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ABSTRACT

Loss of thrust emergencies, e.g. – induced by bird strikes or fuel exhaustion – give rise to the

need for expeditiously generating feasible trajectories to nearby runways, in order to guide

pilots. It is possible to pre-compute total loss of thrust trajectories from every point in a

3D flight plan, but dynamic factors which affect the feasibility of a trajectory, like partial

power, wind conditions, and aircraft surface damage, cannot be predicted beforehand. We

present a dynamic data-driven avionics software approach for emergency aircraft trajectory

generation which can account for these factors. Our approach updates a damaged aircraft

performance model during flight which is used for generating valid trajectories to a safe

landing site. This model is parameterized on a baseline glide ratio (g0) for a clean aircraft

configuration, assuming best gliding airspeed on straight flight. The model predicts purely

geometric criteria for flight trajectory generation, namely, glide ratio and radius of turn

for different bank angles and drag configurations. Our model can dynamically infer the

most accurate baseline glide ratio of an aircraft from real-time aircraft sensor data. We

further introduce a trajectory utility function to rank trajectories for safety, in particular,

to prevent steep turns close to the ground and to remain as close to the airport or landing

zone as possible. Wind can significantly affect a feasible gliding trajectory with respect to

the ground by changing the shape of turns from circular to trochoidal, and by increasing

or decreasing the effective ground speed. Thus, in the presence of wind, otherwise feasible

trajectories may become infeasible. Therefore, we present an additional wind model that

takes into account the observed baseline glide ratio of an aircraft and the horizontal wind

vector (−→w ). Our dynamic data-driven system uses this wind model to generate wind-aware

trajectories that are feasible in the presence of a steady, horizontal wind. As a use case,

we consider the Hudson River ditching of US Airways 1549 in January 2009, using a flight

simulator to evaluate our trajectories and to get sensor data (airspeed, GPS location, and

barometric altitude). In this example, baseline glide ratios of 17.25:1 and 19:1 enabled us

to generate trajectories up to 28 seconds and 36 seconds after the birds strike respectively.

We were also able to generate a feasible wind-assisted trajectory when trajectories were not

possible in the absence of wind. In our experiments, the computation time for a single

trajectory ranged from 40 milliseconds to 60 milliseconds.

ix



CHAPTER 1

Introduction

1.1 Motivation

Aircraft loss-of-thrust (LOT) emergencies result from complete or partial loss of power

in the engines and may be caused by fuel exhaustion – as in the case of Tuninter Flight-

1153 [1] which ditched into the Mediterranean Sea on August 6, 2005, killing sixteen people,

or bird strikes – as in the instance of US Airways Flight-1549 [2] which made an emergency

landing in the Hudson River on January 15, 2009. In a total loss-of-thrust scenario, the

response time is critical, and it is imperative to provide pilots with feasible trajectories to

nearby runways as quickly as possible. A feasible trajectory is one which considers the

actual flight capabilities of the aircraft under the emergency conditions. The choice of a

feasible trajectory depends on various factors like the availability of partial power, wing

surface damage, and wind conditions. Availability of partial power can affect the glide ratio

of an aircraft while the presence of wind can change the shape of turns from circular to

trochoidal, and affect the ground speed. While it is possible to pre-compute possible no-

thrust trajectories from all points in a 3D flight-plan, it is impracticable to predict these

dynamic factors in advance.

Wind has a profound effect on the shape of trajectories flown with respect to the

ground, leading to significant changes in the shape and position of the resulting ground

projections. Wind also affects ground-speed in a non-linear way, thus impacting the overall

gliding range of an aircraft. Owing to these factors, in the presence of wind, both the

horizontal and vertical profiles of a trajectory, that is valid under no-wind conditions, are

significantly altered, enough to potentially render the trajectory infeasible. This calls for

the need of developing an inclusive system that can quickly compute accurate trajectories

by taking into account the flight capabilities of an aircraft under emergency conditions, and

the horizontal wind vector (−→w ). Presence of such a decision support system on-board can

significantly reduce the response time of pilots, thereby increasing the chances of a successful

landing in the event of a loss-of-thrust emergency.

1



2

1.2 Contributions

In this thesis, we investigate the use of dynamic data-driven avionics software in deci-

sion support systems for loss-of-thrust emergency scenarios. The contributions are summa-

rized as follows:

• We propose a dynamic data-driven trajectory generation approach that can accurately

account for dynamic variables, such as partial power, wind aloft, and airplane surface

damages while computing trajectories to nearby runways [3]. Dynamic Data-Driven

Applications and Systems (DDDAS), used in prediction-based applications, use sensor

data to dynamically update a system’s model in order to improve the accuracy and

effectiveness of the model [4]. Our dynamic data-driven algorithm distills a complex

aerodynamic model into purely geometric constraints: glide ratio and radius of turns for

different bank angles and drag configurations. Our damaged aircraft model can predict

the different glide ratios and radii of turns using a single parameter: the aircraft's

baseline glide ratio, g0. g0 represents the glide ratio for a clean aircraft configuration

assuming best gliding airspeed on straight flight. When g0 is inferred from sensor data

on the fly, it can be used to compute flight trajectories that automatically consider

dynamic factors since their effect is reflected in the inferred value of g0.

• We develop safety metrics and compute an utility function to evaluate generated tra-

jectories by considering altitude, distance from runway, bank angle over height, time of

flight, extended runway length segment, and number of turns. This allows us to rank

all the feasible trajectories according to the risk they impose on flights.

• We propose a wind-aware trajectory generation approach that considers a horizontal

wind vector (−→w ) [5]. We define a wind model to predict the effect of a constant,

horizontal wind on trajectories generated by our algorithm. This wind model can

account for the effect of wind on ground-speed, the glide ratio with respect to the

ground, and the shape of turns. Our dynamic data-driven system uses this model to

predict the effect of wind and generate wind-aware trajectories that are feasible in the

presence of a steady, horizontal wind.

• We use our trajectory generation algorithm to analyze alternate landing options for

US Airways 1549 incident. We use data from the flight’s Flight Data Recorder and try
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to simulate the actual conditions of the incident as accurately as possible. We then

use our safety metrics to determine what might have been the best possible option for

landing the aircraft during the actual incident on January 2009.

Our work thus significantly improves upon prior Dubins based trajectory generation

work by considering these data-driven geometric criteria. The aim is to reduce the response

time of the pilots during an emergency by introducing automation in the decision-making

phase. We used a Precision Flight Controls CAT III Flight Simulator running X-Plane

software to evaluate our trajectories, and to gather sensor data (e.g., airspeed, GPS loca-

tion, and barometric altitude), which we used to dynamically update the damaged aircraft

performance model.

1.3 Structure of Thesis

The layout of this thesis is as follows: Chapter 2 discusses our dynamic data-driven

trajectory generation approach, Chapter 3 presents our wind-aware trajectory generation

approach, Chapter 4 discusses related work, and Chapter 5 concludes the thesis and explores

some future directions of work.



CHAPTER 2

Dynamic Data-Driven Flight Trajectory Generation

2.1 Background

In this chapter, we present a dynamic data-driven approach for generating trajectories

in the event of loss-of-thrust aircraft emergencies. Our approach generates a no-thrust tra-

jectory with clean configuration glide ratio and then gathers sensor data from aircraft sensors

for comparison. If there is an inconsistency, the observed data is sent to a model refinement

component which infers a new baseline glide ratio (g0) consistent with the observed data

and sends it to the damaged aircraft model. The damaged aircraft model uses this refined

baseline glide ratio to create a new function for computing glide ratios for different bank

angles. This function is made available to the trajectory generation algorithm for generating

trajectories which are consistent with the actual capabilities of the aircraft. The damaged

aircraft model takes as input the glide ratio for the clean configuration and a drag multiplier

table for generating the glide ratios in dirty configurations. It can then generate glide ratios

and radii of turn (r) for different values of bank angle, airspeed and drag configuration. Our

trajectory planning algorithm generates trajectories from an initial point to a given runway

or a set of runways in case of a loss-of-thrust emergency.

In a loss-of-thrust situation, the response time is critical. Therefore, it is important

for the pilots to make a quick and educated choice among all possible trajectories which

are generated. To aid this, we develop certain safety metrics to rank all the computed

trajectories according to the risk they might inflict. These metrics consider altitude, distance

from runway, bank angle over height, time of flight, extended runway length segment, and

number of turns. We define an utility function – a function of the weighted values of these

metrics, which can be used for assigning the ranks.

