

A Look Into Virtual Machine Malleability

By

Jonathan Goldszmidt

A Thesis Submitted to the Graduate
Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the
Requirements for the degree of

MASTER OF SCIENCE

Major Subject: COMPUTER SCIENCE

Approved by the
Examining Committee:

Carlos Varela
Thesis Adviser

Christopher Carothers, Member

Stacy Patterson, Member

Rensselaer Polytechnic Institute
Troy, New York

April 2014

(For Graduation May 2014)

 ii

© Copyright 2014

by

Jonathan Goldszmidt

All Rights Reserved

 iii

CONTENTS

LIST OF TABLES ... vii

LIST OF FIGURES... viii

ACKNOWLEDGMENT .. x

ABSTRACT .. xi

1. Introduction ... 1

1.1 Motivations .. 1

1.2 Structure of Thesis ... 2

2. Virtual Machine Splitting .. 3

2.1 Virtual Machine Splitting ... 3

2.1.1 Stateless Virtual Machine Splitting ... 3

2.1.2 Stateful Virtual Machine Splitting... 3

2.1.3 Implementation of Virtual Machine Splitting ... 4

2.1.4 Experimental Setup .. 5

2.1.5 Benchmarking Virtual Machine Splitting Process ... 6

2.1.6 Cost of Splitting a Virtual Machine ... 8

2.1.7 Similarities to Virtual Machine Cloning .. 9

2.1.8 Improvements to Virtual Machine Splitting ... 9

2.1.9 Virtual Machine Splitting using Delta Disks .. 10

2.1.10 Memory-Bound Splitting Limitations ... 10

2.2 Virtual Machine Splitting with Live Memory Copying ... 10

2.3 Virtual Machine Splitting Granularity .. 11

2.3.1 Resource Granularity .. 12

2.3.2 Workload Reconfiguration Granularity .. 12

3. Virtual Machine Merging ... 13

3.1 Divergence and Redundancy ... 13

3.2 Workarounds for Disk Divergence and Redundancy ... 13

3.2.1 Process Specific Virtual Hard Disks ... 13

 iv

3.2.2 Storage Area Network Disks ... 14

3.3 Resource Merging .. 14

3.3.1 Hot-Add Memory and Hot-Plug CPU .. 14

3.4 Benchmarking Experiments ... 16

3.4.1 Process Specific Virtual Disks .. 16

3.4.2 Process Specific SAN Disks .. 18

3.4.3 Hot-Add Memory and Hot-Plug CPU .. 19

3.5 Faults in Merging ... 21

4. Comparison to other Malleability Mechanisms ... 22

4.1 Background .. 22

4.2 Problem ... 22

4.2.1 Type I Malleability .. 23

4.2.2 Type II Malleability ... 23

4.3 Virtual Machine Malleability ... 25

4.3.1 Dynamic Workload Reconfiguration... 25

4.3.2 Transparency .. 25

4.3.3 Rewriting Applications .. 25

5. Applications of Virtual Machine Splitting and Merging ... 26

5.1 Application Scaling Up ... 26

5.1.1 Measuring the Cost of Virtual Machine Splitting ... 26

5.1.2 Measuring the Cost of Virtual Machine Splitting with Live Memory Copy 27

5.1.3 Measuring Performance of Application Scaling Up .. 28

5.1.4 Leveraging Virtual Machine Splitting using SALSA ... 29

5.1.5 Performance of Distributed Heat Application .. 30

5.2 Application Scaling Down .. 31

5.2.1 Virtual Machine Merging with Virtual Hard Disks .. 31

5.2.2 Virtual Machine Merging with Network Disks .. 32

5.2.3 Measuring the Cost of Virtual Machine Merging ... 32

5.2.4 Measuring Performance of Application Scaling Down 33

 v

5.3 Energy Optimization Problem.. 34

5.3.1 Bin-Packing ... 34

5.3.2 Bin-Packing Improved ... 34

5.3.3 Verifying Bin-Packing .. 35

5.4 Scheduling Manipulation through Granularity Refinement .. 38

5.4.1 Virtual Machine Splitting to Prioritize Process Execution 39

5.4.2 Unequal Workload Splitting Experiment .. 39

5.4.3 Unequal Resource Splitting Experiment ... 39

5.4.4 Results of Unequal Workload Splitting Experiment 39

5.4.5 Results of Unequal Resource Splitting Experiment .. 40

5.4.6 Scheduling Manipulation Improvements ... 41

5.4.7 Resource Merging ... 41

5.4.8 Unequal Workload Splitting with Merging Experiment 44

5.4.9 Unequal Resource Splitting with Merging Experiment 44

5.4.10 Results of Unequal Workload Splitting with Resource Merging Experiment . 45

5.4.11 Results of Unequal Resource Splitting with Resource Merging Experiment .. 46

6. Conceptual Middleware for Virtual Machine Malleability ... 48

6.1 Malleability Manager ... 48

6.2 Process Splitting ... 48

6.3 Process Merging .. 49

6.4 Hot-Plug CPU and Hot-Add Memory ... 49

6.5 Networking .. 50

6.6 Malleability Profile ... 50

6.6.1 Obvious Cases Against Using Splitting and Merging 51

6.6.2 Splitting Profile ... 51

6.6.3 Merging Profile ... 52

6.6.4 Energy Saving Profile .. 52

7. Related Work ... 54

7.1 Process Malleability ... 54

 vi

7.2 Preserving State ... 54

7.3 Energy Efficiency .. 55

7.4 Network Malleability ... 55

7.5 Virtualization Scalability .. 56

8. Discussion ... 57

8.1 Contributions ... 57

8.2 Conclusion ... 57

8.3 Future Work ... 58

9. Literature Cited .. 60

 vii

LIST OF TABLES

Table 2.1: Virtual Machine Splitting Cost Model .. 7

Table 2.2: Virtual Machine Splitting Cost Dissected ... 7

Table 2.3: Stateful Virtual Machine Splitting Time For Single Split .. 11

Table 2.4: Cost of Virtual Machine Splitting as Number of Splits Increases 11

Table 2.5: Supported Resource Granularity for Stateful and Stateless Splits 12

Table 6.1: Virtual Machine Splitting Profile .. 51

Table 6.2: Virtual Machine Merging Profile .. 52

 viii

LIST OF FIGURES

Figure 2.1: Virtual Machine Splitting .. 5

Figure 2.2: Virtual Machine Splitting at the Application Layer ... 5

Figure 2.3: Virtual Machine Splitting Disk Copying Cost .. 8

Figure 2.4: Virtual Machine Splitting Memory Copying Cost ... 8

Figure 3.1: Virtual Machine Merging .. 15

Figure 3.2: Virtual Machine Merging at the Application Layer .. 15

Figure 3.3: Virtual Disk Unmounting Time ... 16

Figure 3.4: Virtual Disk Removing Time .. 17

Figure 3.5: Virtual Disk Adding Time .. 17

Figure 3.6: Virtual Disk Mounting Time .. 18

Figure 3.7: SAN Disk Unmounting Time .. 19

Figure 3.8: San Disk Mounting Time ... 19

Figure 3.9: Hot-Plug CPU Operation ... 20

Figure 3.10: Hot-Add Memory Operation .. 20

Figure 4.1: Application Malleability .. 24

Figure 4.2: Virtual Machine Malleability using Application-level Migration 24

Figure 4.3: Virtual Machine Malleability for Workloads with Independent Process Group 25

Figure 5.1: Application Scaling Up Cost Utilizing Disk Based State Copying 27

Figure 5.2: Application Scaling Up Cost Utilizing Live State Copying .. 28

Figure 5.3: Application Performance When Scaling Up across More Virtual Machines on Hosts

with 1:1 vCPU to Physical CPU Ratio .. 29

Figure 5.4: SALSA Distributed Heat Completion Time .. 30

Figure 5.5: SALSA Distributed Heat Execution Rate ... 31

Figure 5.6: Application Scaling Down Cost ... 32

Figure 5.7: Application Performance When Scaling Down across Fewer Virtual Machines on

Hosts with 1:1 vCPU to Physical CPU Ratio .. 33

Figure 5.8: Process Completion Time for Overprovisioned Virtual Machines 37

Figure 5.9: Process Completion Time for Underprovisioned Virtual Machines 38

 ix

Figure 5.10: Equal Resource, Unequal Workload Splitting ... 40

Figure 5.11: Unequal Resource, Equal Workload Splitting ... 41

Figure 5.12: Virtual Machine Resource Merging Process ... 42

Figure 5.13: Single Virtual Machine with 2 vCPUs Processing Workload of 8 Units 43

Figure 5.14: Two Virtual Machines with 1 vCPU each Processing Unevenly Split Workload of 8

Units with Resource Merging ... 44

Figure 5.15: Equal Resource, Unequal Workload Splitting with Resource Merging 45

Figure 5.16: Average Completion Times of Equal Resource, Unequal Workload Split Virtual

Machines .. 46

Figure 5.17: Unequal Resource, Equal Workload Splitting with Resource Merging 47

Figure 5.18: Average Completion Times of Unequal Resource, Equal Workload Split Virtual

Machines .. 47

Figure 6.1: Comparison of Ungrouped Processes to Grouped Processes 49

 x

ACKNOWLEDGMENT

I would like to thank my advisor, Professor Carlos A. Varela, for his encouragement and

support on my research. His challenges and guidance helped me significantly improve my

thesis. Many thanks to my colleagues at IBM for their support, encouragement and flexibility. I

also would like to thank my family, friends and girlfriend for their moral support throughout my

journey at Rensselaer Polytechnic Institute.

 xi

ABSTRACT

Many have leveraged virtual machine cloning, migration and other features of

virtualization to improve and guarantee high availability and performance of their applications.

Virtual machine malleability is the ability to split and merge virtual machines based on demand

and performance, to improve virtualization functionality. The splitting function will take a

virtual machine with a workload of N independent processes and split the independent

processes into at most N virtual machines. Similarly, the merging function will take at most N

previously-split virtual machines and merge their independent processes into a single virtual

machine. There has been previous research in malleability at the application layer. However,

most of the benefits of application layer malleability can also be realized at the virtual machine

layer. These benefits include dynamic workload reconfigurability while affording better

transparency. The benefits provided by virtual machine malleability can be put into 3

categories: scalability and elasticity, energy improvements and process scheduling.

Traditionally, the approach of application scaling at the application layer involves writing an

application with malleability in mind. Using our method of scaling, applications do not need to

be written with malleability in mind to be able to scale, as long as the application workloads are

independent or they can communicate over a network. The approach of energy optimization

typically involves consolidating virtual machines onto fewer hosts and putting idle hosts in a

low power or off state. Although this method works quite well, certain virtual machine

configurations cannot be consolidated without significantly impacting performance. Using

virtual machine malleability, processes running on a virtual machine that is on an overloaded

physical machine can be split across multiple virtual machines, each with a smaller resource

footprint. Each of these split machines can then be consolidated without causing the physical

hosts to become overloaded. Such flexibility in virtual machine scheduling enables better

energy consumption. Our experiments with virtual machine malleability show that application

scalability is possible with negligible performance degradation, that it is possible to dynamically

reconfigure workloads to achieve set resource utilization, which in turn improves energy

utilization. We evaluate scalability and elasticity by splitting and merging virtual machines

running many instances of the same CPU intensive process. Our evaluation of splitting and

merging demonstrates linear performance changes. Finally, we discuss some future work which

includes the design of middleware for managing virtual machine malleability.

