

TASK OFFLOADING BETWEEN SMARTPHONES AND

DISTRIBUTED COMPUTATIONAL RESOURCES
by

Shigeru Imai

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the degree of

MASTER OF SCIENCE

Major Subject: COMPUTER SCIENCE

Approved:

Carlos A. Varela, Thesis Adviser

Rensselaer Polytechnic Institute
Troy, New York

May, 2012

 ii

CONTENTS

LIST OF TABLES .. iv

LIST OF FIGURES ... v

ACKNOWLEDGMENT ... vii

ABSTRACT ... viii

1. Introduction .. 1

1.1 Motivations .. 1

1.2 Structure of Thesis ... 2

2. Light-weight Adaptive Task Offloading ... 3

2.1 Background .. 3

2.2 Preliminary Experiment ... 4

2.2.1 Sample Application: Face Detection .. 4

2.2.2 Implementation of Remote Face Detection.. 5

2.2.3 Experimental Setup .. 6

2.2.4 Speedup by Remote Processing ... 7

2.3 Distributed Computational Model.. 9

2.3.1 Remote Processing Model ... 9

2.3.2 Parameter Update Protocol .. 10

2.4 Model Instantiation .. 12

2.5 Experimental Results ... 12

2.5.1 Case 1 – Network and Server Stable .. 13

2.5.2 Case 2 – Network Temporarily Slow ... 14

2.5.3 Case 3 – Server Temporarily Busy .. 15

3. Middleware for Autonomous Virtual Machine Malleability 17

3.1 Background .. 17

3.2 VM-Level vs Application-level Migration .. 19

3.2.1 Preliminary Experiment 1 – Migration .. 19

 iii

3.2.2 Preliminary Experiment 2 – Load Balancing 20

3.2.3 Design Policies towards the Cloud Operating System 22

3.3 Virtual Machine Malleability ... 23

3.4 Distributed Computation Middleware.. 24

3.4.1 SALSA ... 24

3.4.2 Cloud Operating System (COS) ... 25

3.5 Experimental Results ... 29

3.5.1 Workload .. 29

3.5.2 Experiment 1 – Test COS with Single User... 30

3.5.3 Experiment 2 – Comparison with Other Methods with Two Users 33

4. Related Work ... 37

4.1 Mobile Distributed Computing .. 37

4.2 Process/Component Malleability ... 37

4.3 VM Migration .. 38

4.4 VM Performance Analysis ... 38

5. Discussion .. 39

5.1 Conclusion ... 39

5.2 Future Work ... 40

LITERATURE CITED .. 42

 iv

LIST OF TABLES

2.1 Model Instantiation ... 12

3.1 VM and vCPU configuration for VM-based load balancing 20

3.2 VM and vCPU configuration for actor-based load balancing 21

3.3 VM Configuration for Experiment 1 .. 30

3.4 Test Case Scenarios for Experiment 2 .. 34

 v

LIST OF FIGURES

 2.1 Example Result of Face Detection .. 5

 2.2 System Diagram of Application Task Offloading ... 6

 2.3 Performance of Local and Remote Processing .. 7

 2.4 Speedup by Remote Processing ... 8

 2.5 The Model for Remote Processing .. 9

 2.6 Update Protocol for ܶݔݏ and ܶܿ11 ... ݔ݉݉݋

 2.7 Prediction of ܶ݀ܽ݋݈݂݂݋ (Both Network and Server Stable) 13

 2.8 Average Prediction Error of ܶ݀ܽ݋݈݂݂݋ (Both Network and Server Stable) . 14

 2.9 Prediction of ܶ݀ܽ݋݈݂݂݋ (Network Temporarily Slow) 15

 2.10 Average Prediction Error of ܶ݀ܽ݋݈݂݂݋ (Network Temporarily Slow) 15

 2.11 Prediction Error of ܶ݀ܽ݋݈݂݂݋ (Server Temporarily Busy) 16

 2.12 Average Prediction Error of ܶ݀ܽ݋݈݂݂݋ (Server Temporarily Busy) 16

 3.1 VM migration time within a local network ... 19

 3.2 Load balancing performance ... 21

 3.3 Imbalanced workload example by VM granularity 22

 3.4 Well-balanced workload example by actor granularity 22

 3.5 VM Malleability by actor migration .. 24

 3.6 Migration code sample in SALSA ... 25

 3.7 System architecture of the Cloud Opearting System 26

 3.8 VM CPU utilization of Heat Diffusion problem running on Cloud Operating

System .. 31

 vi

 3.9 Throughput of Heat Diffusion problem running on Cloud Operating System

 ... 31

 3.10 Relationship between vCPUs and Execution .. 32

 3.11 Two users submitting actors over two physical machines............................. 33

 3.12 Examples of human-driven VM migration .. 35

 3.13 Execution time comparison of Heat Diffusion problem 36

 vii

ACKNOWLEDGMENT

I would like to thank my advisor, Professor Carlos A. Varela, for his

encouragement, supervision, and support on this research. His passionate and kind

guidance have motivated me throughout my time at RPI. Many thanks to the former

colleagues of World Wide Computing Laboratory, Wei, Ping, Qingling, and Yousaf.

They have made my time at the lab very enjoyable. I also would like to thank my family,

friends, and girlfriend in Japan for their encouragement and moral support. Last but not

least, thanks to people at Mitsubishi Electric Corporation for giving me a chance to study

at RPI and their financial support.

 viii

ABSTRACT

Smartphones have become very popular. While people enjoy various kinds of

applications, some computation-intensive applications cannot be run on the smartphones

since their computing power and battery life are still limited. We tackle this problem

from two categories of applications. Applications in the first category are single-purpose

and moderately slow (more than 10 seconds) to process on a single smartphone, but can

be processed reasonably quickly by offloading a single module to a single computer (e.g.,

a face detection application). Applications in the second category are extremely slow (a

few minutes to hours) to process on a single smartphone, but their execution time can be

dramatically reduced by offloading computationally heavy modules to multiple

computers (e.g., a face recognition application). In this category of applications,

management of the server-side computation becomes more important since the intensity

of computation is much stronger than in the first category. For the first category, we

propose a light-weight task offloading method using runtime profiling, which predicts

the total processing time based on a simple linear model and offloads a single task to a

single server depending on the current performance of the network and server. Since this

model’s simplicity greatly reduces the profiling cost at run-time, it enables users to start

using an application without pre-computing a performance profile. Using our method,

the performance of face detection for an image of 1.2 Mbytes improved from 19 seconds

to 4 seconds. For the second category, we present a middleware framework called the

Cloud Operating System (COS) as a back-end technology for smartphones. COS

implements the notion of virtual machine (VM) malleability to enable cloud computing

applications to effectively scale up and down. Through VM malleability, virtual

machines can change their granularity by using split and merge operations. We

accomplish VM malleability efficiently by using application-level migration as a

reconfiguration strategy. Our experiments with a tightly-coupled computation show that

a completely application-agnostic automated load balancer performs almost the same as

human-driven VM-level migration; however, human-driven application-level migration

outperforms (by 14% in our experiments) human-driven VM-level migration. These

results are promising for future fully automated cloud computing resource management

systems that efficiently enable truly elastic and scalable workloads.

1

1. Introduction

1.1 Motivations

The current market share of smartphones is 40% of all mobile phones in the U.S.

as of September 2011 and is still expected to grow [1]. Taking advantage of their

connectivity to the Internet and improving hardware capabilities, people use

smartphones not only for making phone calls, but also browsing the web, checking

emails, playing games, taking videos/photos, and so on.

However, some computation intensive applications cannot be run on the

smartphones since their computing power and battery life are still limited for such

resource demanding applications as video encoding/decoding, image

detection/recognition, 3D graphics rendering, and so on. For example, a face detection

application on iPhone 3GS takes 11 seconds to detect a face from a given picture (See

Section 2.2.1 for detail) and people might feel it is too slow. To improve the user

experience of such computation intensive applications, offloading tasks to faster

computers is a common technique in the mobile computing.

We tackle this problem from two categories of computation-intensive applications.

