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ABSTRACT 

Many have leveraged virtual machine cloning, migration and other features of 

virtualization to improve and guarantee high availability and performance of their applications. 

Virtual machine malleability is the ability to split and merge virtual machines based on demand 

and performance, to improve virtualization functionality. The splitting function will take a 

virtual machine with a workload of N independent processes and split the independent 

processes into at most N virtual machines. Similarly, the merging function will take at most N 

previously-split virtual machines and merge their independent processes into a single virtual 

machine. There has been previous research in malleability at the application layer. However, 

most of the benefits of application layer malleability can also be realized at the virtual machine 

layer. These benefits include dynamic workload reconfigurability while affording better 

transparency. The benefits provided by virtual machine malleability can be put into 3 

categories: scalability and elasticity, energy improvements and process scheduling. 

Traditionally, the approach of application scaling at the application layer involves writing an 

application with malleability in mind. Using our method of scaling, applications do not need to 

be written with malleability in mind to be able to scale, as long as the application workloads are 

independent or they can communicate over a network. The approach of energy optimization 

typically involves consolidating virtual machines onto fewer hosts and putting idle hosts in a 

low power or off state. Although this method works quite well, certain virtual machine 

configurations cannot be consolidated without significantly impacting performance. Using 

virtual machine malleability, processes running on a virtual machine that is on an overloaded 

physical machine can be split across multiple virtual machines, each with a smaller resource 

footprint. Each of these split machines can then be consolidated without causing the physical 

hosts to become overloaded. Such flexibility in virtual machine scheduling enables better 

energy consumption. Our experiments with virtual machine malleability show that application 

scalability is possible with negligible performance degradation, that it is possible to dynamically 

reconfigure workloads to achieve set resource utilization, which in turn improves energy 

utilization. We evaluate scalability and elasticity by splitting and merging virtual machines 

running many instances of the same CPU intensive process. Our evaluation of splitting and 

merging demonstrates linear performance changes. Finally, we discuss some future work which 

includes the design of middleware for managing virtual machine malleability. 
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1. Introduction 

1.1 Motivations 

Over the past decade a huge push toward energy efficiency and cost reduction has driven 

server virtualization. Virtual machines have revolutionized the way workloads can be handled. 

In the past, hardware and software limited what could and could not be run on a physical 

machine. As hardware improved, applications were migrated from older machines onto newer 

machines, which offered greater resources. Unfortunately, most applications running on these 

machines never fully utilized all of the available resources.  Although these machines only 

utilized a fraction of the available resources, they still consumed a large amount of power. 

Virtualization made it possible to consolidate many of these systems onto fewer physical 

machines. This virtualization migration had significantly reduced cost by eliminating excessive 

hardware, reducing electricity waste, reducing IT costs and overall datacenter costs [1] [2] [3] 

[4]. 

The current market share of virtual server workloads is two-thirds worldwide as of June 

2013 and it is still expected to grow [5]. However, not all virtual machine configurations are 

conducive to all of the cost reductions and benefits of virtualization. For example, having too 

many compute intensive virtual machines on a host causes performance degradation, which 

results in a decrease in the compute/watt ratio [6] [7]. 

Another reason to virtualize is scalability. Virtual machines can be reconfigured relatively 

quickly to scale with application demand [6] [8]. Features related to scalability include cloning, 

migration and deployment. Cloning makes an exact replica of a virtual machine, migration 

moves the virtual machine from one physical host to another physical host and deployment 

allows virtual machines to be created based on a template. 

This thesis presents two functions that provide hypervisors with additional functionality 

which improve scalability, improve power utilization and manipulate process scheduling 

algorithms. These functions are virtual machine splitting and virtual machine merging. Like 

most hypervisor functionality, these functions are based on and leverage existing functionality. 
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1.2 Structure of Thesis 

The structure of this thesis is as follows: In Chapter 2, we will discuss the types of virtual 

machine splitting, the strengths and weaknesses related to each type and some changes to 

improve the overall performance of this operation. In Chapter 3, we will introduce virtual 

machine merging, its limitations, and some workarounds. In Chapter 4, we will compare virtual 

machine malleability to application malleability. In Chapter 5, we will dive into application 

scaling, the energy optimization problem and scheduling manipulation. In Chapter 6, we will 

discuss the middleware for enabling virtual machine splitting and merging. In Chapter 7, we will 

explore related work. Chapter 8 concludes this thesis and discusses future work. 
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2. Virtual Machine Splitting 

Virtual machine splitting is defined as the process of taking one virtual machine and 

splitting it into two or more virtual machines. Each of these split machines contain a subset of 

the original machine’s user processes. 

2.1 Virtual Machine Splitting 

Virtual machine splitting is based on the cloning and migration features offered by 

virtual machine hosts and virtual machine monitors respectively. The most basic form of virtual 

machine splitting is stateless splitting as contents of memory are discarded before cloning, so 

that the children virtual machines do not start at their parent’s state. Stateful virtual machine 

splitting is a more advanced form as it preserves the parent’s memory, so the children virtual 

machines resume from where the parent left off. To draw a parallel to biology, if a cell was 

considered to be a virtual machine, its DNA would represent the disk of the virtual machine. 

When a parent cell splits into two, its entire DNA is duplicated before the split is complete; this 

is equivalent to duplicating a virtual machines disk before splitting. By creating additional 

middleware consisting of a malleability manager and a process running on the virtual machine, 

it is possible to split running processes between virtual machines and reconfigure networking. 

The middleware is covered in Chapter 6. 

2.1.1 Stateless Virtual Machine Splitting 

Stateless virtual machine splitting follows the same process as the cloning feature 

provided by the virtual machine host. Cloning in its most basic form makes a copy of the virtual 

machine files, such as the virtual machine configuration and the virtual machine disks. Then it 

registers the cloned virtual machine on the host. Stateless virtual machine splitting provides the 

ability to reconfigure the virtual machine before it is registered on the host. This is particularly 

useful in cases where a virtual machine is running multiple stateless applications such as 

RESTful services, APIs or daemons that have too many or too few resources allocated to each. 

2.1.2 Stateful Virtual Machine Splitting 

Stateful virtual machine splitting is almost identical to stateless virtual machine splitting, 

except it provides a copy of the parent’s memory for each child. This is particularly useful when 

multiple compute intensive, long running processes are living on a virtual machine and the 
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system is not configured to handle live resource allocation. In this case, it is possible to pseudo-

allocate more resources to each process by creating a stateful split and terminating the 

redundant, long running processes (including their dependencies), so that at most one copy of 

each long running process exists in one of the child virtual machines. 

2.1.3 Implementation of Virtual Machine Splitting 

Virtual machine splitting begins when the malleability manager is invoked. It powers off or 

suspends the running virtual machine. During the suspend process the host writes the contents 

of the virtual machine’s memory to disk. The malleability manager then reads the virtual 

machine configuration file to determine which virtual disks it needs to copy. It then creates the 

destination directory and copies the virtual disks into it. In the case of a stateless virtual 

machine split, the virtual machine configuration file can be modified to better reflect the needs 

of each split virtual machine. The stateful virtual machine configuration cannot be edited as 

stateful virtual machines need to restore their entire state before hardware modifications can 

be made.  In the case of stateful virtual machines, the parent’s state is then copied to each of 

the split virtual machines. Once all of these tasks have completed, the virtual machine is 

registered on the destination host and powered on or resumed. The malleability manager 

establishes connections to the malleability process running on each of the virtual machine splits 

and requests a list of running user processes. It then terminates a subset of these processes on 

each virtual machine, so that only one copy of each process remains. 
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Figure 2.1: Virtual Machine Splitting 

 

 

Figure 2.2: Virtual Machine Splitting at the Application Layer 

 

2.1.4 Experimental Setup 

In the experiment of virtual machine splitting, we use a server (CPU: Intel i7 3930k 

overclocked to 4.0 GHz, Memory: 64 GB, OS: Windows 8.1 Pro) running 4 instances of VMware 

Player. First instance (OS: Windows Server 2008 R2, 8 GB memory, 1 vcpu, 1 dedicated HDD 

using pass-through, 1 virtual hard drives). Second instance (OS: Ubuntu, 4 GB memory, 1 vcpu, 

1 virtual drive). Third and fourth instances (OS: ESXi 5.5, 16 GB memory, 6 vpu, 1 virtual drive, 
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both connected to the iSCSI devices, both have SSH enabled). All of these virtual machines are 

connected to the same network. 

The windows server is configured to act as an iSCSI adapter for its physical hard disk. To 

enable ESXi to do migration, both the source and destination host need to be connected to the 

same iSCSI disk. Setting up an iSCSI was the most cost effective method of satisfying this 

requirement. 