 1

1. Introduction

1.1 Motivations

Over the past decade a huge push toward energy efficiency and cost reduction has driven

server virtualization. Virtual machines have revolutionized the way workloads can be handled.

In the past, hardware and software limited what could and could not be run on a physical

machine. As hardware improved, applications were migrated from older machines onto newer

machines, which offered greater resources. Unfortunately, most applications running on these

machines never fully utilized all of the available resources. Although these machines only

utilized a fraction of the available resources, they still consumed a large amount of power.

Virtualization made it possible to consolidate many of these systems onto fewer physical

machines. This virtualization migration had significantly reduced cost by eliminating excessive

hardware, reducing electricity waste, reducing IT costs and overall datacenter costs [1] [2] [3]

[4].

The current market share of virtual server workloads is two-thirds worldwide as of June

2013 and it is still expected to grow [5]. However, not all virtual machine configurations are

conducive to all of the cost reductions and benefits of virtualization. For example, having too

many compute intensive virtual machines on a host causes performance degradation, which

results in a decrease in the compute/watt ratio [6] [7].

Another reason to virtualize is scalability. Virtual machines can be reconfigured relatively

quickly to scale with application demand [6] [8]. Features related to scalability include cloning,

migration and deployment. Cloning makes an exact replica of a virtual machine, migration

moves the virtual machine from one physical host to another physical host and deployment

allows virtual machines to be created based on a template.

This thesis presents two functions that provide hypervisors with additional functionality

which improve scalability, improve power utilization and manipulate process scheduling

algorithms. These functions are virtual machine splitting and virtual machine merging. Like

most hypervisor functionality, these functions are based on and leverage existing functionality.

 2

1.2 Structure of Thesis

The structure of this thesis is as follows: In Chapter 2, we will discuss the types of virtual

machine splitting, the strengths and weaknesses related to each type and some changes to

improve the overall performance of this operation. In Chapter 3, we will introduce virtual

machine merging, its limitations, and some workarounds. In Chapter 4, we will compare virtual

machine malleability to application malleability. In Chapter 5, we will dive into application

scaling, the energy optimization problem and scheduling manipulation. In Chapter 6, we will

discuss the middleware for enabling virtual machine splitting and merging. In Chapter 7, we will

explore related work. Chapter 8 concludes this thesis and discusses future work.

 3

2. Virtual Machine Splitting

Virtual machine splitting is defined as the process of taking one virtual machine and

splitting it into two or more virtual machines. Each of these split machines contain a subset of

the original machine’s user processes.

2.1 Virtual Machine Splitting

Virtual machine splitting is based on the cloning and migration features offered by

virtual machine hosts and virtual machine monitors respectively. The most basic form of virtual

machine splitting is stateless splitting as contents of memory are discarded before cloning, so

that the children virtual machines do not start at their parent’s state. Stateful virtual machine

splitting is a more advanced form as it preserves the parent’s memory, so the children virtual

machines resume from where the parent left off. To draw a parallel to biology, if a cell was

considered to be a virtual machine, its DNA would represent the disk of the virtual machine.

When a parent cell splits into two, its entire DNA is duplicated before the split is complete; this

is equivalent to duplicating a virtual machines disk before splitting. By creating additional

middleware consisting of a malleability manager and a process running on the virtual machine,

it is possible to split running processes between virtual machines and reconfigure networking.

The middleware is covered in Chapter 6.

2.1.1 Stateless Virtual Machine Splitting

Stateless virtual machine splitting follows the same process as the cloning feature

provided by the virtual machine host. Cloning in its most basic form makes a copy of the virtual

machine files, such as the virtual machine configuration and the virtual machine disks. Then it

registers the cloned virtual machine on the host. Stateless virtual machine splitting provides the

ability to reconfigure the virtual machine before it is registered on the host. This is particularly

useful in cases where a virtual machine is running multiple stateless applications such as

RESTful services, APIs or daemons that have too many or too few resources allocated to each.

2.1.2 Stateful Virtual Machine Splitting

Stateful virtual machine splitting is almost identical to stateless virtual machine splitting,

except it provides a copy of the parent’s memory for each child. This is particularly useful when

multiple compute intensive, long running processes are living on a virtual machine and the

 4

system is not configured to handle live resource allocation. In this case, it is possible to pseudo-

allocate more resources to each process by creating a stateful split and terminating the

redundant, long running processes (including their dependencies), so that at most one copy of

each long running process exists in one of the child virtual machines.

2.1.3 Implementation of Virtual Machine Splitting

Virtual machine splitting begins when the malleability manager is invoked. It powers off or

suspends the running virtual machine. During the suspend process the host writes the contents

of the virtual machine’s memory to disk. The malleability manager then reads the virtual

machine configuration file to determine which virtual disks it needs to copy. It then creates the

destination directory and copies the virtual disks into it. In the case of a stateless virtual

machine split, the virtual machine configuration file can be modified to better reflect the needs

of each split virtual machine. The stateful virtual machine configuration cannot be edited as

stateful virtual machines need to restore their entire state before hardware modifications can

be made. In the case of stateful virtual machines, the parent’s state is then copied to each of

the split virtual machines. Once all of these tasks have completed, the virtual machine is

registered on the destination host and powered on or resumed. The malleability manager

establishes connections to the malleability process running on each of the virtual machine splits

and requests a list of running user processes. It then terminates a subset of these processes on

each virtual machine, so that only one copy of each process remains.

 5

Figure 2.1: Virtual Machine Splitting

Figure 2.2: Virtual Machine Splitting at the Application Layer

2.1.4 Experimental Setup

In the experiment of virtual machine splitting, we use a server (CPU: Intel i7 3930k

overclocked to 4.0 GHz, Memory: 64 GB, OS: Windows 8.1 Pro) running 4 instances of VMware

Player. First instance (OS: Windows Server 2008 R2, 8 GB memory, 1 vcpu, 1 dedicated HDD

using pass-through, 1 virtual hard drives). Second instance (OS: Ubuntu, 4 GB memory, 1 vcpu,

1 virtual drive). Third and fourth instances (OS: ESXi 5.5, 16 GB memory, 6 vpu, 1 virtual drive,

 6

both connected to the iSCSI devices, both have SSH enabled). All of these virtual machines are

connected to the same network.

The windows server is configured to act as an iSCSI adapter for its physical hard disk. To

enable ESXi to do migration, both the source and destination host need to be connected to the

same iSCSI disk. Setting up an iSCSI was the most cost effective method of satisfying this

requirement.

The Ubuntu virtual machine is configured as the malleability manager. It interacts with

both ESXi hosts and performs the tasks required by virtual machine splitting. The malleability

manager tasks are defined in a series PHP scripts. These scripts leverage SSH to interact with

each of the ESXi hosts. The public key of the user running the malleability manager is stored on

each ESXi host.

 During the experiment, no user applications were being run on the Windows 8.1 host,

ESXi hosts and Windows Server 2008 R2 virtual machine. The Ubuntu virtual machine ran the

scripts required to split a virtual machine and its processes.

2.1.5 Benchmarking Virtual Machine Splitting Process

Virtual machine splitting is complicated to benchmark. It consists of 3 components: The

first is shutdown or suspend, the second is copy and modify and the third is power on or

resume. A large part of virtual machine splitting involves significant disk I/O, and performance

is significantly affected by hard disk utilization, specification, fragmentation, source and

destination. Other factors that affect the amount of disk I/O include memory utilization, size of

virtual machine files and size of virtual machine state. Factors that affect writing to and reading

from the disk include network utilization and configuration. All of these factors can significantly

impact the performance of virtual machine splitting. As reading and writing to memory is very

fast compared to reading and writing to disk, its impact is treated as negligible. Table 2.1

contains a method to effectively calculate the cost of virtual machine splitting based on its disk

I/O driven nature.

 7

Table 2.1: Virtual Machine Splitting Cost Model

Virtual Machine Splitting Cost Model

VDS = Virtual Disk Size

VMS = Virtual Memory Size

VFS = Virtual Machine File Size

NS = Number of Virtual Machine Splits

S = Is Stateful (0 or 1)

P = Performance

P(VDS,VMS,VFS,NS,S) = 2*NS*(VDS + VFS + S*VMS)

As virtual machine files are relatively small compared to virtual machine disk size and

virtual machine memory size, we can break down the equation in Table 2.1 to account for the

cost of copying the virtual machine disk and the cost of copying the virtual machine state as

seen in the equations on Table 2.2.

Table 2.2: Virtual Machine Splitting Cost Dissected

Virtual Machine Splitting Cost Dissected

PDISK(VDS,NS) = 2 * NS * VDS

PSTATE(VDS,VMS,NS) = 2 * NS * VMSs

The equations from Table 2.2 are graphed in Figure 2.3 and Figure 2.4 to show the

significance that virtual machine disk size, memory size and number of splits adds to the overall

cost of virtual machine splitting.

 8

Figure 2.3: Virtual Machine Splitting Disk Copying Cost

Figure 2.4: Virtual Machine Splitting Memory Copying Cost

2.1.6 Cost of Splitting a Virtual Machine

As we can see in Figure 2.3, the cost of a stateless virtual machine split is most affected

by the size of the virtual machine’s disk. The time to split a virtual machine increases linearly as

the size of its virtual disk and the number of splits increase. In Figure 2.4 we see the additional

1

16

256

4096

0

50000

100000

150000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 V
ir

tu
al

 M
ac

h
in

e
D

is
k

Si
ze

 in
 G

B

To
ta

l G
ig

ab
yt

es
 C

o
p

ie
d

Number of Virtual Machine Splits

Virtual Machine Disk Copied for Virtual Machine Splitting

0-50000 50000-100000 100000-150000

16151413121110987654321

0

1000000

2000000

3000000

128

2048

32768

To
ta

l M
eg

ab
yt

es
 C

o
p

ie
d

Virtual Machine
Memory Size in

MB

Virtual Machine Memory Copied for Virtual Machine
Splitting

 9

cost is caused by statefully splitting a virtual machine. Similarly to the first result, the time to

split a virtual machine increases linearly as the size of the memory and the number of splits

increase. Although linear time increase is significantly better than exponential time increase, it

makes it hard to justify virtual machine splitting. Furthermore, for statefully splitting virtual

machines with significantly larger virtual disks than memory, the cost of maintaining state is

negligible compared to copying the disk. Also for systems with large or mostly empty virtual

disks, the splitting process is significantly impacted.

2.1.7 Similarities to Virtual Machine Cloning

Cloning a virtual machine faces many of the same challenges as splitting a virtual

machine. It is very costly as it requires making an exact duplicate of all virtual machine related

files. Although most of these files are generally small, the virtual hard disks are large relative to

other virtual machine files. Most of the cloning process is spent copying a virtual hard disk.

Other factors that affect cloning include having the same source datastore and destination

datastore or having both datastores residing on the same physical disk. Another significant

downside to cloning is creating unnecessary redundancy; once a clone completes, there are

two identical copies of every bit of data, the original virtual disk and the copied virtual disk.

