
MIDDLEWARE FRAMEWORK FOR
DISTRIBUTED CLOUD STORAGE

By

Matthew B. Hancock

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Major Subject: COMPUTER SCIENCE

Approved by the
Examining Committee:

Carlos Varela, Thesis Adviser

Christopher Carothers, Member

Ana Milanova, Member

Rensselaer Polytechnic Institute
Troy, New York

April 2015
(For Graduation May 2015)

CONTENTS

LIST OF TABLES . iv

LIST OF FIGURES . v

ACKNOWLEDGMENT . vi

ABSTRACT . vii

1. INTRODUCTION . 1

1.1 Motivation . 1

1.2 Structure of Thesis . 2

2. CLOUD STORAGE PROVIDER LIMITATIONS 3

2.1 Increased Cost . 3

2.2 Limited Bandwidth . 4

2.3 Decreased Security . 4

2.4 Unpredictable Availability . 4

3. CONCURRENT CLOUD STORAGE MODEL 6

3.1 Python with Cloud Storage . 6

3.1.1 Diverse User Base . 6

3.1.2 Ease for Developers . 6

3.2 Expandable Framework . 7

4. DISC . 10

4.1 Approach . 10

4.2 User Policy Model . 11

4.2.1 Millionaire Policy . 11

4.2.2 Security Policy . 11

4.2.3 Availability Policy . 12

4.2.4 Budget Policy . 14

4.2.5 Low Replication Policy . 14

4.3 Data Throughput Management . 15

4.3.1 Approach . 15

4.3.2 Throughput Model . 16

ii

4.3.3 Migration Procedure . 17

4.3.3.1 Migration Rules . 17

5. APPLICATION AND EXPERIMENTAL RESULTS 19

5.1 Experiment Setup . 19

5.2 Initial Experimental Results . 20

5.3 Experimental Results . 21

5.3.1 Case 1 - Security Minded . 21

5.3.2 Case 2 - Availability Minded 23

5.3.3 Case 3 - Budget Minded . 25

5.3.4 Case 4 - Scaling File Size . 27

5.3.5 Case 5 - Bandwidth Bottleneck 28

5.3.6 Case 6 - Using a Manager . 29

6. RELATED WORK . 33

6.1 RACS . 33

6.2 HAIL . 33

6.3 Hybrid Cloud Storage . 34

7. DISCUSSION . 35

7.1 Conclusion . 35

7.2 Future Work . 36

LITERATURE CITED . 37

iii

LIST OF TABLES

2.1 Storage Providers Statistics as of 2014 3

3.1 Lines of Code Comparison . 7

iv

LIST OF FIGURES

3.1 Pseudo Code for Driver Class . 8

3.2 Pseudo Code for Abstracted Base Storage Class 8

4.1 DISC File Distribution . 10

4.2 Splitting a File Using Security Policy 12

4.3 Availability Policy Experiment . 13

4.4 Comparison of Replication Processes . 15

4.5 Manager Model . 16

4.6 Migration Procedure Model . 17

5.1 Uploading Using a Single Provider . 20

5.2 Downloading Using a Single Provider 20

5.3 Security Minded Policy Uploading . 22

5.4 Security Minded Policy Downloading 22

5.5 Availability Minded Policy Uploading 24

5.6 Availability Minded Policy Downloading 24

5.7 Budget Minded Policy Uploading . 26

5.8 Budget Minded Policy Downloading . 26

5.9 Upload Time Saved with DISC . 27

5.10 Varying Number of Cloud Providers . 29

5.11 Data Throughput Uploading . 30

5.12 Time Difference Between Extreme Ranges 31

v

ACKNOWLEDGMENT

I would like to thank my advisor, Professor Carlos A. Vaerla, for his time and effort

in supervising my research. His availability and willingness to discuss has made

this a great learning experience. Many thanks to the colleagues I have worked with

at the Worldwide Computing Lab and to those that have given me support and

advice throughout this journey. Lastly and most importantly, a great thanks to the

support of my family for their everlasting encouragement.

vi

ABSTRACT

The device people use to capture multimedia has changed over the years with the

rise of smartphones. Smartphones are readily available, easy to use and capture

multimedia with high quality. While consumers capture all of this media, the stor-

age requirements are not changing significantly. Therefore, people look towards

cloud storage solutions. The typical consumer stores files within a single provider.

They want a solution that is quick to access, reliable, and secure. Using multiple

providers can reduce cost and improve overall performance. We present a middle-

ware framework called Distributed Indexed Storage in the Cloud (DISC) to improve

all aspects a user expects in a cloud provider. The consumer provides the middle-

ware files, which get processed through user policies, and stored within the cloud.

The process of uploading and downloading is essentially transparent. The upload

and download performance happens simultaneously by distributing a subset of the

file across multiple cloud providers that it deems fit based on policies. Reliability

is another important feature of DISC. To improve reliability, we propose a solu-

tion that replicates the same subset of the file across different providers. This is

beneficial when one provider is unresponsive, the data can be pulled from another

provider with the same subset. Security has great importance when dealing with

consumer’s data. We inherently gain security when improving reliability. Since the

file is distributed using subsets, not one provider has the full file. In our experiment,

performance improvements show when delivering and retrieving files compared to

the standard approach. The results are promising, saving upwards of eight seconds

in processing time. With the expansion of more cloud providers, the results are

expected to improve.

This abstract is to appear in: M. B. Hancock and C. A. Varela, “Augmenting Performance

For Distributed Cloud Storage,” in Proc. of the IEEE/ACM 15th Int. Symp. on Cluster, Cloud

and Grid Computing, 2015.

vii

1. INTRODUCTION

1.1 Motivation

The mobile phone market has continued to grow rapidly with no indication of

slowing down. Followed by browsing the web, the most popular features on a smart-

phone are the camera and video capabilities. The storage space on a smartphone to

hold these multimedia files is very limiting compared to a computer or cloud stor-

age. This limitation influences users to look toward cloud storage options. Social

psychologists looked at why cloud storage is growing in popularity [1]. They note

the simplicity and ease of use, the ability to share and communicate with friends,

and the availability of their files from anywhere with an internet connection. These

features empower a user to be more productive.