Portions of this chapter have been presented as: S. Paul, F. Hole, A. Zytek and C. A. Varela. “Flight
Trajectory Planning for Fixed-Wing Aircraft in Loss of Thrust Emergencies.” in The 2nd Int. Conf. on
InfoSymbiotics / DDDAS (Dynamic Data Driven Applications Systems), Boston, MA, USA, August 2017.

Portions of this chapter previously appeared as: S. Paul, F. Hole, A. Zytek, and C. A. Varela. “Wind-
aware trajectory planning for fixed-wing aircraft in loss of thrust emergencies.” in Proc. of the 37th
AIAA/IEEE Digit. Avionics Syst. Conf., London, England, UK, September 2018, pages 558-567.

Portions of this chapter have been submitted to: S. Paul and C. A. Varela. “Data-Driven Wind-Aware
Emergency Trajectory Planning for Fixed-Wing Aircraft.” in J. Aircraft.

4
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Table 2.1: Glide ratio and radius of turn for various bank angles at best glide
speed (225 kts) for Airbus A320.

Bank angle: 0◦ 10◦ 20◦ 30◦ 45◦ 60◦

Glide ratio: 17.25:1 16.98:1 16.21:1 14.92:1 12.19:1 8.62:1

Radius of turn (feet): ∞ 25430 12319 7766 4484 2588

Table 2.2: Glide ratio and radius of turn for various bank angles at best glide
speed (65 kts) for Cessna 172.

Bank angle: 0◦ 10◦ 20◦ 30◦ 45◦ 60◦

Glide ratio: 9:1 8.86:1 8.45:1 7.79:1 6.36:1 4.5:1

Radius of turn (feet): ∞ 2122 1028 648 374 216

Bank angle of turns has a major impact on the glide ratio and radius of turn of an

aircraft (Table 2.2, Table 2.1). These variations in the glide ratios and the radii of turns has

a major impact on the viability of the trajectories (Fig. 2.1). Therefore, in our trajectory

planning algorithm, we use three discrete values of bank angles: 20◦, 30◦ and 45◦. All the

scenarios and experiments in this chapter have been simulated for an Airbus A320.

(a) 2D view. (b) 3D view

Fig. 2.1: Effect of bank angle on trajectories.
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2.2 Chapter Contributions

The following items represent our original research contributions as presented in this

chapter:

• Our dynamic data-driven model for trajectory generation (Section 2.4).

• Our trajectory generation algorithm (Section 2.5).

• Our safety metrics for trajectory evaluation (Section 2.6).

• Experimental evaluation of our approach and analysis of alternate landing options for

US Airways flight 1549. (Section 2.7).

2.3 Aircraft Model

2.3.1 Stengel’s Model

We adopted the aircraft model developed by Stengel [6]. We summarize this model in

this subsection.

(a) Position of a particle with respect to a
3D inertial frame.

(b) Inertial velocity expressed in polar
coordinates.

Fig. 2.2: Position and inertial velocity of a point mass in a 3D frame.

The position of a point with respect to a 3D inertial frame is given by:

[x y z]> (2.1)

Therefore, the velocity (v) and linear momentum (p) of a particle are given by:

v =
d [x y z]>

dt
= [ẋ ẏ ż]> = [vx vy vz]

> (2.2)
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(a) Forces on a gliding flight. (b) Weight vs lift in banked turns.

Fig. 2.3: Forces on a glider in straight line motion and banked turns.

p = mv = m [vx vy vz]
> (2.3)

where m = mass of the particle. Fig 2.2b shows the inertial velocity of a point mass in polar

coordinates, where γ is the vertical flight path angle and λ is the horizontal flight path angle.

Considering the motion to be a straight line motion in a particular direction, we can use vx

to denote motion in the xy horizontal plane. Two dimensional equations for motion of a

point mass, which coincides with the center of mass of an aircraft, restricted to the vertical

plane are given below:


ẋ

ż

v̇x

v̇z

 =


vx

vz

fx/m

fz/m

 (2.4)

Transforming velocity to polar coordinates:ẋ
ż

 =

vx
vz

 =

 v cos γ

−v sin γ


=⇒

v
γ

 =

 √
v2x + v2z

− sin−1(vz/v)

 (2.5)
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Therefore, rates of change of velocity and flight path angle are given by:v̇
γ̇

 =

 d
dt

√
v2x + v2z

− d
dt

sin−1(vz/v)

 (2.6)

Longitudinal equations of motion for a point mass are given by:

ẋ(t) = vx = v(t) cos γ(t) (2.7)

ż(t) = vz = −v(t) sin γ(t) (2.8)

v̇(t) =
(CT cosα− CD)1

2
ρ(z)v2(t)S −mG sin γ(t)

m
(2.9)

γ̇(t) =
(CT sinα + CL)1

2
ρ(z)v2(t)S −mG cos γ(t)

mv(t)
(2.10)

where CT is side force coefficient, CD is drag coefficient ρ is density of air, α is the angle

of attack, CL is lift coefficient, S is the surface area of the wing and G is the gravitational

constant (11.29 kn2ft−1). Lift and Drag are given by L = CL
1
2
ρv2S, D = CD

1
2
ρv2S. Thus,

for a gliding flight, the condition of equilibrium is defined by the following equations:

L = CL
1

2
ρv2S = W cos γ (2.11)

D = CD
1

2
ρv2S = W sin γ (2.12)

where W is the weight of the aircraft.

Therefore, the gliding flight path angle (Fig. 2.3a) can be found:

cot γ =
L

D
(2.13)

From equations 2.7 and 2.8 , we have ẋ = v cos γ, ż = −v sin γ. Therefore,

cot γ =
ẋ

−ż
=

∆x

−∆z
= g0 (2.14)

where g0 is the baseline glide ratio. Hence, from equations 2.13 and 2.14, we can conclude

that g0 = L
D

. Therefore, glide range is maximum when (L/D) is maximum.
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2.3.2 Our Extensions to Stengel’s Model for Trajectory Generation

For banked turns, if the bank angle is θ, the vertical component of lift, L′ = L cos θ

(Fig. 2.3b).

g(θ, k) =
L′

D
=

(
L

D

)
cos θ = g(k) cos θ, where k is the drag configuration. (2.15)

The drag multiplier function δ(k) is a ratio that can be used to obtain the baseline glide

ratio g(k) for a drag configuration k from the baseline glide ratio of clean configuration g0.

g(k) = g0δ(k) (2.16)

Given the baseline glide ratio g0 and a drag configuration k, the glide ratio for a bank angle

θ can be obtained from equation 2.17.

g(θ, k) = g0δ(k) cos θ (2.17)

Given the horizontal aircraft airspeed vx, the radius of turn r(θ, vx) for a bank angle θ can

be obtained from equation 2.18.

r(θ, vx) =
v2x

G× tan θ
(2.18)

Equations 2.17 and 2.18, form the basis of our geometrical model of a gliding flight. In the

rest of the chapter, we will use v to refer to vx.

2.4 Dynamic Data Driven Flight Trajectory Generation

A flowchart of our dynamic data driven approach is given in Fig. 2.4. There are four

components: the damaged aircraft model, flight trajectory generator, aircraft/sensors and

the model refinement component.

The damaged aircraft model (Fig. 2.5) takes as inputs the new baseline glide ratio (g0)

and a drag multiplier function (δ). The functions for calculating the glide ratio (g(θ, k)) for

every bank angle (θ) (Eq. 2.17 ) and the corresponding radius of turn (r(θ, vx)) (Eq. 2.18)

are sent from the damaged aircraft model to the flight trajectory generator to be used in

the trajectory planning algorithm for computing trajectories. We constantly read data from
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Fig. 2.4: Flowchart of dynamic data-driven approach.

Fig. 2.5: The damaged aircraft model.

the aircraft sensors to estimate the observed glide ratio ĝ(θ, k). This is done by using the

pressure altitude (z) and the airspeed (vx) that are available from the sensor data every

second. For a given instant ti, we can compute the observed glide ratio ĝ(θ, k)(ti) by taking

a ratio of the horizontal distance traveled to the altitude lost in the preceding η seconds

(Eq. 2.19).

ĝ(θ, k)(ti) =
∆x(η)

∆z(η)
=

∑i
i−η vx(ti)

z(ti−η)− z(ti)
(2.19)

where ∆x(η) is the horizontal distance covered in preceding η seconds and ∆z(η) is the

altitude loss in the same interval. In order to ensure that anomalous data is not used for

computing the baseline glide ratio, we detect stable windows of descent for filtering out such

data. A stable window of descent satisfies the following conditions:

• It is a period ω of steady descent with no vertical acceleration.
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Fig. 2.6: Estimation of glide ratio from sensors (FDR data of US Airways 1549).