Applications in the first category are single-purpose and moderately slow (more than 10

seconds) to process on a single smartphone, but can be processed reasonably quickly

when offloading single module to a single fast computer. A face detection application is

an example application in this category. Applications in the second category are

extremely slow (a few minutes to hours) to process on a single smartphone, but their

execution time can be dramatically reduced by offloading computationally heavy

modules to multiple computers. A face recognition application, which searches against a

database of images to find similar faces, belongs to this category. In this category of

applications, management of the server side computation becomes important since the

intensity of computation is much larger than in the first category. Considering the

characteristics of the two categories, we need different approaches for each category to

solve this problem efficiently.

This thesis presents solutions to each category of applications. For the first

category, we propose a light-weight task offloading method using runtime profiling,

 2

which predicts the total processing time based on a simple linear model and offloads a

single task to a single server depending on the current performance of the network and

server. Since this model’s simplicity greatly reduces the profiling cost at run-time, it

enables users to start using an application without pre-computing a performance profile.

For the second category, we present a middleware framework called the Cloud

Operating System (COS) as a back-end technology for smartphones. COS implements

the notion of virtual machine (VM) malleability to enable cloud computing application to

effectively scale up and down. Through VM malleability, virtual machines can change

their granularity by using split and merge operations. We accomplish VM malleability

efficiently by using application-level migration as a reconfiguration strategy. To achieve

these purposes, we employ SALSA [2] actor-oriented language as a basis for workload

migration and load balancing. We hope COS to be operated in a large data center

someday, accept SALSA actors from a lot of smartphones to solve complicated tasks,

and give a good experience to users.

1.2 Structure of Thesis

The structure of this thesis is as follows: In the next chapter, we will propose the

solution to the first category of applications, a light-weight task offloading method for

smartphones. In Chapter 3, we will then present a middleware for autonomous Virtual

Machine malleability as the solution to the second category of applications. Next,

Chapter 4 will introduce related work, and finally Chapter 5 concludes this thesis with

future work.

 3

2. 2. Light-weight Adaptive Task Offloading1

In this chapter, the light-weight adaptive task offloading method is presented. This

method is intended to be used for the applications that are moderately slow to process on

a regular smartphone. First of all, the background of the study is shown followed by the

results of a preliminary experiment. Next, the proposed distributed computation model is

described. Thirdly, an instantiation of the model followed by experimental results are

shown.

2.1 Background

In recent years, applications running on smartphones, such as Apple iPhone and

Google Android Phones, have become very popular. Most of the released applications

work fine on those platforms, but some of the applications including video

encoding/decoding, image recognition, and 3D graphics rendering, could take a

significant amount of time due to their computationally intensive nature. Processors on

mobile devices are gradually getting faster year by year; however, without aid from

special purpose hardware, they may not be fast enough for those computationally

intensive applications.

To improve the user experience of such computationally intensive applications,

offloading tasks to nearby servers is a common approach in mobile computing.

Consequently, a lot of research has been done including [3], which introduces an

offloading scheme consisting of a compiler-based tool that partitions an ordinary

program into a client-server distributed program. More recent efforts utilize cloud

computing technology for task offloading from mobile devices [4], [5]. Both partition an

application and offload part of the application execution from mobile devices to device

clones in a cloud by VM migration.

This chapter previously appeared as: S. Imai and C. A. Varela, “Light-weight adaptive

task offloading from smartphones to nearby computational resources”, in Proc. 2011

Research in Appl. Computation Symp., Miami, FL, 2011, pp.146-151.

 4

On one hand, these previous studies are very flexible in terms of partitioning the

program and finding the optimal execution of distributed programs; also, such methods

could be applicable to a wide range of software applications. On the other hand, for

simple single-purpose applications, which are typical in smartphone applications, these

techniques may be too complex as partitioning, profiling, optimizing, and migrating the

distributed program significantly increase running time. If an application is simple

enough and a developer of the application is aware of the blocks that take most of the

time, it would be reasonable to statically partition the program. Also, if application

developers have done experiments on a target problem and are knowledgeable about the

characteristics of the problem, they could formulate a function to predict the

performance or cost of the application execution with less effort in run-time profiling.

In this paper, we describe a simple model to predict the performance of distributed

programs. The model updates prediction parameters on each run to adapt to network and

server speed changes in a very light-weight manner. In particular, the model does not

require analyzing and profiling the application developer’s original program, but it

assumes the program contains a basic model that reflects the nature of the task to predict

the performance. We present the design of the model as well as implementation and

evaluation with a face detection problem running on an iPhone as an example. Our

evaluation shows that the model predicts the actual performance very well as we iterate

problem executions.

2.2 Preliminary Experiment

2.2.1 Sample Application: Face Detection

 Face detection is an application of image processing that determines the locations

and sizes of human faces on given digital images as shown in Figure 2.1. It is commonly

used in digital cameras that detect faces to make those faces look better through image

processing. Another example is a photo sharing service; such as Google Picasa or

Facebook, which helps users add name tags for detected faces on photos. In those uses of

face detection, the processing speed is pretty fast; users may even do not notice when

 5

those photos are processed because they are processed on fast hardware for image

processing or on servers where plenty of computational resources are available.

Figure 2.1: Example Result of Face Detection

However, there may be a case that users want to detect faces right after they take

a photo using smartphones. One example of such usage is a make-up game application

where the user can try various make-ups or hair styles with the photo without specifying

a region of the face. For this kind of application, immediate face detection is critical for

a good user experience.

2.2.2 Implementation of Remote Face Detection

To measure the performance of face detection on real smartphone hardware, we

implement a face detection application on an Apple iPhone 3GS using the OpenCV [7]

library based on an existing implementation [8] . OpenCV is a widely used open-source

library for computer vision and provides general-purpose object detection functionalities.

In addition to the standalone face detection on the iPhone, the application is capable of

sending an image to a server and receiving detected results. The system diagram of the

application is shown in Figure 2.2.

 6

Figure 2.2: System Diagram of Application Task Offloading

The view controller on the iPhone first takes an image from the photo library

specified by the user and then gives the selected image to the face detection client. Based

on a predetermined setting, the face detection client does either (1) local processing or

(2) remote processing. In the case of (1) local processing, the face detection client

processes the image using the local OpenCV library and gets the face detection results.

In the case of (2) remote processing, the face detection client sends a face detection

request to the server over a network (e.g., WiFi or 3G) connection. Once the face

detection server receives the request, it processes the image using the OpenCV library

on the server and sends the result back to the face detection client on the iPhone. Finally,

the view controller receives the detection results from the face detection client and

visualizes the results as shown in Figure 2.1.

2.2.3 Experimental Setup

In the experiment of face detection, we use an Apple iPhone 3GS (OS: iOS 4.2.1,

detail specifications of CPU and memory have not been made public) and a server

computer (CPU: Dual Core AMD Opteron Processor 870 2GHz, Memory: 32GB, OS:

Linux 2.6.18.8). Both the iPhone and the server are connected in the same network

segment via WiFi 802.1g. The experiment tested 33 different images whose sizes range

 7

from 500K to 1.2 Mbytes. Those images contain at least a single face and at most eleven

faces.

The version of OpenCV is 2.1.0, which is used in both the iPhone and the server

side. The main function to detect faces is cvHaarDetectObjects() function provided by

the OpenCV library, and the last four parameters given to the function are as follows:

scale_factor = 1.1, min_neighbors = 3, flags = 0, min_size = cvSize(20,20).

During the experiment, no user applications on the iPhone other than the face

detection application are launched. Bluetooth and 3G communication capabilities are

turned off as well.

2.2.4 Speedup by Remote Processing

We tested the performance of both local and remote processing for the 33 images

and computed speedup by the remote processing compared with the local processing.

We show the result processing time in Figure 2.3 and speedup in Figure 2.4 respectively.