Cloud storage is great on paper, but has its own limitations as well. Files

stored with a cloud provider are susceptible to compromised security, have poor

network performance during the upload or download process, and are only accessible

when the provider is operating. The problem that arises is how can we produce a

more secure, more efficient, and fault tolerant approach while using multiple storage

providers and leveraging a concurrent model. A distributed cloud storage approach

provides an elegant solution that is transparent to the user.

There are a number of techniques that tackle only a portion of the cloud

provider’s shortcomings [2]. The majority of these techniques are geared toward

the enterprise market, not allowing the consumer market to take advantage of the

technologies. We introduce a middleware framework we call Distributed Index Stor-

age in the Cloud (DISC). The main backbone behind DISC is a set of user defined

policies that enable DISC to operate differently and accommodate various user pref-

erences. The various user policies respectively tackle the shortcomings depending

on a certain budget, amount of security, and availability a user requires.

1

1.2 Structure of Thesis

The structure of this thesis is as follows: In Chapter 2, we begin with an

overview of Cloud Storage Providers and their drawbacks. Following in Chapter 3,

we introduce the concurrent model for cloud storage and how it is used within this

framework. In Chapter 4, we take a look at how to combine cloud storage and how to

intelligently process the data through user policies. Next in Chapter 5, we examine

our approach through different case scenarios with various storage providers. In

Chapter 6, we review some related work being done in this field. Lastly, Chapter 7

will recap and discuss some future work to conclude this thesis.

2

2. CLOUD STORAGE PROVIDER LIMITATIONS

Users by nature see cloud storage as a means for reliable backups, sharing of data,

twenty-four hour access, and synchronization across multiple devices. As seen in

Table 2.1, a typical free account offers a small amount of storage space. Many users

have accounts with multiple providers to avoid paying for more storage space. Uti-

lizing a single cloud provider’s resources proves to have many drawbacks: increased

cost, limited bandwidth, decreased security, and unpredictable availability.

Table 2.1: Storage Providers Statistics as of 2014

Source Free Storage Paid Storage

Dropbox [3] 2GB 1TB $9.99/month

Box [4] 10GB 100GB $10.00/month

Google Drive [5] 15GB
100GB $1.99/month

1TB $9.99/month

One Drive [6] 15GB

100GB $1.99/month

200GB $3.99/month

1TB $6.99/month

2.1 Increased Cost

The key reason to use cloud storage is the amount of extra space it provides.

However, the provided free accounts are well below the sufficient amount of space

needed to store files. On average, one photo requires 5MB of disk space [7] and a

three-minute high-definition video requires 500MB [8]. Multimedia files are among

the most popular to be stored in the cloud because they provide hassle free backup

and easy sharing capabilities. Depending on the type and quantity of data, paid

accounts are necessary for cloud storage to be of any service, by increasing storage

This chapter is to appear in: M. B. Hancock and C. A. Varela, “Augmenting Performance

For Distributed Cloud Storage,” in Proc. of the IEEE/ACM 15th Int. Symp. on Cluster, Cloud

and Grid Computing, 2015.

3

space. Budget must now be considered when using cloud storage. In Table 2.1, we

see that the paid accounts can be costly year-over-year. The demand to increase

communication bandwidth and maintenance to cushion the impact of occasional

outages, add yearly costs. As demands increase, it is likely cost will follow [9].

2.2 Limited Bandwidth

A major source of performance problems for cloud services is the communi-

cation time between the client computer and the web server in the cloud [9]. The

bandwidth to upload or download files from the cloud are throttled to help improve

overall performance among all active users. For instances, a user has 1.5GB of data

stored with Dropbox who throttles the network bandwidth to 1.5MB/s. This would

require 17.06 minutes assuming full bandwidth throughout the entire download pro-

cess. Chapter 4 describes how a user’s local network can be fully utilized through

DISC and its concurrent cloud approach.

2.3 Decreased Security

Storage providers are getting hacked more frequently than ever before. With

many enhancements in the security and firewall protection, simple attacks like phish-

ing or brute force can lead to unauthorized access to millions of user’s sensitive in-

formation. Many attacks are blocked, but a few are granted unauthorized access to

user accounts and files. Storing all files in one location, in an unencrypted form for

some providers, shows to be a security flaw. In Chapter 4, we propose an approach

to tackle this exact problem for those security-minded users.

2.4 Unpredictable Availability

There are two kinds of outages known as permanent and temporary. A perma-

nent outage is when a cloud provider goes out of business while a temporary outage

occurs when the cloud provider is unavailable for a span of time [9]. This thesis

refers to temporary outages.

Twenty-four hour access is the ideal expectation, but unanticipated errors and

outages are likely to occur. The availability of cloud storage includes persistent

4

runtime and recovery. High availability is needed to ensure application quality of

service (QoS) [10]. A simple outage can occur from a network problem or a database

corruption problem. Both cases prevent a user from accessing or creating new files.

During one incident in August 2014 [11], Microsoft encountered a problem with their

Visual Studio Online Service that resulted in five-and-a-half hours of outage time.

This instance hinders users’ productivity worldwide. Throughout Chapter 4, we see

how fault tolerance is used to recover during a service outage or a file corruption.

5

3. CONCURRENT CLOUD STORAGE MODEL

Combining storage providers, as if they are one unit, can provide an elegant solu-

tion and mitigate many of the limitations. Concurrent cloud storage is defined as

accessing and processing data through multiple cloud storage providers in parallel.

Throughout the various test cases in Chapter 5, we will see that this concurrent

model performs better when more storage providers are linked.

3.1 Python with Cloud Storage

The benefits for using Python in developing the concurrent cloud storage is

the large user base that Python can run on and the ease for developers to configure

this framework to their needs.

3.1.1 Diverse User Base

Cloud storage is used throughout all industries from the consumer to the

enterprise markets. The framework had to be built on a language that is capable of

performing well for network performance as well as run on most machines. Whether

it is a Windows, Mac, or Linux, Python can be run on these platforms. In addition

to compatibility with the machine software, the framework had to interface well

with currently existing public clouds. Table 2.1 lists a few public cloud providers

that interface well with Python. Considering these requirements, Python proved to

be a reasonable choice.

3.1.2 Ease for Developers

There are multiple languages that allow concurrent processes such as Python,

Ruby, and Java. Among the ones listed, Java is the most popular, but more cum-

bersome to develop with. Python is the next to follow, increasing year-over-year

in popularity. With its less complex development, allowing shorter lines of code,

Python is a suitable solution for creating a concurrent model.