Fig. 2.7: Effect of too short size of ω.

• The distribution of ĝ(θ, k)(ti) in the period ω has a standard deviation within a thresh-

old στ .

When we detect a stable window of descent ω, we compute the observed glide ratio ĝ(θ, k)(ω)

for the observed bank angle θ by taking a mean of all values of glide ratios observed in ω

(Eq. 2.20).

ĝ(θ, k)(ω) =

∑n
i=1 ĝ(θ, k)(ti)

n
for all ti ∈ ω (2.20)
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Fig. 2.8: Effect of too large size of ω.

Fig. 2.9: Effect of too small value of στ .

In our experiments, we take η = 4, ω of duration 10 seconds and στ = 5 (Fig. 2.6). The

choice of these values have a major impact on the estimation of ĝ(θ, k) because too short

or too large values of ω and στ make it difficult to filter out noisy values of ĝθ (Fig. 2.7 to

Fig. 2.10).

The observed glide ratio for airspeed, bank angle and drag configuration are then sent

to the model refinement component. The model refinement component calculates the new

baseline glide ratio g0
′
(ω) using the observed bank angle θ, drag configuration k from the
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Fig. 2.10: Effect of too large value of στ .

sensor data, and the observed glide ratio ĝ(θ, k)(ω) (Eq. 2.21). This is done assuming that

the aircraft is maintaining the best gliding airspeed for clean configuration.

ĝ(θ, k)(ω) = g0
′
(ω)δ(k) cos θ =⇒ g0

′
(ω) =

ĝ(θ, k)(ω)

δ(k) cos θ
(2.21)

(a) 2D View. (b) 3D View.

Fig. 2.11: Trajectories to LGA4 from an altitude of 4551 feet. New trajectories
computed using data from flight simulator.

Fig. 2.11 shows dynamic data driven approach being used to generate trajectories

to LGA4 from an altitude of 4451 feet. An initial trajectory was first generated using a
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baseline glide ratio of 16:1 and was flown in a flight simulator. During the simulated flight,

new baseline glide ratios were computed from the simulator data and new trajectories were

generated. The image clearly shows that correcting the baseline glide ratio from flight data

can have a major impact on new trajectories that are generated. This allows us to account

for dynamic factors such as partial power, wind, and aircraft surface damage and compute

a feasible trajectory corresponding to the actual flight capabilities of an aircraft during an

emergency.

2.5 Trajectory Planning Algorithm

LOT emergencies can occur at any altitude. Depending on the altitude of the emer-

gency, the nature of possible trajectories varies. Owen et al. [7] describe three types of

trajectories depending on the altitude of the aircraft with respect to the runway, namely, low

altitude, middle altitude and high altitude trajectories. Our trajectory planning algorithm

(Fig. 2.12) introduces the concept of an extended runway segment to classify emergencies

into only two scenarios: low altitude scenarios and high altitude scenarios.

A low altitude scenario is an emergency altitude from which a simple Dubins airplane

path can bring the aircraft down to the runway or above the runway at an altitude from

where integral number of spiral turns are not possible. In this case, the generated trajectory

consists of a simple Dubins 3D airplane path from the starting point to the runway (Fig. 2.13).

A high altitude scenario is any emergency altitude from which a simple Dubins airplane

path brings an aircraft over the runway at an altitude from where integral number of spiral

turns are possible. In certain situations, just spiral turns may not be enough to lose the

excess altitude in its entirety and in such cases our algorithm generates an extended runway

segment in addition to spiral turns (Fig. 2.13). This extended runway segment has a length

e, such that e ∈ [0, 2πr(θ, vx)g(0, d)/g(θ, c)), where g(0, d) is the dirty configuration glide

ratio for straight line gliding and g(θ, c) is the clean configuration glide ratio for banked

turns. The addition of this extended runway segment in the final path allows the aircraft to

lose the excess altitude before reaching the runway.

We use a dirty configuration glide ratio in the extended final segments. This ensures

that the starting point of the extended final segment is at an altitude hd from which the

flight can safely make it to the runway (Fig. 2.14). In case the aircraft reaches the starting

point of the final segment at an altitude ha > hd, then the pilot will have the flexibility of
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Fig. 2.12: Flowchart of trajectory planning algorithm.

(a) 2D view. (b) 3D view

Fig. 2.13: Low and high altitude trajectories with extended runway segments.

losing the excess altitude ha − hd by increasing drag or by adjusting side-slip and forward

slip, and still making it to the runway (Fig. 2.14a). On the other hand, if the aircraft reaches

the starting point of the final segment at an altitude ha′ < hd, then the pilot can keep using

clean configuration until it is safe to increase drag and make a successful landing (Fig. 2.14a).

However, if a clean configuration glide ratio is used for computing the final segment, then

it will start at an altitude hc that is too optimistic. In case the aircraft reaches the start of
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the final segment at an altitude ha < hc, it will be impossible to reach the runway from that

position (Fig. 2.14b).

(a) Using a dirty configuration glide ratio.(b) Using a clean configuration glide ratio.

Fig. 2.14: Significance of using a dirty configuration glide ratio in the final
segment.

Our trajectory generation algorithm generates trajectories that consist of a series of

standard maneuvers (constant-bank turns and straight line glide). However, it should be

noted that our current algorithm fails to return trajectories in certain cases, for example,

when the aircraft is directly above the runway. It can generate trajectories only for those

cases where the Dubins airplane path from initial to final configurations consists of a curve,

followed by a straight line segment, followed by a curve.

2.6 Trajectory Safety Metrics

We introduce a set of trajectory safety metrics to evaluate our trajectories. Each

trajectory T generates a value for each metric and each of these values are then normalized

relative to the minimum (‖m‖ = mmin

m ) or maximum (‖m‖ = m
mmax

) value, whichever is

desired for that metric. The safety metrics that have been considered for this paper are:

• Average Altitude (z̄)- This metric computes the average of the altitude (z) for all N

points in T. This metric is normalized against the maximum value because for a given

trajectory, a higher average altitude from the ground is desirable (Eq. 2.22).

z̄ =

∑N
i=0 zi
N

(2.22)

• Average Distance From Runway (d̄)- This metric computes the average of the distance
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(d) from the runway for all N points in T. This metric is normalized against the

minimum value because for a given trajectory, minimum distance from the runway at

all time is desirable.

d̄ =

∑N
i=0 d(ri, rR)

N
(2.23)

Eq. 2.23 is used to compute d̄ where rR is the position vector of the runway and d(r1, r2)

is the distance between r1 and r2 in 3D space.

• Average Bank Angle Over Height ( ¯( θ
z

)
)- This metric is computed by taking an average

of the ratio between bank angle (θ) and altitude (z) for all N points in T. Since it is

not desirable to have steep turns very close to the ground, this metric is normalized

against the minimum value (Eq. 2.24).

¯(θ
z

)
=

∑N
i=0

(
θi
zi

)
N

(2.24)

• Total time (t)- This metric measures the total time required to fly the trajectory T.

It is normalized against the maximum as a trajectory that takes longer time gives the

pilots more time to plan a safe landing (Eq. 2.25).

t =

∑N
i=1 d(ri, ri−1)

vx
(2.25)

• Extended runway segment length (e)- This metric measures the length (e) of the ex-

tended runway segment. Trajectories with longer final straight line approaches are

desirable as a longer final approach allows for the pilot to make adjustments to drag

and speed easily just before landing. Thus, this metric is normalized against the max-

imum value. Given the position vector of the starting point of the extended runway

segment re and the position vector of the runway rR, we can calculate this metric

using Eq. 2.26.

e = d(re, rR) (2.26)

• Number of turns (nT )- This metric counts the number of turns (nT ) in T. It is desirable

to have as minimum number of turns as possible, hence it is normalized against the
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minimum value.

nT = nTD + nTS (2.27)

Eq. 2.27 can be used to compute nT where nTD is the number of left and right turns

in the Dubins airplane path and nTS is the number of 360 degree turns in the spiral

segment.