2.1.8 Improvements to Virtual Machine Splitting

Although it is still faster to split or clone a virtual machine than to setup a new virtual

machine, the performance hit of copying a virtual machine disk is too great. To solve this

performance hit, we will modify the virtual machine splitting process to use delta disks. A delta

disk is a virtual hard disk that stores all file system changes since its creation. When created, a

delta disk keeps a reference to its parent disk. The parent disk is set to be read-only. When a

virtual machine reads from a delta disk, it acts like a normal virtual disk. However, if a page

requested by the virtual machine is missing from the delta disk, it is retrieved from the parent

disk. When a virtual machine writes to the delta disk, the delta disk stores the pages like a

normal virtual disk. As delta disks do not contain their parent’s data, they begin very small.

Since the parent disk is set to read-only, multiple delta disks can reference and utilize the same

parent disk without causing corruption.

 10

2.1.9 Virtual Machine Splitting using Delta Disks

The process of virtual machine splitting using delta disks is identical to regular virtual

machine splitting, except after powering off or suspending a virtual machine, a delta disk is

created and instead of copying the virtual disk, the delta disk is copied. When a delta disk is

created its total size is a fraction of a megabyte. The virtual machine associated with this delta

disk has its configuration file modified, so that it points to the delta disk instead of its original

hard disk. Since we will be copying delta disks to potentially different datastores and

directories, we need to implement a feature to read and modify the delta disk’s reference to its

parent disk. As the reference to a parent disk is statically assigned, it will no longer be possible

to perform a datastore migration of the original virtual machine, without powering off all of the

children virtual machines and updating their delta disk references. The children virtual

machines can still be migrated to any datastore and any host, as long as the host has access to

the datastore with the parent virtual disk. With this modified version of virtual machine

splitting, less than 1 MB of data needs to be copied for stateless virtual machines. This makes it

possible to perform all of the copy functions of stateless virtual machine splitting in less than

one second.

2.1.10 Memory-Bound Splitting Limitations

Stateful virtual machine splitting requires maintaining a copy of a virtual machine’s

memory state for each of the children virtual machines. Virtual machine splitting currently

implements this by having the hypervisor write the contents of a virtual machine’s memory to

disk and then copying it to all of the children virtual machines. When a child virtual machine is

registered on a host, the hypervisor sees that a saved state is associated with it. The hypervisor

then enables the ability to resume the virtual machine, which loads the saved state into

memory.

2.2 Virtual Machine Splitting with Live Memory Copying

Most hypervisors have the ability to copy the contents of a virtual machine’s memory

when it migrates from one host to another host without powering off the machine. We will

refer to this function as live memory copying. As seen in Table 2.3 writing the state to disk and

copying state are very time intensive operations compared to live memory copying. Therefore,

it is necessary to leverage this feature to make stateful virtual machine splitting more effective.

 11

Table 2.3: Stateful Virtual Machine Splitting Time For Single Split

RAM Suspend (s) Copy State (s) Live State Copying (s)

2 GB 108 630 5

4 GB 218 1260 8

8 GB 461 2520 11

16 GB 690 5040 17

The need for live state copying becomes more apparent when more than one virtual

machine split occurs. The linearly increasing cost of splitting a virtual machine with 2 GB of

RAM seen in Table 2.4 results from having to copy the state from disk multiple times. The live

state copying, on the other hand, has a constant completion time because it utilizes multicast

to send a copy of the entire state to multiple destination hosts simultaneously.

Table 2.4: Cost of Virtual Machine Splitting as Number of Splits Increases

VM Splits Suspend (s) Copy State (s) Live State Copying (s)

1 108 630 5

2 108 1260 5

4 108 2520 5

8 108 5040 5

2.3 Virtual Machine Splitting Granularity

When splitting a virtual machine, there are two levels of granularity to consider. At the

lowest level is resource granularity. At the highest level is workload reconfiguration granularity.

 12

2.3.1 Resource Granularity

Resource Granularity is used to describe how many virtual resources are provided to

each child virtual machine when a virtual machine split occurs. This type of granularity is

restricted by the type of virtual machine splitting and the resource that is being split. For

instance, when doing a stateless virtual machine split, each child can have fewer resources

allocated to it than its parent virtual machine. However, for stateful virtual machine splits, each

child must have the same number of resources as its parent virtual machine. The earlier

property can be exploited to improve physical resource utilization; the later property can be

used to scale up applications over multiple physical hosts.

Table 2.5: Supported Resource Granularity for Stateful and Stateless Splits

Resource Granularity

 Stateful Split Stateless Split

Fewer Resources

Equal Resources

More Resources

2.3.2 Workload Reconfiguration Granularity

Workload Reconfiguration Granularity is used to describe at what level processes

running on a virtual machine can be split. This type of granularity depends on the type of

applications being run on the virtual machine. A virtual machine with tightly coupled processes

that cannot communicate over the network cannot be split. However processes that are not

coupled or can communicate over the network can be split into multiple virtual machines. To

make process splitting easier, process groups can be defined to ensure that applications do not

break when the virtual machine they are running on is split.

 13

3. Virtual Machine Merging

As virtual machine workload can vary overtime, virtual machine managers have the

ability to consolidate virtual machines onto fewer hosts. Although this is the ideal behavior for

virtual machines with specific workloads, it is not ideal when there are many splits of the same

virtual machine. To solve consolidation of nearly identical machines, it is necessary to

implement a method to merge virtual machines back together.

3.1 Divergence and Redundancy

Once a virtual machine has been split using the method mentioned in Chapter 2, its

children virtual machines’ state and disk diverge. Different sets of processes are running on

each child and different writes have been done to the delta disks. Being able to extract the

appropriate differences and consolidating them back into a single virtual machine is very

difficult.

3.2 Workarounds for Disk Divergence and Redundancy

The most basic way of preventing disk divergence and redundancy is by creating a

partition between the operating system disk and process disks. When a merge occurs, only one

copy of the operating system disk must be maintained. As each virtual machine will contain the

same process disks, only the one running the process associated with the disk must be

maintained.

3.2.1 Process Specific Virtual Hard Disks

If every process group on a virtual machine was given its own virtual hard disk for storing

data pertaining to it, merging virtual machine data would be relatively easy. For each merge,

the hard disk relevant to the running processes would be disconnected from the virtual

machine and connected to the merged virtual machine. Then the process will be restarted on

the merged virtual machine. The other virtual machine and its files will be deleted. This type of

merging works if the processes on the two virtual machines to be merged do not rely on the

same virtual disk.

 14

3.2.2 Storage Area Network Disks

To eliminate the need to merge virtual disks onto a single virtual machine, storage area

network (SAN) disks can be used. These SAN disks utilizing iSCSI or similar technologies can be

mounted and unmounted from virtual machines to act like locally attached disks. By using SAN

disks with iSCSI, applications running on any virtual machine will be able to access all of the

data once the disk is mounted. During a merge, these SAN disks will be unmounted from the

source virtual machines and mounted onto the destination virtual machine. The processes on

the source virtual machines will be started on the destination virtual machine. Then source

virtual machines and their files will be deleted.

3.3 Resource Merging

As processes on virtual machines can be split onto multiple virtual machines running on

fewer virtual resources, it is obvious that the reverse process must also exist. Currently we are

able to merge virtual hard disks or SAN disks onto a single virtual machine; to make merging

more complete, we need to be able to merge virtual machine resources. We can leverage Hot-

Add Memory and Hot-Plug CPU to merge these virtual machines resources.

3.3.1 Hot-Add Memory and Hot-Plug CPU

Hot-Add Memory and Hot-Plug CPU are features that enable adding and removing

hardware from a physical machine [9] [10]. These features have also been implemented on

virtual machine hypervisors allowing administrators to allocate additional resources to a virtual

machine on demand. Hot-Add Memory and Hot-Plug CPU are not supported by all hypervisors

and guest operating systems. Some guest operating systems support adding resources but not

removing them. When a virtual machine merge has completed, the source virtual machine is

powered off, then Hot-Add Memory and Hot-Plug CPU are used to allocate more resources to

the merged virtual machine. Hot-Add Memory and Hot-Plug CPU can be used before or after

resuming the processes that were running on the source virtual machine. However, it is not

recommended to use Hot-Add Memory and Hot-Plug CPU after resuming the processes if the

merged virtual machine is running at capacity.

 15

Figure 3.1: Virtual Machine Merging

Figure 3.2: Virtual Machine Merging at the Application Layer

 16

3.4 Benchmarking Experiments

Similarly to virtual machine splitting, it is complicated to benchmark virtual machine

merging. Performance of virtual machine merging will be defined by the time required to

complete a merge operation.

3.4.1 Process Specific Virtual Disks

In this experiment, a virtual disk will be unmounted from the source virtual machine,

removed from the source virtual machine, added to the destination virtual machine and

mounted to the same mount point. Figure 3.3 shows that the time required to unmount virtual

hard disks increases as the number of virtual disks increase. Figure 3.4 shows that the time

required to remove a virtual hard disk from a virtual machine increases as the number of virtual

hard disks increase. Figure 3.5 shows that the time to add a virtual hard disk increases as the

number of virtual hard disks increase. Figure 3.6 shows that the time required to mount virtual

disks increases as the number of virtual hard disks increases. These results indicate that

performance will be significantly impacted by the adding and removing virtual disks more than

by mounting and unmounting their partitions.

Figure 3.3: Virtual Disk Unmounting Time

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5

Ti
m

e
 (

m
s)

Number of Virtual Disks

Virtual Disk Unmounting Time

 17

Figure 3.4: Virtual Disk Removing Time

Figure 3.5: Virtual Disk Adding Time

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5

Ti
m

e
 (

m
s)

Number of Virtual Disks

Virtual Disk Removing Time

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5

Ti
m

e
 (

m
s)

Number of Virtual Disks

Virtual Disk Adding Time

 18

Figure 3.6: Virtual Disk Mounting Time

3.4.2 Process Specific SAN Disks

In this experiment, a SAN disk will be unmounted from the source virtual machine and

mounted to the same mount point on the destination virtual machine. Figure 3.7 shows that

the time required to unmount SAN disks increases as the number of SAN disks increase. Figure

3.8 shows that the time required to mount SAN disks increases as the number of SAN disks

increases.

0

100

200

300

400

500

600

1 2 3 4 5

Ti
m

e
 (

m
s)

Number of Virtual Disks

Virtual Disk Mounting Time

 19

Figure 3.7: SAN Disk Unmounting Time

Figure 3.8: San Disk Mounting Time

3.4.3 Hot-Add Memory and Hot-Plug CPU

In this experiment, memory and vCPUs will be added to a virtual machine. Different

quantities of vCPUs and memory will be added to a virtual machine starting with 1 vCPU and 2

0

5

10

15

20

25

1 2 3 4 5

Ti
m

e
 (

m
s)

Number of SAN Disks

SAN Disk Unmounting Time

0

100

200

300

400

500

600

1 2 3 4 5

Ti
m

e
 (

m
s)

Number of SAN Disks

SAN Disk Mounting Time

 20

GB of memory. Figure 3.9 shows that the hot-plug CPU operation runs at a constant time of

approximately 2.588 seconds, regardless of the number of CPUs added. Figure 3.10 shows that

the hot-add memory operation runs at a constant time of approximately 3.110 seconds,

regardless of the amount of memory added.