6

Table 3.1: Lines of Code Comparison

Source Language Lines of Code

Dropbox

Python 30

Ruby 30

Java 54

Google Drive

Python 37

Ruby 41

Java 57

Table 3.1 compares the lines of code for a simple upload and download appli-

cation written for two storage providers in three languages. Python shows to be the

shortest lines of code to develop, making it easier to maintain for future updates.

3.2 Expandable Framework

There are many choices that exist to store files, whether in a private cloud or a

public cloud. The framework needs to accommodate both types. The best approach

to achieve this is through abstracted classes. The base class or the parent class, holds

common information that all storage types will need such as any required functions.

Each separate storage provider will need its own class, holding specific information.

Using abstracted classes allows the driver class to call the same functions, where

each function performs a different procedure. The relationship between classes is

shown in Figures 3.1 and 3.2 with some pseudo code.

7

def main(arguments):
initializing all storages and execute login function
services = []
services.append(DropboxStorage())
services.append(GoogleStorage())
services.append(...)

create user profile and run the input file
through the policies to get newly created files
user = UserPolicies()
fileNames = user.<policy>

start all services
for service in services:

service.setupProcedure(...)
service.start()

wait for all threads to finish
for service in services:

service.join()

Figure 3.1: Pseudo Code for Driver Class

class BaseStorage(threading.Thread):
 def __init__(self):

 # initialize the thread
 super(BaseStorage, self).__init__()

 def setupProcedure(self, upload, args):
 # prepare execute command

 def executeProcedure(self):
 # call specified command

 @abstractmethod
 def login(self):

 pass

 @abstractmethod
 def setupLogin(self):

 pass

 @abstractmethod
 def upload(self, fileLocation):

 pass

 @abstractmethod
 def download(self, fileLocation):

 pass

Figure 3.2: Pseudo Code for Abstracted Base Storage Class

8

In Figure 3.1, note that both classes DropboxStorage() and GoogleStorage()

are child classes from their parent BaseStorage. Each storage provider is initialized

through the setupProcedure method where the execute statement is setup using a

command and its arguments. When the thread is started, the executeProcedure

function is called. It is quite easy to add new storage providers by simply creating

a new child class and adding the new class to the array services[].

Looking at Figure 3.2, any child class must override any function tagged as

@abstractmethod. All children inherently call the setup and execute functions due

to the abstracted classes. Due to inheritance, there is less code for developers to

write and handle, which makes it simpler to expand the list of cloud providers.

9

4. DISC

4.1 Approach

We developed Distributed Indexed Storage in the Cloud (DISC) to be an

expandable framework that follows the concurrent model for communicating and

interfacing with cloud storage providers.

Public Cloud

Public Cloud

Private Cloud

Middleware Framework
for Cloud Storage

 User
 Files

Figure 4.1: DISC File Distribution

With each given file, DISC will follow a set of user policies to mitigate some

limitations to using a single cloud storage provider. Security concerns can be re-

solved through splitting a file on a byte level. Space constraints can be tackled

through compression and low replication. Increased availability can be achieved by

separating images on a pixel level. These policies can be used to configure how

DISC works for different scenarios and preferences.

This chapter is to appear in: M. B. Hancock and C. A. Varela, “Augmenting Performance

For Distributed Cloud Storage,” in Proc. of the IEEE/ACM 15th Int. Symp. on Cluster, Cloud

and Grid Computing, 2015.

10

4.2 User Policy Model

This section looks at several user policies that can be used with DISC to create

a more dynamic model. These policies include: millionaire, security, availability,

budget, low replication, or a combination.

4.2.1 Millionaire Policy

Users want to access their files one-hundred percent of the time. However,

this does not come without a cost involved. This model is based on a user who

is willing to spend extra money in return for more space. With the extra space,

we replicate the files across all cloud storage providers. Higher replication increases

the probability the requested file will be accessible from one of the n providers. In

Figure 4.4, we visually compare the differences between full replication and partial

replication.

4.2.2 Security Policy

Moving data from the local source to a public cloud opens the possibility for

data to be vulnerable and intercepted during transfer. DISC takes an approach

where every ith byte is stored with a different cloud provider. Splitting a file is

determined using the following equation:

CSPi = Fbyte, i = Fbyte mod CSPtotal (4.1)

This controls which byte of the original file Fbyte is stored with which cloud storage

provider CSPi. Each byte location is calculated based on the total number of cloud

storage providers CSPtotal. Figure 4.2 gives a visual representation of how DISC

splits a file based on equation 4.1.

11

Bytes of a file

1 2 43 5 9876

1-4-7 2-5-8 3-6-9

Figure 4.2: Splitting a File Using Security Policy

When unauthorized access occurs, the hacker is typically able to open and

view the files. However, DISC creates equal size files that are unreadable as separate

entities. Only when combined in the correct order is the original file again readable.

4.2.3 Availability Policy

Performance is an important factor to the user experience. To improve perfor-

mance, a file must be split into multiple files now rendering each split file unreadable.

The availability policy separates the files, similar to 4.1, while creating usable and

viewable partitions. This policy currently only works with image files. Figure 4.3

shows an experiment using two cloud providers implementing the availability policy.

12

Even Pixels

Odd Pixels

Original Image Combined Image

Figure 4.3: Availability Policy Experiment

Taking the even and odd pixels from the original image creates two new images.

The user will always see the combined image when both providers are operating. In

case one provider fails to operate, the image is still viewable in its original aspect-

ratio. To achieve the same aspect-ratio, we replace unreachable portions of the

image with pixels in close proximity. To improve performance, we do not calculate

an average between two pixels, but rather simply replace the lost data with an exact

replica from a different portion. As seen in the experiment above, if the even pixels

were lost, the odd pixels would be duplicated to fill in lost pixels outputting a correct

aspect-ratio.

Increasing the total number of cloud providers will produce better results. In

most cases, only one provider will be nonfunctional. Simple math shows that as

the denominator approaches infinity, the viewable image approaches one-hundred

percent. The percentage P of viewable image can be determined with the following

equation where CSPonline is the number of operating providers:

P =
CSPonline

CSPtotal

× 100 (4.2)

13

For example, five cloud providers with one not operating, results in eighty percent

of the original image with the lost pixels duplicated by an adjacent set of pixels.