We introduce an utility function (u), which is computed by taking the weighted average

of the normalized values of the metrics, and is used to rank the trajectories. The rank of

a trajectory is directly proportional to the value of its utility function which is given by

Eq. 2.28.

u =

∑
wi ‖mi‖∑
wi

(2.28)

where wi and ‖mi‖ are the weight and normalized value respectively of metric i. This utility

function can be easily modified to account for other safety factors like wind, terrain; etc in

future work.

2.7 Experimentation and Results

2.7.1 Simulations With La Guardia Airport

We ran simulations with hypothetical scenarios for LGA4, LGA13 and LGA31 of

La Guardia airport, New York City. Simulations were done for altitudes of 4000, 6000, 8000

and 10000 feet from the initial configuration: {latitude: 40.86500◦, longitude: -73.88000◦,

heading: 12.9◦} (figures 2.15 - 2.26). In all cases, a clean configuration glide ratio of 17.25:1

(as predicted in [8] for an Airbus A320) was used for generating the trajectories, with a dirty

configuration glide ratio of 9:1 in the extended final segments.

Fig. 2.15 clearly shows how bank angle can be the determining factor for a feasible

trajectory from a given initial configuration. 20◦ and 30◦ bank angles took the aircraft

away from the runway, causing the aircraft to hit the ground before reaching the runway,

while a 45◦ bank angle kept the aircraft closer to the runway, allowing a flyable trajectory.

In all cases, smaller bank angles were more successful in generating feasible trajectories.

Again, Fig. 2.16 and Fig. 2.26 show that in certain scenarios, for the same initial and final

configurations, the nature of the initial 3D Dubin’s path may be different for different bank

angles.
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(a) 2D View. (b) 3D View.

Fig. 2.15: Trajectory to LGA4 from 4000 feet.

(a) 2D View. (b) 3D View.

Fig. 2.16: Trajectory to LGA13 from 4000 feet.
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(a) 2D View. (b) 3D View.

Fig. 2.17: Trajectory to LGA31 from 4000 feet.

(a) 2D View. (b) 3D View.

Fig. 2.18: Trajectory to LGA4 from 6000 feet.
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(a) 2D View. (b) 3D View.

Fig. 2.19: Trajectory to LGA13 from 6000 feet.

(a) 2D View. (b) 3D View.

Fig. 2.20: Trajectory to LGA31 from 6000 feet.
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(a) 2D View.
(b) 3D View.

Fig. 2.21: Trajectory to LGA4 from 8000 feet.

(a) 2D View. (b) 3D View.

Fig. 2.22: Trajectory to LGA13 from 8000 feet.
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(a) 2D View. (b) 3D View.

Fig. 2.23: Trajectory to LGA31 from 8000 feet.

(a) 2D View.
(b) 3D View.

Fig. 2.24: Trajectory to LGA4 from 10000 feet.
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(a) 2D View. (b) 3D View.

Fig. 2.25: Trajectory to LGA13 from 10000 feet.

(a) 2D View. (b) 3D View.

Fig. 2.26: Trajectory to LGA31 from 10000 feet.
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2.7.2 Analysis of Alternate Landing Options for US Airways Flight 1549

US Airways flight 1549 took off from New York City’s La Guardia airport on January

15, 2009 and lost power in both engines when it struck a flock of Canada geese a couple

of minutes after takeoff. The pilots managed to land the Airbus A320-214 successfully

in the Hudson river and save the lives of everyone on board the aircraft. We considered

the incident of flight 1549 as a test case to evaluate the effectiveness of our trajectory

generation algorithm. We collected the Flight Data Recorder data as published by the

National Transportation Safety Board (NTSB) (Table 2.3) and simulated scenarios from

t+4 through t+40 seconds (t being the time when the pilot said ”birds” (15:27:10 UTC), as

determined from the sound recording in the Flight Data Recorder). From the data (Fig. 2.27),

it is clearly visible that the flight kept gaining altitude until t + 16 seconds and attained a

maximum altitude of 3352 feet before finally beginning to descend. Since the GPS data was

only available at 4 second intervals, we ran our algorithm at 4 second intervals. We used two

values of clean configuration glide ratios: 17.25:1, as predicted by [8], and 19:1, as shown by

our simulator. A dirty configuration glide ratio of 9:1 was used for the final extended runway

approaches in both cases.

Fig. 2.27: Flight 1549 Time vs Altitude graph.



26

Table 2.3: US Airways 1549 relevant Flight Data Recorder data.

Time
(decimal)
Latitude

(decimal)
Longitude

(feet)
Altitude
Pressure

(feet)
Altitude

True

(degrees)
Heading
Magnetic

(kts)
Airspeed

t 40.8477 -73.8758 2792 3056 0 218

t+4 40.8513 -73.8767 2888 3152 0.7 207.125

t+8 40.8547 -73.8781 2968 3232 0 200.25

t+12 40.8581 -73.8786 3048 3312 0.4 193

t+16 40.8617 -73.8794 3088 3352 358.9 185.25

t+20 40.865 -73.88 3040 3304 357.2 185.25

t+24 40.8678 -73.8806 2916 3180 352.6 185.375

t+28 40.8711 -73.8819 2760 3024 344.5 187

t+32 40.8739 -73.8842 2580 2844 333.3 190.625

t+36 40.761 -73.8861 2368 2632 320.6 198.75

t+40 40.8789 -73.8897 2156 2420 305.5 202.875

(a) 2D View. (b) 3D View.

Fig. 2.28: Trajectory to LGA22 with a glide ratio of 17.25:1 at time t+4 .
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(a) 2D View. (b) 3D View.

Fig. 2.29: Trajectory to LGA13 with a glide ratio of 17.25:1 at time t+4 .

(a) 2D View. (b) 3D View.

Fig. 2.30: Trajectory to LGA22 with a glide ratio of 17.25:1 at time t+8.
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(a) 2D View. (b) 3D View.

Fig. 2.31: Trajectory to LGA13 with a glide ratio of 17.25:1 at time t+8.

(a) 2D View. (b) 3D View.

Fig. 2.32: Trajectory to LGA22 with a glide ratio of 17.25:1 at time t+12.
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(a) 2D View. (b) 3D View.

Fig. 2.33: Trajectory to LGA13 with a glide ratio of 17.25:1 at time t+12.

(a) 2D View. (b) 3D View.

Fig. 2.34: Trajectory to LGA22 with a glide ratio of 17.25:1 at time t+16.
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(a) 2D View. (b) 3D View.

Fig. 2.35: Trajectory to LGA13 with a glide ratio of 17.25:1 at time t+16.

(a) 2D View. (b) 3D View.

Fig. 2.36: Trajectory to LGA22 with a glide ratio of 17.25:1 at time t+20.



31

(a) 2D View. (b) 3D View.

Fig. 2.37: Trajectory to LGA13 with a glide ratio of 17.25:1 at time t+20.

(a) 2D View. (b) 3D View.

Fig. 2.38: Trajectory to LGA22 with a glide ratio of 17.25:1 at time t+24.
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(a) 2D View. (b) 3D View.

Fig. 2.39: Trajectory to LGA13 with a glide ratio of 17.25:1 at time t+24.

(a) 2D View. (b) 3D View.

Fig. 2.40: Trajectory to LGA13 with a glide ratio of 17.25:1 at time t+28.
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(a) 2D View. (b) 3D View.

Fig. 2.41: Trajectory to LGA22 with a glide ratio of 19:1 at time t+4 .

(a) 2D View. (b) 3D View.

Fig. 2.42: Trajectory to LGA13 with a glide ratio of 19:1 at time t+4 .
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(a) 2D View. (b) 3D View.

Fig. 2.43: Trajectory to LGA31 with a glide ratio of 19:1 at time t+4 .

(a) 2D View. (b) 3D View.

Fig. 2.44: Trajectory to LGA22 with a glide ratio of 19:1 at time t+8.
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(a) 2D View. (b) 3D View.

Fig. 2.45: Trajectory to LGA13 with a glide ratio of 19:1 at time t+8.

(a) 2D View. (b) 3D View.

Fig. 2.46: Trajectory to LGA31 with a glide ratio of 19:1 at time t+8.
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(a) 2D View. (b) 3D View.

Fig. 2.47: Trajectory to LGA22 with a glide ratio of 19:1 at time t+12.

(a) 2D View. (b) 3D View.

Fig. 2.48: Trajectory to LGA13 with a glide ratio of 19:1 at time t+12.
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(a) 2D View. (b) 3D View.

Fig. 2.49: Trajectory to LGA31 with a glide ratio of 19:1 at time t+12.

(a) 2D View. (b) 3D View.