Figure 2.3: Performance of Local and Remote Processing

 8

Figure 2.4: Speedup by Remote Processing

In Figure 2.3, the X-axis represents the size of each image, the plot Local

represents the time required for local processing and the plot Remote (Server) represents

the time required for the server to process an image when processing remotely. Remote

(Total) represents the total time required for remote processing including Remote

(Server) and the time for communication, i.e., sending the request from the iPhone and

receiving the response from the server. From the graph, the remote processing is much

faster than the local processing on the iPhone, and we can see the processing time of the

images grows linearly for both local and remote processing.

Efficiency of the remote processing is clearly reflected in speedup as shown in

Figure 2.4. On average, the remote processing is about 3.5 times faster than the local

processing on the iPhone. An image of 1.2 Mbytes improved the performance from 19

seconds to 4 seconds, which is the biggest improvement of all the images.

The network metrics over WiFi are RTT (Round-Trip Time) = 0.0142 seconds

and bandwidth = 12.8701 Mbps at the time of the experiment. The performance of the

remote processing totally depends on the network environment and the speed of the

server, and it works effectively if both the network and the server are fast. In the real

world, there are various combinations of networks and servers, and the condition of the

network changes from time to time. Therefore, the question is when to process locally or

remotely. To answer this question, we need a model that predicts the performance at run-

time. Similar models can be developed for battery consumption.

 9

2.3 Distributed Computational Model

2.3.1 Remote Processing Model

We use the model depicted in Figure 2.5 to estimate total processing time when

the client requests remote processing to the server. First, the user selects a problem to

solve, and then the client takes it and sends a request with the problem to the server.

Next, the server computes the received problem and responds a result to the client.

Finally, the client shows the result to the user.

Figure 2.5: The Model for Remote Processing

Suppose the user selects a problem x, then the total processing time ௢ܶ௙௙௟௢௔ௗሺݔሻ

can be formulated as a function of x as follows:

௢ܶ௙௙௟௢௔ௗሺݔሻ ൌ ௖ܶ௢௠௠ሺݔሻ ൅ ௦ܶሺݔሻ,

where ௦ܶሺݔሻ is the time required for the requested computation on the server and

௖ܶ௢௠௠ሺݔሻ is the time required for sending the request and receiving the response.

Let ௖ܶሺݔሻ be the time required for the client to process problem x locally

without help from the server; it is beneficial to offload the problem to the server clearly

if ௢ܶ௙௙௟௢௔ௗሺݔሻ ൏ ௖ܶሺݔሻ.

The assumption here is that the client and the server know about basic equations

of ௖ܶ௢௠௠ሺݔሻ, ௦ܶሺݔሻ , and ௖ܶሺݔሻ for a specific problem, but do not know about the

User

ServerClient

௦ܶሺݔሻ

time

User

Problem x

Result

௢ܶ௙௙௟௢௔ௗሺݔሻ

 10

parameters of the equations initially. This is because the client is a mobile device, and

the user may use it on different networks and connect it with different servers. Moreover,

because applications running on the client or the server can be downloadable on devices

with various hardware settings, it is fair to assume that the applications do not know how

fast the devices are until they actually run a problem on particular hardware.

2.3.2 Parameter Update Protocol

The client and the server communicate to update their internal parameters for a

better prediction of computation time. To predict and compare both the local and remote

processing time, we need to compute problems both locally and remotely for the first

execution. From the second execution, the model predicts and compares the performance

based on the parameters before running the computation, and updates the parameters

accordingly from computation results. A protocol and a method to update those

parameters are explained in order.

Update Protocol for ࢙ࢀሺ࢞ሻ	ࢊ࢔ࢇ		࢓࢓࢕ࢉࢀሺ࢞ሻ: We update ௦ܶሺݔሻ and ௖ܶ௢௠௠ሺݔሻ as

shown in Figure 2.6. First, the client sends a process request x' to the server, and the

server processes it and measures the process time as ௦ܶ
ᇱ ൌ ௦ܶሺݔሻ. Using a (ݔ′, ௦ܶ

ᇱ) pair and

an approximation method such as least squares, the server updates ௦ܶሺݔሻ to approximate

a set of measured data observed in the server. Next, the server responds with the

computed result of x' back to the client as well as measured ௦ܶ
ᇱ and updated ௦ܶሺݔሻ. Once

the client receives those parameters, then it calculates ௖ܶ௢௠௠′ by subtracting ௦ܶ
ᇱ from the

measured ௢ܶ௙௙௟௢௔ௗ
ᇱ by the client. Finally, the client updates its ௖ܶ௢௠௠ሺݔሻ by ௖ܶ௢௠௠′ and

make a local copy from the received ௦ܶሺݔሻ.

 11

Figure 2.6: Update Protocol for ࢙ࢀሺ࢞ሻ and ࢓࢓࢕ࢉࢀሺ࢞ሻ

Update Method for ࡯ࢀ: For the first execution of the problem or in the case

௢ܶ௙௙௟௢௔ௗሺݔሻ ൐ ௖ܶሺݔሻ is true, the client locally processes the problem x'. It also measures

the time required for the local process as ௖ܶ
ᇱ. Just as the server updates ௦ܶሺݔሻ, it updates

௖ܶሺݔሻ using a (ݔ′, ௖ܶ
ᇱ) pair to approximate the measured computation time. Apart from

the processing time itself, the protocol and method to update parameters are light-weight

so that they are able to apply at run-time without serious overhead. If a prediction error

either for ௢ܶ௙௙௟௢௔ௗ or ௖ܶ becomes less than a certain threshold (e.g., 10%), the above

update protocols pause since it can be considered that the prediction works well enough,

therefore there is no need to update the parameters. Conversely, the protocols resume if

the prediction error (measured periodically with progressively less frequency) becomes

greater than a certain threshold. When resuming, all the previous trained data will be

reset to adapt to the new environment.

 12

2.4 Model Instantiation

We choose the face detection as an application of the model described in the

previous section. Table 2.1 shows the relationship between the parameters used in the

model and their instantiation in the face detection problem.

Table 2.1: Model Instantiation

Model Instance

x An image

Processing x Detecting face regions from

an image x

௦ܶሺݔሻ, ௖ܶሺݔሻ and ௖ܶ௢௠௠ሺݔሻ Linear functions of the size of

an image x

Update method for

௦ܶሺݔሻ, ௖ܶሺݔሻ and ௖ܶ௢௠௠ሺݔሻ

Least squares method

The reason why we choose linear functions as the models for ௦ܶሺݔሻ, ௖ܶሺݔሻ, and

	 ௖ܶ௢௠௠ሺݔሻ is that for this problem we know those functions to be linear as confirmed by

preliminary experiments reported in Section 2.2.4. Appropriate functional models and

corresponding approximation methods for updating the functions are necessary for this

model to work properly.

2.5 Experimental Results

In this section, we present a detailed evaluation of our model implementation by

predicting the remote processing time of the face detection task. We use the model

instantiation described in Section 2.3, and we can find out how well the model predicts

the remote processing time when we pick images from the 33 images used in the

experiment in Section 2.2.

We perform the experiment with three different cases: case 1) The network and

server are stable; case 2) The network becomes temporarily slow; and case 3) The server

 13

becomes temporarily busy. For each case, we tested ten randomly selected sequences

each consists of 33 images and measured the average time of remote processing

(௢ܶ௙௙௟௢௔ௗ) and compare it with the predicted value.

2.5.1 Case 1 – Network and Server Stable

There is no dynamic disturbance from the environment in this scenario, that is,

no other clients use the network and server. Figure 2.7 shows the prediction result of

௢ܶ௙௙௟௢௔ௗ . As we can see from the graph, the model predicts ௢ܶ௙௙௟௢௔ௗ well. The

parameters used in this prediction are generated by a relatively small number of trials as

shown in Figure 2.8. In the training stage, the model generates somewhat erroneous

predictions, but these prediction errors are unavoidable since there are not sufficient

learning examples available at the early stage of the training. However, the least squares

method works better as the trials progress. The error becomes below 10% threshold after

7.8 trials on average, and the training becomes inactive afterwards. During the inactive

period of the training, the prediction error stays below 10%. The reason why the model

predicted ௢ܶ௙௙௟௢௔ௗ well is that ௢ܶ௙௙௟௢௔ௗ , ௖ܶ௢௠௠, and ௦ܶ are linear functions, therefore,

the least squares method works well.