The Ubuntu virtual machine is configured as the malleability manager. It interacts with 

both ESXi hosts and performs the tasks required by virtual machine splitting. The malleability 

manager tasks are defined in a series PHP scripts. These scripts leverage SSH to interact with 

each of the ESXi hosts. The public key of the user running the malleability manager is stored on 

each ESXi host. 

 During the experiment, no user applications were being run on the Windows 8.1 host, 

ESXi hosts and Windows Server 2008 R2 virtual machine. The Ubuntu virtual machine ran the 

scripts required to split a virtual machine and its processes. 

2.1.5 Benchmarking Virtual Machine Splitting Process 

Virtual machine splitting is complicated to benchmark. It consists of 3 components: The 

first is shutdown or suspend, the second is copy and modify and the third is power on or 

resume. A large part of virtual machine splitting involves significant disk I/O, and performance 

is significantly affected by hard disk utilization, specification, fragmentation, source and 

destination. Other factors that affect the amount of disk I/O include memory utilization, size of 

virtual machine files and size of virtual machine state. Factors that affect writing to and reading 

from the disk include network utilization and configuration. All of these factors can significantly 

impact the performance of virtual machine splitting. As reading and writing to memory is very 

fast compared to reading and writing to disk, its impact is treated as negligible. Table 2.1 

contains a method to effectively calculate the cost of virtual machine splitting based on its disk 

I/O driven nature. 
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Table 2.1: Virtual Machine Splitting Cost Model 

Virtual Machine Splitting Cost Model 

VDS = Virtual Disk Size 

VMS = Virtual Memory Size 

VFS = Virtual Machine File Size 

NS = Number of Virtual Machine Splits 

S = Is Stateful (0 or 1) 

P = Performance 

P(VDS,VMS,VFS,NS,S) = 2*NS*(VDS + VFS + S*VMS) 

 

As virtual machine files are relatively small compared to virtual machine disk size and 

virtual machine memory size, we can break down the equation in Table 2.1 to account for the 

cost of copying the virtual machine disk and the cost of copying the virtual machine state as 

seen in the equations on Table 2.2. 

 

Table 2.2: Virtual Machine Splitting Cost Dissected 

Virtual Machine Splitting Cost Dissected 

PDISK(VDS,NS) = 2 * NS * VDS 

PSTATE(VDS,VMS,NS) = 2 * NS * VMSs 

 

The equations from Table 2.2 are graphed in Figure 2.3 and Figure 2.4 to show the 

significance that virtual machine disk size, memory size and number of splits adds to the overall 

cost of virtual machine splitting. 
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Figure 2.3: Virtual Machine Splitting Disk Copying Cost 

 

 

Figure 2.4: Virtual Machine Splitting Memory Copying Cost 

 

2.1.6 Cost of Splitting a Virtual Machine 

As we can see in Figure 2.3, the cost of a stateless virtual machine split is most affected 

by the size of the virtual machine’s disk. The time to split a virtual machine increases linearly as 

the size of its virtual disk and the number of splits increase. In Figure 2.4 we see the additional 
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cost is caused by statefully splitting a virtual machine. Similarly to the first result, the time to 

split a virtual machine increases linearly as the size of the memory and the number of splits 

increase. Although linear time increase is significantly better than exponential time increase, it 

makes it hard to justify virtual machine splitting. Furthermore, for statefully splitting virtual 

machines with significantly larger virtual disks than memory, the cost of maintaining state is 

negligible compared to copying the disk. Also for systems with large or mostly empty virtual 

disks, the splitting process is significantly impacted. 

2.1.7 Similarities to Virtual Machine Cloning 

Cloning a virtual machine faces many of the same challenges as splitting a virtual 

machine. It is very costly as it requires making an exact duplicate of all virtual machine related 

files. Although most of these files are generally small, the virtual hard disks are large relative to 

other virtual machine files. Most of the cloning process is spent copying a virtual hard disk. 

Other factors that affect cloning include having the same source datastore and destination 

datastore or having both datastores residing on the same physical disk. Another significant 

downside to cloning is creating unnecessary redundancy; once a clone completes, there are 

two identical copies of every bit of data, the original virtual disk and the copied virtual disk. 

2.1.8 Improvements to Virtual Machine Splitting 

Although it is still faster to split or clone a virtual machine than to setup a new virtual 

machine, the performance hit of copying a virtual machine disk is too great. To solve this 

performance hit, we will modify the virtual machine splitting process to use delta disks. A delta 

disk is a virtual hard disk that stores all file system changes since its creation. When created, a 

delta disk keeps a reference to its parent disk. The parent disk is set to be read-only. When a 

virtual machine reads from a delta disk, it acts like a normal virtual disk. However, if a page 

requested by the virtual machine is missing from the delta disk, it is retrieved from the parent 

disk. When a virtual machine writes to the delta disk, the delta disk stores the pages like a 

normal virtual disk.  As delta disks do not contain their parent’s data, they begin very small. 

Since the parent disk is set to read-only, multiple delta disks can reference and utilize the same 

parent disk without causing corruption. 



 

 10 

2.1.9 Virtual Machine Splitting using Delta Disks 

The process of virtual machine splitting using delta disks is identical to regular virtual 

machine splitting, except after powering off or suspending a virtual machine, a delta disk is 

created and instead of copying the virtual disk, the delta disk is copied. When a delta disk is 

created its total size is a fraction of a megabyte. The virtual machine associated with this delta 

disk has its configuration file modified, so that it points to the delta disk instead of its original 

hard disk. Since we will be copying delta disks to potentially different datastores and 

directories, we need to implement a feature to read and modify the delta disk’s reference to its 

parent disk. As the reference to a parent disk is statically assigned, it will no longer be possible 

to perform a datastore migration of the original virtual machine, without powering off all of the 

children virtual machines and updating their delta disk references. The children virtual 

machines can still be migrated to any datastore and any host, as long as the host has access to 

the datastore with the parent virtual disk. With this modified version of virtual machine 

splitting, less than 1 MB of data needs to be copied for stateless virtual machines. This makes it 

possible to perform all of the copy functions of stateless virtual machine splitting in less than 

one second. 

2.1.10 Memory-Bound Splitting Limitations 

Stateful virtual machine splitting requires maintaining a copy of a virtual machine’s 

memory state for each of the children virtual machines. Virtual machine splitting currently 

implements this by having the hypervisor write the contents of a virtual machine’s memory to 

disk and then copying it to all of the children virtual machines. When a child virtual machine is 

registered on a host, the hypervisor sees that a saved state is associated with it. The hypervisor 

then enables the ability to resume the virtual machine, which loads the saved state into 

memory. 

2.2 Virtual Machine Splitting with Live Memory Copying 

Most hypervisors have the ability to copy the contents of a virtual machine’s memory 

when it migrates from one host to another host without powering off the machine. We will 

refer to this function as live memory copying. As seen in Table 2.3 writing the state to disk and 

copying state are very time intensive operations compared to live memory copying. Therefore, 

it is necessary to leverage this feature to make stateful virtual machine splitting more effective. 
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Table 2.3: Stateful Virtual Machine Splitting Time For Single Split 

RAM Suspend (s) Copy State (s)  Live State Copying (s) 

2 GB 108 630  5 

4 GB 218 1260  8 

8 GB 461 2520  11 

16 GB 690 5040  17 

 

The need for live state copying becomes more apparent when more than one virtual 

machine split occurs. The linearly increasing cost of splitting a virtual machine with 2 GB of 

RAM seen in Table 2.4 results from having to copy the state from disk multiple times. The live 

state copying, on the other hand, has a constant completion time because it utilizes multicast 

to send a copy of the entire state to multiple destination hosts simultaneously. 

 

Table 2.4: Cost of Virtual Machine Splitting as Number of Splits Increases 

VM Splits Suspend (s) Copy State (s)  Live State Copying (s) 

1 108 630  5 

2 108 1260  5 

4 108 2520  5 

8 108 5040  5 

 

2.3 Virtual Machine Splitting Granularity 

When splitting a virtual machine, there are two levels of granularity to consider. At the 

lowest level is resource granularity. At the highest level is workload reconfiguration granularity. 
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2.3.1 Resource Granularity 

Resource Granularity is used to describe how many virtual resources are provided to 

each child virtual machine when a virtual machine split occurs. This type of granularity is 

restricted by the type of virtual machine splitting and the resource that is being split. For 

instance, when doing a stateless virtual machine split, each child can have fewer resources 

allocated to it than its parent virtual machine. However, for stateful virtual machine splits, each 

child must have the same number of resources as its parent virtual machine. The earlier 

property can be exploited to improve physical resource utilization; the later property can be 

used to scale up applications over multiple physical hosts. 