Fig. 2.50: Trajectory to LGA22 with a glide ratio of 19:1 at time t+16.
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(a) 2D View. (b) 3D View.

Fig. 2.51: Trajectory to LGA13 with a glide ratio of 19:1 at time t+16.

(a) 2D View. (b) 3D View.

Fig. 2.52: Trajectory to LGA22 with a glide ratio of 19:1 at time t+20.



39

(a) 2D View. (b) 3D View.

Fig. 2.53: Trajectory to LGA13 with a glide ratio of 19:1 at time t+20.

(a) 2D View. (b) 3D View.

Fig. 2.54: Trajectory to LGA22 with a glide ratio of 19:1 at time t+24.
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(a) 2D View. (b) 3D View.

Fig. 2.55: Trajectory to LGA13 with a glide ratio of 19:1 at time t+24.

(a) 2D View. (b) 3D View.

Fig. 2.56: Trajectory to LGA22 with a glide ratio of 19:1 at time t+28.
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(a) 2D View. (b) 3D View.

Fig. 2.57: Trajectory to LGA13 with a glide ratio of 19:1 at time t+28.

(a) 2D View. (b) 3D View.

Fig. 2.58: Trajectory to LGA22 with a glide ratio of 19:1 at time t+32.
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(a) 2D View. (b) 3D View.

Fig. 2.59: Trajectory to LGA13 with a glide ratio of 19:1 at time t+32.

(a) 2D View. (b) 3D View.

Fig. 2.60: Trajectory to LGA13 with a glide ratio of 19:1 at time t+36.
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Table 2.4: Rank of trajectories for US Airways 1549 for t+4 to t+24 seconds
using glide ratio 17.25:1.

Time Runway Bank Angle ‖z̄‖
∥∥d̄∥∥ ∥∥∥ ¯( θ

h

)∥∥∥ ‖t‖ ‖e‖ ‖n‖ u Rank

t+4 LGA22 30 0.83 0.92 1.00 1.00 0.00 1.00 0.77 3
t+4 LGA22 45 1.00 0.98 0.51 0.80 1.00 0.50 0.83 1
t+4 LGA13 45 0.93 1.00 0.63 0.82 0.67 0.50 0.78 2
t+8 LGA22 30 0.83 0.92 1.00 1.00 0.00 1.00 0.77 2
t+8 LGA22 45 1.00 0.98 0.54 0.81 1.00 0.50 0.83 1
t+8 LGA13 45 0.93 1.00 0.50 0.83 0.68 0.50 0.76 3
t+12 LGA22 30 0.84 0.94 1.00 1.00 0.00 1.00 0.78 3
t+12 LGA22 45 1.00 0.99 0.47 0.82 1.00 0.50 0.82 1
t+12 LGA13 45 0.93 1.00 0.63 0.84 0.69 0.50 0.79 2
t+16 LGA22 30 0.85 0.92 1.00 1.00 0.00 1.00 0.77 3
t+16 LGA22 45 1.00 0.99 0.45 0.82 1.00 0.50 0.82 1
t+16 LGA13 45 0.95 1.00 0.63 0.83 0.72 0.50 0.80 2
t+20 LGA22 45 1.00 0.99 0.80 0.99 1.00 1.00 0.96 1
t+20 LGA13 45 0.95 1.00 1.00 1.00 0.00 1.00 0.81 2
t+24 LGA22 45 0.98 1.00 0.38 1.00 1.00 1.00 0.88 2
t+24 LGA13 45 1.00 0.98 1.00 0.99 1.00 1.00 1.00 1
t+28 LGA13 45 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1

Using a glide ratio of 17.25:1, LGA4 and LGA31 were not reachable at any time,

LGA22 was reachable upto t+ 24 seconds, and LGA13 was reachable until t+ 28 seconds.

Using a glide ratio of 19:1, LGA4 was never reachable, LGA31 was reachable upto

t+ 12 seconds, LGA22 was reachable upto t+ 32 seconds, and LGA13 was reachable for the

longest time, until t+ 36 seconds.

We implemented our safety metrics to rank the trajectories generated with a glide ratio

of 17.25:1 (Table. 2.4). For calculating the utility function, we assigned a weight of 1 to the

number of turns metric and a weight of 2 to all the other metrics. For a given runway, the

45◦ trajectory usually ranked better than the 30◦ trajectory according to our metrics, while

a 20◦ bank angle always failed to produce a valid trajectory.

Therefore, we can see that feasible trajectories to LGA13 could be generated at least

until t+28 seconds after the birds strike. If this information was made available to the pilots

during the actual emergency of flight 1549, perhaps a water landing could have been avoided.

Moreover, the ranking of trajectories would have allowed the pilots to swiftly decide on the

best trajectory for landing the aircraft safely.
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2.7.3 Analysis of The Minimum Altitude of Return for an Airbus A320

We further performed an experiment to determine the minimum altitude of return for

an Airbus A320, taking off from a runway of length 2190 m with a climb speed of 175 knots

and a climb rate of 2500 feet per minute. For landing on the same runway in the takeoff

configuration, with a bank angle of 30◦, the minimum altitude from which this would be

achievable was found to be approximately 6150 feet (Fig. 2.61). On the other hand, for

landing on the opposite end of the same runway, in the reverse configuration, the minimum

required altitude was found to be approximately 3485 feet (Fig. 2.62).

(a) 2D view. (b) 3D view.

Fig. 2.61: Minimum altitude for returning to take-off configuration (A320).

(a) 2D view.
(b) 3D view.

Fig. 2.62: Minimum altitude for returning to opposite end of runway (A320).



CHAPTER 3

Wind-Aware Trajectory Generation

3.1 Background

In the previous chapter, we have investigated dynamic data-driven avionics software

in decision support systems for loss-of-thrust emergency scenarios. We presented a system

for generating feasible trajectories for LOT scenarios by distilling a complex aerodynamic

model to two variables: glide ratio and radius of turn for discrete bank angles and drag

configurations. However, the algorithm does not consider the effect of wind while generating

trajectories to nearby runways. In this chapter, we present a wind model for modeling the

effect of a constant horizontal wind vector (−→w ) on a trajectory. This wind model can be

used by our dynamic data-driven component to predict the effect of wind and generate high

fidelity wind-aware trajectories that can bring a gliding aircraft down to a target runway.

We define an air trajectory to be a three-dimensional path with respect to the moving

airmass while its corresponding ground trajectory is the three-dimensional projection with

respect to the ground frame of reference. A no-wind air trajectory to a target runway is

not corrected for wind and might take an aircraft away from the runway. Our approach

generates a wind-aware air trajectory to a virtual runway – a point that lies on the wind

vector passing through the actual target runway. The ground trajectory of this wind-aware

air trajectory can successfully bring an aircraft down to the target runway, if the aircraft

always maintains the best gliding airspeed. We present an analytical approach for computing

the required position of the virtual runway and a heuristic iterative approach for cases which

are not considered by our analytical approach. We make decision making easy for the pilots

by providing them with trajectories that consist of a series of standard maneuvers (constant-

bank turns and straight line gliding segments).

Portions of this chapter previously appeared as: S. Paul, F. Hole, A. Zytek, and C. A. Varela. “Wind-
aware trajectory planning for fixed-wing aircraft in loss of thrust emergencies.” in Proc. of the 37th
AIAA/IEEE Digit. Avionics Syst. Conf., London, England, UK, September 2018, pages 558-567.

Portions of this chapter have been submitted to: S. Paul and C. A. Varela. “Data-Driven Wind-Aware
Emergency Trajectory Planning for Fixed-Wing Aircraft.” in J. Aircraft.
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3.2 Chapter Contributions

The following items represent our original research contributions as presented in this

chapter:

• Our wind-model for predicting the effect of wind on trajectories (Section 3.3).

• Our wind-aware trajectory generation algorithm with analytical and iterative solutions

(Section 3.4).

• Experimental evaluation of our approach. (Section 3.5).

3.3 Modeling the Effect of Wind on Trajectories

In the case of a LOT emergency, the nature of trajectories depends upon several factors

– the baseline glide ratio of the aircraft, the aircraft airspeed, the heading and location of

the emergency, the heading and location of the runway and the wind conditions. In [3], we

have defined valid no-wind air trajectories that take into account all of the above factors

except for the wind conditions. These no-wind air trajectories consist of three-dimensional

Dubins paths followed by spiral maneuvers and extended runway segments. The presence of

wind can significantly alter the ground trajectories of these air trajectories. In this section,

we model the effect of horizontal wind on an air trajectory.