Figure 3.9: Hot-Plug CPU Operation

Figure 3.10: Hot-Add Memory Operation

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

1 2 3 4 5

Ti
m

e
 (

s)

vCPUs Added

Hot-Plug CPU Operation

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8

Ti
m

e
 (

s)

Memory Added (GB)

Hot-Add Memory Operation

 21

3.5 Faults in Merging

Virtual machine merging is not the opposite function of virtual machine splitting. When a

virtual machine is split, its state can be maintained. When children virtual machines are

merged, the state from the children virtual machines cannot be merged back together.

Therefore, the method of virtual machine merging, defined in this chapter, can only be used

statelessly.

 22

4. Comparison to other Malleability Mechanisms

4.1 Background

Traditionally, to scale an application, its environment and its state need to be reproduced

on its destination. The environment, consists of all resources the application has access to and

the state is the virtual memory assigned to the application. To scale an application, first it is

suspended, its state is sent to the destination virtual machine and its environment is rebuilt,

finally the application is resumed. This process is very similar to that of virtual machine

migration [11] [12] [13].

Malleability enables an application to modify its running processes. By leveraging this

malleability functionality it is possible to scale applications to attain good performance at the

lowest possible cost [14]. Maghraoui, Desell, Szymanski and Varela [15] introduce a form of

malleability which modifies parallel processes granularity using split and merge functions. Their

implementation enables applications to adapt to the fluctuating nature of resource availability

in shared environments. This form of malleability requires middleware to monitor and modify

the processes as application demand changes.

Osman, Subhraveti, Su and Nieh [16] introduce a method of enabling application

migration between similar host operating systems. They implemented a virtualization layer on

top of a host operating system which provides access to system resources, they called this Zap.

Then they created pods, processes groupings which reside on top of Zap. When a pod is

migrated from one Zap host to another, Zap remaps the resources to the Pod on the new Zap

host, making the migration transparent to the running applications. Their work on Zap enables

any application to become part of a malleable process group without requiring any changes to

an existing application. The main pitfall of this approach is that workload reconfiguration

granularity of virtual machine malleability is limited to predefined pods. In order to achieve

high workload reconfiguration granularity, every pod will only contain one process or multiple

processes that are dependent on each other.

4.2 Problem

While an application is running, the performance can fluctuate depending on demand. If

the demand of an application is very high, the performance of the application decreases.

 23

Similarly when the demand of an application is very low, the performance of the application

increases. Application malleability enables applications to dynamically scale onto more

resources as demand increases to maintain acceptable performance.

There exist two types of applications, those written with malleability in mind (Type I) and

those that are not (Type II). For the earlier type, applications can migrate their processes to

other systems directly, and complexities such as communication are handled by the malleability

layer. For the latter type, applications are run in a virtual environment, which hides the

migration process from the applications.

4.2.1 Type I Malleability

As Type I applications are written with malleability in mind, they are able to achieve

most, if not all of the benefits of application malleability. These benefits include dynamic

workload reconfiguration and transparency [17]. Dynamic workload reconfiguration is the

ability to control the size of the workload running on any particular machine. Transparency is

the ability for an application in a workload to scale directed by an external agent. Desell,

Maghraoui and Varela [18] demonstrate Type I malleability for applications written in the

SALSA programming language [19]. Figure 4.1 is based on work from [15] and [18] and Figure

4.2 is based on work from [20].

4.2.2 Type II Malleability

As Type II applications are not written with malleability in mind, therefore they do not

inherently gain all of the benefits of application malleability. For example and application

running on Zap in a Pod has limits on its granularity [16]. A Pod is a process group, which cannot

be sub-divided, therefore limiting workload granularity. Similarly, a Pod which migrates from

one Zap host to another Zap host recreates its virtual environment, so the application can

continue running. However, the application is unaware that it has been migrated to a different

host. Unlike Type I malleability that transparently handles dependencies, Type II malleability

requires application dependencies to exist in the same Pod, otherwise the dependency will not

be available for the application. A lack of workload granularity prevents dynamic workload

reconfiguration, which can be a huge problem. If an application running in a Pod has very high

demand, the only operation that can be performed is to migrate the Pod to a different Zap

host. If this Zap host does not have sufficient resources to fulfill demand, then performance will

 24

be impacted. Likewise lack of transparency prevents applications from being able to scale

without having built in malleability and scalability.

Figure 4.1: Application Malleability

Figure 4.2: Virtual Machine Malleability using Application-level Migration

 25

Figure 4.3: Virtual Machine Malleability for Workloads with Independent Process Group

4.3 Virtual Machine Malleability

By running virtual machine splitting and merging, we have created a solution that

consists of a combination of Type I malleability and Type II malleability benefits. The benefits

we have attained include dynamic workload reconfiguration and transparency. Transparency

being the ability to not have to write the application with malleability in mind.

4.3.1 Dynamic Workload Reconfiguration

Dynamic workload reconfigurability is defined as the ability to increase or decrease the

number of independent processes running on a virtual machine. This means that when a virtual

machine is split, it is possible to split the workloads of a virtual machine between any number

of children virtual machines, as long as no split separates process groups. Similarly for merging,

any number of processes can be consolidated back into a single virtual machine.

4.3.2 Transparency

Transparency is defined as the ability for an application in a workload to scale directed

by an external agent. This means that when an application is split, its components are unaware

of the split.

4.3.3 Rewriting Applications

When a virtual machine split or merge occurs, applications can be split up or

consolidated without having to be written with malleability in mind. This is incredibly important

as many legacy applications do not implement any level of malleability.

 26

5. Applications of Virtual Machine Splitting and Merging

Using the implemented and conceptual ideas mentioned in Chapters 2 and 3, it is

possible to use virtual machine splitting and merging for multiple applications. Splitting can be

used to scale up applications, optimize throughput and performance and increase running

priority to a subset of processes. Merging can be used to scale down applications and combine

virtual resources into fewer virtual machines, improving on energy and resource utilization.

5.1 Application Scaling Up

Cloud computing has opened doors allowing anyone with a budget to run distributed

applications across hundreds and thousands of physical resources. Depending on budget and

time constraints, distributed applications can be scaled significantly to run an application faster.

Cloud computing has also made it economically feasible to run such jobs, as one does not need

to purchase hundreds or thousands of physical machines to reduce distributed application run

time.

Once an application is written and tested on a small set of machines, it can be scaled up

to use more cloud resources using virtual machine splitting. Consider an instance of an

application that consists of a series of 10 processes. Each of these proceses have a runtime of 1

unit. Assuming that a single virtual machine could process 1 unit per hour, it would take 10

hours for this virtual machine to run the entire application. Using the virtual machine splitting

implementation described in 2.2 it is possible to split this virtual machine into 10 children

virtual machines with equal resources and 1/10th of the workload, all being distributed across

10 physical hosts. As each of these children virtual machines will receive 1 process with a

runtime of 1 unit and as these children virtual machines have the same virtual resources as

their parent, they too can process at a rate of 1 unit per hour. Therefore, by using virtual

machine splitting, it is possible to process the entire workload in 1 hour, by splitting it amongst

10 children virtual machines each doing 1/10th of the workload. Since cost is the same, this

feature of cloud computing is called cost associativity [21].

5.1.1 Measuring the Cost of Virtual Machine Splitting

Each time a virtual machine splits, a certain amount of virtual machine data needs to be

copied. This affects the speed of virtual machine splitting significantly. The two significant

 27

variables that impact the splitting process include the size of the virtual machine files to be

copied and the number of copies that are made. As we can see in Figure 5.1 the cost of

application scaling using virtual machine splitting with delta disks is very high. Both copying files

and creating the delta disk are constant and take approximately 4 seconds each. However,

suspending a virtual machine and copying the state from disk from the parent to its children

significantly increases as size of memory increases.

Figure 5.1: Application Scaling Up Cost Utilizing Disk Based State Copying

5.1.2 Measuring the Cost of Virtual Machine Splitting with Live Memory Copy

Similarly to application scaling using virtual machine splitting, the normal process of

splitting occurs, except instead of suspending the virtual machine and copying its state, the live

memory copy version makes a copy directly to the destination host of each child virtual

machine. To emulate this, we will utilize virtual machine live migration to create an upper

bound on the process of live memory copy time. Virtual machine migration uses unicast to send

a copy of the virtual machine state to the destination host. For the purpose of application

scaling using virtual machine splitting, it is recommended that multicast be used, as multiple

hosts will be receiving identical copies of the virtual machine state.

0

1000

2000

3000

4000

5000

6000

7000

2GB 4 GB 8 GB 16 GB

16 GB 32 GB 64 GB 128 GB

A
vg

 C
o

m
p

le
ti

o
n

 T
im

e
 (

S)

Virtual Machine Configuration (RAM/HDD)

Application Scaling Up Cost

Copying State

Suspend VM

Copying Files

Create Delta Disk

 28

As we can see in Figure 5.2, virtual machine splitting using live state migration is less

time intensive than the regular state migration version. Live migration of state took 5 seconds

for a single virtual machine split with 2 GB of RAM and took 17 seconds for a single virtual

machine split with 16 GB of RAM. If implemented with multicast instead of unicast, the live

state migration time will be an upper bound, as the data is sent once to all hosts. Furthermore,

if copying files and creating delta disks were considered to be one process that took 8 seconds

and live state migration were a separate process, then virtual machine splitting can be done in

parallel as the two processes utilize different components. The former utilizes disk whereas the

latter utilizes memory. Therefore, the total virtual machine splitting time will be bound by

whichever process has a longer completion time.

Figure 5.2: Application Scaling Up Cost Utilizing Live State Copying

5.1.3 Measuring Performance of Application Scaling Up

Each time an application is scaled up using virtual machine splitting, its performance

should increase linearly to the total number of virtual machines. To ensure that this is the case,

we will test workloads of 10, 20, 30 and 40 embarrassingly parallel processes. We chose

embarrassingly parallel processes because they do not interact with each other. Otherwise,

factors like networking configuration would impact the performance as the application is scaled

0

5

10

15

20

25

30

2GB 4 GB 8 GB 16 GB

16 GB 32 GB 64 GB 128 GB

A
vg

 C
o

m
p

le
ti

o
n

 T
im

e
 (

S)

Virtual Machine Configuration (RAM/HDD)

Application Scaling Up Cost

Live State Copying

Copying Files

Create Delta Disk

 29

up. These processes will be run on 1 virtual machine and scaled up to run on 2, 5, 10, 20, 30 and

40 virtual machines. When scaling up, the processes are divided equally between all available

virtual machines. In the case that there are more virtual machines than processes, some virtual

machines will not run any processes, nor will they be included in the performance calculation.

As we can see in Figure 5.3, completion time of a particular workload deceases as the

number of virtual machine splits increases. Once the total number of virtual machine splits is

greater than or equal to the number of processes, the completion time becomes constant.