Figure 2.7: Prediction of ࢊࢇ࢕࢒ࢌࢌ࢕ࢀ (Both Network and Server Stable)

 14

Figure 2.8: Average Prediction Error of ܌܉ܗܔ܎܎ܗ܂ (Both Network and Server Stable)

2.5.2 Case 2 – Network Temporarily Slow

In this scenario, the network becomes twice slower in the middle of the trials

(from the 10th to 20th) than in the rest of the trials. Figure 2.9 shows the prediction result

of ௢ܶ௙௙௟௢௔ௗ. The plots spread wider than Case 1 due to the disturbance, however, the

model predicts ௢ܶ௙௙௟௢௔ௗ relatively well as we can see both plots for the measured and

predicted are close in the graph.

In Figure 2.10, the prediction error increases quickly at the 10th trial and

gradually decreases as the trial progress until it rises up again at the 21st trial. After that,

the error gradually goes down again. Overall, the parameter update protocol works

adaptively to the network speed change.

Training	
Active	

Training	Inactive	

7.8

 15

Figure 2.9: Prediction of ࢊࢇ࢕࢒ࢌࢌ࢕ࢀ (Network Temporarily Slow)

Figure 2.10: Average Prediction Error of ࢊࢇ࢕࢒ࢌࢌ࢕ࢀ (Network Temporarily Slow)

2.5.3 Case 3 – Server Temporarily Busy

In this scenario, the server becomes busy and twice slower in the middle of the

trials (from the 10th to 20th) than in the rest of the trials. Figure 2.11 shows the prediction

result of ௢ܶ௙௙௟௢௔ௗ. Same as Case 2, the plots spread slightly wider than Case 1; however,

the model predicts ௢ܶ௙௙௟௢௔ௗ well despite the server overload.

 16

Figure 2.11: Prediction Error of ࢊࢇ࢕࢒ࢌࢌ࢕ࢀ (Server Temporarily Busy)

Figure 2.12: Average Prediction Error of ࢊࢇ࢕࢒ࢌࢌ࢕ࢀ (Server Temporarily Busy)

Same as in the network speed change, we can see that the client can follow the

server speed degradation as shown in Figure 2.12, however, the peaks of the prediction

errors are lower than Case 2. This happens because the communication takes more time

than processing at the server, so the effect for overall time is limited relative to the

network speed change.

 17

3. Middleware for Autonomous Virtual Machine Malleability

In this chapter, the middleware for autonomous virtual machine malleability

through application-level workload migration is presented. First, the background of the

study is shown followed by the result of preliminary experiments. Next, the key idea of

the middleware, the concept of Virtual Machine malleability, is described. Thirdly, the

proposed distributed computation middleware is introduced. Finally, experimental

results are shown.

3.1 Background

Cloud computing is a promising computing paradigm that delivers computing as a

service based on a pay-per-use cost model [9] . Users can purchase as many computing

resources as they want paying only for what they use. This cost model gives users the

great benefits of elasticity and scalability to meet dynamically changing computing

needs. For example, a startup Web service company can start with a small budget, and

then later if the business goes well, they can purchase more computing resources with a

larger budget. Moreover, if you have a large enough budget, you would have the illusion

of infinite resources available on the cloud. Those benefits have been enabled by

virtualization technology such as Xen [10] or VMware [11]. Using virtualization, service

providers can run multiple virtual machines (VMs) on a single physical machine, which

provides isolation of multiple user workloads, better utilization of physical hardware

resource enabling consolidation of workloads, and subsequent energy savings.

There are several approaches to exploit the scalability of cloud computing using

VMs. Probably one of the most popular uses of cloud computing is Web services.

Rightscale [12] and Amazon’s Auto Scale [13] offer automated creation of VMs to

handle increasing incoming requests to web servers. Conversely, when the requests

become less frequent, they automatically decrease the number of VMs to reduce costs.

Another approach to support scalability is to use VM migration [14], [15], [16].

Sandpiper [17] monitors CPU, network, and memory usage, and then predicts the future

usage of these resources based on the profile created from the monitored information. If

a physical machine gets high resource utilization, Sandpiper tries to migrate a VM with

 18

higher resource utilization to another physical machine with lower resource utilization

and balances the load between physical machines. As a result, the migrated VM gets

better resource availability and therefore succeeds to scale up its computation.

The above systems utilize VM as a unit of scaling and load balancing, and it can

be done transparently for operating systems and applications on the VM. Meanwhile, the

effectiveness and scalability of VM migration are limited by the granularity of the VMs.

For example, the typical size of memory on a VM ranges from a few Gbytes to tens of

Gbytes, and migrating such large amount of data usually takes tens of seconds to

complete even within a local area network. Even though downtime by a live migration

process is just as low as a few tens of milliseconds [15], it incurs a significant load on

the network.

On the other hand, it is possible to achieve load balancing or scalability with

finer granularity at the application workload level. This approach is advantageous since

the footprint of an application workload is much smaller than that of a VM making

workload migration take less time and use less network resources. Also, it can achieve

better load balancing or scaling that cannot be done by the VM-level coarse granularity.

However, migration or coordination of distributed execution is not transparent for

application developers in general, and it requires a lot of effort to manually develop

underlying software. One solution to this problem is using the actor-oriented

programming model. SALSA (Simple Actor Language System and Architecture) [2] is

an actor-oriented programming language that simplifies dynamic reconfiguration for

mobile and distributed computing through its features such as universal naming and

transparent migration. Applications composed of SALSA actors can be easily

reconfigured at run time by using actor migration.

In this section of the paper, we introduce the concept of virtual machine (VM)

malleability to enable cloud computing applications to effectively scale up and down.

Through VM malleability, virtual machines can split into multiple VMs and multiple

VMs can merge into one. We accomplish VM malleability efficiently by using

application-level migration as a reconfiguration strategy based on SALSA actors. We are

developing the Cloud Operating System (COS), a middleware framework to support

autonomous VM malleability as a PaaS (Platform as a Service) infrastructure. Actors on

 19

COS autonomously migrate between VMs if it is beneficial in terms of resource

availability in the target node, communication cost with other actors, and the cost for

migration.

3.2 VM-Level vs Application-level Migration

We conduct two preliminary experiments to investigate the characteristics of

VM-level migration and application-level migration. One experiment compares

migration time and the other one compares the performance and the ability of each

approach to balance workloads.

3.2.1 Preliminary Experiment 1 – Migration

In this experiment, we use two machines. Each has quad core Opteron processors

running at 2.27 GHz, which are connected via 1-Gbit Ethernet. We create VMs by using

Xen-3.2.1 and migrate them between the two machines with the memory sizes from 0.5

Gbytes to 10 Gbytes. Figure 1 shows the result of VM migration time as a function of

VM size.

Figure 3.1: VM migration time within a local network

VM migration time linearly increases as the memory size gets larger. Roughly it

takes 10 seconds per 1 Gbytes of memory, and the average bandwidth is 743.81 Mbps

during the experiment. Although the size of application workloads totally depends on

each application, it is expected to be much smaller than the size of VMs. In the case of

 20

SALSA actor migration, a minimal actor (with empty state) migrates in 150 ms, whereas

a 100 Kbytes actor takes 250 ms [2].

3.2.2 Preliminary Experiment 2 – Load Balancing

As illustrated in [18], the ratio between workload granularity and the number of

processors has a significant impact on the performance. In the context of cloud

computing, we compare the performance between the VM-based and the application-

based approach.

The task is to balance the load on two physical machines (PM1 and PM2), given

a workload and the number of virtual CPUs (vCPUs). The workload running on VMs is

called Stars, analyzing three-dimensional star location data from the Sloan Digital Sky

Survey. It is considered as a massively parallel CPU-intensive task. The application

solving this problem is implemented in SALSA, and each actor analyzes a given set of

stars data.