There are five unique segments of a trajectory as defined in [3] (Fig. 3.1). They are:

1. Curve 1 of the Dubins path - C1.

2. Straight Line Segment of the Dubins Path - S1.

3. Curve 2 of the Dubins path - C2.

4. Spiral Segment - C3.

5. Extended Runway Segment - S2.

Each of these segments (if present) in a trajectory is affected in a different way. Hence,

in order to model the effect of wind on the entire trajectory, we need to model the effect of

wind on each segment independently and calculate the amount of shift (ψ) of the endpoint,

the time (t) of flight and the total altitude loss (δz) for each of them.
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(a) 2D view of a typical trajectory. (b) 3D view of a typical trajectory.

Fig. 3.1: Parts of a trajectory.

(a) Effect of wind on turns. (b) Effect of wind on straight line glide.

Fig. 3.2: Effect of wind on turns and straight line glide.

Aircraft paths are composed of two basic movements: banked turns and straight line

segments. In the case of banked turns, the original circular arcs are affected by the wind to

produce trochoidal tracks above the ground. A trochoid (Fig. 3.2a) is a geometrical figure

that is formed by the locus of a fixed point (x, y) on the circumference of a circle, the centre

(cx, cy) of which moves along a straight line. The general equations which define a point on

a trochoid are:

x(t) = cx(t) + r cosφ (3.1)

y(t) = cy(t) + r sinφ (3.2)

cx(t) = cx0 + (wx × t) (3.3)

cy(t) = cy0 + (wy × t) (3.4)
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where φ is the angular distance of the point from the centre, (cx0 , cy0) is the initial center

and (wx,wy) are the velocities of the movement of the center in the two-dimensional plane

given the horizontal wind vector −→w (w, λw).

In the case of straight line segments, the aircraft still follows a linear path with respect

to the ground, but the actual direction of that line is different from the original intended

path (Fig. 3.2b). The new path can be calculated by calculating the lateral shift (ψ) arising

due to the crosswind component of the wind:

ψ = w sinα× t (3.5)

where t is the time taken to fly the intended linear path, α is the angle between the heading

of the aircraft and the wind direction and w sinα is the crosswind component.

3.3.1 Effect of Wind on Turns

Let the initial and final points of the airmass curve C be (xi, yi, zi, λi) and (xf , yf , zf , λf )

respectively where x, y, z and λ represent the latitude, longitude, altitude and heading of

the aircraft at a point. If the radius of turn is r (Eq. 2.18), then the inscribed angle of C is

given by:

∆φ = cos−1
(

1− (xi − xf )2 + (yi − yf )2

2× r2

)
(3.6)

The time taken tC can now be derived as:

tC =
∆φ× r

v
(3.7)

where v is the aircraft airspeed. Therefore, the total shift of the center of rotation for Ĉ,
which is the ground trajectory of C, is given by:

ψC = tC × w (3.8)

Now, the ground glide ratio ge(t) (the glide ratio with respect to the ground) throughout Ĉ
is given by:

ge(t) = g0 × cos θ × (vg)

v
(3.9)
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where vg(t) is the ground-speed given by:

vg(t) = v + (w× cosα(t)) (3.10)

where α(t) = (λv(t) − λw) and λv(t) is the direction of the aircraft airspeed which varies

with time in a turn.

Therefore, the total loss in altitude (δz)Ĉ in Ĉ is given by:

(δz)Ĉ = zi − zf (3.11)

The above model applies to parts C1, C2 and C3 of a trajectory which are all constant-

bank turns.

3.3.2 Effect of Wind on Straight Line Segments

Let the initial and final points of a straight line part of the no-wind trajectory be

A = (xA, yA, zA, λA) and B = (xB, yB, zB, λA) respectively (Fig. 3.2b). Therefore, the

original straight line part of the no-wind air trajectory is
−→
AB, represented by S. Now,

let the final point of the straight line part in the corresponding ground trajectory Ŝ be

C = (xC , yC , zC , λA). Time (tS) required to cover distance
−→
AB is given by:

tS =
|
−→
AB|
v

(3.12)

We know that the heading of aircraft airspeed throughout
−→
AC is λA. Therefore, the ground-

speed throughout the
−→
AC is given by:

vg = v + w× cosα (3.13)

where α = λA − λw.

Therefore, the new distance |
−→
AC| = tS ∗ vg. Let the angle between

−→
AB and

−→
AC be Θ.

Θ = tan−1
w× sinα

v
(3.14)
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The shift |
−−→
BC| is given by:

|
−−→
BC| = tS × w× sinα = ψS (3.15)

The total loss in altitude is given by:

δzŜ = zA − zC = zA −
|
−→
AC|
ge

(3.16)

where ge is the ground glide ratio in the straight line segment given by:

ge = g0 ×
vg
v

(3.17)

The above model applies to parts S1 and S2 of a trajectory as both represent straight line

gliding.

3.4 Wind-Aware Trajectory Generation

When an aircraft follows a no-wind air trajectory with respect to the airmass, in the

presence of wind, the resultant ground trajectory is significantly different. For a wind-aware

trajectory to be able to successfully lead a gliding aircraft to a target runway, two conditions

have to be met:

• Condition I: The trajectory must be able to bring the aircraft down to the altitude of

the runway.

In order for the ground trajectory of a no-wind air trajectory to bring the aircraft down

to the required altitude, the total loss in altitude should be equal to the difference

between the altitude of the initial position of the aircraft and the altitude of the target

runway.

(δz)C1 + (δz)S1 + (δz)C2 + (δz)C3 + (δz)S2 = ∆z (3.18)

where ∆z is the altitude difference between the initial configuration of the aircraft and

the target runway.

• Condition II: The end of the trajectory must meet the coordinates of the runway in the

two-dimensional space.
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(a) Glide ratio of a gliding aircraft. (b) Effect of horizontal wind on a gliding
aircraft.

Fig. 3.3: Effect of horizontal wind on glide ratio.

In the presence of wind, the ground trajectory of a no-wind air trajectory changes

significantly as described in the previous section. It has been previously demonstrated

in [9] that in the presence of a constant horizontal wind, the final position of the ground

trajectory lies on a line which is parallel to the wind vector and passes through the

endpoint of the no-wind air trajectory. Therefore, the problem of finding a wind-aware

air trajectory is distilled to the problem of intercepting a virtual target moving away

from the actual runway in the upwind direction.

Therefore, if T is the total time of flight for the original no-wind trajectory, for the

wind augmented trajectory to intercept the runway, the following condition must be

met:

ψC1 + ψS1 + ψC2 + ψC3 + ψS2 = T × w (3.19)

Now, we know that,

T = tC1 + tS1 + tC2 + tC3 + tS2 (3.20)

Therefore,

(tC1 + tS1 + tC2 + tC3 + tS2)× w = ψC1 + ψS1 + ψC2 + ψC3 + ψS2 (3.21)

In the presence of wind, the ground glide ratio of a gliding aircraft is different from the

aerodynamic glide ratio (Eq. 3.9, Eq. 3.17), but the rate of descent (σ) remains unaffected

by horizontal wind (Fig. 3.3b). Therefore, if an aircraft glides with the best gliding airspeed

for time t, then the loss of altitude will always be equal to σt, even though the horizontal
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distance covered will be different in case of tailwind, headwind, and no - wind conditions.

∆z(t) = σt (3.22)

Therefore, in order to compute valid wind-aware air trajectories, we make the following

assumptions:

1. The aircraft always flies with the best gliding airspeed v.

2. For each segment in an air trajectory, time t is required to fly that segment with respect

to the airmass.

3. The aircraft follows each segment of the air trajectory for time t.

Assumptions 1, 2 and 3 imply that a ground trajectory will lose exactly the same amount

of altitude as the corresponding air trajectory since the time in air is equal for both. This

ensures that Condition I holds. Therefore, the problem of generating a wind-aware air

trajectory is reduced to the problem of generating a no-wind air trajectory, the ground

trajectory of which can bring an aircraft to the correct position in the horizontal plane:

R = (x, y, λ). This can be achieved by generating a wind-aware air trajectory to a virtual

runway R′ = (x′, y′, λ′ = λ) in the horizontal plane such that Condition II (Eq. 3.21) is met.