4.2.4 Budget Policy

More storage space is available, but only at a premium cost. This policy

tackles the problems for a user with limited space. DISC will compress the file until

reaching a specified tolerance. Document files cannot be compressed significantly,

so we look to compress multimedia files. With each compression, DISC will alter

the file size by half. This results in the image width and height dimensions to be

a quarter smaller. Unlike other policies, this results in a permanent file reduction.

There is no reason to uncompress and return the original image.

4.2.5 Low Replication Policy

Rather than replicating the files among all storage providers, this policy cal-

culates the number of replicas to create using a subset of the total storage providers.

Replication is a valuable feature, but their budget may be constrained. We can now

increase the probability the file is accessible, while reducing the total storage space.

The number of replicas R is determined using the following equation:

R =
⌊
CSPtotal − 1

l

⌋
(4.3)

The file must be stored in at least one location. Therefore, we subtract one from the

total cloud providers since we cannot make a replica on the same storage provider.

In the equation, l is the level describing how important replication is to the user.

A lower number will produce more replicas while a higher number will reduce the

number of replicas. Figure 4.4 gives a comparison between the millionaire policy

and the low replication policy.

14

1 2 3

A

B

C

Storage Providers

1 2 3

A

B

C

Storage Providers

Figure 4.4: Comparison of Replication Processes

Figure 4.4 represents the final result from replication using the millionaire

policy (left) versus the low replication policy with l = 2 (right). There are three

files labeled A, B, C that need to be stored among three storage providers.

Replication among multiple storage providers has benefits that users find im-

portant. A file can be accessed from a separate provider if one provider is experi-

encing an outage. When a corrupted file is detected, DISC can recover the file from

another provider. The more replications, the higher probability for accessibility and

recoverability. Although there is a cost for more storage, the user will gain more

replication through the millionaire policy. In contrast, the low replication policy

gives the benefits from replication with no additional cost.

4.3 Data Throughput Management

4.3.1 Approach

During an upload or download, bandwidth is constantly changing, which can

enhance or hinder the time taken to process the request. Using a feedback loop, we

can alter which cloud providers will receive more of the data and which will receive

less. After each iteration, calculations are performed to determine the throughput.

If the difference in throughput between cloud providers falls below a threshold, DISC

will alter the 1:1 ratio to be skewed. The cloud provider that performs better, will

receive more data to process while the contrasting provider receives less data. This

alteration will level out extreme cases where one cloud provider is performing poorly,

requiring excess throughput times. We use the models depicted in Figure 4.5 and

Figure 4.6 to manage and improve the changing bandwidth performance.

15

4.3.2 Throughput Model

Manager

File Queue

Internal
Variables

Thread-1

. . .

Methods

File Queue

Internal
Variables

Thread-2

Methods

File Queue

Internal
Variables

Thread-3

Methods

File Queue

Internal
Variables

Thread-N

Methods

Thread List Migration
Methods

Figure 4.5: Manager Model

Figure 4.5 depicts the structure of a Manager and its relationship with an

unknown number of cloud providers, shown as threads. Each cloud provider gets its

own thread container, encapsulating multiple pieces of information shown as a file

queue, internal variables, and methods. A file queue simply holds a list of filenames

to be uploaded or downloaded. The file queue is accessible to the Manager to allow

migration of files between threads. Internal variables keep track of information such

as number of files processed, time taken to process the file, and a Manager object.

All this information is accessible to the Manager, but cannot be changed outside

of the thread container. Lastly, there are multiple functions for populating the file

queue, calculating ratios, and private functions aiding in processing a file.

Supervising all these threads is a Manager. Within the Manager is a list of

threads and methods to facilitate the migration procedures. When downloading, the

Manager takes a proactive approach by predicting accurate forecasts of dynamically

changing performance characteristics from a distributed set of resources [13]. Using

prior statistics, we will upload data placing more files in storage providers that we

expect will download faster. In contrast, the Manager takes a reactive approach

16

during the upload process. We can use real-time information rather than predicting

changing performance. The Manager is called upon, each time a file is processed.

At this time, statistics from each thread are gathered followed by calculations to

determine whether one cloud provider should gain or lose a file. To improve per-

formance, there are three times as many files as cloud providers. The extra files,

which are of equal size, allow the Manager to detect early on if one cloud provider

has slow performance which will cause a migration procedure to occur.

4.3.3 Migration Procedure

A migration procedure is the process of altering the responsibility of a cloud

provider by removing one file from the file queue and transferring this file to another

file queue for a different thread. A migration only occurs if the migration rules are

satisfied.

My thread
has the

lowest time

Files
Processed
0 to 1

Ratio is
greater
than the
tolerance

Files
Processed
0 to 2+

No Change Migrate

 User
 File Manager

Processed File

Thread A

Thread B Thread C

Thread D

Migration
Rules

Pass ratios

Process Next Request

Figure 4.6: Migration Procedure Model

4.3.3.1 Migration Rules

As seen in Figure 4.6, there are four migration rules that help determine if a

migration should occur or keep all threads unchanged. These decisions are based

on two statistics stored within each thread. These statistics include the number of

files processed and the time taken to process the most recent file. We use the most

recent file as it best represents the thread’s performance.

17

There are two scenarios that cause the Manager to leave all thread containers

unchanged. The first occurs when the thread with the lowest processing time and

the thread that called the Manager, are the same. No improvements can be made

knowing that thread is performing the fastest. This will more likely occur when

threads start to exit as the duration of the program increases. The next scenario

uses statistics from the number of files processed. Completing a file increases the

number of files processed by one. However, if the lowest number of files processed

is zero, there is not enough information to give a good indication that the other

provider is performing slowly. From this information, we can only infer that the

thread finished first and the other threads may or may not finish close behind.

File migration occurs during two similar scenarios. The first scenario leverages

the time taken to process the most recent file from each thread. The minimum time

among all threads is compared to the time taken from the thread who called the

Manager. The difference between these two times must be greater than a tolerance

level. This tolerance level is set at 1.5 seconds. It is not advantageous to migrate if

the difference is too small. The next scenario occurs when the lowest number of files

processed is zero and the thread that called the Manager has completed processing

two or more files. In contrast to before, we can confidently say we need to migrate.

Having a 0:2+ ratio means one provider has completed two files in the same time

another provider has completed zero. This is a strong indication that one provider

is operating at a subpar performance.