 

Table 2.5: Supported Resource Granularity for Stateful and Stateless Splits 

Resource Granularity 

 Stateful Split Stateless Split 

Fewer Resources   

Equal Resources   

More Resources   

 

2.3.2 Workload Reconfiguration Granularity 

Workload Reconfiguration Granularity is used to describe at what level processes 

running on a virtual machine can be split. This type of granularity depends on the type of 

applications being run on the virtual machine. A virtual machine with tightly coupled processes 

that cannot communicate over the network cannot be split. However processes that are not 

coupled or can communicate over the network can be split into multiple virtual machines. To 

make process splitting easier, process groups can be defined to ensure that applications do not 

break when the virtual machine they are running on is split. 
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3. Virtual Machine Merging 

As virtual machine workload can vary overtime, virtual machine managers have the 

ability to consolidate virtual machines onto fewer hosts. Although this is the ideal behavior for 

virtual machines with specific workloads, it is not ideal when there are many splits of the same 

virtual machine. To solve consolidation of nearly identical machines, it is necessary to 

implement a method to merge virtual machines back together. 

3.1 Divergence and Redundancy 

Once a virtual machine has been split using the method mentioned in Chapter 2, its 

children virtual machines’ state and disk diverge. Different sets of processes are running on 

each child and different writes have been done to the delta disks. Being able to extract the 

appropriate differences and consolidating them back into a single virtual machine is very 

difficult. 

3.2 Workarounds for Disk Divergence and Redundancy 

The most basic way of preventing disk divergence and redundancy is by creating a 

partition between the operating system disk and process disks. When a merge occurs, only one 

copy of the operating system disk must be maintained. As each virtual machine will contain the 

same process disks, only the one running the process associated with the disk must be 

maintained. 

3.2.1 Process Specific Virtual Hard Disks 

If every process group on a virtual machine was given its own virtual hard disk for storing 

data pertaining to it, merging virtual machine data would be relatively easy. For each merge, 

the hard disk relevant to the running processes would be disconnected from the virtual 

machine and connected to the merged virtual machine. Then the process will be restarted on 

the merged virtual machine. The other virtual machine and its files will be deleted. This type of 

merging works if the processes on the two virtual machines to be merged do not rely on the 

same virtual disk. 
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3.2.2 Storage Area Network Disks 

To eliminate the need to merge virtual disks onto a single virtual machine, storage area 

network (SAN) disks can be used. These SAN disks utilizing iSCSI or similar technologies can be 

mounted and unmounted from virtual machines to act like locally attached disks. By using SAN 

disks with iSCSI, applications running on any virtual machine will be able to access all of the 

data once the disk is mounted. During a merge, these SAN disks will be unmounted from the 

source virtual machines and mounted onto the destination virtual machine. The processes on 

the source virtual machines will be started on the destination virtual machine. Then source 

virtual machines and their files will be deleted. 

3.3 Resource Merging 

As processes on virtual machines can be split onto multiple virtual machines running on 

fewer virtual resources, it is obvious that the reverse process must also exist. Currently we are 

able to merge virtual hard disks or SAN disks onto a single virtual machine; to make merging 

more complete, we need to be able to merge virtual machine resources. We can leverage Hot-

Add Memory and Hot-Plug CPU to merge these virtual machines resources. 

3.3.1 Hot-Add Memory and Hot-Plug CPU 

Hot-Add Memory and Hot-Plug CPU are features that enable adding and removing 

hardware from a physical machine [9] [10]. These features have also been implemented on 

virtual machine hypervisors allowing administrators to allocate additional resources to a virtual 

machine on demand. Hot-Add Memory and Hot-Plug CPU are not supported by all hypervisors 

and guest operating systems. Some guest operating systems support adding resources but not 

removing them. When a virtual machine merge has completed, the source virtual machine is 

powered off, then Hot-Add Memory and Hot-Plug CPU are used to allocate more resources to 

the merged virtual machine. Hot-Add Memory and Hot-Plug CPU can be used before or after 

resuming the processes that were running on the source virtual machine. However, it is not 

recommended to use Hot-Add Memory and Hot-Plug CPU after resuming the processes if the 

merged virtual machine is running at capacity. 
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Figure 3.1: Virtual Machine Merging 

 

 

 

Figure 3.2: Virtual Machine Merging at the Application Layer 
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3.4 Benchmarking Experiments 

Similarly to virtual machine splitting, it is complicated to benchmark virtual machine 

merging. Performance of virtual machine merging will be defined by the time required to 

complete a merge operation. 

3.4.1 Process Specific Virtual Disks 

In this experiment, a virtual disk will be unmounted from the source virtual machine, 

removed from the source virtual machine, added to the destination virtual machine and 

mounted to the same mount point. Figure 3.3 shows that the time required to unmount virtual 

hard disks increases as the number of virtual disks increase. Figure 3.4 shows that the time 

required to remove a virtual hard disk from a virtual machine increases as the number of virtual 

hard disks increase. Figure 3.5 shows that the time to add a virtual hard disk increases as the 

number of virtual hard disks increase. Figure 3.6 shows that the time required to mount virtual 

disks increases as the number of virtual hard disks increases. These results indicate that 

performance will be significantly impacted by the adding and removing virtual disks more than 

by mounting and unmounting their partitions. 

 

 

Figure 3.3: Virtual Disk Unmounting Time 
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Figure 3.4: Virtual Disk Removing Time 

 

 

 

Figure 3.5: Virtual Disk Adding Time 
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Figure 3.6: Virtual Disk Mounting Time 
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In this experiment, a SAN disk will be unmounted from the source virtual machine and 

mounted to the same mount point on the destination virtual machine. Figure 3.7 shows that 
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Figure 3.7: SAN Disk Unmounting Time 

 

 

 

Figure 3.8: San Disk Mounting Time 
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GB of memory. Figure 3.9 shows that the hot-plug CPU operation runs at a constant time of 

approximately 2.588 seconds, regardless of the number of CPUs added. Figure 3.10 shows that 

the hot-add memory operation runs at a constant time of approximately 3.110 seconds, 

regardless of the amount of memory added. 

 

 

Figure 3.9: Hot-Plug CPU Operation 

 

 

Figure 3.10: Hot-Add Memory Operation 
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3.5 Faults in Merging 

Virtual machine merging is not the opposite function of virtual machine splitting. When a 

virtual machine is split, its state can be maintained. When children virtual machines are 

merged, the state from the children virtual machines cannot be merged back together. 

Therefore, the method of virtual machine merging, defined in this chapter, can only be used 

statelessly. 
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4. Comparison to other Malleability Mechanisms 

4.1 Background 

Traditionally, to scale an application, its environment and its state need to be reproduced 

on its destination. The environment, consists of all resources the application has access to and 

the state is the virtual memory assigned to the application. To scale an application, first it is 

suspended, its state is sent to the destination virtual machine and its environment is rebuilt, 

finally the application is resumed. This process is very similar to that of virtual machine 

migration [11] [12] [13]. 

Malleability enables an application to modify its running processes. By leveraging this 

malleability functionality it is possible to scale applications to attain good performance at the 

lowest possible cost [14]. Maghraoui, Desell, Szymanski and Varela [15] introduce a form of 

malleability which modifies parallel processes granularity using split and merge functions. Their 

implementation enables applications to adapt to the fluctuating nature of resource availability 

in shared environments. This form of malleability requires middleware to monitor and modify 

the processes as application demand changes. 

Osman, Subhraveti, Su and Nieh [16] introduce a method of enabling application 

migration between similar host operating systems. They implemented a virtualization layer on 

top of a host operating system which provides access to system resources, they called this Zap. 

Then they created pods, processes groupings which reside on top of Zap. When a pod is 

migrated from one Zap host to another, Zap remaps the resources to the Pod on the new Zap 

host, making the migration transparent to the running applications. Their work on Zap enables 

any application to become part of a malleable process group without requiring any changes to 

an existing application. The main pitfall of this approach is that workload reconfiguration 

granularity of virtual machine malleability is limited to predefined pods. In order to achieve 

high workload reconfiguration granularity, every pod will only contain one process or multiple 

processes that are dependent on each other. 

4.2 Problem 

While an application is running, the performance can fluctuate depending on demand. If 

the demand of an application is very high, the performance of the application decreases. 
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Similarly when the demand of an application is very low, the performance of the application 

increases. Application malleability enables applications to dynamically scale onto more 

resources as demand increases to maintain acceptable performance.  