3.4.1 Analytical Solution for Finding R′

For being able to analytically compute the location of the virtual runway, we need to

be able to predict the total shift caused by the various segments of the trajectory. In order

to simplify the task of prediction, we first generate an initial no-wind air trajectory (P ) to

the actual runway to model the effect of wind on it and then compute a new wind-aware

air trajectory to a virtual runway that has the same type of initial Dubins path, the same

integral number of spirals, and an extended runway segment that has the same length and

orientation with respect to the wind vector. This allows us to compute ψC1, ψC2, ψC3, ψS1,

and ψS2 for P and argue that for the new wind-aware air trajectory P ′, ψC3′ and ψS2′ will

have the same value as that of ψC3 and ψS2 respectively. This is because the same integral

number of spirals will always produce the same amount of shift in the presence of a constant

horizontal wind, irrespective of their position and two extended runway segments of equal

length and orientation with respect to the wind vector will also produce the same shift.
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The total shift Ψ(P ′) caused by the effect of wind on P ′ is given by:

Ψ(P ′) = ψC1′ + ψC2′ + ψS1′ + ψC3′ + ψS2′ (3.23)

For a trajectory in the horizontal plane to be valid, it must satisfy the following constraint,

which follows directly from Condition II:

Ψ(P ′) = |RR′| (3.24)

Since P and P ′ have similar C3 and S2, the end point of C2′ should lie on a line passing

through the end point of C2 in the upwind direction. Hence, a valid P ′ satisfies the following

condition:

Ψ(P ′)− (ψC3′ + ψS2′) = ψC1′ + ψC2′ + ψS1′ = |ee′| (3.25)

where e and e′ are the end points of C2 and C2′.
For trajectories whose initial Dubins paths are of the form left - straight - left or right -

straight - right, the total heading change and thus the total curve length of C1 and C2 is the

same for all variations of trajectories given that the aforementioned constraints are satisfied.

Hence we can conclude that:

ψC1′ + ψC2′ = ψC1 + ψC2 (3.26)

Therefore, from equations 3.25 and 3.26, we get

|ee′| = (ψC1 + ψC2) + ψS1′ (3.27)

Let the lengths of S1 and S1′ be l and l′ respectively and the angle between the heading

of S1 and −→w be α and the angle between the heading of S1′ and −→w be α′ (Fig. 3.4a). Now,

time to fly S1′ is given by:

tS1′ =
l′

v + w cosα′
(3.28)

and

ψS1′ = tS1′ × w sinα′ (3.29)

Since the total heading change and thus the total curve length of (C1 + C2) and (C1′ + C2′)
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(a) RSR path. (b) LSR path.

Fig. 3.4: Geometry of RSR (symmetrical to LSL) and LSR (symmetrical to
RSL) paths.

are the same, therefore, (δz)C1 + (δz)C2 = (δz)C1′ + (δz)C2′ . By construction, the total

change in altitude for the entire Dubins path segments of P and P ′ are equal. Therefore,

(δz)C1 + (δz)C2 + (δz)S1 = (δz)C1′ + (δz)C2′ + (δz)S1′

or, (δz)S1 = (δz)S1′

or, σtS1′ = σtS1 (from Eq. 3.22)

or, tS1′ = tS1 (3.30)

From symmetry (Fig. 3.4a), distance between the end points of C2 and C2′ (|ee′|) is

equal to the distance between their centres (|cc′|). Hence, from equations 3.27 and 3.29, we

get:

|cc′| = ψS1′ + (ψC1 + ψC2) = (tS1′ × w sinα′) + (ψC1 + ψC2) (3.31)

From geometry, we can see that (Fig. 3.4a),

|cc′| = k

(
1

tanα
− 1

tanα′

)
(3.32)

where k is the perpendicular distance between the centre of C1 and the line parallel to −→w
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and passing through c. Therefore,

(tS1′ × w sinα′) + (ψC1 + ψC2) = k

(
1

tanα
− 1

tanα′

)
(3.33)

Let K1 = tS1′ ×w, K2 = (ψC1 + ψC2) and K3 = k
tanα
− K2. These are values that can

be pre-computed by modeling the effect of wind on P . Therefore, we get:

K1sinα
′ + K2 =

k

tanα
− k

tanα′

or, K1sinα
′ + k

sinα′

cosα′
=

k

tanα
−K2

or, K1sinα
′ + k

sinα′

cosα′
= K3 (3.34)

which can be expanded into the following quartic equation in terms of sinα′:

K2
1 sin4 α′ − 2K1K3 sin3 α′ + (K2

3 + k2) sin2 α′ − k2 = 0 (3.35)

From Fig. 3.4a, we can see that l′ = k/ sinα′. Therefore, from Eq. 3.28, we get:

tS1′ =
l′

v + w cosα′

or, tS1′ =
k

sinα′(v + w cosα′)

or, k = tS1′ × sinα′(v + w cosα′)

or, k = tS1′ × v sinα′ + tS1′ × w sinα′ cosα′

or, k = K4 sinα′ + K1 sinα′ cosα′ (3.36)

where K4 = tS1′ × v. The above equation can be expanded into another quartic equation in

sinα′:

K2
1 sin4 α′ + (K2

4 −K2
1) sin2 α′ − 2K4k sinα′ + k2 = 0 (3.37)

Since we have two quartic equations, it now becomes possible to derive the following cubic

equation in terms of sinα′ from equations 3.35 and 3.37:

2K1K3 sin3 α′ + (K2
4 −K2

1 −K2
3 − k2) sin2 α′ − 2K4k sinα′ + 2k2 = 0 (3.38)
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Since a cubic equation always has a real root, a real value of sinα′ can be computed from

Eq. 3.38 which can be used to calculate |cc′| and therefore |ee′| using Eq. 3.31. Finally, we

can compute the shift of P ′ by using Eq. 3.25, which is the required distance of the virtual

target from the actual runway in the upwind direction.

The above approach, however, cannot be implemented for trajectories whose initial

Dubins paths are of the type right - straight - left or left - straight - right. This is because in

these types of Dubins paths, the total curve length of C1 and C2 differ for different variations

(Fig. 3.4b). This makes us unable to use ψC1 + ψC2 calculated from P as a constant in P ′.

3.4.2 Iterative Solution for Finding R′

find virtual runway ( i n i t i a l n o w i n d , runway , wind heading )
i n i t i a l w i n d = model wind ( i n i t i a l n o w i n d )
l a s t p o i n t = f inal point ( i n i t i a l w i n d )
dev i a t i on = difference ( runway , l a s t p o i n t )
d i s t anc e = 0
v i r t u a l p o i n t = null
while ( dev i a t i on > 0)

d i s t anc e = d i s t anc e + dev i a t i on
reve r s e w ind head ing = reverse ( wind heading )
v i r t u a l p o i n t = along heading at distance ( runway , rever se wind head ing ,

↪→ d i s t anc e )
temp no wind = find no wind air trajectory ( v i r t u a l p o i n t )
temp wind = model wind ( temp no wind )
t em p l a s t p o i n t = f inal point ( temp wind )
dev i a t i on = difference ( runway , t e m p l a s t p o i n t )

return v i r t u a l p o i n t

Pseudocode 3.1. Heuristic iterative approach for computing R′

When the analytical solution for finding R′ cannot be applied, we can use a heuristic

iterative approach for computing R′ as given in Pseudo-code 3.1.

3.5 Experimentation and Results

We considered the US Airways 1549 incident as a use case for our simulations. At

the time of the incident, a 9 kts wind was blowing from approximately 300 degrees. As

mentioned in Chapter 2, trajectories could be computed up to t + 28 and t + 36 seconds

using glide ratios 17.25 : 1 and 19 : 1 respectively. We simulated these two trajectories with

the actual wind conditions (Fig. 3.5 and Fig. 3.6).
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(a) 2D View. (b) 3D View.

Fig. 3.5: Wind-aware trajectory to LGA13 with a glide ratio of 17.25:1, 28
seconds after birds strike.

(a) 2D View. (b) 3D View.

Fig. 3.6: Wind-aware trajectory to LGA13 with a glide ratio of 19:1, 36
seconds after birds strike.
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(a) 2D view. (b) 3D view.

Fig. 3.7: Effect of a 40 knot wind from different directions on a trajectory from
10000 feet.

(a) 2D view. (b) 3D view.

Fig. 3.8: Effect of different magnitudes of West-wind on a trajectory from
10000 feet.
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(a) 2D view. (b) 3D view.

Fig. 3.9: Wind-aware trajectory from 5000 feet in 40 knots West-wind.

(a) 2D view. (b) 3D view.

Fig. 3.10: Wind-aware trajectory from 8000 feet in 40 knots West-wind.
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(a) 2D view. (b) 3D view.