These rules are used to determine when and where to migrate a file. With

constant changes in bandwidth performance, we can now improve the time taken to

process files in either the upload or download process.

18

5. APPLICATION AND EXPERIMENTAL RESULTS

5.1 Experiment Setup

In the multiple experiments for uploading and downloading files, we use two

public clouds Dropbox and Google Drive. The computer is connected via WiFi

802.11n. The network performance is tested as 68.86Mbps download and 12.45Mbps

upload. It is important to note, with high local network speeds, some public clouds

throttle this speed.

Throughout the various tests, we use a 20.9MB image file. The purpose for a

high resolution image is to compare overall quality with performance of splitting or

rescaling the image. Rescaling an image is tackled using the Python library, scikit-

image [12]. We have two instances of Dropbox and two instances of Google Drive

during the experiment.

A portion of this chapter is to appear in: M. B. Hancock and C. A. Varela, “Augmenting

Performance For Distributed Cloud Storage,” in Proc. of the IEEE/ACM 15th Int. Symp. on

Cluster, Cloud and Grid Computing, 2015.

19

5.2 Initial Experimental Results

Uploading Using a Single Provider
Ti

m
e

(s
ec

)

0

4.8

9.6

14.4

19.2

24

Upload Time Total Time

22.46522.178
19.35919.358

Dropbox
Google Drive

�1

Figure 5.1: Uploading Using a Single Provider

Downloading Using a Single Provider

Ti
m

e
(s

ec
)

0

2.8

5.6

8.4

11.2

14

Download Time Total Time

3.8453.572

7.5047.504

Dropbox
Google Drive

�1

Figure 5.2: Downloading Using a Single Provider

20

From Figures 5.1 and 5.2 respectively, we now have starting data for the

amount of time it takes to interface with the public cloud providers. The first

set of column bars is the time to upload or download the image file. The second

set of column bars is the complete time which includes the login process, uploading,

and stopping the thread. It becomes clear that the time taken to login and create

or destroy a thread is negligible.

We can see that both Dropbox and Google Drive do not behave similarly in

either experiment. Both cloud providers operate with similar performance during

the upload process. However, we can see a tremendous difference in the download

process concluding that cloud providers put more emphasis on download perfor-

mance. We also see Dropbox has a large range of download times. Factors for these

differences are not covered in this thesis, but is important information to consider.

5.3 Experimental Results

5.3.1 Case 1 - Security Minded

In this test experiment, we uploaded and downloaded the image file using the

security policy. Using Figure 5.3 and Figure 5.4, we can see the benefits and minor

drawbacks that result from this policy.

Notice that in both cases, the sequence in which each storage provider com-

pletes processing, occurs in no specific order. For this reason, the total upload or

download time is seen as the maximum time from all providers. We can see that

all instances require similar amounts of time to complete for downloading in Figure

5.4. However, one instance during the upload process took noticeably longer com-

pared to other instances. This could be caused by the bottleneck in bandwidth or

unknown circumstances with the cloud provider.

21

Ti
m

e
(s

ec
)

0

2

4

6

8

Dropbox 1
Google 1

Dropbox 2
Google 2

3.3983.8354.295
3.507

Total

1.996

4.565

Download

Creating  
Image

Ti
m

e
(s

ec
)

0

6

12

18

24

Dropbox 1
Google 1

Dropbox 2
Google 2

10.1849.776
13.506

7.912

Total

0.097

16.584

Upload

Splitting  
Image

Original Upload

22.465

Security Minded Policy Uploading

Security Minded Policy Downloading

Original Download

7.504

�1

Figure 5.3: Security Minded Policy Uploading

Ti
m

e
(s

ec
)

0

2

4

6

8

Dropbox 1
Google 1

Dropbox 2
Google 2

3.3983.8354.295
3.507

Total

1.996

4.565

Download

Creating  
Image

Ti
m

e
(s

ec
)

0

6

12

18

24

Dropbox 1
Google 1

Dropbox 2
Google 2

10.1849.776
13.506

7.912

Total

0.097

16.584

Upload

Splitting  
Image

Original Upload

22.465

Security Minded Policy Uploading

Security Minded Policy Downloading

Original Download

7.504

�1

Figure 5.4: Security Minded Policy Downloading

22

By altering the number of cloud providers, we can see how DISC benefits by

processing requests concurrently. Comparing Figure 5.3 with our initial experiment,

there is a 34.67% decrease in upload time. With this improved performance, we

were able to increase the level of security for each file. Comparing Figure 5.4 with

our initial experiment as well, there is a 12.56% decrease in download time. The

majority of this time is used to download all files. The process of correctly ordering

the files to reproduce the original file is very quick. Removing the amount of time

used for concatenating, we can see there is a 64.38% decrease in download time.

These results prove two aspects: We gain significant improvements in security and

upload performance. We also see a small improvement in download performance

with a significant increase in security.

5.3.2 Case 2 - Availability Minded

In this experiment, we uploaded and downloaded the image file using the

availability policy. Using Figure 5.5 and Figure 5.6, we can see the benefits and

drawbacks that result from this policy.

In both cases, there is a significant amount of time used to process the image.

Looking farther into the processing time, it is mostly occupied with saving the image

file. We can note again, that each storage provider completes its tasks, in no specific

order. This behavior is seen throughout all experimental tests. This test appears to

follow similar patterns as our initial experiment in Figure 5.1. Both Google instances

required twice as much time as Dropbox to complete their uploads.

23

Ti
m

e
(s

ec
)

0

6

12

18

24

Dropbox 1
Google 1

Dropbox 2
Google 2

14.767

7.134

15.933

8.046

Total

2.288

16.262
Upload

Splitting  
Image

Ti
m

e
(s

ec
)

0

4

8

12

16

Dropbox 1
Google 1

Dropbox 2
Google 2

2.064

5.314
2.845

5.265

Total

9.820

6.103

Download

Creating  
Image

Original Upload

22.465

Availability Minded Policy Uploading

Original Download

7.504

Availability Minded Policy Downloading

�1

Figure 5.5: Availability Minded Policy Uploading

Ti
m

e
(s

ec
)

0

6

12

18

24

Dropbox 1
Google 1

Dropbox 2
Google 2

14.767

7.134

15.933

8.046

Total

2.288

16.262
Upload

Splitting  
Image

Ti
m

e
(s

ec
)

0

4

8

12

16

Dropbox 1
Google 1

Dropbox 2
Google 2

2.064

5.314
2.845

5.265

Total

9.820

6.103

Download

Creating  
Image

Original Upload

22.465

Availability Minded Policy Uploading

Original Download

7.504

Availability Minded Policy Downloading

�1

Figure 5.6: Availability Minded Policy Downloading

24

Removing the time required to process the image, we can see that DISC has

improved performance in the upload and download times. DISC is able to upload all

four images 38.14% faster and download the same four images 22.95% faster when

compared to the initial results in Figure 5.1 and Figure 5.2 respectively. Looking

at the total time required, upload time decreases by 16.36%. The Security Minded

experiment required much less time to split the image because it is working at the

byte level, producing four unviewable images. In this experiment, we are working

at the RGB level which preserves the three color values for each pixel. While this

process requires more time, roughly two seconds, is nonetheless fast. We see the

same observation with downloading the four images as in the upload experiment.