There exist two types of applications, those written with malleability in mind (Type I) and 

those that are not (Type II). For the earlier type, applications can migrate their processes to 

other systems directly, and complexities such as communication are handled by the malleability 

layer. For the latter type, applications are run in a virtual environment, which hides the 

migration process from the applications. 

4.2.1 Type I Malleability 

As Type I applications are written with malleability in mind, they are able to achieve 

most, if not all of the benefits of application malleability. These benefits include dynamic 

workload reconfiguration and transparency [17]. Dynamic workload reconfiguration is the 

ability to control the size of the workload running on any particular machine. Transparency is 

the ability for an application in a workload to scale directed by an external agent. Desell, 

Maghraoui and Varela [18] demonstrate Type I malleability for applications written in the 

SALSA programming language [19]. Figure 4.1 is based on work from [15] and [18] and Figure 

4.2 is based on work from [20]. 

4.2.2 Type II Malleability 

As Type II applications are not written with malleability in mind, therefore they do not 

inherently gain all of the benefits of application malleability. For example and application 

running on Zap in a Pod has limits on its granularity [16]. A Pod is a process group, which cannot 

be sub-divided, therefore limiting workload granularity. Similarly, a Pod which migrates from 

one Zap host to another Zap host recreates its virtual environment, so the application can 

continue running. However, the application is unaware that it has been migrated to a different 

host. Unlike Type I malleability that transparently handles dependencies, Type II malleability 

requires application dependencies to exist in the same Pod, otherwise the dependency will not 

be available for the application. A lack of workload granularity prevents dynamic workload 

reconfiguration, which can be a huge problem. If an application running in a Pod has very high 

demand, the only operation that can be performed is to migrate the Pod to a different Zap 

host. If this Zap host does not have sufficient resources to fulfill demand, then performance will 
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be impacted. Likewise lack of transparency prevents applications from being able to scale 

without having built in malleability and scalability. 

 

 

Figure 4.1: Application Malleability 

 

 

Figure 4.2: Virtual Machine Malleability using Application-level Migration 
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Figure 4.3: Virtual Machine Malleability for Workloads with Independent Process Group 

 

4.3 Virtual Machine Malleability 

By running virtual machine splitting and merging, we have created a solution that 

consists of a combination of Type I malleability and Type II malleability benefits. The benefits 

we have attained include dynamic workload reconfiguration and transparency. Transparency 

being the ability to not have to write the application with malleability in mind. 

4.3.1 Dynamic Workload Reconfiguration 

Dynamic workload reconfigurability is defined as the ability to increase or decrease the 

number of independent processes running on a virtual machine. This means that when a virtual 

machine is split, it is possible to split the workloads of a virtual machine between any number 

of children virtual machines, as long as no split separates process groups. Similarly for merging, 

any number of processes can be consolidated back into a single virtual machine. 

4.3.2 Transparency 

Transparency is defined as the ability for an application in a workload to scale directed 

by an external agent. This means that when an application is split, its components are unaware 

of the split. 

4.3.3 Rewriting Applications 

When a virtual machine split or merge occurs, applications can be split up or 

consolidated without having to be written with malleability in mind. This is incredibly important 

as many legacy applications do not implement any level of malleability. 
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5. Applications of Virtual Machine Splitting and Merging 

Using the implemented and conceptual ideas mentioned in Chapters 2 and 3, it is 

possible to use virtual machine splitting and merging for multiple applications. Splitting can be 

used to scale up applications, optimize throughput and performance and increase running 

priority to a subset of processes. Merging can be used to scale down applications and combine 

virtual resources into fewer virtual machines, improving on energy and resource utilization. 

5.1 Application Scaling Up 

Cloud computing has opened doors allowing anyone with a budget to run distributed 

applications across hundreds and thousands of physical resources. Depending on budget and 

time constraints, distributed applications can be scaled significantly to run an application faster. 

Cloud computing has also made it economically feasible to run such jobs, as one does not need 

to purchase hundreds or thousands of physical machines to reduce distributed application run 

time. 

Once an application is written and tested on a small set of machines, it can be scaled up 

to use more cloud resources using virtual machine splitting. Consider an instance of an 

application that consists of a series of 10 processes. Each of these proceses have a runtime of 1 

unit. Assuming that a single virtual machine could process 1 unit per hour, it would take 10 

hours for this virtual machine to run the entire application. Using the virtual machine splitting 

implementation described in 2.2 it is possible to split this virtual machine into 10 children 

virtual machines with equal resources and 1/10th of the workload, all being distributed across 

10 physical hosts. As each of these children virtual machines will receive 1 process with a 

runtime of 1 unit and as these children virtual machines have the same virtual resources as 

their parent, they too can process at a rate of 1 unit per hour. Therefore, by using virtual 

machine splitting, it is possible to process the entire workload in 1 hour, by splitting it amongst 

10 children virtual machines each doing 1/10th of the workload. Since cost is the same, this 

feature of cloud computing is called cost associativity [21]. 

5.1.1 Measuring the Cost of Virtual Machine Splitting 

Each time a virtual machine splits, a certain amount of virtual machine data needs to be 

copied. This affects the speed of virtual machine splitting significantly. The two significant 
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variables that impact the splitting process include the size of the virtual machine files to be 

copied and the number of copies that are made. As we can see in Figure 5.1 the cost of 

application scaling using virtual machine splitting with delta disks is very high. Both copying files 

and creating the delta disk are constant and take approximately 4 seconds each. However, 

suspending a virtual machine and copying the state from disk from the parent to its children 

significantly increases as size of memory increases. 

 

 

Figure 5.1: Application Scaling Up Cost Utilizing Disk Based State Copying 

 

5.1.2 Measuring the Cost of Virtual Machine Splitting with Live Memory Copy 

Similarly to application scaling using virtual machine splitting, the normal process of 

splitting occurs, except instead of suspending the virtual machine and copying its state, the live 

memory copy version makes a copy directly to the destination host of each child virtual 

machine. To emulate this, we will utilize virtual machine live migration to create an upper 

bound on the process of live memory copy time. Virtual machine migration uses unicast to send 

a copy of the virtual machine state to the destination host. For the purpose of application 

scaling using virtual machine splitting, it is recommended that multicast be used, as multiple 

hosts will be receiving identical copies of the virtual machine state. 
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As we can see in Figure 5.2, virtual machine splitting using live state migration is less 

time intensive than the regular state migration version. Live migration of state took 5 seconds 

for a single virtual machine split with 2 GB of RAM and took 17 seconds for a single virtual 

machine split with 16 GB of RAM. If implemented with multicast instead of unicast, the live 

state migration time will be an upper bound, as the data is sent once to all hosts. Furthermore, 

if copying files and creating delta disks were considered to be one process that took 8 seconds 

and live state migration were a separate process, then virtual machine splitting can be done in 

parallel as the two processes utilize different components. The former utilizes disk whereas the 

latter utilizes memory. Therefore, the total virtual machine splitting time will be bound by 

whichever process has a longer completion time. 

 

 

Figure 5.2: Application Scaling Up Cost Utilizing Live State Copying 
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up. These processes will be run on 1 virtual machine and scaled up to run on 2, 5, 10, 20, 30 and 

40 virtual machines. When scaling up, the processes are divided equally between all available 

virtual machines. In the case that there are more virtual machines than processes, some virtual 

machines will not run any processes, nor will they be included in the performance calculation. 

As we can see in Figure 5.3, completion time of a particular workload deceases as the 

number of virtual machine splits increases. Once the total number of virtual machine splits is 

greater than or equal to the number of processes, the completion time becomes constant. 

Furthermore, the completion time of one virtual machine running N processes is equivalent to 

the sum of completion times of N virtual machines running 1 process. In other words, the 

completion time of N embarrassingly parallel processes split amongst M virtual machines can 

be calculated by taking the completion time of 1 virtual machine running N processes and 

dividing it by M. 

 

 

Figure 5.3: Application Performance When Scaling Up across More Virtual Machines on Hosts with 1:1 

vCPU to Physical CPU Ratio 
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another virtual machine. This makes SALSA a very good programming language to develop 

distributed applications. Utilizing virtual machine splitting, it is possible to configure a virtual 

machine with a theater and split it hundreds of times, until every physical host has M virtual 

machines, where M is equal to the total number of physical CPUs in a host. Once these children 

virtual machines are running, SALSA can begin migrating actors onto these newly available 

resources. 