We test the VM-based and the actor-based load balancing with the configuration

shown in Table 3.1 and Table 3.2 respectively. In the VM-based approach, VM is the

unit of load balancing. In order to test against various cases of VM assignment on PM1

and PM2, we keep the number of vCPU per VM constant so that the total number of

VMs changes as the number of vCPU increases. On the other hand, an actor is the unit of

load balancing in the actor-based approach. Thus, we have multiple actors per one VM

and assign only one VM for each PM. Note that we run the same number of actors as the

number of vCPUs for both cases and assign actors on a VM evenly. For example, when

we test a 12-vCPU case with 3 VMs, 4 actors are assigned on each VM.

Table 3.1: VM and vCPU configuration for VM-based load balancing

vCPU vCPU / VM Total VM VM on PM1 VM on PM2

8 4 2 1 1

12 4 3 2 1

16 4 4 2 2

20 4 5 3 2

 21

Table 3.2: VM and vCPU configuration for actor-based load balancing

vCPU vCPU / VM Total VM VM on PM1 VM on PM2

8 4 2 1 1

12 6 2 2 1

16 8 2 2 2

20 10 2 3 2

Figure 3.2: Load balancing performance

Figure 3.2 shows the result of the load balancing performance experiment. When

the number of vCPUs is 12 and 20, imbalance of the number of VMs between PM1 and

PM2 is unavoidable, and that degrades the performance of the VM-based load balancing.

Comparing the VM-based load balancing with the actor-based load balancing, the

execution time is 9.4% and 22.4% slower when the number of vCPU is 12 and 20

respectively. What happens here is illustrated in Figure 3.3 and Figure 3.4. These

examples clearly illustrate that the VM-level coarse granularity has a disadvantage

compared to the actor-level fine granularity in terms of load balancing.

 22

PM1

VM1 VM2 VM3

PM2

Actors

PM1

VM1 VM2 VM3

PM2

Load
balance

Figure 3.3: Imbalanced workload example by VM granularity

Figure 3.4: Well-balanced workload example by actor granularity

3.2.3 Design Policies towards the Cloud Operating System

Based on the observations from the previous two preliminary experiments and

requirements for achieving elasticity and scalability in the context of cloud computing,

we have created the following design policies towards the construction of a middleware,

the Cloud Operating System:

Migration by actor granularity: As we saw in the previous experiments,

application-level granularity is a key to good load balancing. Also, considering the fact

that application workload migration takes significantly less time and network resources

compared to VM migration, actor migration supported by SALSA is a reasonable choice

since the migration can be done transparently for users. Another advantage from this

approach is that we can migrate an application workload over the Internet. Xen only

allows VM migration to be done within the same L2 network (to keep network

connection alive), whereas SALSA application actors can migrate to any host on the

Internet without service interruption thanks to its universal naming model [2]. Note that

this approach works on both private and public clouds while VM migration typically is

not allowed for users to do in the public cloud environment.

 23

Separation of Concerns: Application programmers should focus on their

problem of interests and leave resource management to the underlying middleware.

Autonomous runtime reconfiguration of applications: Migration of workloads

should be completely transparent from the application programmer and should be done

autonomously only if doing so is beneficial to the users.

Dynamic VM malleability: To fully harness the power of cloud computing, the

middleware should scale up and down computing resources depending on the intensity

of workloads. The middleware splits a VM as one of the available resources as needed

and merge VMs into one when not needed anymore. Merging the VMs is important in

terms of saving energy and costs.

3.3 Virtual Machine Malleability

We define VM malleability as an ability to change the granularity of VM instances

dynamically. Wang et al. [19] shows that the granularity of VM makes significant

impact on workload performance in cloud computing environments and first suggests the

notion of VM malleability. To fine-tune the granularity of VMs transparently from users,

we need to split a VM image into several parts and merge multiple VMs into fewer VMs,

which are complicated tasks. Some processes have residual dependencies on a particular

host and those dependencies might be broken after merging or splitting the VMs.

Another issue is a resource conflict such as two http servers using port 80 migrating into

one VM. We can easily imagine that realizing completely transparent VM malleability is

a challenging task.

However, as shown in Figure 3.5, we realize that migrating actors to newly created

VMs is equivalent to splitting a VM and migrating actors from multiple VMs to one VM

is same as merging VMs. This is possible because an actor encapsulates its state and

does not share memory with other actors. In a word, they are natively designed to be

location-agnostic, and therefore they do not have any residual dependencies and resource

conflicts when moving around computing nodes. COS implements VM malleability by

migrating actors over dynamically created VMs.

 24

Figure 3.5: VM Malleability by actor migration

3.4 Distributed Computation Middleware

In this section, we first introduce the SALSA programming language as a key

ingredient of our distributed computation middleware, and then explain about the

distributed computation middleware, the Cloud Operating System.

3.4.1 SALSA

SALSA is a general-purpose actor-oriented programming language. It is

especially designed to facilitate the development of dynamically reconfigurable

distributed applications. SALSA supports the actor model’s unbounded concurrency,

asynchronous message passing, and state encapsulation [20]. In addition to these features,

it offers a universal naming model with support for actor migration and location-

transparent message sending.

The name service, part of the SALSA runtime, binds a Universal Actor Name

(UAN) with a Universal Actor Locator (UAL) and keeps track of its location, so that the

actor can be uniquely identified by its UAN. Figure 3.6 is a sample code in SALSA,

which migrates an actor from host A to host B. In this example, an actor is named

“uan://nameserver/migrate” and is bound to the location “rmsp://host_a/migrate” first,

and then is migrate to the new location “rmsp://host_b/migrate”. For more detail of

SALSA, refer to the paper [2].

 25

Figure 3.6: Migration code sample in SALSA

As illustrated in the above example, this high-level migration support in SALSA

greatly reduces the development cost of COS. Therefore, we use SALSA as the basis of

our middleware and also assume that applications are written in SALSA.

3.4.2 Cloud Operating System (COS)

In this section, the system architecture, runtime behavior, and load balancing

algorithm of the Cloud Operating System are presented.

3.4.2.1 System Architecture

COS is based on the Xen hypervisor and we assume that Linux is used as a guest

OS. It consists of several modules as shown in Figure 3.6. Each module is explained in

order as follows.

 Actors: Application actors implemented in the SALSA programming language.
They carry workloads inside and execute them on any SALSA runtime
environment.

 26

 SALSA Runtime: The running environment for SALSA actors. It provides
necessary services for actors such as migration, execution of messages, message
reception and transmission from/to other actors, standard output and input, and so
on.

 Load Balancer: A Load balancer monitors available CPU resources and
communication between actors running on a particular SALSA Runtime. It makes
a decision whether to migrate or not from the monitored information. As a result
of migration, actors communicating often tend to be collocated in the same
SALSA runtime.

 VM Monitor: A VM Monitor monitors the CPU utilization from /proc/stat on a
linux file system on Domain-U. It notifies an event to the Node Manager on
Domain-0 if the load goes above or below certain thresholds.

 Node Manager: A Node Manager resides on Domain-0 and reports CPU load
statistics to the COS Manager. Also, it creates and terminates VMs in response to
event notifications from the VM Monitor.

 COS Manager: The COS Manager analyzes reports from a Node Manager and
requests a new VM creation or termination to other Node Managers based on its
decision criteria. The system administrator of COS has to give available node
information to the COS Manager.

Currently, we create only one SALSA Runtime per guest domain with multiple

vCPUs per node. The reason is because we have confirmed that doing so performs better

than creating multiple nodes each with one SALSA Runtime with fewer vCPUs per node.

Figure 3.7: System architecture of the Cloud Operating System

 27

3.4.2.2 Runtime Behavior of COS

Typical steps of COS when scaling up the computation are shown as follows.

Similar steps apply in the case of scaling down.

Step 1. A VM Monitor in Domain-U periodically (e.g., every 5 seconds) checks

/proc/stat for CPU utilization to see if it exceeds certain utilization (e.g., 75%). If it

does, the VM Monitor then checks if more than ݇ out of ݊ past utilization exceeds the

threshold just as Sandpiper [17] does. If it is true, it means the high CPU utilization is

persistent, so the VM Monitor notifies a high CPU utilization event to the Node

Manager in Domain-0 of the same physical node.