Of the total time, 61.67% of the that time is used for image processing resulting

in an increased download time of 112.20%. While this policy takes a small hit on

performance, it gains great improvements for the availability of the file.

5.3.3 Case 3 - Budget Minded

In this experiment, we uploaded and downloaded an image file using the bud-

get and security policies. The budget policy is used to rescale the image file and

the security policy splits the image into four equal parts so we can concurrently

upload and download the files. The budget policy removes a quarter pixels in each

dimension, width and height, resulting in a fifty percent file reduction. Therefore,

the new image is compressed to 10.9MB in size. Using Figure 5.7 and Figure 5.8,

we can see the benefits that result from combining these policies.

This policy requires image processing similar to the availability policy. In

contrast to the availability policy, rescaling the image requires significantly less

time. Looking at the individual download times, they appear to be more similar

than previous experiments. As download times decrease, all instances being to

complete in roughly the same time.

25

Ti
m

e
(s

ec
)

0

6

12

18

24

Dropbox 1
Google 1

Dropbox 2
Google 2

9.394

4.776
8.431

5.039

Total

8.366

9.656

Upload

Scaling  
Image

Total

1.098

2.471

Download

Combining  
Image

Original Upload

22.465

Original Download

4.127

Budget Minded Policy Uploading

Budget Minded Policy Downloading

Ti
m

e
(s

ec
)

0

1.25

2.5

3.75

5

Dropbox 1
Google 1

Dropbox 2
Google 2

2.1951.8722.204
1.597

�1

Figure 5.7: Budget Minded Policy Uploading

Ti
m

e
(s

ec
)

0

6

12

18

24

Dropbox 1
Google 1

Dropbox 2
Google 2

9.394

4.776
8.431

5.039

Total

8.366

9.656

Upload

Scaling  
Image

Total

1.098

2.471

Download

Combining  
Image

Original Upload

22.465

Original Download

4.127

Budget Minded Policy Uploading

Budget Minded Policy Downloading

Ti
m

e
(s

ec
)

0

1.25

2.5

3.75

5

Dropbox 1
Google 1

Dropbox 2
Google 2

2.1951.8722.204
1.597

�1

Figure 5.8: Budget Minded Policy Downloading

26

We see a linear decline in upload time based on file size. The total upload

time is roughly half the time compared to our initial experiments. Combined with

rescaling the image, we see a 18.74% decrease in upload time. This confirms that

rescaling the image does indeed save storage space and improves performance. We

see similar benefits in download time. It is expected that download time will improve

simply due to the smaller file size. However, total time includes the combining of

split files. Downloading and combining the image improves performance by 13.52%

compared with initial experiments. The budget policy combined with the security

policy proves to decrease storage space while improving performance.

5.3.4 Case 4 - Scaling File Size

1

0

50

100

150

200

250

300

350

20 100 200 300 400 500 600 700 800 900 1000

Ti
m

e
(s

ec
)

File Size (MB)

Upload Time Saved with DISC

Figure 5.9: Upload Time Saved with DISC

To explore how well DISC scales with larger file sizes, we compare the tradi-

tional single provider approach with DISC and the security policy. Figure 5.9 shows

the difference in upload time between using the single provider approach versus us-

ing DISC. We can note that, regardless of the file size, DISC will improve the upload

27

performance. File size and time saved have a positive linear correlation. DISC proves

to save upwards of three-hundred seconds when uploading one-thousand megabytes

of data.

5.3.5 Case 5 - Bandwidth Bottleneck

In this test experiment, we vary the number of cloud providers to determine

the most ideal setting for the most optimal performance. Using Figure 5.10, we can

see the affects of using too few cloud providers and too many cloud providers.

The time used to upload an image follows a parabolic pattern. Time continues

to decrease until its minimum point at eight cloud providers. With each addition

of a new cloud provider, each subsection of the original image decreases in size.

The decrease in size improves the upload time for each cloud provider. After the

minimum point, we begin to see an increase in upload time. Following the same

logic as before, each cloud provider should take less time to upload. However, we

run into a bandwidth issue. Even though each subsection has a smaller file size,

the bandwidth and computer cannot handle the large number of open connections.

The more connections open, the slower the performance is going to be. This is a

common problem when dealing with bandwidth.

The time needed to download the same files just uploaded, follow a similar

parabolic pattern. There is initially a steep slope, as seen in Figure 5.10, with fewer

providers. This is caused by the poor performance of Dropbox. With each addition

of a new provider, the file sizes decrease, allowing Dropbox to be comparable to

Google Drive in download time. At the minimum point in the graph, we begin to

see an increase in download time. With more connections open, the same problem

occurs here as it did with uploading.

28

Varying Number of Cloud Providers

Ti
m

e
(s

ec
)

2

5.6

9.2

12.8

16.4

20

Cloud Providers
0 10 20 30 40

Upload
Download

�2

Figure 5.10: Varying Number of Cloud Providers

Overall, we see the same parabolic patterns from both upload and down-

load. There is definitely a disadvantage using too few providers. Having too many

providers causes worse performance, but still better than a single cloud provider.

To achieve the best performance, we suggest to use six to ten providers.

5.3.6 Case 6 - Using a Manager

During this experiment, we run two tests using the security policy, with a

Manager and without a Manager. We ran four iterations of the test to best illustrate

how the Manager reacts to changing bandwidth performance. During each iteration

with a Manager, we note the number of files processed per cloud provider and the

total time to upload. With no Manager, there is no file migration so we only note

the total time to upload. In Figure 5.11, the number of files processed is marked on

the left and the total time to upload is marked on the right. Figure 5.12 illustrates

the maximum and minimum time reduction achieved when using a Manager.