5.1.5 Performance of Distributed Heat Application 

As we can see in Figure 5.4, as the number of virtual machines increases, the overall 

completion time of the distributed heat application decreases. There is a slight overhead as 

doubling the number of virtual machines does not yield a 100% increase in performance. This 

slight overhead is to be expected as any non-embarrassingly parallel application relies on a 

network to send data between each of its processes. In Figure 5.5 we can see that as the 

number of virtual machines increases, the rate of execution increases approximately linearly. 

 

 

Figure 5.4: SALSA Distributed Heat Completion Time 
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Figure 5.5: SALSA Distributed Heat Execution Rate 

 

5.2 Application Scaling Down 

Web servers and database servers have significantly increased in popularity since the 

dot-com boom in the late 1990s. Typically when a web application is built the webserver and 

database server reside on the same system. Although this is acceptable for small applications, 

there is always the possibility that the application might experience responsiveness issues 

during its peak usage hours. To solve this issue, application scaling using virtual machine 

splitting can be used. However, during the non-peak hours, this application might be allocated 

too many physical resources making it very costly to maintain. Therefore, this application needs 

to be able to scale down during its idle hours. To that end virtual machine merging can be used. 

5.2.1 Virtual Machine Merging with Virtual Hard Disks 

To merge a virtual machine with stateless processes and dedicated virtual hard disks is 

relatively simple. First the processes running on the source virtual machine are terminated and 

their respective virtual hard disks are unmounted. Each of the virtual hard disks relevant to 

processes are removed from the source virtual machine and added to the destination virtual 

machine using hot-swap disk, the ability to add and remove disks while a machine is running. 

The guest operating system on the destination virtual machine then rescans its SCSI bus for 

new devices. Finally, the virtual hard disks are mounted to the same mount points as the source 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5

Ex
e

cu
ti

o
n

 R
at

e
 (

p
o

in
ts

/m
s)

Number of Virtual Machines

SALSA Distributed Heat Execution Rate



 

 32 

virtual machine, thus allowing the applications to be started on the destination and reload and 

serve any data from their respective disks.  

5.2.2 Virtual Machine Merging with Network Disks 

To merge a virtual machine with stateless processes and network disks is very similar to 

merging with virtual hard disks. The main difference is that the process is shorter as network 

disks only need to be unmounted from the source virtual machine and mounted to the 

destination virtual machine. Once mounted, the processes can be started on the destination 

virtual machine. 

5.2.3 Measuring the Cost of Virtual Machine Merging 

Each time virtual machines merge, a few operations may occur. Including Hot-Plug CPU, 

Hot-Add memory, unmounting and mounting virtual disks or SAN disks and removing and 

adding virtual disks. As discussed in Section 3.4, Hot-Add memory and Hot-Plug CPU are 

constant time operations. Unmounting and mounting virtual disks or SAN disk and removing 

and adding virtual disks are linear time operations. As we can see in Figure 5.6, the cost of 

application scaling using virtual machine splitting is most affected by the adding and removing 

virtual disk operations, which grow linearly as the number of virtual disks increases. 

 

 

Figure 5.6: Application Scaling Down Cost 
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5.2.4 Measuring Performance of Application Scaling Down 

Each time an application is scaled down using virtual machine merging, its performance 

should decrease linearly to the total number of virtual machines assuming a 1:1 vCPU to 

physical CPU ratio. To ensure that this is the case, we will test workloads of 10, 20, 30 and 40 

embarrassingly parallel processes for the same reasons as in Section 5.1.3. These processes will 

be run on 40 virtual machines and scaled down to run on 30, 20, 10, 5, 2 and 1 virtual 

machines. When scaling down, the processes are divided equally between all available virtual 

machines. In the case that there are more virtual machines than processes, some virtual 

machines will not run any processes, nor will they be included in the performance calculation. 

As we can see in Figure 5.7, completion time of a particular workload increases as the number 

of virtual machine merges increases. Similarly to Section 5.1.3, the completion time of one 

virtual machine running N processes is equivalent to the sum of completion times of N virtual 

machine running 1 process. 

 

 

Figure 5.7: Application Performance When Scaling Down across Fewer Virtual Machines on Hosts with 

1:1 vCPU to Physical CPU Ratio 
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5.3 Energy Optimization Problem 

One of the main benefits of virtualization is to reduce energy consumption. This has been 

accomplished by consolidating virtual machines and turning off idle physical machines [22]. Just 

like any optimization problem, being too far on either end of the resource usage spectrum 

causes energy waste. On one end there is having too many idle resources; every idle resource 

still has a minimum power requirement even if it is idle. On the other end is over utilized 

resources; when resources are over utilized they begin to thrash and performance takes a hit. A 

lot of research has gone into energy optimization and has determined that there is an ideal 

utilization percentage that achieves optimal performance per watt [23]. 

5.3.1 Bin-Packing 

The energy optimization problem has been related to a bin-packing problem. One of the 

approaches used to solve this bin-packing problem is to put virtual machines with large 

workloads on hosts before putting virtual machines with smaller workloads [24]. Although this 

algorithm can typically solve the bin-packing problem, it fails to work properly for certain 

configurations of virtual machines. For example, if there exist 3 physical hosts and 4 virtual 

machines with equal workloads, the ideal workload utilization on a host is 80% and a single 

virtual machine running on a host utilizes 60% of the host’s resources, it would be impossible to 

get these 4 virtual machines to fit and attain a host utilization of 80%. One of the hosts would 

be over-utilized, having allocated 20% more virtual resources than physical resources, and the 

other two hosts would be under-utilized, each having 60% utilization. 

5.3.2 Bin-Packing Improved 

To solve the utilization issue, it is necessary to split the workload of one virtual machine 

into 3 smaller virtual machines. Assuming that the original workload can be equally split, each 

of these virtual machines will receive exactly 1/3rd of the original workload and resources. Now 

that one of the virtual machines was split into 3 virtual machines, there are a total of 6 virtual 

machines. The original 3 virtual machines still have 60% utilization on a host, and the 3 split 

virtual machines each have 20% utilization on a host. Using the bin-packing algorithm, defined 

in Section 5.3.1, each of the full virtual machines will be assigned to one of the hosts, and then 

each of the split virtual machines will be assigned to a host. As there will now be 2 virtual 
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machines on each host: one full virtual machine and one split virtual machine. Therefore, the 

host will be at its optimal utilization of 80%. 

5.3.3 Verifying Bin-Packing 

Although it is possible to split a virtual machine to divide its workload and resources, it 

does not necessarily mean that the performance of the virtual machine is maintained. To 

examine this, a series of experiments are needed to determine whether or not performance is 

maintained for a variety of host configurations. 

5.3.3.1 Experimental Setup 

In this experiment, the same hardware and software configuration from Section 2.1.4 

will be used. To accurately measure performance, we will run workloads of multiple sizes on 

one parent virtual machine that will be running alone on a host. We will then split the parent 

virtual machine into two children virtual machines, each with half of the parent’s resources and 

workload. Then we will turn off the parent virtual machine. As we do not want to measure the 

time it takes to split the virtual machines as part of the performance of the machine, the 

workloads for the children virtual machines will begin once the split has been completed. A 

heat application was created to provide a benchmark for measuring performance in virtual 

machines. 

5.3.3.2 Oversubscription v. Undersubscription 

When running many virtual machines on few hosts, it is difficult to get a perfect balance 

between demand and availability of resources. For that reason, there needs to be an account 

for splitting performance degradation: oversubscription and undersubscription. In an 

oversubscription scenario, more virtual resources are allocated and used by virtual machines 

than available physical resources. As such, the host needs to aggressively handle resource 

allocations in order to give every virtual machine some time to utilize the physical hardware. In 

the case of undersubscription, there are fewer virtual resources allocated and used by virtual 

machines than available physical resources. In this case, the host does not need to aggressively 

handle resources; it can be generous with the amount of time a virtual machine has to utilize 

the physical hardware. 
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5.3.3.3 Oversubscription Experiment 

For the oversubscription experiment, we will compare the performance of a virtual 

machine that is allocated 100% of the host’s resources to two virtual machines each with 100% 

of the host’s resources. We will run our heat application in multiples of two, to make it easier 

to divide the workload into half. The purpose of this experiment is to examine if the host 

produces significant overhead when context switching between two virtual machines as 

compared to one virtual machine. 

5.3.3.4 Undersubscription Experiment 

For the undersubscription experiment, we will compare the performance for a virtual 

machine allocated 2 vCPUs and 4 GB of memory to 2 virtual machines each allocated 1 vCPU 

and 2 GB of memory. We will run our heat application in multiples of two, to make it easier to 

divide the workload into half. The purpose of this experiment is to examine if the host does not 

produce context switching overhead, as there are more resources available than needed. 