Step 2. When the Node Manager receives a high CPU utilization event, it just passes

the event to the COS Manager.

Step 3. Just after the COS Manager receives a high CPU utilization event from a Node

Manager, it checks if it is feasible to create a new VM. If it is, the COS Manager sends

a request to another Node Manager to create a new VM with a file path to the

configuration file required for Xen-based VM creation. Note that the COS Manager

ignores frequent high CPU events to avoid too quick scaling up of computing

resources (See next subsection for detail).

Step 4. Upon reception of a new VM creation request from the COS Manager, a Node

Manager calls the ‘xm create’ command to create a Xen-based new VM. After the

successful creation of the VM, a VM Monitor, a SALSA Runtime, and a Load

Balancer automatically start running. Once they are ready, the just launched VM

Monitor sends a VM start event to the Node Manager. The Node Manager then replies

a VM creation event to the COS Manager with an assigned IP address of the VM as

well as the port number of the Load Balancer.

 28

Step 5. When the COS Manager receives a VM creation event from a Node Manager,

it connects available Load Balancers using given IP addresses and port information, so

that the Load Balancers can start communicating with each other and balancing the

load between them.

3.4.2.3 Stable Creation and Termination of VMs

To avoid thrashing behavior due to frequent VM creation and termination, the

following heuristics are implemented.

 The COS manager decides to create a new VM only if it has received high CPU
utilization events from all the running nodes within a certain amount of time (e.g.
10 seconds). The reason is that Load Balancers might be able to balance the load
and decrease the CPU utilization of VMs.

 Some workload shows high and low CPU usage alternatively. If criteria of
terminating VMs are too strict, this type of workload suffers very much. Let the
constants to detect low and high CPU utilization be ݇௅ைௐ and ݇ுூீு respectively
for checking past ݊ utilization. We set a higher value on ݇௅ைௐ than ݇ுூீு to make
VM termination less likely than creation.

 A VM Monitor sends a low CPU utilization event to a Node Manager only after it
detects a high CPU utilization since it takes some time until a Load Balancer gets
some workload from other Load Balancers.

3.4.2.4 Load Balancing Algorithm

The load balancing algorithm used in Load Balancers follows [21]. It is a pull-

based algorithm where an under-utilized Load Balancer tries to ‘steal’ some work from

other Load Balancers. This process is executed in a decentralized manner, that is, one

Load Balancer passes a work-stealing request message to other Load Balancers

connected locally. Thus, this algorithm shows a good scaling performance.

If a Load Balancer receives the work-stealing request message, it makes a

decision whether to migrate an actor to the foreign node or not based on the following

information.

 29

 α: The amount of resource available at foreign node f

 ν: The amount of resource used by actors A at local node l

 M: The estimated cost of migration of actors from l to f

 L: The average life expectancy of the actors A

The Load Balancer basically decides to migrate actors A if it observes large α and

L, and small ν and M. For more details, please refer to [21].

3.5 Experimental Results

We have conducted experiments from two perspectives. In the first experiment,

we test COS’s scalability with a minimum setting. We run COS with only one user and

see how it scales up computing resources as the computation becomes intensive. Also,

we compare the performance of COS with fixed amount resource cases. In the second

experiment, we compare the performance of autonomous actor migration used in COS

with other migration methods to figure out its advantages and disadvantages.

3.5.1 Workload

The workload used is a Heat Diffusion problem, a network-intensive workload. It

simulates heat transfer in a two-dimensional grid in an iterative fashion. At each iteration,

the temperature of a single cell is computed by averaging the temperatures of

neighboring cells.

This workload is developed in SALSA, using actors to perform the distributed

computation. Each actor is responsible for computing a sub-block of the grid and the

actors have to communicate with each other to get the temperatures on boundary cells.

 30

3.5.2 Experiment 1 – Test COS with Single User

3.5.2.1 Experimental Setup

In this experiment, only one user runs Heat Diffusion problem for 300 iterations

on COS. We also compare the execution time of Heat Diffusion problem with the cases

where the number of VMs is fixed, to see how dynamic allocation of VM affects the

performance.

We use three physical machines. Each machine has quad core Opteron

processors running at 2.27 GHz, and they are connected via 1-Gbit Ethernet. While

COS dynamically changes the number of VMs from one to three at runtime, the fixed

VM cases use one, two, and three VMs respectively from the start to the end of the Heat

simulation. Note that only one VM with four vCPUs will be created per physical

machine. Table 3.3 summarizes the experimental settings used in Experiment 1.

Table 3.3: VM Configuration for Experiment 1

Test Case VM PM vCPU / VM Total vCPU

Fixed VM

1 1 4 4

2 2 4 8

3 3 4 12

COS dynamically allocated at runtime

3.5.2.2 Results

VM CPU utilization: As shown in Figure 3.8, COS successfully reacts to the

high CPU utilization and creates new VMs. First it starts with VM1 only, and then

creates VM2 at around 21 seconds. Once both VM1 and VM2 get highly utilized, COS

creates VM3 at around 92 seconds. VM malleability works well and COS successfully

balances the load. The actors gradually migrate by Load Balancers, thus the CPU

utilization of a newly created VM also increases gradually.

 31

Figure 3.8: VM CPU utilization of Heat Diffusion problem running on

Cloud Operating System

Throughput: Figure 3.9 depicts the throughput of Heat Diffusion simulation at

each iteration. It is clear that the throughput gets higher as the number of VMs and

accumulated VM CPU utilization (as shown in Figure 3.8) increases.

Figure 3.9: Throughput of Heat Diffusion problem running on

 Cloud Operating System

 32

Execution time: Figure 3.10 shows the relationship between the number of

vCPUs and the execution time. COS uses 9.002 vCPUs on average, whereas 1VM,

2VMs, and 3VMs case use 4, 8, and 12 vCPUs respectively. It is clear that more use of

vCPUs makes the execution times faster. Also, the graph suggests that relationship

between the number vCPUs and the execution time is linear. Suppose the cost per time is

proportional to the number of vCPUs, the total cost, the product of the number of vCPUs

and the execution time, is almost constant. Therefore, using 3VMs is the best way to go

for the Heat Diffusion problem; however, COS does better than the cases of 1VM and

2VMs. It performs quite well if we consider the fact that COS does not have any

knowledge about the complexity of the problem and the number of vCPUs is

dynamically determined at run-time.

Figure 3.10: Relationship between vCPUs and Execution

 33

3.5.3 Experiment 2 – Comparison with Other Methods with Two Users

3.5.3.1 Experimental Setup

In this experiment, we compare the performance of autonomous actor migration

used in COS with other migration methods. As shown in Figure 3.11, two users submit

their 8 actors each for the Heat Diffusion problem over two physical machines (PM1 and

PM2). Same as Experiment 1, it runs for 300 iterations. Each machine has quad core

Opteron processors running at 2.27 GHz, and they are connected via 1-Gbit Ethernet.

Initially, User 1 submits his 8 actors, and then 60 seconds later, User 2 submits another 8

actors. How those actors are actually assigned on VMs depends on each test scenarios

described in Table 3.4. We test autonomous actor migration along with the two cases

where migrations are initiated by a human and the other two cases where no migration is

triggered. Note that we used a VM that has 4 vCPUs and 1024 Mbytes of memory in

each experiment.