Furthermore, the completion time of one virtual machine running N processes is equivalent to

the sum of completion times of N virtual machines running 1 process. In other words, the

completion time of N embarrassingly parallel processes split amongst M virtual machines can

be calculated by taking the completion time of 1 virtual machine running N processes and

dividing it by M.

Figure 5.3: Application Performance When Scaling Up across More Virtual Machines on Hosts with 1:1

vCPU to Physical CPU Ratio

5.1.4 Leveraging Virtual Machine Splitting using SALSA

SALSA is an actor-oriented programming language. Actors in SALSA are portable so that

they can be migrated from a theater running on one virtual machine to a theater running on

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 5 10 20 30 40

A
vg

 C
o

m
p

le
ti

o
n

 T
im

e
(S

)

Number of Virtual Machines with 1 vCPU

Application Scaling Up Across More Virtual
Machines

10 processes

20 processes

30 processes

40 processes

 30

another virtual machine. This makes SALSA a very good programming language to develop

distributed applications. Utilizing virtual machine splitting, it is possible to configure a virtual

machine with a theater and split it hundreds of times, until every physical host has M virtual

machines, where M is equal to the total number of physical CPUs in a host. Once these children

virtual machines are running, SALSA can begin migrating actors onto these newly available

resources.

5.1.5 Performance of Distributed Heat Application

As we can see in Figure 5.4, as the number of virtual machines increases, the overall

completion time of the distributed heat application decreases. There is a slight overhead as

doubling the number of virtual machines does not yield a 100% increase in performance. This

slight overhead is to be expected as any non-embarrassingly parallel application relies on a

network to send data between each of its processes. In Figure 5.5 we can see that as the

number of virtual machines increases, the rate of execution increases approximately linearly.

Figure 5.4: SALSA Distributed Heat Completion Time

0

200000

400000

600000

800000

1000000

1200000

1 2 3 4 5

C
o

m
p

le
ti

o
n

 T
im

e
 (

m
s)

Number of Virtual Machines

SALSA Distributed Heat Completion Time

 31

Figure 5.5: SALSA Distributed Heat Execution Rate

5.2 Application Scaling Down

Web servers and database servers have significantly increased in popularity since the

dot-com boom in the late 1990s. Typically when a web application is built the webserver and

database server reside on the same system. Although this is acceptable for small applications,

there is always the possibility that the application might experience responsiveness issues

during its peak usage hours. To solve this issue, application scaling using virtual machine

splitting can be used. However, during the non-peak hours, this application might be allocated

too many physical resources making it very costly to maintain. Therefore, this application needs

to be able to scale down during its idle hours. To that end virtual machine merging can be used.

5.2.1 Virtual Machine Merging with Virtual Hard Disks

To merge a virtual machine with stateless processes and dedicated virtual hard disks is

relatively simple. First the processes running on the source virtual machine are terminated and

their respective virtual hard disks are unmounted. Each of the virtual hard disks relevant to

processes are removed from the source virtual machine and added to the destination virtual

machine using hot-swap disk, the ability to add and remove disks while a machine is running.

The guest operating system on the destination virtual machine then rescans its SCSI bus for

new devices. Finally, the virtual hard disks are mounted to the same mount points as the source

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5

Ex
e

cu
ti

o
n

 R
at

e
 (

p
o

in
ts

/m
s)

Number of Virtual Machines

SALSA Distributed Heat Execution Rate

 32

virtual machine, thus allowing the applications to be started on the destination and reload and

serve any data from their respective disks.

5.2.2 Virtual Machine Merging with Network Disks

To merge a virtual machine with stateless processes and network disks is very similar to

merging with virtual hard disks. The main difference is that the process is shorter as network

disks only need to be unmounted from the source virtual machine and mounted to the

destination virtual machine. Once mounted, the processes can be started on the destination

virtual machine.

5.2.3 Measuring the Cost of Virtual Machine Merging

Each time virtual machines merge, a few operations may occur. Including Hot-Plug CPU,

Hot-Add memory, unmounting and mounting virtual disks or SAN disks and removing and

adding virtual disks. As discussed in Section 3.4, Hot-Add memory and Hot-Plug CPU are

constant time operations. Unmounting and mounting virtual disks or SAN disk and removing

and adding virtual disks are linear time operations. As we can see in Figure 5.6, the cost of

application scaling using virtual machine splitting is most affected by the adding and removing

virtual disk operations, which grow linearly as the number of virtual disks increases.

Figure 5.6: Application Scaling Down Cost

0

1

2

3

4

5

6

7

1 GB 2 GB 4 GB 8 GB 16 GB

1 Disk 2 Disks 3 Disks 4 Disks 5 Disks

A
vg

 C
o

m
p

le
ti

o
n

 T
im

e
 (

S)

Virtual Machine Configuration (RAM/# Disks)

Application Scaling Down Cost

Hot-Plug CPU

Hot-Add Memory

Mounting

Adding Virtual Disk

Removing Virtual Disk

Unmounting

 33

5.2.4 Measuring Performance of Application Scaling Down

Each time an application is scaled down using virtual machine merging, its performance

should decrease linearly to the total number of virtual machines assuming a 1:1 vCPU to

physical CPU ratio. To ensure that this is the case, we will test workloads of 10, 20, 30 and 40

embarrassingly parallel processes for the same reasons as in Section 5.1.3. These processes will

be run on 40 virtual machines and scaled down to run on 30, 20, 10, 5, 2 and 1 virtual

machines. When scaling down, the processes are divided equally between all available virtual

machines. In the case that there are more virtual machines than processes, some virtual

machines will not run any processes, nor will they be included in the performance calculation.

As we can see in Figure 5.7, completion time of a particular workload increases as the number

of virtual machine merges increases. Similarly to Section 5.1.3, the completion time of one

virtual machine running N processes is equivalent to the sum of completion times of N virtual

machine running 1 process.

Figure 5.7: Application Performance When Scaling Down across Fewer Virtual Machines on Hosts with

1:1 vCPU to Physical CPU Ratio

0

1000

2000

3000

4000

5000

6000

7000

8000

12510203040

A
vg

 C
o

m
p

le
ti

o
n

 T
im

e
 (

S)

Number of Virtual Machines with 1 vCPU

Application Scaling Down Across Fewer
Virtual Machines

10 processes

20 processes

30 processes

40 processes

 34

5.3 Energy Optimization Problem

One of the main benefits of virtualization is to reduce energy consumption. This has been

accomplished by consolidating virtual machines and turning off idle physical machines [22]. Just

like any optimization problem, being too far on either end of the resource usage spectrum

causes energy waste. On one end there is having too many idle resources; every idle resource

still has a minimum power requirement even if it is idle. On the other end is over utilized

resources; when resources are over utilized they begin to thrash and performance takes a hit. A

lot of research has gone into energy optimization and has determined that there is an ideal

utilization percentage that achieves optimal performance per watt [23].

5.3.1 Bin-Packing

The energy optimization problem has been related to a bin-packing problem. One of the

approaches used to solve this bin-packing problem is to put virtual machines with large

workloads on hosts before putting virtual machines with smaller workloads [24]. Although this

algorithm can typically solve the bin-packing problem, it fails to work properly for certain

configurations of virtual machines. For example, if there exist 3 physical hosts and 4 virtual

machines with equal workloads, the ideal workload utilization on a host is 80% and a single

virtual machine running on a host utilizes 60% of the host’s resources, it would be impossible to

get these 4 virtual machines to fit and attain a host utilization of 80%. One of the hosts would

be over-utilized, having allocated 20% more virtual resources than physical resources, and the

other two hosts would be under-utilized, each having 60% utilization.

5.3.2 Bin-Packing Improved

To solve the utilization issue, it is necessary to split the workload of one virtual machine

into 3 smaller virtual machines. Assuming that the original workload can be equally split, each

of these virtual machines will receive exactly 1/3rd of the original workload and resources. Now

that one of the virtual machines was split into 3 virtual machines, there are a total of 6 virtual

machines. The original 3 virtual machines still have 60% utilization on a host, and the 3 split

virtual machines each have 20% utilization on a host. Using the bin-packing algorithm, defined

in Section 5.3.1, each of the full virtual machines will be assigned to one of the hosts, and then

each of the split virtual machines will be assigned to a host. As there will now be 2 virtual

 35

machines on each host: one full virtual machine and one split virtual machine. Therefore, the

host will be at its optimal utilization of 80%.

5.3.3 Verifying Bin-Packing

Although it is possible to split a virtual machine to divide its workload and resources, it

does not necessarily mean that the performance of the virtual machine is maintained. To

examine this, a series of experiments are needed to determine whether or not performance is

maintained for a variety of host configurations.

5.3.3.1 Experimental Setup

In this experiment, the same hardware and software configuration from Section 2.1.4

will be used. To accurately measure performance, we will run workloads of multiple sizes on

one parent virtual machine that will be running alone on a host. We will then split the parent

virtual machine into two children virtual machines, each with half of the parent’s resources and

workload. Then we will turn off the parent virtual machine. As we do not want to measure the

time it takes to split the virtual machines as part of the performance of the machine, the

workloads for the children virtual machines will begin once the split has been completed. A

heat application was created to provide a benchmark for measuring performance in virtual

machines.

5.3.3.2 Oversubscription v. Undersubscription

When running many virtual machines on few hosts, it is difficult to get a perfect balance

between demand and availability of resources. For that reason, there needs to be an account

for splitting performance degradation: oversubscription and undersubscription. In an

oversubscription scenario, more virtual resources are allocated and used by virtual machines

than available physical resources. As such, the host needs to aggressively handle resource

allocations in order to give every virtual machine some time to utilize the physical hardware. In

the case of undersubscription, there are fewer virtual resources allocated and used by virtual

machines than available physical resources. In this case, the host does not need to aggressively

handle resources; it can be generous with the amount of time a virtual machine has to utilize

the physical hardware.

 36

5.3.3.3 Oversubscription Experiment

For the oversubscription experiment, we will compare the performance of a virtual

machine that is allocated 100% of the host’s resources to two virtual machines each with 100%

of the host’s resources. We will run our heat application in multiples of two, to make it easier

to divide the workload into half. The purpose of this experiment is to examine if the host

produces significant overhead when context switching between two virtual machines as

compared to one virtual machine.

5.3.3.4 Undersubscription Experiment

For the undersubscription experiment, we will compare the performance for a virtual

machine allocated 2 vCPUs and 4 GB of memory to 2 virtual machines each allocated 1 vCPU

and 2 GB of memory. We will run our heat application in multiples of two, to make it easier to

divide the workload into half. The purpose of this experiment is to examine if the host does not

produce context switching overhead, as there are more resources available than needed.

5.3.3.5 Results Oversubscription Experiment

In the oversubscription experiment, the performance of having one overprovisioned

virtual machine, which is running processes with or without another overprovisioned idle

virtual machine, yielded approximately the same process completion times. The performance

yield was also approximately the same when comparing these results to the aggregate results

of running two virtual machines with half the workload. However, when 6 processes were

running, the completion performance was significantly impacted, relative to the single virtual

machine that was running 6 processes. This is a significant finding as it may indicate that certain

virtual machine configurations on overprovisioned systems yield poor performance.