5.3.3.5 Results Oversubscription Experiment 

In the oversubscription experiment, the performance of having one overprovisioned 

virtual machine, which is running processes with or without another overprovisioned idle 

virtual machine, yielded approximately the same process completion times. The performance 

yield was also approximately the same when comparing these results to the aggregate results 

of running two virtual machines with half the workload. However, when 6 processes were 

running, the completion performance was significantly impacted, relative to the single virtual 

machine that was running 6 processes. This is a significant finding as it may indicate that certain 

virtual machine configurations on overprovisioned systems yield poor performance. 
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Figure 5.8: Process Completion Time for Overprovisioned Virtual Machines 

 

5.3.3.6 Results Undersubscription Experiment 

In the undersubscription experiment, the performance of having one virtual machine 

with 2 vCPUs and 4 GB of memory was approximately equivalent to having two virtual 

machines, each with 1 vCPU and 2 GB of memory and half the workload. This experiment was 

conducted for workload sizes ranging from 2 – 8 processes. Figure 5.9 represents the average 

completion time for each process. The results for the completion time for the split virtual 

machines are combined and averaged, so that if each machine ran 2 processes, the completion 

times of all 4 processes are averaged and compared to the single virtual machine that ran 4 

processes. This finding is significant, as it shows that it is possible to split virtual machines and 

have an insignificant impact on the performance of the running processes. 
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Figure 5.9: Process Completion Time for Underprovisioned Virtual Machines 

 

5.3.3.7 Bin-Packing Conclusions 

As seen in the results above, when equally splitting both a virtual machine’s processes 

and resources, the virtual machine’s performance is not affected. This means that virtual 

machine splitting can be used to divide virtual machines with large workloads to a more 

appropriate fit on physical hosts. Therefore it enables the bin-packing algorithm to attain 

optimal resource utilization on hosts, which leads to energy consumption improvement and 

cost savings. 

5.4 Scheduling Manipulation through Granularity Refinement 

Every operating system has a system in place for scheduling processes. The algorithms 

vary, yet all of them attempt to prevent CPU starvation. CPU starvation occurs when a process 

does not get to execute on a processor even though the process has been indefinitely ready to 

execute, in the waiting queue. Fair scheduling algorithms ensure that both long running and 

short running processes get a chance to execute on the processor. Although every process gets 

a chance to run, the completion times of a process can be significantly longer on a system with 

many compute intensive processes compared to a system with fewer compute intensive 

processes. Using virtual machine splitting, it is possible to maintain the same level of 

performance while decreasing process completion time. 
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5.4.1 Virtual Machine Splitting to Prioritize Process Execution 

As we have seen in this chapter, splitting a virtual machine into smaller systems does not 

significantly affect the performance of the virtual machine. We can split virtual machines to 

produce unevenly balanced workloads and resource allocation to increase the amount of time 

a process gets to execute on the CPU. 

5.4.2 Unequal Workload Splitting Experiment 

In this experiment, we will compare the completion time of an odd number of heat 

applications on a single virtual machine with 2 vCPUs and 4 GB of memory to 2 equally resource 

split virtual machines with 1 vCPU each and 2 GB of memory, with an unequal workload split. 

The purpose of this experiment is to show that if a running virtual machine is split and its 

workload is split unequally, the system with the smaller workload should yield lower process 

completion times. 

5.4.3 Unequal Resource Splitting Experiment 

In this experiment, we will compare the completion time of an even number of heat 

applications on a single virtual machine with 4 vCPUs and 8 GB of memory to 2 unequally 

resource split virtual machines, the sum of both virtual machine resources will be equivalent to 

4 vCPUs and 8 GB of memory. Each of the virtual machines will receive half of the parent’s 

workload. The purpose of this experiment is to show that if a running virtual machine has its 

resources split unequally and its workload split equally, then the child with more resources 

should yield lower process completion times. 

5.4.4 Results of Unequal Workload Splitting Experiment 

As we can see in Figure 5.10, unequally splitting the workload makes it possible to have 

processes complete faster than they would have if they had run on the original virtual machine. 

However, this comes at a cost at significantly increasing the running time for processes running 

on the system with the larger workload. When averaging the total completion time amongst all 

processes, this average is greater than that of the parent virtual machine. 
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Figure 5.10: Equal Resource, Unequal Workload Splitting 

 

5.4.5 Results of Unequal Resource Splitting Experiment 

As we can see in Figure 5.11, unequally splitting resources makes it possible to have 

processes complete faster than they would have if they had run on the original virtual machine. 

This is very similar to the result for unequal workload splitting as the processes running on the 

system with fewer resources now have a significantly higher completion time. Another 

similarity is that the average completion time of all processes is greater than that of the parent 

virtual machine. 
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Figure 5.11: Unequal Resource, Equal Workload Splitting 

 

5.4.6 Scheduling Manipulation Improvements 

Although the same compute resources exist on the host, the reason for the higher 

average completion times is that when the virtual machine with the smaller workload or 

greater resources completes, it does not release its idle resources to the other virtual machine 

that is still working on its processes. Although this is the expected result of using virtual 

machines, it is not necessarily the intended result when using virtual machine splitting for 

scheduling manipulation, as a significant loss of performance is undesirable for most 

applications. 

5.4.7 Resource Merging 

Assuming that it is possible to determine when all processes in a workload complete on a 

virtual machine, it is possible to free idle resources and reallocate them without having to turn 

off the virtual machine that has running processes as seen in Figure 5.12. The most effective 

method is powering off the virtual machine that has completed its workload. Once the virtual 

machine is off, we can leverage hot-plug CPU and hot-add memory to add additional virtual 

resources to the running virtual machine. If this entire process could be done instantaneously 

the average completion times of the split virtual machine with fewer resources or more 

processes should be identical to that of its parent. As we can see in Figure 5.13 and Figure 5.14 
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it is possible to achieve equal completion times to that of the parent using resource merging as 

soon as one virtual machine completes its entire workload. 

 

 

Figure 5.12: Virtual Machine Resource Merging Process 
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Figure 5.13: Single Virtual Machine with 2 vCPUs Processing Workload of 8 Units 
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Figure 5.14: Two Virtual Machines with 1 vCPU each Processing Unevenly Split Workload of 8 Units 

with Resource Merging 

 

5.4.8 Unequal Workload Splitting with Merging Experiment 

In this experiment, we will test resource merging on an uneven workload split. The heat 

application will be used as a method of benchmarking performance. For a baseline, one virtual 

machine with 4 vCPUs and 8 GB of memory will be used. Average completion times will be 

recorded for 1 – 9 processes. After the baseline, two virtual machines each with 2 vCPUs and 4 

GB of memory will be used to test uneven workload splitting. Once a virtual machine completes 

its workload, its resources will be reallocated to the other virtual machine. 

5.4.9 Unequal Resource Splitting with Merging Experiment 

In this experiment, we will test resource merging on an uneven resource split. The heat 

application will be used as a method of benchmarking performance. For a baseline, one virtual 
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machine with 4 vCPUs and 8 GB of memory will be used. Average completion times will be 

recorded for 2 – 10 processes. After the baseline, two virtual machines, one with 3 vCPUs and 6 

GB of memory and the other with 1 vCPU and 2 GB of memory will be used to test even 

workload splitting. Once a virtual machine completes its workload, its resources will be 

reallocated to the other virtual machine. 

5.4.10 Results of Unequal Workload Splitting with Resource Merging Experiment 

As we can see in Figure 5.15, unequally splitting the workload with merging makes it 

possible to reduce the completion time of the system with the larger workload to the 

performance of its parent. At the same time, it does not negatively impact the virtual machine 

running the smaller workload. Furthermore, as seen in Figure 5.16, when averaging the total 

completion time amongst all processes, the combined completion time of the two split virtual 

machines is slightly lower than that of its parent and the non-merging virtual machines. 