Figure 3.11: Two users submitting actors over two physical machines

 34

Table 3.4: Test Case Scenarios for Experiment 2

Test Case

Scenario

Description

VM migration

(Human-driven)

- A human decides when & where to migrate VMs to achieve

optimal load balancing (see next section)

- User 1 has two VMs (VM1U1 and VM2U1) on PM1

- User 2 has two VMs (VM1U2 and VM2U2) on PM1

- Initially, User 1 submits 4 actors on VM1U1 on PM1 and another 4

actors on VM2U1 on PM1

- 60 seconds later, User 2 submits 4 actors on VM1U2 on PM1 and

another 4 actors on VM2U2 on PM1

Actor migration

(Human-driven)

- A human decides when & where to migrate actors to achieve

optimal load balancing (see next section)

- There is one VM on PM1 and another one on PM2

- Users do not have dedicated VMs, but share them

- Initially, User 1 submits 8 actors on the VM on PM1

- 60 seconds later, User 8 actors on the VM on PM1

No migration

(Fair resource)

- VMs are assigned to users in a fair resource allocation manner

- User 1 has two VMs (VM1U1 and VM2U1) on PM1

- User 2 has two VMs (VM1U2 and VM2U2) on PM2

- Initially, User 1 submits 4 actors each on his two VMs on PM1

- 60 seconds later, User 2 submits 4 actors each on his two VMs on

PM2

No migration

(Round robin)

- VMs are assigned to users in a round robin manner

- User 1 has VM1U1 on PM1 and VM2U1 on PM2

- User 2 has VM1U2 on PM1 and VM2U2 on PM2

- Initially, User 1 submits 4 actors on VM1U1 on PM1 and another

4 actors on VM2U1 on PM2

- 60 seconds later, User 2 submits 4 actors on VM1U2 on PM1 and

another 4 actors on VM2U2 on PM2

 35

Actor Migration

(Autonomous)

- VM allocation and actor migration is automated

- Initially, User 1 submits 8 actors on the first VM allocated on PM1

- 60 seconds later, User 2 submits another 8 actors on the first VM

allocated on PM1

3.5.3.2 Human-driven Migration

In the cases of human-driven VM migration and actor migration, a human

initiates migration to get the workload balanced as examples shown in Figure 3.12.

Example 1 shows a case where User 1 has two VMs on PM1 and then he migrates the

second VM (VM2U1) to PM2. Example 2 illustrates a situation where User 2 newly

activates his two VMs on PM1. In this case, the first VM of User 1 (VM1U1) migrates to

PM2 to collocate the VMs, which belong to the same user. Same policy applies to the

human-driven actor migration.

Figure 3.12: Examples of human-driven VM migration

3.5.3.3 Results

The execution time results of each test scenario are shown in Figure 3.13. We

measure the execution time required for all tasks to finish. Autonomous actor migration

performs almost as same as the human-driven VM migration, whereas the human-driven

 36

actor migration is fastest of all methods and is about 14% faster than autonomous actor

migration and the human-driven VM migration. This clearly shows the benefit of actor

migration compared to VM migration approach. Load Balancer embedded in

autonomous actor migration does not know anything about applications such as

communication pattern or dependencies between modules; therefore autonomous actor

migration has to profile available resources periodically and determine when to migrate

actors, and that is the price autonomous actor migration is paying for the automated

approach. Meanwhile, the human-driven actor migration is able to migrate multiple

actors to the right place at the right time. The reason of the human-driven VM

migration’s moderate performance is due to the cost of VM migration, As we have

shown in Section II, migration of a 1024 Mbytes memory VM takes about 10 seconds.

During the migration time, communication between actors suffer significantly, therefore

the performance is degraded. No migration cases are also better than the human-driven

VM migration and autonomous actor migration. Obviously, there are situations where

physical machines are underutilized in these two cases; however, the disadvantages of

underutilization are smaller than those of the human-driven migration and the automated

migration used in autonomous actor migration. In realistic cloud, with thousands of users,

VMs, and workload, an automated approach is mandatory.

Figure 3.13: Execution time comparison of Heat Diffusion problem

 37

4. Related Work

4.1 Mobile Distributed Computing

Wang and Li [3] introduce a compiler-based tool that partitions a regular

program into a client-server program. MAUI Error! Reference source not found. lets

developers specify which methods of a program can be offloaded for remote execution,

focusing on minimizing battery consumption.

Cyber foraging [22] uses nearby surrogate computers to offload the

computational burden from mobile devices. Similarly, Slingshot Error! Reference

source not found. replicates a remote application state on nearby surrogate computers

co-located with wireless access points to improve performance. These approaches are

similar to ours in a sense that they assume applications are partitioned before execution

and utilize nearby computers, but they do not have an explicit mechanism to adapt to the

environment changes.

There are approaches using virtual machine (VM) migration including Cloudlet

[4] and CloneCloud [5]. Application developers do not need to modify applications, but

both approaches require transferring the entire or partial VM image from the smartphone

to the cloud as well as complex profiling of the remote execution environment (e.g.,

network/cloud performance) at run-time.

4.2 Process/Component Malleability

Maghraoui et al. [23] explores process-level malleability for MPI applications,

which supports split and merge operations of MPI processes. Desell et al. [18]

investigates component-level malleability using the SALSA programming language.

They both support dynamic granularity change by splitting and merging processes and

application components respectively; however, they require users to implement how to

split and merge, whereas VM Malleability presented in this paper does not need

cooperation from application programmers when the number of actor is larger than the

number of VMs, but when the number of actors is smaller than the number of VMs an

 38

actor has to split or make a clone to properly balance the load. COS supports actor split

and merge functionalities, which we will explore further in the future.

4.3 VM Migration

VM migration has been investigated as a technique to dynamically change the

mapping between physical resources and virtual machines. Clark et al. [15] proposes the

pre-copy approach, which repeatedly copies the memory of a VM from the source

destination host before releasing the VM at the source. Hines et al. [24] introduces the

post-copy approach, which transfer the memory of a VM after its processor state is sent

to the target host. Unlike regular Xen-based migration, Bradford et al. [25] realizes VM

migration across wide-area network. While VM migration provides a lot of flexibility in

managing virtual machines, the effectives of VM migration-based solutions are limited

by the granularity of the VM instances.

4.4 VM Performance Analysis

Wang et al. [19] shows how granularity of virtual machines affects the

performance in cloud computing environments especially for computation-intensive

workloads. Based on their observations, they suggest that VM Malleability strategies can

be used to improve the performance for tightly-coupled computational workload. Wang

et al. [26] thoroughly investigates the impact of VM configuration strategies such as

virtual CPUs and the memory size. They conclude tightly-coupled computational

workloads are sensitive to the total number of VMs, and vCPUs per VM, and the

memory size. It is a useful reference to VM management strategies and we will use their

results in our research to fine-tune the performance of VMs.

 39

5. Discussion

5.1 Conclusion

In this thesis, we have presented solutions to two categories of computation

intensive applications: i.e., (1) Moderately computation-intensive applications, which

takes more than 10 seconds to process on a single smartphone, (2) Extremely

computation-intensive applications, which takes a few minutes to a few hours to process

on a single smartphone.

 For the first category of application, we have proposed a model-based task

offloading method using runtime profiling, which predicts the total processing time

based on a simple linear model and offloads a task to a single server depending on the

current performance of the network and the server. Since this model’s simplicity greatly

reduces the profiling cost at run-time, it enables users to start using an application

without pre-computing a performance profile. Using our method, the performance of

face detection for an image of 1.2Mbytes improved from 19 seconds to 4 seconds.

For the second category, we have presented a middleware framework, the Cloud

Operating System (COS), as a back-end technology for smartphones. COS implements

the notion of virtual machine (VM) malleability to enable cloud computing application

to effectively scale up and down. Through VM malleability, virtual machines can

change their granularity by using split and merge operations. We accomplish VM

malleability efficiently by using application-level migration as a reconfiguration strategy.

While VM migration does not require any knowledge of the guest Operating System or

applications, our current VM malleability implementation requires migratable

applications; however, this approach is still more general than common programming

patterns such as MapReduce. Our experiments with a tightly-coupled computation show

that a completely application-agnostic automated load balancer performs almost the

same as human-driven VM-level migration; however, human-driven application-level

migration outperforms (by 14% in our experiments) human-driven VM-level migration.

This result is promising for future fully automated cloud computing resource

management systems that efficiently enable truly elastic and scalable workloads.

 40

We hope COS to be operated in a large data center someday, accept SALSA

actors from a lot of smartphones to solve complicated tasks, and give a good experience

to users.