 37

Figure 5.8: Process Completion Time for Overprovisioned Virtual Machines

5.3.3.6 Results Undersubscription Experiment

In the undersubscription experiment, the performance of having one virtual machine

with 2 vCPUs and 4 GB of memory was approximately equivalent to having two virtual

machines, each with 1 vCPU and 2 GB of memory and half the workload. This experiment was

conducted for workload sizes ranging from 2 – 8 processes. Figure 5.9 represents the average

completion time for each process. The results for the completion time for the split virtual

machines are combined and averaged, so that if each machine ran 2 processes, the completion

times of all 4 processes are averaged and compared to the single virtual machine that ran 4

processes. This finding is significant, as it shows that it is possible to split virtual machines and

have an insignificant impact on the performance of the running processes.

0

200

400

600

800

1000

1 2 3 4 5 6 8 12 24

P
ro

ce
ss

 C
o

m
p

le
ti

o
n

 T
im

e
 (

S)

Running Processes (N)

Process Completion Time for
Overprovisioned Virtual Machine

Configurations

1 VM on, running processes

2 VMs on, one running
processes

2 VMs on, both running
processes

 38

Figure 5.9: Process Completion Time for Underprovisioned Virtual Machines

5.3.3.7 Bin-Packing Conclusions

As seen in the results above, when equally splitting both a virtual machine’s processes

and resources, the virtual machine’s performance is not affected. This means that virtual

machine splitting can be used to divide virtual machines with large workloads to a more

appropriate fit on physical hosts. Therefore it enables the bin-packing algorithm to attain

optimal resource utilization on hosts, which leads to energy consumption improvement and

cost savings.

5.4 Scheduling Manipulation through Granularity Refinement

Every operating system has a system in place for scheduling processes. The algorithms

vary, yet all of them attempt to prevent CPU starvation. CPU starvation occurs when a process

does not get to execute on a processor even though the process has been indefinitely ready to

execute, in the waiting queue. Fair scheduling algorithms ensure that both long running and

short running processes get a chance to execute on the processor. Although every process gets

a chance to run, the completion times of a process can be significantly longer on a system with

many compute intensive processes compared to a system with fewer compute intensive

processes. Using virtual machine splitting, it is possible to maintain the same level of

performance while decreasing process completion time.

0

200

400

600

800

1 2 4 8

A
vg

 C
o

m
p

le
ti

o
n

 T
im

e
 (

S)

Running Processes

Process Completion Time for
Underprovisioned Virtual Machine

Configurations

Parent Virtual Machine

Split Virtual Machines

 39

5.4.1 Virtual Machine Splitting to Prioritize Process Execution

As we have seen in this chapter, splitting a virtual machine into smaller systems does not

significantly affect the performance of the virtual machine. We can split virtual machines to

produce unevenly balanced workloads and resource allocation to increase the amount of time

a process gets to execute on the CPU.

5.4.2 Unequal Workload Splitting Experiment

In this experiment, we will compare the completion time of an odd number of heat

applications on a single virtual machine with 2 vCPUs and 4 GB of memory to 2 equally resource

split virtual machines with 1 vCPU each and 2 GB of memory, with an unequal workload split.

The purpose of this experiment is to show that if a running virtual machine is split and its

workload is split unequally, the system with the smaller workload should yield lower process

completion times.

5.4.3 Unequal Resource Splitting Experiment

In this experiment, we will compare the completion time of an even number of heat

applications on a single virtual machine with 4 vCPUs and 8 GB of memory to 2 unequally

resource split virtual machines, the sum of both virtual machine resources will be equivalent to

4 vCPUs and 8 GB of memory. Each of the virtual machines will receive half of the parent’s

workload. The purpose of this experiment is to show that if a running virtual machine has its

resources split unequally and its workload split equally, then the child with more resources

should yield lower process completion times.

5.4.4 Results of Unequal Workload Splitting Experiment

As we can see in Figure 5.10, unequally splitting the workload makes it possible to have

processes complete faster than they would have if they had run on the original virtual machine.

However, this comes at a cost at significantly increasing the running time for processes running

on the system with the larger workload. When averaging the total completion time amongst all

processes, this average is greater than that of the parent virtual machine.

 40

Figure 5.10: Equal Resource, Unequal Workload Splitting

5.4.5 Results of Unequal Resource Splitting Experiment

As we can see in Figure 5.11, unequally splitting resources makes it possible to have

processes complete faster than they would have if they had run on the original virtual machine.

This is very similar to the result for unequal workload splitting as the processes running on the

system with fewer resources now have a significantly higher completion time. Another

similarity is that the average completion time of all processes is greater than that of the parent

virtual machine.

0

100

200

300

400

500

1 3 4 5 7 9

A
vg

.
C

o
m

p
le

ti
o

n
 T

im
e

 (
S)

Running Processes (N)

Equal Resource and Unequal Workload
Splitting

Single Virtual Machine
running N processes

Child Virtual Machine with
(N-1)/2 running processes

Child Virtual Machine with
(N+1)/2 running processes

 41

Figure 5.11: Unequal Resource, Equal Workload Splitting

5.4.6 Scheduling Manipulation Improvements

Although the same compute resources exist on the host, the reason for the higher

average completion times is that when the virtual machine with the smaller workload or

greater resources completes, it does not release its idle resources to the other virtual machine

that is still working on its processes. Although this is the expected result of using virtual

machines, it is not necessarily the intended result when using virtual machine splitting for

scheduling manipulation, as a significant loss of performance is undesirable for most

applications.

5.4.7 Resource Merging

Assuming that it is possible to determine when all processes in a workload complete on a

virtual machine, it is possible to free idle resources and reallocate them without having to turn

off the virtual machine that has running processes as seen in Figure 5.12. The most effective

method is powering off the virtual machine that has completed its workload. Once the virtual

machine is off, we can leverage hot-plug CPU and hot-add memory to add additional virtual

resources to the running virtual machine. If this entire process could be done instantaneously

the average completion times of the split virtual machine with fewer resources or more

processes should be identical to that of its parent. As we can see in Figure 5.13 and Figure 5.14

0

200

400

600

800

1000

2 4 6 8 10

A
vg

.
C

o
m

p
le

ti
o

n
 T

im
e

 (
S)

Running Processes (N)

Unequal Resource and Equal Workload
Splitting

Single Virtual Machine
running N processes

Child Virtual Machine with
3 vCPU and 6 GB RAM
running N/2 processes

Child Virtual Machine with
1 vCPU and 2 GB RAM
running N/2 processes

 42

it is possible to achieve equal completion times to that of the parent using resource merging as

soon as one virtual machine completes its entire workload.

Figure 5.12: Virtual Machine Resource Merging Process

 43

Figure 5.13: Single Virtual Machine with 2 vCPUs Processing Workload of 8 Units

 44

Figure 5.14: Two Virtual Machines with 1 vCPU each Processing Unevenly Split Workload of 8 Units

with Resource Merging

5.4.8 Unequal Workload Splitting with Merging Experiment

In this experiment, we will test resource merging on an uneven workload split. The heat

application will be used as a method of benchmarking performance. For a baseline, one virtual

machine with 4 vCPUs and 8 GB of memory will be used. Average completion times will be

recorded for 1 – 9 processes. After the baseline, two virtual machines each with 2 vCPUs and 4

GB of memory will be used to test uneven workload splitting. Once a virtual machine completes

its workload, its resources will be reallocated to the other virtual machine.

5.4.9 Unequal Resource Splitting with Merging Experiment

In this experiment, we will test resource merging on an uneven resource split. The heat

application will be used as a method of benchmarking performance. For a baseline, one virtual

 45

machine with 4 vCPUs and 8 GB of memory will be used. Average completion times will be

recorded for 2 – 10 processes. After the baseline, two virtual machines, one with 3 vCPUs and 6

GB of memory and the other with 1 vCPU and 2 GB of memory will be used to test even

workload splitting. Once a virtual machine completes its workload, its resources will be

reallocated to the other virtual machine.

5.4.10 Results of Unequal Workload Splitting with Resource Merging Experiment

As we can see in Figure 5.15, unequally splitting the workload with merging makes it

possible to reduce the completion time of the system with the larger workload to the

performance of its parent. At the same time, it does not negatively impact the virtual machine

running the smaller workload. Furthermore, as seen in Figure 5.16, when averaging the total

completion time amongst all processes, the combined completion time of the two split virtual

machines is slightly lower than that of its parent and the non-merging virtual machines.

Figure 5.15: Equal Resource, Unequal Workload Splitting with Resource Merging

0

100

200

300

400

500

1 3 5 7 9

A
vg

.
C

o
m

p
le

ti
o

n
 t

im
e

 in
 S

e
co

n
d

s

Running Processes (N)

Equal Resource and Unequal Workload
Splitting with Resource Merging

Single Virtual Machine
running N processes

Child Virtual Machine with
(N-1)/2 running processes

Child Virtual Machine with
(N+1)/2 running process
with merging

 46

Figure 5.16: Average Completion Times of Equal Resource, Unequal Workload Split Virtual Machines

5.4.11 Results of Unequal Resource Splitting with Resource Merging Experiment

As we can see in Figure 5.17, unequally splitting the resources with merging makes it

possible to reduce the completion time of the system with fewer resources to the performance

of its parent. At the same time, it does not negatively impact the virtual machine running the

more resources. Furthermore, as seen in Figure 5.18, when averaging the total completion time

amongst all processes, the combined completion time of the two split virtual machines is

significantly lower than that of its parent and the non-merging virtual machines.

0

100

200

300

400

500

1 3 5 7 9

A
vg

.
C

o
m

p
le

ti
o

n
 T

im
e

 in
 S

e
co

n
d

s

Running Processes (N)

Avg Completion Time for Single Virtual
Machine v. Aggregate Completion Times of
Unequal Workload Split Virtual Machines

Avg. Completion Time for
Single Virtual Machine
running N processes

Avg. Completion Time for
split Virtual Machines
running N processes

 47

Figure 5.17: Unequal Resource, Equal Workload Splitting with Resource Merging

Figure 5.18: Average Completion Times of Unequal Resource, Equal Workload Split Virtual Machines

0

100

200

300

400

500

2 4 6 8 10

A
vg

.
C

o
m

p
le

ti
o

n
 T

im
e

 (
S)

Running Processes (N)

Unequal Resource and Equal Workload
Splitting with Merging

Single Virtual Machine
running N processes

Child Virtual Machine with
3 vCPU and 6 GB of RAM
running N/2 processes

Child Virtual Machine with
1 vCPU and 2 GB RAM with
merging running N/2
processes

0

200

400

600

800

2 4 6 8 10

A
vg

.
C

o
m

p
le

ti
o

n
 T

im
e

 (
S)

Running Processes (N)

Avg Completion Time for Single Virtual
Machine v. Aggregate Completion Times of
Split Unequal Resource Virtual Machines

Single Virtual Machine
running N processes

Split Virtual Machines
running N processes

Split Virtual Machines
running N processes with
merging

 48

6. Conceptual Middleware for Virtual Machine Malleability

Virtual machine splitting is a very complicated process. Although it can be done

manually, it is very tedious and the smallest mistake can render the split useless. To make the

process easier and more streamlined, middleware should be implemented.