First, the Manager is able to skew the number of files processed based on

the cloud provider’s performance. Comparing all four iterations, there is no way of

29

predicting which cloud provider will process how many files. We see in Figure 5.11,

how Google performs slow during one iteration, but performs well during a different

iteration. These sudden changes are caught and corrected by the Manager.

Focusing on the two lines above the bar graphs, the total time to process all

files is improved in all iterations. The varying times between using a Manager and

without a Manager will vary unpredictably as well. On average, we were able to

achieve 3.1 seconds decrease in total time compared to using no Manager. Imagine

uploading one gigabyte of files using DISC with a Manager. Saving 3.1 seconds on

20.9MB results in at least of three minutes improvement per gigabyte. Incorporating

a Manager into DISC shows how intelligently monitoring the data throughput and

reacting to the results will improve performance significantly.

Figure 5.11: Data Throughput Uploading

Using DISC without a Manager allowed for a huge range of total processing

times. One cloud provider has shown to finish over twice as fast as its counterpart.

30

The values in Figure 5.12 are calculated by taking the difference between the max-

imum and the minimum total processing times. The larger the difference, the more

time between two cloud providers completing. This difference is considered wasted

time. In an ideal scenario, zero seconds are wasted and all cloud providers require

the same amount of time to complete processing the file. By using a Manager and

migrating files between file queues, we can decrease the range in processing times

resulting in less wasted time.

We use the same four iterations from before to illustrate the decrease in pro-

cessing time. Three out of four cases have shown to save time with the addition

of a Manager. Iteration three is a good example of unpredictable bandwidth. The

reason for a Manager to perform slowly is due to a sudden increase or decrease in

bandwidth during a separate test.

Figure 5.12: Time Difference Between Extreme Ranges

Using a Manager has shown to improve aspects for file processing that directly

correlate to improved performance. The Manager migrates files between each cloud

provider leveraging a load-balancing model. Load-balancing has shown on average a

31

14.28% decrease in processing time, equating to roughly three minutes per gigabyte.

Most importantly, the Manager has shown to decrease the amount of wasted time

by narrowing the gap between the slowest and quickest cloud providers.

32

6. RELATED WORK

6.1 RACS

H. Abu-Libdeh et al. [14] prove cases where a customer is susceptible to vendor

lock-in. A lock-in is defined as being too costly to switch providers making them

a hostage to its current provider. This problem can increase costs and possible

data loss if their provider goes out of business. They propose a system known as

Redundant Array of Cloud Storage (RACS), a proxy to transparently redirect data

across multiple storage providers. In tangent with the RACS system, they leverage

a ZooKeeper to manage multiple RACS proxies.

While there are not any special alterations to the files being processed, they

do use erasure coding to mimic a RAID system. Experiments have shown RACS

to improve the time taken to retrieve and deliver files among RACS systems. The

most CPU expensive operation is encoding and decoding erasure codes. They do

not see this as a bottleneck initially until gigabit ethernet speeds can be achieved.

6.2 HAIL

K.Bowsers et al. [15] have worked on a system that takes a collection of servers

and proves to a client that their file is intact and retrievable. They have introduced

a system known as HAIL: A High-Availability and Integrity Layer for Cloud Storage.

HAIL follows similar patterns with RAID, but HAIL manages file redundancy across

cloud providers rather than local hard-drives.

HAIL uses a dispersal code to distributed each file block across n servers. File

blocks are grouped together in a sequential order, but through DISC, we grouped

file blocks using modulus as seen in our Security Policy. The dispersal code improves

the redundancy of a file. HAIL embeds a message-authentication code (MAC) into

the dispersal code. The MAC is only known to the client and is used to prove the

files integrity.

Through experiments, HAIL illustrates significant improvements in ensur-

ing availability and integrity. To achieve this, total processing times averages

33

around three-hundred seconds. Times increase linearly with each addition of a cloud

provider. Over fifty-percent of this time is for encoding and decoding the files.

6.3 Hybrid Cloud Storage

The enterprise market is highly concerned with security and privacy, forcing

them to look towards private cloud solutions. Kuo et al. [16] propose a hybrid cloud

storage architecture, known as Cloud Object Storage Appliance (COSA). COSA

excels when installed on resource limited devices to combine both private and public

cloud providers. The public cloud providers are used for backup of the private files.

Encrypting the files is required before sending to the public providers.

There are benefits to using a hybrid cloud compared with either a single public

or private provider. Storing the backup on public resources reduces the hard drive

space necessary on private clouds enabling less costly maintenance. Additionally,

COSA can provide high availability. Through their experiments, COSA is tested

with a private cloud service with two-hundred employees. The application was able

to serve its clients and handle enormous file objects.

34

7. DISCUSSION

7.1 Conclusion

Current approaches to cloud storage have shown to be inadequate, leveraging

only a single provider. Security vulnerabilities, poor performance, and unpredictable

reliability are some shortcomings to using a single provider. In this thesis, we have

shown a new framework and model to solve these shortcomings.

Knowing cloud providers throttle the bandwidth, we can leverage the con-

current cloud storage model to take full advantage of the local user bandwidth by

processing files concurrently. We have presented a middleware framework known as

Distributed Indexed Storage in the Cloud (DISC) that leverages this model. Creat-

ing an abstracted storage class structure is important in decreasing the amount of

work and time for developers to incorporate their own cloud service, whether public

or private. Cloud storage is used by a very heterogeneous collection of devices. The

choice of Python enables a wide range of devices to run this framework and leverage

what DISC has to offer. As a result of uncontrollable network speeds, we introduce

a Manager to tackle fluctuating bandwidth performance. Through the use of user

policies, every application is written and configured to process given files based on

the user preferences. During the experiments, we provide several test cases based

on various scenarios that replicate how a user might define their preferences. We

were able to strengthen security, improve reliability, and illustrate the benefits of a

Manager. Using the various policies, we can dramatically reduce the total processing

time upwards of eight seconds per twenty megabytes compared to single-provider

approaches.

Cloud storage has been commonly sought after as a primary resource to store

and share files. It is important to develop a user driven application through poli-

cies, while helping developers incorporate such a framework into currently existing

applications. We expect DISC will change the way we interface with cloud providers.