 

 

Figure 5.15: Equal Resource, Unequal Workload Splitting with Resource Merging 

0

100

200

300

400

500

1 3 5 7 9

A
vg

. 
C

o
m

p
le

ti
o

n
 t

im
e

 in
 S

e
co

n
d

s

Running Processes (N)

Equal Resource and Unequal Workload 
Splitting with Resource Merging

Single Virtual Machine
running N processes

Child Virtual Machine with
(N-1)/2 running processes

Child Virtual Machine with
(N+1)/2 running process
with merging



 

 46 

 

Figure 5.16: Average Completion Times of Equal Resource, Unequal Workload Split Virtual Machines 

 

5.4.11 Results of Unequal Resource Splitting with Resource Merging Experiment 

As we can see in Figure 5.17, unequally splitting the resources with merging makes it 

possible to reduce the completion time of the system with fewer resources to the performance 

of its parent. At the same time, it does not negatively impact the virtual machine running the 

more resources. Furthermore, as seen in Figure 5.18, when averaging the total completion time 

amongst all processes, the combined completion time of the two split virtual machines is 

significantly lower than that of its parent and the non-merging virtual machines. 
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Figure 5.17: Unequal Resource, Equal Workload Splitting with Resource Merging 

 

 

Figure 5.18: Average Completion Times of Unequal Resource, Equal Workload Split Virtual Machines 
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6. Conceptual Middleware for Virtual Machine Malleability 

Virtual machine splitting is a very complicated process. Although it can be done 

manually, it is very tedious and the smallest mistake can render the split useless. To make the 

process easier and more streamlined, middleware should be implemented. 

6.1  Malleability Manager 

At the highest level of virtual machine malleability middleware is the malleability 

manager. When invoked, it interacts with the hypervisor, the operating system and the 

network. The malleability manager is the application that knows how to read a virtual 

machine’s configuration files and determine what files to copy, what hypervisor functions to 

invoke and it is aware of all possible destination hypervisors and datastores. Once all of the 

corresponding virtual machine files have been modified, copied and registered it is able to 

interact with the guest operating system to handle process splitting and it can modify 

networking configurations to support networking based applications. 

6.2 Process Splitting 

When the malleability manager invokes process splitting it first requests a list of all 

running user processes. In its most basic form it terminates n-1/n processes, where n is the 

number of virtual machine splits, so that 1/n processes are running on each of the virtual 

machines. It can also be configured to be aware of process groups and other rules to help it 

better split processes running on a virtual machine. A process group is a logical grouping of 

processes that cannot be split from each other due to inability to communicate over the 

network or tight coupling. For example, if a system with a web server, database server and mail 

server were to be split, and the web server is tightly coupled with its database, the web server 

and database server would be put into the same process group. Then when the process 

termination phase of process splitting begins, the web server and database server will be 

terminated on one virtual machine and the mail server would be terminated on the other. 

Another example would include splitting processes based on user. All processes of a user can 

be grouped together in a process group, so when process termination occurs, the entire 

process group of each user will reside on one child virtual machine. 
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Figure 6.1: Comparison of Ungrouped Processes to Grouped Processes 

 

6.3 Process Merging 

Process merging is significantly harder than process splitting. Process merging is not 

implementable on a stateful level, as it is a very difficult process to selectively copy memory 

from one virtual machine to another virtual machine. To satisfy process merging, we depend on 

virtual disk storage allocated to each process or network storage disk and stateless 

applications. The malleability manager is able to determine which disks on a virtual machine 

are being used by processes, so when a merge occurs, it unmounts the virtual disk or the 

network storage disk and mounts it to the merged virtual machine. It then starts the stateless 

processes on the merged virtual machine, so it can begin working on requests and turns off the 

virtual machines that have been merged. 

6.4 Hot-Plug CPU and Hot-Add Memory 

Hot-Plug CPU and Hot-Add Memory are two technologies that can be leveraged to provide 

resource merging. Hot-Plug CPU allows vCPUs to be added to running virtual machines, if the 

guest operating system supports it. Similarly Hot-Add Memory allows virtual memory to be 

added to running virtual machines if the guest operating system supports it. The malleability 

manager is able to utilize Hot-Plug CPU and Hot-Add Memory to reallocate resources from two 
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or more virtual machines that are merging into a single virtual machine. When the malleability 

manager is invoked to do a resource merge, it turns off the specified virtual machines and adds 

their resources to the destination virtual machine. Resource merging can be used in 

conjunction with process merging, so that once all the processes have moved onto the merged 

virtual machine, the resources they have been using will be moved to the merged virtual 

machine. 

6.5 Networking 

Many applications require some form of access to a network. This access can be limited 

to a local area network, so that processes can communicate to each other on a local area 

network, or it can be connected to the internet, so that users all over the world can interact 

with the application. There are two options for supporting network access for virtual machine 

splitting and merging. The first utilizes DNS servers. Each application is assigned a domain 

name. The record for the application name points to the server the process is running on. 

When a virtual machine is split, the record is updated to point to the virtual machine the 

process was split onto. When virtual machines are merged, the record is updated to point to 

the virtual machine the process was merged onto. Using the DNS server method, it is always 

possible to connect to an application using its domain name. The main issue with this method is 

that connections to the process are lost whenever a split occurs. The second method is using a 

proxy. Unlike the DNS server method, where clients and applications directly connect to each 

other, in the proxy method all clients and applications connect to the proxy and the proxy 

connects to each application. When a virtual machine split occurs, the client or application does 

not lose its connection to the proxy, however the proxy loses its connection to the application. 

Once the split is complete, the proxy reestablished communication to the application and 

directs client and application traffic through it. The same process occurs for virtual machine 

merging. The disadvantage of the proxy method is that it is not transparent. 

6.6 Malleability Profile 

Virtual machine splitting and merging is useful to improve performance, manipulate 

scheduling and improve energy utilization. However there also exist some limitations to what 

splitting and merging can do. 
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6.6.1 Obvious Cases Against Using Splitting and Merging 

Process groups or single processes running on a virtual machine cannot be split; 

therefore virtual machine splitting will not offer any performance improvements. Stateful 

merging cannot occur as virtual machines have divergence with memory and disk, however 

disks dedicated to a single process or process group can be moved from one virtual machine to 

another and get started on the destination virtual machine. 

6.6.2 Splitting Profile 

Virtual machine splitting cost is relatively light as it is either bounded by disk I/O when 

copying files or network when copying state. If the remaining runtime of a set of processes is 

greater than the splitting cost and greater than the longest runtime of any subset of split 

processes then it is worth splitting a virtual machine. Another case is when there are more 

available physical hosts than virtual machines. In this case, it is better to split the virtual 

machine to increase overall host utilization. Another case is if any particular host is over utilized 

and there exists capacity to handle the workload across multiple underutilized hosts, then 

splitting a virtual machine increase performance. 

 

Table 6.1: Virtual Machine Splitting Profile 

 

Virtual Machine Splitting Profile 

Number of Splits N 

Cost of Splitting Disk D 

Cost of Splitting State S 

Remaining runtime for all processes on single virtual 

machine ∑ 𝑃𝑖

𝑖

1

 

Cost of splitting 𝑁 ∗ 𝐷 + 𝑆 

Maximum runtime for any split processes M 

If true, split virtual machine. 

Else, do not split. 
∑ 𝑃𝑖

𝑖

1

> 𝑁 ∗ 𝐷 + 𝑆 + 𝑀 
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6.6.3 Merging Profile 

Merging virtual machines can be used to reduce overhead caused by having many idle 

split virtual machines. Although the overhead of splitting a virtual machine is low, and the 

impact to performance is negligible, when many idle virtual machines reside on a single host, 

the sum of their idle resource utilization can become significant. By utilizing merging, the idle 

processes can be consolidated onto a single virtual machine, and idle resource utilization can 

be scaled down. 

 

Table 6.2: Virtual Machine Merging Profile 

Virtual Machine Merging Profile 

Number of Idle Split Virtual Machines N 

Resource Utilization of Idle Virtual Machine 𝑅𝑖 

Resource Utilization of Merged Virtual Machine 𝑅𝑚 

If true, merge virtual machine. 

Else, do not merge. 

𝑅𝑚 <  𝑁 ∗ 𝑅𝑖  

 

6.6.4 Energy Saving Profile 

Every physical host has some optimal resource utilization to achieve the best 

performance per watt. Depending on the resources available to the physical host, this 

utilization can vary. Virtual machine merging and splitting can be used to achieve better 

resource utilization. In order to utilize merging and splitting, the optimal resource utilization of 

a host and the resource utilization of a virtual machine must be known. A split should occur if 

the resource utilization of one or more hosts is greater than the optimal resource utilization. If 

there exists a host, that has the capacity to take one or more virtual machines, then the virtual 

machines will be migrated from the over utilized host to the underutilized host. However in the 

case, that no host has sufficient capacity to take one of the virtual machines from the over 

utilized host, then the virtual machine will be split until each of its splits can fit onto the hosts 

with available capacity. In the case that every host is over utilized, then virtual machine splitting 

will not occur. In the case that many hosts are underutilized, virtual machine merging will be 
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used to consolidate many split virtual machines into a single virtual machine. There larger 

virtual machines will be migrated onto as few hosts as possible and the hosts with no virtual 

machines will be shutdown. 
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7. Related Work 

7.1 Process Malleability 

Osman, Subhraveti, Su and Nieh [16] introduce a method of enabling application 

migration between similar host operating systems. They implemented a virtualization layer on 

top of a host operating system which provides access to system resources, they called this Zap. 