6.1 Malleability Manager

At the highest level of virtual machine malleability middleware is the malleability

manager. When invoked, it interacts with the hypervisor, the operating system and the

network. The malleability manager is the application that knows how to read a virtual

machine’s configuration files and determine what files to copy, what hypervisor functions to

invoke and it is aware of all possible destination hypervisors and datastores. Once all of the

corresponding virtual machine files have been modified, copied and registered it is able to

interact with the guest operating system to handle process splitting and it can modify

networking configurations to support networking based applications.

6.2 Process Splitting

When the malleability manager invokes process splitting it first requests a list of all

running user processes. In its most basic form it terminates n-1/n processes, where n is the

number of virtual machine splits, so that 1/n processes are running on each of the virtual

machines. It can also be configured to be aware of process groups and other rules to help it

better split processes running on a virtual machine. A process group is a logical grouping of

processes that cannot be split from each other due to inability to communicate over the

network or tight coupling. For example, if a system with a web server, database server and mail

server were to be split, and the web server is tightly coupled with its database, the web server

and database server would be put into the same process group. Then when the process

termination phase of process splitting begins, the web server and database server will be

terminated on one virtual machine and the mail server would be terminated on the other.

Another example would include splitting processes based on user. All processes of a user can

be grouped together in a process group, so when process termination occurs, the entire

process group of each user will reside on one child virtual machine.

 49

Figure 6.1: Comparison of Ungrouped Processes to Grouped Processes

6.3 Process Merging

Process merging is significantly harder than process splitting. Process merging is not

implementable on a stateful level, as it is a very difficult process to selectively copy memory

from one virtual machine to another virtual machine. To satisfy process merging, we depend on

virtual disk storage allocated to each process or network storage disk and stateless

applications. The malleability manager is able to determine which disks on a virtual machine

are being used by processes, so when a merge occurs, it unmounts the virtual disk or the

network storage disk and mounts it to the merged virtual machine. It then starts the stateless

processes on the merged virtual machine, so it can begin working on requests and turns off the

virtual machines that have been merged.

6.4 Hot-Plug CPU and Hot-Add Memory

Hot-Plug CPU and Hot-Add Memory are two technologies that can be leveraged to provide

resource merging. Hot-Plug CPU allows vCPUs to be added to running virtual machines, if the

guest operating system supports it. Similarly Hot-Add Memory allows virtual memory to be

added to running virtual machines if the guest operating system supports it. The malleability

manager is able to utilize Hot-Plug CPU and Hot-Add Memory to reallocate resources from two

 50

or more virtual machines that are merging into a single virtual machine. When the malleability

manager is invoked to do a resource merge, it turns off the specified virtual machines and adds

their resources to the destination virtual machine. Resource merging can be used in

conjunction with process merging, so that once all the processes have moved onto the merged

virtual machine, the resources they have been using will be moved to the merged virtual

machine.

6.5 Networking

Many applications require some form of access to a network. This access can be limited

to a local area network, so that processes can communicate to each other on a local area

network, or it can be connected to the internet, so that users all over the world can interact

with the application. There are two options for supporting network access for virtual machine

splitting and merging. The first utilizes DNS servers. Each application is assigned a domain

name. The record for the application name points to the server the process is running on.

When a virtual machine is split, the record is updated to point to the virtual machine the

process was split onto. When virtual machines are merged, the record is updated to point to

the virtual machine the process was merged onto. Using the DNS server method, it is always

possible to connect to an application using its domain name. The main issue with this method is

that connections to the process are lost whenever a split occurs. The second method is using a

proxy. Unlike the DNS server method, where clients and applications directly connect to each

other, in the proxy method all clients and applications connect to the proxy and the proxy

connects to each application. When a virtual machine split occurs, the client or application does

not lose its connection to the proxy, however the proxy loses its connection to the application.

Once the split is complete, the proxy reestablished communication to the application and

directs client and application traffic through it. The same process occurs for virtual machine

merging. The disadvantage of the proxy method is that it is not transparent.

6.6 Malleability Profile

Virtual machine splitting and merging is useful to improve performance, manipulate

scheduling and improve energy utilization. However there also exist some limitations to what

splitting and merging can do.

 51

6.6.1 Obvious Cases Against Using Splitting and Merging

Process groups or single processes running on a virtual machine cannot be split;

therefore virtual machine splitting will not offer any performance improvements. Stateful

merging cannot occur as virtual machines have divergence with memory and disk, however

disks dedicated to a single process or process group can be moved from one virtual machine to

another and get started on the destination virtual machine.

6.6.2 Splitting Profile

Virtual machine splitting cost is relatively light as it is either bounded by disk I/O when

copying files or network when copying state. If the remaining runtime of a set of processes is

greater than the splitting cost and greater than the longest runtime of any subset of split

processes then it is worth splitting a virtual machine. Another case is when there are more

available physical hosts than virtual machines. In this case, it is better to split the virtual

machine to increase overall host utilization. Another case is if any particular host is over utilized

and there exists capacity to handle the workload across multiple underutilized hosts, then

splitting a virtual machine increase performance.

Table 6.1: Virtual Machine Splitting Profile

Virtual Machine Splitting Profile

Number of Splits N

Cost of Splitting Disk D

Cost of Splitting State S

Remaining runtime for all processes on single virtual

machine ∑ 𝑃𝑖

𝑖

1

Cost of splitting 𝑁 ∗ 𝐷 + 𝑆

Maximum runtime for any split processes M

If true, split virtual machine.

Else, do not split.
∑ 𝑃𝑖

𝑖

1

> 𝑁 ∗ 𝐷 + 𝑆 + 𝑀

 52

6.6.3 Merging Profile

Merging virtual machines can be used to reduce overhead caused by having many idle

split virtual machines. Although the overhead of splitting a virtual machine is low, and the

impact to performance is negligible, when many idle virtual machines reside on a single host,

the sum of their idle resource utilization can become significant. By utilizing merging, the idle

processes can be consolidated onto a single virtual machine, and idle resource utilization can

be scaled down.

Table 6.2: Virtual Machine Merging Profile

Virtual Machine Merging Profile

Number of Idle Split Virtual Machines N

Resource Utilization of Idle Virtual Machine 𝑅𝑖

Resource Utilization of Merged Virtual Machine 𝑅𝑚

If true, merge virtual machine.

Else, do not merge.

𝑅𝑚 < 𝑁 ∗ 𝑅𝑖

6.6.4 Energy Saving Profile

Every physical host has some optimal resource utilization to achieve the best

performance per watt. Depending on the resources available to the physical host, this

utilization can vary. Virtual machine merging and splitting can be used to achieve better

resource utilization. In order to utilize merging and splitting, the optimal resource utilization of

a host and the resource utilization of a virtual machine must be known. A split should occur if

the resource utilization of one or more hosts is greater than the optimal resource utilization. If

there exists a host, that has the capacity to take one or more virtual machines, then the virtual

machines will be migrated from the over utilized host to the underutilized host. However in the

case, that no host has sufficient capacity to take one of the virtual machines from the over

utilized host, then the virtual machine will be split until each of its splits can fit onto the hosts

with available capacity. In the case that every host is over utilized, then virtual machine splitting

will not occur. In the case that many hosts are underutilized, virtual machine merging will be

 53

used to consolidate many split virtual machines into a single virtual machine. There larger

virtual machines will be migrated onto as few hosts as possible and the hosts with no virtual

machines will be shutdown.

 54

7. Related Work

7.1 Process Malleability

Osman, Subhraveti, Su and Nieh [16] introduce a method of enabling application

migration between similar host operating systems. They implemented a virtualization layer on

top of a host operating system which provides access to system resources, they called this Zap.

Then they created pods, processes groupings which reside on top of Zap. When a pod is

migrated from one Zap host to another, Zap remaps the resources to the Pod on the new Zap

host, making the migration transparent to the running applications. Their work on Zap enables

any application to become part of a malleable process group without requiring any changes to

an existing application.

Maghraoui, Desell, Szymanski and Varela [15] introduce a method of modifying parallel

process granularity using split and merge functions. Their implementation enables iterative

applications to adapt to the fluctuating nature of resource availability in shared environments.

To support this type of malleability, applications need to specify how to change process

granularity and middleware needs to be aware of resource availability and trigger changes to

the application.

7.2 Preserving State

Hirofuchi, Nakada, Itoh and Sekiguchi [25] use a method of virtual machine migration to

preserve a virtual machine’s state and move it to a host with more available resources to

improve performance. Their method copies the virtual machine state from the source host to

the destination host by sending the minimal state, starting the destination virtual machine,

suspending the source virtual machine and then pushing the remaining state from the source to

the destination. This form of migration is known as post-copy, as the state from the source

virtual machine is pushed to the destination virtual machine after the destination is started.

 Milojičić, Goudlis, Paindaveine, Wheeler and Zhou [26] propose a method of state

migration, which does not suspend a virtual machine, until the majority of its state has been

copied. In the first phase the state is copied from the source host to the destination host, this

process iterates multiple times over the virtual machines state to copy all of the dirty pages. In

the second phase, the virtual machine is stopped and the remaining dirty pages are copied

 55

over. This form of migration is known as pre-copy, as the destination virtual machine is only

started once most of the state from the source virtual machine has been copied.

Kozuch and Satyanarayanan [27] introduce a method of suspending and resuming a

system, so that it can be moved from one machine to another machine. Their method utilizes a

distributed file system that many machines have access to. When a system is suspended, the

machine it is running on writes the system’s state to the distributed file system. To resume the

system, any machine with access to the distributed file system, can read the state and resume

the system’s execution.

7.3 Energy Efficiency

Beloglazov and Buyya [22] propose a method of consolidating virtual machines onto

fewer hosts to save power. Their method relies on live migration and turning off idle hosts,

while maintaining the Quality of Service required by Service Level Agreements (SLA). As most

cloud computing offers rely on SLA, it is important to consider maintaining performance when

consolidating workloads.

Srikantaiah, Kansal, Zhao [23] introduce the tradeoff between resource utilization,

energy utilization and performance. They propose that a modified bin-packing problem can

model the optimal resource utilization of a host, to achieve the highest performance per

energy.

7.4 Network Malleability

Celesti, Villari and Puliafito [28] propose a cloud naming framework to enable

applications and resources to interact using URIs. Every application and resource receives a

name based on type and location by using name space federation. Applications can then use

resolution to connect to each other and other resources.

Yang, Qin, Zhang, Zhou, Wanga [29] propose a service for finding resources based on a

combination of P2P technologies and DNS. Their service allows legacy URI resolution through a

URI server to connect applications to resources residing on a logical P2P network.

 56

Varela and Agha [19] describe a universal naming and locator convention for SALSA

actors. Every actor is assigned an UAN, which is independent of the actor’s current location on

the internet. An UAL, identifies the actor’s current location on the internet. When the actor

migrates to a new theater, the actor’s run-time system, the naming server is updated with a

<UAN, UAL> pair representing the actor and its current theater.

Meng, Pappas and Zhang [30] propose a method of optimizing virtual machine scalability

based on network patterns. Their method introduces migrating virtual machines that

frequently interact over the network, to hosts that are closer in network proximity to achieve

higher performance.

