but also gives us the ability to scale out to public resources 

if needed.   

6.2 Mobile Cloud Middleware Performance 

 H. Flores et al. [27] describes a design engine that is located on the mobile device 

to determine whether to offload data or not.  This decision engine uses the same constraints 

such as bandwidth, size of data, and other aspects of the device.  The phone offloads data 

using the Mobile Cloud Middleware (MCM).  A benefit of the MCM includes hiding the 

complexity of mobile cloud providers using different Web APIs. 

 This research has proved that offloading from a mobile device is beneficial.  MCM 

is currently used to determine which cloud service on which to execute their application. 
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Expanding the MCM system to run the decision engine would allow all phones connecting 

to this middleware to use the feature. 

6.3 Cloud Operating System 

Imai et al. [20] present a middleware framework known as the Cloud Operating 

System (COS) that supports autonomous workload elasticity and scalability based on 

application-level migration as a reconfiguration strategy.  Based on the actor-oriented 

programming language, SALSA, the framework implements reconfiguration strategy 

based on the workload of VMs.   

When utilization on VMs are past a threshold, actors will migrate to newly created 

VMs.  In contrast, as utilization in VMs decrease, actors will consolidate together and 

terminate idle VMs.  COS provides a layer of abstraction to application developers.  Rather 

than dealing with resource management themselves, developers can delegate this to the 

middleware and allow the nature of the application to control the configuration of actors. 
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7. Discussion 

7.1 Conclusion 

Approaches to Mobile Cloud Computing have circled around the idea of 

offloading computation to various computational resources.  This idea, however, has 

certain restrictions, whether it is constricting applications to fit into middleware, only 

offloading to certain resources, or having no control in the offloading process.  In this 

thesis we have provided an approach that solves these problems.   

Our cloud-based mobile augmentation strategy is known as MobileCCA.  By 

leveraging the actor model in Mobile Cloud Computing we can create dynamically 

reconfigurable applications very easily.  This opens the ability to move actors to any 

computational resource that is able to run a compatible VM.  Specifically in SALSA, since 

Java is the base language, any device that is able to run Java code can run these SALSA 

applications.  Therefore Android devices, laptops, desktops, private and public clouds will 

be suitable for actor migration.  In a world full of heterogeneity, the ability to write one 

SALSA application that is compatible on all devices is especially important because it can 

save a lot of time and effort.  An application now consisting of actors can be offloaded to 

different computational resources and can experience different behaviors on each.  

Therefore, policies can be introduced to control the movement of actors to obtain a given 

goal.  

We provide an example of this approach by using the actor-oriented programming 

language SALSA.  By creating a SALSA application, Face Recognition, we were able to 

perform experiments on the mobile device, private cloud, and public cloud.  We were able 

to scale up applications without the need for extensive developer involvement.  By scaling 

up we can dramatically reduce execution time.  These speedups were on average ~5x faster 

when moving from the mobile device to the private cloud. 

 With mobile devices growing sharply, finding an efficient and developer-friendly 

approach to Mobile Cloud Computing is important.  We hope that the MobileCCA 

approach will help developers create scalable, efficient mobile applications to 

computationally expensive problems.   
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7.2 Future Work 

In the future we hope that developers will use MobileCCA to create useful 

applications.  For example, smartphones are now carrying onboard fingerprint sensors.  A 

useful application can be fingerprint recognition for police officers.  This application 

would consist of a training phase that trains over a database of fingerprints similar to the 

Face Recognition application.  When a user attempts to recognize a fingerprint, actors can 

be sent to the mobile device, private cloud, and public cloud.  As stated in this thesis, all 

of these resources have their limitations.  For example, the mobile device might have the 

storage capacity to store hundreds of fingerprints (most wanted criminals in the area), the 

private cloud might holds thousands (criminals in the city), and finally the public cloud 

can hold millions (criminals in the state).  Imagine a scenario where an officer pulls over 

a suspect.   As the suspect’s fingerprint is recognized, actors can be sent to the mobile 

device, private cloud, and public cloud, all training over a different dataset.  This creates 

a comprehensive search over a large database of fingerprints in an optimal way. 
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