35

7.2 Future Work

We hope this new framework is incorporated into developers own cloud storage

applications. DISC has shown many significant enhancements to the cloud storage

model. Initially, we want to expand the cloud storage options beyond Dropbox and

Google Drive. Secondly, we want to take this framework to the mobile platform.

When a user is on their smartphone, they use 3G/LTE networks which result in

greater bandwidth fluctuations compared to WiFi. As described in this thesis, a

Manager is an excellent solution to improve performance on an already limiting

bandwidth. The User Policies illustrated throughout the thesis can ensure more

security and availability for the users files when on the go. Lastly, there are many

areas to improve how we upload video files. Video files can create enormous file sizes

that require a significant amount of processing time. We want to research expanding

our user policies to tackle this area of multimedia.

36

LITERATURE CITED

[1] “Why Cloud Storage is Growing in Popularity,” Available: http://
articles.bplans.com/why-cloud-storage-is-growing-in-use-and-popularity/
Accessed: Feb. 27, 2015.

[2] D. Slamanig, C. Hanser, “On Cloud Storage and the Cloud of Clouds
Approach,” in Proc. of the 7th Int. Conf. for Internet Tech. and Secured
Trans., 2012, pp. 649-655.

[3] Dropbox Inc., San Francisco, CA, USA, “Plans - Dropbox,” Available:
https://www.dropbox.com/plans/. Accessed: Dec. 29, 2014.

[4] Box Inc., Los Altos, CA, USA, “Plans and Pricing Box,” Available:
https://www.box.com/pricing/. Accessed: Dec. 29, 2014.

[5] Google Inc., Mountain View, CA, USA, “Buy and manage storage plans -
Drive help,” Available: https://support.google.com/drive/answer/2375123
Accessed: Dec. 29, 2014.

[6] Microsoft Inc., Redmond, WA, USA, “OneDrive Plans,” Available:
https://onedrive.live.com/about/en-us/plans/. Accessed: Dec. 29, 2014.

[7] “Number of pictures that can be stored on a memory device,” Available:
http://kb.sandisk.com/app/answers/detail/a id/69/ Accessed: Dec. 20, 2014.

[8] “Number of hours of Hi-Def Video that can be stored on a memory device,”
Available: http://kb.sandisk.com/app/answers/detail/a id/8407/ Accessed:
Dec. 20, 2014.

[9] W. Kim, S. Kim, E. Lee, S. Lee, “Adoption Issues for Cloud Computing,” in
Proc. of the 7th Int. Conf. on Advances in Mobile Computing and Multimedia,
2009, pp. 2-5.

[10] W. Zeng, Y. Zhao, K. Ou, W. Song, “Research on Cloud Storage Architecture
and Key Technologies,” in Proc. of the 2nd Int. Conf. on Interaction
Sciences: Inform. Tech., Culture and Human, 2009, pp. 1044-1048.

[11] G. Keizer. Network World Inc., Framingham, MA, USA, “Customers praise
Microsofts no BS explanation of cloud service outage,” Available:
http://www.networkworld.com/article/2598886/cloud-computing/customers-
praise-microsofts-no-bs-explanation-of-cloud-service-outage.html. Accessed:
Dec. 29, 2014.

37

http://articles.bplans.com/why-cloud-storage-is-growing-in-use-and-popularity/
http://articles.bplans.com/why-cloud-storage-is-growing-in-use-and-popularity/
https://www.dropbox.com/plans/
https://www.box.com/pricing/
https://support.google. com/drive/answer/2375123
https://onedrive.live.com/about/en-us/plans/
http://kb.sandisk.com/app/answers/detail/a_id/69/
http://kb.sandisk.com/app/answers/detail/a_id/8407/
http://www.networkworld.com/article/2598886/cloud-computing/customers-praise-microsofts-no-bs-explanation-of-cloud-service-outage.html
http://www.networkworld.com/article/2598886/cloud-computing/customers-praise-microsofts-no-bs-explanation-of-cloud-service-outage.html

[12] “Image processing in Python,” Available: http://scikit-image.org. Accessed:
Dec. 30, 2014.

[13] R. Wolski, N. Spring, J. Hayes, “The network weather service: a distributed
resource performance forecasting service for metacomputing,” Future
Generation Comput. Syst., vol. 15, no. 5-6, pp. 757-768, Oct. 1999.

[14] H. Abu-Libdeh, L. Princehouse, H. Weatherspoon, “RACS: A Case for Cloud
Storage Diversity,” in Proc. of the 1st ACM Symp. on Cloud Computing,
2010, pp. 229-240.

[15] K. Bowers, A. Juels, A. Oprea, “HAIL: A High-Availability and Integrity
Layer for Cloud Storage,” in Proc. of the 16th ACM Conf. on Comput. and
Commun. Security, 2009, pp. 187-198.

[16] Y. Kuo, Y. Jeng, J. Chen, “A Hybrid Cloud Storage Architecture for Service
Operational High Availability,” in Proc. of the 37th IEEE Conf. on Comput.
Software and Applicat., 2013, pp. 487-492.

38

http://scikit-image.org

	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENT
	ABSTRACT
	INTRODUCTION
	Motivation
	Structure of Thesis

	CLOUD STORAGE PROVIDER LIMITATIONS
	Increased Cost
	Limited Bandwidth
	Decreased Security
	Unpredictable Availability

	CONCURRENT CLOUD STORAGE MODEL
	Python with Cloud Storage
	Diverse User Base
	Ease for Developers

	Expandable Framework

	DISC
	Approach
	User Policy Model
	Millionaire Policy
	Security Policy
	Availability Policy
	Budget Policy
	Low Replication Policy

	Data Throughput Management
	Approach
	Throughput Model
	Migration Procedure
	Migration Rules

	APPLICATION AND EXPERIMENTAL RESULTS
	Experiment Setup
	Initial Experimental Results
	Experimental Results
	Case 1 - Security Minded
	Case 2 - Availability Minded
	Case 3 - Budget Minded
	Case 4 - Scaling File Size
	Case 5 - Bandwidth Bottleneck
	Case 6 - Using a Manager

	RELATED WORK
	RACS
	HAIL
	Hybrid Cloud Storage

	DISCUSSION
	Conclusion
	Future Work

	LITERATURE CITED