Fig. 3.11: Wind-aware trajectory from 10000 feet in 40 knots West-wind.

(a) 2D view. (b) 3D view.

Fig. 3.12: Wind-aware trajectory to LGA31 from 3850 feet, assisted by a 30
knots North-wind.
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We also performed the following simulations loosely based on the US Airways 1549

incident, using a bank angle of 30◦. We generated a no-wind air trajectory from an altitude

of 10,000 feet and an initial configuration – {longitude: -73.8767, latitude: 40.8513, heading:

0.698798}, to LGA31 of La Guardia airport, New York and then implemented our wind

model as described in section 3.3. For the first case, we modeled the effect of a 40 knot wind

coming from North, South, East and West (Fig. 3.7). For the second case, we modeled the

effect of a West-wind of 10, 20, 30 and 40 knots on the same no-wind air trajectory (Fig. 3.8).

We then generated wind-aware air trajectories to a virtual runway from altitudes of

5,000, 8,000 and 10,000 feet in the presence of a 40 knots West-wind (Fig. 3.9 - 3.11) that

can lead a gliding aircraft to LGA31.

Using our wind model, we could successfully generate a wind-aware trajectory to

LGA31 from an altitude of 3850 feet, assisted by a 30 knots North-wind, even though a

no-wind trajectory in the same configuration was not possible (Fig. 3.12). This clearly shows

the potential of the model for generating wind-aware trajectories when no-wind trajectories

are infeasible.

We used a clean configuration glide ratio of 17.25:1 for straight line glide as predicted

in [8] with a dirty configuration glide ratio of 9:1 for the final extended runway approaches.

On an average, it took around 50 milliseconds to generate a single trajectory on an Intel

Core i7-7500U CPU - 2.70GHz.



CHAPTER 4

Related Work

4.1 3D Trajectory Generation for Aircraft Using Dubins Curves

Dubins curves [10] are used to find the shortest paths, in two dimensions, between two

configurations for a robot or a car that can move only in one direction. Dubins 2D shortest

car paths have been previously applied for generating shortest paths for aircraft in three-

dimensional space. Atkins et al. use Dubins paths to generate 3D trajectories for aircraft in

the event of a loss of thrust emergency [11], [12]. They define worst case trajectory, direct

trajectory and high altitude trajectory. Their high altitude trajectory has intermediate ’S’

turns to lose excess altitude which might take the aircraft far away from the runway. In a

real-life emergency scenario, pilots would prefer trajectories that allow them to lose excess

altitude as close to the target runway as possible.

Owen et al. propose Dubins airplane paths for fixed wing UAVs with power for maneu-

verability [7]. They introduce three type of trajectories for low-altitude, middle-altitude and

high-altitude scenarios. The low-altitude trajectory consists of a simple 3D Dubins airplane

path, the high-altitude trajectory consists of spiral turns preceded by a Dubins airplane path

and the middle-altitude trajectory consists of an intermediate arc that allows the aircraft

to lose excess altitude. The intermediate arc requires a swift change from left to right turn

or vice versa, which is a difficult and risky maneuver to perform during a loss of thrust

emergency.

4.2 Wind Optimal Dubins 2D Paths at a Constant Altitude

The problem of computing optimal paths in the presence of a constant wind using

Dubins paths has previously been investigated. McGee et al. [9] explored a method for

computing shortest paths by formulating an optimization problem to find the optimal path

in a two-dimensional plane. Techy et al. [13] described a framework for minimum-time path

planning in which they characterize paths in the ground frame of reference by using kinematic

equations in the trochoidal frame and derive a condition for optimality. Both approaches

refined the problem of finding a valid trajectory in the presence of wind to that of intercepting

62



63

a target (the virtual runway) moving away from the actual runway in the upwind direction.

However, their work was focused on trajectory planning in the two-dimensional horizontal

plane for aircraft flying at a constant altitude and did not consider the change in altitude of

the aircraft or its flight capabilities.

4.3 Data Streaming and Data-Driven Avionics Systems

Prior work on data-driven application for avionics systems include PILOTS – a Pro-

grammIng Language for spatiO-Temporal data Streaming applications which can detect

sensor failures from data and estimate quantities of interest like aircraft airspeed and fuel

quantity upon fault detection and isolation [14], development of failure models to detect er-

rors in aircraft sensor data [15], simulation of error detection and correction using real data

from flights [16], development of error signatures to detect abnormal conditions from aircraft

sensor data and classify them [17], developing formal definition of error signatures and error

recovery from sensor data [18] and programming model to reason about spatio-temporal data

streams [19]. Successful implementation of PILOTS has been done using data from real-life

incidents, as in the case of Tuninter 1153, where a wrong fuel quantity indicator resulted in

fuel exhaustion and engine failure [20].

4.4 Improvements Over Existing Work

The main aspects where our research improves over existing work are:

• Our data-driven model can accurately consider the flight capabilities of an aircraft

affected by a LOT emergency. The flight capabilities of the damaged aircraft are

reflected in the inferred value of the baseline glide ratio that is computed from the

sensor data during an actual emergency.

• Our algorithm removes the need for ‘S’ turns and intermediate arcs and generates

trajectories which always keep an aircraft as close to the runway as possible.

• Our wind model can predict wind for trajectories with spirals and straight line seg-

ments. This allows us to generate 3D trajectories which consider the glide ratio and

altitude change of an aircraft during LOT emergencies.
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• In order to perform simulations using our algorithm, we developed a software written

in C. The simulations were done on an Intel Core i7-7500u CPU - 2.70GHz with 8 GB

of RAM, running Ubuntu 16.04 LTS. On an average, it took about 50 milliseconds to

generate a single trajectory using a single bank angle as compared to the 1-2 seconds

generation time in [11].

Software available at: http://wcl.cs.rpi.edu/pilots/trajectory



CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

Augmenting flight management architectures with a system to generate and rank feasi-

ble trajectories in case of LOT scenarios will help in reducing the response time of pilots for

choosing a course of action to make a successful landing in case of such emergency situations.

Our evaluation of US Airways flight 1549 shows that using a baseline glide ratio of 17.25:1

for straight line flight, runways were reachable up to 28 seconds after the emergency was

detected and a water landing could have been avoided if this information was made available

to the pilots during the actual emergency. Our algorithm was unable to generate trajectories

to Teterboro airport even though we had successfully managed to land the flight at TEB24

during simulator trials. In the case of US Airways 1549, the left engine still had 30% power.

While it is not clear how much of this power turned into thrust for a damaged engine, a

conservative baseline glide ratio of 19:1 illustrates that trajectories can be generated for up

to 36 seconds after birds’ strike.

Our experiments also clearly show that with a proper wind model, it is possible to

design prediction based dynamic data-driven systems that can be used to quickly generate

wind-aware trajectories in case of LOT emergencies. Furthermore, our wind model allowed

us to generate wind-aware trajectories in certain cases when no-wind trajectories were not

possible. This shows that considering wind in the trajectory generation phase may present

new wind-assisted options or reject options rendered infeasible by wind. Trajectories com-

puted using this approach can be guaranteed to be of the highest fidelity since they consider

the capabilities of the aircraft and the wind conditions during an actual emergency. This

will allow pilots to quickly decide on a reasonable course of action for safely landing an

aircraft without having to manually consider the feasibility of various choices. Using a

data-driven feedback loop, DDDAS based trajectory generation systems can determine the

actual capabilities of the affected aircraft at the time in question and generate trajectories

that are practical and reject previously calculated trajectories that might no longer be feasi-

ble. DDDAS can significantly improve the accuracy of generated flight trajectories thereby

enabling better decision support systems for pilots in emergency conditions.
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5.2 Future Work

Future directions of work include the implementation of variable wind gradients, which

is true for real-world scenarios where the wind conditions change with a change in altitude.

Designing terrain-aware algorithms that can detect obstacles and generate paths that avoid

them is also an interesting direction of work. Traditional obstacle avoidance algorithms

depend on graph search techniques which have a high computational time. Therefore, it is

necessary to design heuristic obstacle detection algorithms that can produce accurate results

in the shortest possible time. Willcox et al. [21] compute failure probabilities of maneuvers for

aerospace vehicles. Uncertainty quantification is another possible direction of work which

will help us to represent conditions such as wind speed, glide ratio, and pilot errors as

probability distributions and convert them into a region of possibility around trajectories

and allow us to compute the failure probabilities of trajectories.
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