Then they created pods, processes groupings which reside on top of Zap. When a pod is 

migrated from one Zap host to another, Zap remaps the resources to the Pod on the new Zap 

host, making the migration transparent to the running applications. Their work on Zap enables 

any application to become part of a malleable process group without requiring any changes to 

an existing application.  

Maghraoui, Desell, Szymanski and Varela [15] introduce a method of modifying parallel 

process granularity using split and merge functions. Their implementation enables iterative 

applications to adapt to the fluctuating nature of resource availability in shared environments. 

To support this type of malleability, applications need to specify how to change process 

granularity and middleware needs to be aware of resource availability and trigger changes to 

the application. 

7.2 Preserving State 

Hirofuchi, Nakada, Itoh and Sekiguchi [25] use a method of virtual machine migration to 

preserve a virtual machine’s state and move it to a host with more available resources to 

improve performance. Their method copies the virtual machine state from the source host to 

the destination host by sending the minimal state, starting the destination virtual machine, 

suspending the source virtual machine and then pushing the remaining state from the source to 

the destination. This form of migration is known as post-copy, as the state from the source 

virtual machine is pushed to the destination virtual machine after the destination is started. 

 Milojičić, Goudlis, Paindaveine, Wheeler and Zhou [26] propose a method of state 

migration, which does not suspend a virtual machine, until the majority of its state has been 

copied. In the first phase the state is copied from the source host to the destination host, this 

process iterates multiple times over the virtual machines state to copy all of the dirty pages. In 

the second phase, the virtual machine is stopped and the remaining dirty pages are copied 
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over. This form of migration is known as pre-copy, as the destination virtual machine is only 

started once most of the state from the source virtual machine has been copied. 

Kozuch and Satyanarayanan [27] introduce a method of suspending and resuming a 

system, so that it can be moved from one machine to another machine.  Their method utilizes a 

distributed file system that many machines have access to. When a system is suspended, the 

machine it is running on writes the system’s state to the distributed file system. To resume the 

system, any machine with access to the distributed file system, can read the state and resume 

the system’s execution. 

 

7.3 Energy Efficiency 

Beloglazov and Buyya [22] propose a method of consolidating virtual machines onto 

fewer hosts to save power. Their method relies on live migration and turning off idle hosts, 

while maintaining the Quality of Service required by Service Level Agreements (SLA). As most 

cloud computing offers rely on SLA, it is important to consider maintaining performance when 

consolidating workloads. 

Srikantaiah, Kansal, Zhao [23] introduce the tradeoff between resource utilization, 

energy utilization and performance. They propose that a modified bin-packing problem can 

model the optimal resource utilization of a host, to achieve the highest performance per 

energy. 

7.4 Network Malleability 

Celesti, Villari and Puliafito [28] propose a cloud naming framework to enable 

applications and resources to interact using URIs. Every application and resource receives a 

name based on type and location by using name space federation. Applications can then use 

resolution to connect to each other and other resources. 

Yang, Qin, Zhang, Zhou, Wanga [29] propose a service for finding resources based on a 

combination of P2P technologies and DNS. Their service allows legacy URI resolution through a 

URI server to connect applications to resources residing on a logical P2P network. 
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Varela and Agha [19] describe a universal naming and locator convention for SALSA 

actors. Every actor is assigned an UAN, which is independent of the actor’s current location on 

the internet. An UAL, identifies the actor’s current location on the internet. When the actor 

migrates to a new theater, the actor’s run-time system, the naming server is updated with a 

<UAN, UAL> pair representing the actor and its current theater. 

Meng, Pappas and Zhang [30] propose a method of optimizing virtual machine scalability 

based on network patterns. Their method introduces migrating virtual machines that 

frequently interact over the network, to hosts that are closer in network proximity to achieve 

higher performance. 

7.5 Virtualization Scalability 

Jamal, Qadeer, Mahmood, Waheed and Ding [31] examined virtual machine scalability 

on multi-core systems using single type workloads to identify bottlenecks. They showed that 

processes running in virtual machines perform equally as well as threaded processes, when CPU 

count is equal. They also showed that inter-VM communication is severely limited by LAN and 

WAN bandwidth. 

Wang and Varela [6] examined the impact of virtual machine configurations on CPU 

intensive workloads. They noticed that loosely coupled workloads spread across the same 

number of physical resources, had approximately the same performance regardless of virtual 

machine configuration. However for tightly coupled workloads, the optimal performance was 

achieved when there were twice as many vCPUs as physical CPUs and that doubling the 

memory gave at most a 15% performance improvement. 



 

 57 

8. Discussion 

8.1 Contributions 

Most recent malleability research has been focused on application malleability. This 

thesis discusses virtual machine malleability. In particular, we explore the split and merge 

functions of malleability and show that it is possible to implement both with minimal 

modifications to the hypervisor. Conceptually, this is useful as the features leveraged by the 

malleability functions are available on most modern hypervisors. Therefore it should be 

possible to implement virtual machine malleability on any modern hypervisor. Although this 

type of malleability cannot be leveraged by strongly coupled and dependent workloads, it does 

provide malleability features such as dynamic workload reconfiguration which are typically only 

seen in application layer malleability, while affording better transparency. 

8.2 Conclusion 

New methods of malleability are important as each provides applications with a broader 

type of scalability and elasticity. In this thesis we discuss virtual machine malleability using the 

methods defined as split and merge. We show that splitting and merging virtual machines 

enables applications to scale without having any form of built in malleability. We explore the 

strengths and weaknesses of each of these methods. We observe linear performance change as 

applications are scaled. We also observe linear and constant costs for using each of these 

methods. We discover that these methods provide benefits from both Type I and Type II 

malleability, including dynamic workload reconfiguration, transparency and supporting 

applications without built-in malleability. We also present applications of using the splitting and 

merging functions, including scaling, energy optimization and scheduling manipulation. 

For scaling applications, we have proposed a method of splitting virtual machines 

statefully using both delta disks and live memory copy. Based on our models, it can be seen 

that stateful virtual machine splitting is bound by the amount of time to copy files N times or 

bound by transferring virtual machine state over the network. We have also discussed the 

problem with virtual machine state and disk divergence, which makes virtual machine merging 

a complicated problem. We proposed a solution, which dedicated virtual disks or network disks 

to a process, so that when a merge occurs, all process related disks are merged onto a single 

virtual machine. 
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For the energy optimization problem, we have proposed a method of splitting a virtual 

machine’s resources and processes between multiple virtual machines. As seen in our 

experiments, there is no degradation of performance when both resources and processes are 

equally split. This result means that it is possible to divide virtual machines equally and split 

their children across multiple physical hosts; as each child is smaller in terms of resource 

utilization it is easier to satisfy the energy optimization bin-packing problem. 

For scheduling manipulation, we have shown that using virtual machine splitting can be 

used to give processes a higher priority. Our experiments have shown that virtual machine 

splitting can reduce a process’s completion time, when there are more compute intensive 

processes running than vCPUs dedicated to the virtual machine. We also proposed using virtual 

machine merging as a method of correcting the significantly higher completion times of the 

lower priority processes. By doing such, we were able to reduce the completion time to 

approximately that of the single virtual machine running all of the processes. This in turn 

reduced the average process completion time for all of the processes. 

These results are promising as they show that virtual machine malleability can be 

leveraged for many different applications and provides similar functionality to application 

malleability without having to rewrite applications to be malleable. 

8.3 Future Work 

The malleability manager discussed in Chapter 6, has only been partially implemented. It 

is not recommended to do virtual machine malleability by hand as it is a very tedious and 

intricate process. For those reasons, the remaining parts of the malleability manager need to be 

implemented, these parts include Hot-Plug CPU, Hot-Add memory, networking and malleability 

profiles. 

As my research has been conducted using ESXi, it has not been possible to implement 

stateful splitting using the live memory copy component of virtual machine migration. Stateful 

splitting might be a feature limited to open source hypervisors such as Xen, unless VMware add 

an API call to leverage their live memory copy function. 

Performance degradation in regards to virtual machines running on delta disks should be 

examined. There is a possibility that if a virtual machine is split hundreds of times that the 
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parent virtual disk, which all of the delta disks reference will thrash. If this is the case, it might 

make sense to create M copies of the parent disk, so that at most 1/Mth of the virtual disks 

reference the same parent disk. 
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