5.2 Future Work

For Light-weight Adaptive Task Offloading: In the future, we plan to apply our

method to other applications to confirm the generality of the method. Candidate

applications include but not limited to real-time face detection for video and real-time

rendering of CFD (Computational Flow Dynamics). The face detection for video is a

natural enhancement of the example we have done this time and is also expected to be

pretty computationally intensive since we need to detect faces at very high frequency.

Face recognition (comparing detected faces to a DB of images) is even more intensive in

terms of computation and data requirements, and therefore it requires our task offloading

approach to be practical. CFD is known as one of the most computationally intensive

applications in general. Running CFD on smartphones sounds too complex, but it might

be useful for games in terms of creating realistic motion of fluids and interaction with

them. Another direction of enhancement could be on the server side. If an nVidia’s or an

AMD’s graphics card is available on a server computer, we could utilize the GPUs by

using CUDA or OpenCL and speed the process up greatly. We could also utilize tablets,

such as Apple’s iPad and Android Tablets, as servers since nowadays they use fast

multicore processors. Offloading can also occur from a tablet to a server or a cloud.

Cloud computing is suitable for task offloading purpose as well because it can provide

great scalability in performance and give virtually infinite computing resources. Latency

between a smartphone and clouds would vary depending on the location of the

smartphone; therefore, light-weight adaptation on the smartphone shown in this paper

would be critical. Using an actor-oriented programming language such as SALSA [2] is

one way of implementing dynamically reconfigurable smartphone applications. In

SALSA programming, an actor is the unit of execution. Consequently, an application

written in SALSA is natively partitioned as a collection of actors and is suitable for

dynamic partioning of the application at run-time. One research direction is to enhance

 41

the model presented in this paper to support dynamic partioning using SALSA while

keeping the model light-weight.

For Middleware for Autonomous Virtual Machine Malleability: We plan to

keep working to improve the performance of autonomous actor migration. Also, in the

future, we would like to support hybrid cloud model in COS to utilize the computing

resource of public clouds such as Amazon EC2 and also develop a model to accept

policies such as time-constrained, energy-constraint, and budget-constraint policy. It is

also beneficial to support more fine-grained resource management in COS by

configuring the number of vCPUs and the memory size of VMs. That will enable COS

to control the performance and cost consumption more efficiently.

 42

LITERATURE CITED

[1] K. Don (2011, September 1). 40 Percent of U.S. Mobile Users Own Smartphones;

40 Percent are Android [Online]. Available: http://blog.nielsen.com/

nielsenwire/online_mobile/40-percent-of-u-s-mobile-users-own-smartphones-40-

percent-are-android/. (Date Last Accessed on October 31, 2011).

[2] C. Varela and G. Agha, “Programming dynamically reconfigurable open systems

with SALSA”, OOPSLA ’01: SIGPLAN Notices. ACM Object Oriented

Programming Languages, Syst. and Applicat. Intriguing Technology Track Proc.,

vol. 36, no. 12, pp.20–34, Dec. 2001.

[3] C. Wang and Z. Li, “A computation offloading scheme on handheld devices”, J.

Parallel and Distributed Computing, vol.64, no.6, pp.740-746, June 2004.

[4] M. Satyanarayanan et al., “The case for VM-based cloudlets in mobile computing”,

IEEE Pervasive Computing, vol. 8, no.4, pp.14-23, 2009.

[5] B. Chun et al., “CloneCloud: elastic execution between mobile device and cloud”,

in Proc. 6th European Conf. Comput. Syst., Salzburg, Austria, 2011, pp.301-314.

[6] S. Imai and C. A. Varela, “Light-weight adaptive task offloading from

smartphones to nearby computational resources”, in Proc. 2011 Research in Appl.

Computation Symp., Miami, FL, 2011, pp.146-151.

[7] Willow Garage. (2011, August 24). OpenCV [Online]. Available:

http://opencv.willowgarage.com/wiki/. (Date Last Accessed on 10/31/2011).

[8] Y. Niwa (2011, April 17). Using OpenCV on iPhone [Online]. Available:

http://niw.at/articles/2009/03/14/using-opencv-on-iphone/en/. (Date Last Accessed

on 10/31/2011).

[9] M. Armbrust et al., “Above the clouds: A Berkeley view of cloud computing,”

EECS Department, University of California, Berkeley, CA, Tech. Rep.

UCB/EECS-2009-28, Feb. 2009.

[10] P. Barham et al., "Xen and the art of virtualization", in Proc. 20th ACM Symp.

Operating Syst. Principles, Lake George, NY, 2003, pp.164-177.

[11] E. L. Haletky, VMware ESX Server in the Enterprise: Planning and Securing

Virtualization Servers. Upper Saddle River, NJ: Prentice Hall, 2008.

 43

[12] RightScale. Cloud Computing Management Platform by RightScale [Online].

Available: http://www.rightscale.com/. (Date Last Accessed on 10/31/2011).

[13] Amazon Web Services. Auto Scaling – Amazon Web Services [Online]. Available:

http://aws.amazon.com/autoscaling/. (Date Last Accessed on 10/31/ 2011).

[14] C. P. Sapuntzakis et al., "Optimizing the migration of virtual computers", in Proc.

5th USENIX Symp. Operating Syst. Design and Implementation, Boston, MA,

2002, pp.377-390.

[15] C. Clark et al., "Live Migration of Virtual Machines", in Proc. 2nd USENIX

Networked Syst. Design and Implementation, Boston, MA, 2005, pp.73-286.

[16] J. G. Hansen and E. Jul, "Self-migration of operating systems", in Proc. 11th ACM

SIGOPS European Workshop, Leuben, Belgium, 2004, pp.126-130.

[17] T. Wood et al., "Sandpiper: black-box and gray-box resource management for

virtual machines", Comput. Networks, vol. 53, no. 17, pp. 2923–2938, Dec. 2009.

[18] T. J. Desell et al., "Malleable applications for scalable high performance

computing", Cluster Computing, vol. 10, no.3, pp.323-337, 2007.

[19] P. Wang et al., "Impact of virtual machine granularity on cloud computing

workloads performance", in Proc. 11th IEEE/ACM Int. Conf. Grid Computing,

Brussels, Belgium, 2010, pp.393-400.

[20] G. Agha, Actors: A Model of Concurrent Computation in Distributed System.

Cambridge, MA: MIT Press, 1986.

[21] K. E. Maghraoui et al., “The internet operating system: middleware for adaptive

distributed computing,” Int. J. High Performance Computing Applicat., Special

Issue Scheduling Techniques for Large-Scale Distributed Platforms, vol. 20, no. 4,

pp.467-480, 2006.

[22] E. Cuervo et al., “MAUI: making smartphones last longer with code offload”, in

Proc. 8th Int. Conf. Mobile Syst., Applicat., and Services, San Francisco, CA, 2010,

pp.49-62. R. K. Balan et al., “The case for cyber foraging”, in Proc. 10th ACM

SIGOPS European Workshop, Saint-Emilion, France, 2002, pp.87-92.

[23] Y. Su, and J. Flinn, “Slingshot: deploying stateful services in wireless hotspots”, in

Proc. 3rd Int. Conf. Mobile Syst., Applicat., and Services, Seattle, WA, 2005,

pp.79-92.K. E. Maghraoui et al., “Malleable iterative MPI applications",

 44

Concurrency and Computation: Practice and Experience, vol. 21, no. 3, pp.393-

413, Mar. 2009.

[24] M. R. Hines and K. Gopalan, "Post-copy based live virtual machine migration

using adaptive pre-paging and dynamic self-ballooning", in Proc. 2009 ACM

SIGPLAN/SIGOPS Int. Conf. Virtual Execution Environments, Washington, DC,

2009, pp.51-60.

[25] R. Bradford et al., "Live wide-area migration of virtual machines including local

persistent state", in Proc. 3rd Int. Conf. Virtual Execution Environments, San

Diego, CA, 2007, pp.169-179.

[26] Q. Wang and C. A. Varela, “Impact of cloud computing virtualization strategies on

workloads’ performance”, in Proc. 4th IEEE/ACM Int. Conf. Utility and Cloud

Computing, Melbourne, Australia, 2011, pp.130-137.