7.5 Virtualization Scalability

Jamal, Qadeer, Mahmood, Waheed and Ding [31] examined virtual machine scalability

on multi-core systems using single type workloads to identify bottlenecks. They showed that

processes running in virtual machines perform equally as well as threaded processes, when CPU

count is equal. They also showed that inter-VM communication is severely limited by LAN and

WAN bandwidth.

Wang and Varela [6] examined the impact of virtual machine configurations on CPU

intensive workloads. They noticed that loosely coupled workloads spread across the same

number of physical resources, had approximately the same performance regardless of virtual

machine configuration. However for tightly coupled workloads, the optimal performance was

achieved when there were twice as many vCPUs as physical CPUs and that doubling the

memory gave at most a 15% performance improvement.

 57

8. Discussion

8.1 Contributions

Most recent malleability research has been focused on application malleability. This

thesis discusses virtual machine malleability. In particular, we explore the split and merge

functions of malleability and show that it is possible to implement both with minimal

modifications to the hypervisor. Conceptually, this is useful as the features leveraged by the

malleability functions are available on most modern hypervisors. Therefore it should be

possible to implement virtual machine malleability on any modern hypervisor. Although this

type of malleability cannot be leveraged by strongly coupled and dependent workloads, it does

provide malleability features such as dynamic workload reconfiguration which are typically only

seen in application layer malleability, while affording better transparency.

8.2 Conclusion

New methods of malleability are important as each provides applications with a broader

type of scalability and elasticity. In this thesis we discuss virtual machine malleability using the

methods defined as split and merge. We show that splitting and merging virtual machines

enables applications to scale without having any form of built in malleability. We explore the

strengths and weaknesses of each of these methods. We observe linear performance change as

applications are scaled. We also observe linear and constant costs for using each of these

methods. We discover that these methods provide benefits from both Type I and Type II

malleability, including dynamic workload reconfiguration, transparency and supporting

applications without built-in malleability. We also present applications of using the splitting and

merging functions, including scaling, energy optimization and scheduling manipulation.

For scaling applications, we have proposed a method of splitting virtual machines

statefully using both delta disks and live memory copy. Based on our models, it can be seen

that stateful virtual machine splitting is bound by the amount of time to copy files N times or

bound by transferring virtual machine state over the network. We have also discussed the

problem with virtual machine state and disk divergence, which makes virtual machine merging

a complicated problem. We proposed a solution, which dedicated virtual disks or network disks

to a process, so that when a merge occurs, all process related disks are merged onto a single

virtual machine.

 58

For the energy optimization problem, we have proposed a method of splitting a virtual

machine’s resources and processes between multiple virtual machines. As seen in our

experiments, there is no degradation of performance when both resources and processes are

equally split. This result means that it is possible to divide virtual machines equally and split

their children across multiple physical hosts; as each child is smaller in terms of resource

utilization it is easier to satisfy the energy optimization bin-packing problem.

For scheduling manipulation, we have shown that using virtual machine splitting can be

used to give processes a higher priority. Our experiments have shown that virtual machine

splitting can reduce a process’s completion time, when there are more compute intensive

processes running than vCPUs dedicated to the virtual machine. We also proposed using virtual

machine merging as a method of correcting the significantly higher completion times of the

lower priority processes. By doing such, we were able to reduce the completion time to

approximately that of the single virtual machine running all of the processes. This in turn

reduced the average process completion time for all of the processes.

These results are promising as they show that virtual machine malleability can be

leveraged for many different applications and provides similar functionality to application

malleability without having to rewrite applications to be malleable.

8.3 Future Work

The malleability manager discussed in Chapter 6, has only been partially implemented. It

is not recommended to do virtual machine malleability by hand as it is a very tedious and

intricate process. For those reasons, the remaining parts of the malleability manager need to be

implemented, these parts include Hot-Plug CPU, Hot-Add memory, networking and malleability

profiles.

As my research has been conducted using ESXi, it has not been possible to implement

stateful splitting using the live memory copy component of virtual machine migration. Stateful

splitting might be a feature limited to open source hypervisors such as Xen, unless VMware add

an API call to leverage their live memory copy function.

Performance degradation in regards to virtual machines running on delta disks should be

examined. There is a possibility that if a virtual machine is split hundreds of times that the

 59

parent virtual disk, which all of the delta disks reference will thrash. If this is the case, it might

make sense to create M copies of the parent disk, so that at most 1/Mth of the virtual disks

reference the same parent disk.

 60

9. Literature Cited

[1] VMware. (2006). Reducing Server Total Cost of Ownership with VMware Virtualization

Software. [Online]. Available: http://www.vmware.com/pdf/TCO.pdf. [Accessed: March 3,

2014].

[2] B. P. Tholeti. (2011). Hypervisors, virtualization, and the cloud: Learn about hypervisors,

system virtualization, and how it works in a cloud environment. [Online]. Available:

http://www.ibm.com/developerworks/cloud/library/cl-hypervisorcompare/. [Accessed:

March 3, 2014].

[3] L. M. Vaquero et al., "A Break in the Clouds: Towards a Cloud Definition," SIGCOMM

Comput. Commun. Rev., vol. 39, no. 1, pp. 50-55, Dec. 2008.

[4] A. Greenberg et al., "The Cost of a Cloud: Research Problems in Data Center Networks,"

SIGCOMM Comput. Commun. Rev., vol. 39, no. 1, pp. 68-73, Dec. 2008.

[5] T. J. Bittman et al. (2013). Magic Quadrant for x86 Server Virtualization Infrastructure.

[Online]. Available: http://www.gartner.com/technology/reprints.do?id=1-

1GRGRRU&ct=130702&st=sb. [Accessed: February 11, 2014].

[6] Q. Wang and C. Varela, "Impact of Cloud Computing Virtualization Strategies on

Workloads' Performance," in Proc. of the 2011 4th IEEE Int. Conf. on Utility and Cloud

Computing, Melbourne, Australia, 2011, pp. 130-137.

[7] A. Verma et al., "pMapper: Power and Migration Cost Aware Application Placement in

Virtualized Systems," in Proc. of the 9th ACM/IFIP/USENIX Int. Conf. on Middleware,

Leuven, Belgium, 2008, pp. 243-264.

[8] K. Hess. (2010). 10 New Reasons to Virtualize Your Infrastructure. [Online]. Available:

http://www.serverwatch.com/trends/article.php/12128_3910526_2/10--New-Reasons-to-

Virtualize-Your-Infrastructure.htm. [Accessed: March 3, 2014].

[9] M. Kammerer. (2008). CPU hotplug. [Online]. Available:

https://www.ibm.com/developerworks/linux/linux390/perf/tuning_cpuhotplug.html.

[Accessed: March 3, 2014].

[10] J. J. Johnson et al., "Hot-upgrade/hot-add memory," U.S. Patent 6,854,070, Feb. 8, 2005.

[11] C. Clark et al., "Live Migration of Virtual Machines," in Proc. of the 2nd conf. on Symp. on

Networked Systems Design & Implementation, Berkeley, CA, 2005, pp. 273-286.

[12] J. G. Hansen and E. Jul, "Self-migration of operating systems," in Proc. of the 11th

Workshop on ACM SIGOPS European Workshop, Leuven, Belgium, 2004.

 61

[13] C. P. Sapuntzakis et al., "Optimizing the Migration of Virtual Computers," SIGOPS Oper.

Syst. Rev., vol. 36, no. SI, pp. 377-390, Dec. 2002.

[14] P. Wang et al., "Impact of Virtual Machine Granularity on Cloud Computing Workloads

Performance," in 11th IEEE/ACM Int. Conf. on Grid Computing, Brussels, Belgium, 2010, pp.

393-400.

[15] K. E. Maghraoui et al., "Dynamic Malleability in Iterative MPI Applications," in Proc. of 7th

IEEE Int. Symp. on Cluster Computing and the Grid, Rio de Janeiro, Brazil, 2007, pp. 591-

598.

[16] S. Osman et al., "The Design and Implementation of Zap: A System for Migrating

Computing Environments," SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 361-376, Dec. 2002.

[17] K. E. Maghraoui et al., "Malleable Iterative MPI Applications," Concurrency and

Computation: Practice and Experience, vol. 21, no. 3, pp. 393-413, Mar. 2009.

[18] T. Desell et al., "Malleable components for scalable high performance computing," in Proc.

of the HPDC'15 Workshop on HPC Grid programming Environments and Components, Paris,

France, 2006, pp. 37-44.

[19] C. Varela and G. Agha, "Programming Dynamically Reconfigurable Open Systems with

SALSA," SIGPLAN Not., vol. 36, no. 12, pp. 20-34, Dec. 2001.

[20] Q. Wang, "Middleware for Autonomous Reconfiguration of Virtual Machines," M.S. thesis,

Dept. Comp. Sci., Rensselaer Poly. Inst., Troy, NY, 2011.

[21] M. Armbrust et al., "A View of Cloud Computing," Commun. ACM, vol. 53, no. 4, pp. 50-58,

Apr. 2010.

[22] A. Beloglazov and R. Buyya, "Energy Efficient Allocation of Virtual Machines in Cloud Data

Centers," in Proc. of the 2010 10th IEEE/ACM Int. Conf. on Cluster, Cloud and Grid

Computing, Melbourne, Austrailia, 2010, pp. 577-578.

[23] S. Srikantaiah et al., "Energy Aware Consolidation for Cloud Computing," in Proc. of the

2008 Conf. on Power Aware Computing and Systems, San Diego, CA, 2008, pp. 10-10.

[24] B. Li et al., "EnaCloud: An Energy-saving Application Live Placement Approach for Cloud

Computing Environments," in IEEE Int. Conf. on Cloud Computing, Bangalore, India, 2009,

pp. 17-24.

[25] T. Hirofuchi et al., "Reactive Consolidation of Virtual Machines Enabled by Postcopy Live

Migration," in Proc. of the 5th Int. Workshop on Virtualization Technologies in Distributed

Computing, San Jose, CA, 2011, pp. 11-18.

[26] D. S. Milojičić et al., "Process migration," ACM Comput. Surv., vol. 32, no. 3, pp. 241-299,

Sept. 2000.

 62

[27] M. Kozuch and M. Satyanarayanan, "Internet Suspend/Resume," in Proc. of the 4th IEEE

Workshop on Mobile Computing Systems and Applications, Callicoon, NY, 2002, pp. 40-46.

[28] A. Celesti et al., "Design of a Cloud Naming Framework," in Proc. of the 7th ACM Int. Conf.

on Computing Frontiers, Bertinoro, Italy, 2010, p. 2.

[29] D. Yang et al., "URNS: A new name service for uniform network resource location," in 2006

IET Int. Conf. on Wireless, Mobile and Multimedia Networks, Hangzhou, China, 2006, pp. 1-

4.

[30] X. Meng et al., "Improving the Scalability of Data Center Networks with Traffic-aware

Virtual Machine Placement," in Proc. of the 29th Conf. on Information Communications,

San Diego, CA, 2010, pp. 1154-1162.

[31] M. H. Jamal et al., "Virtual Machine Scalability on Multi-Core Processors Based Servers for

Cloud Computing Workloads," in IEEE Int. Conf. on Networking, Architecture, and Storage,

Hunan, China, 2009, pp. 90-97.

