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ABSTRACT

With the increase in bandwidth and interconnection of computers, there has been an

increasing adoption of the distributed computing paradigm to solve computationally in-

tensive problems that would normally take a long time if solved on a single computer.

However, the development of programming languages and libraries specifically developed

for distributed programming tasks such as efficient work distribution, network setup, load

balancing, and dynamic reconfiguration has been slow. This results in inefficient imple-

mentations and considerable time spent in developing distributed computing specific parts,

rather than actual application development.

The issues that were identified earlier in distributed application development span

programming languages, library support, and run-time systems. This thesis addresses

these issues mainly at the library level, with some programming language level and run-

time level support.

This thesis identifies and develops abstractions, to enable designing and developing

generic components, and libraries for distributed computations. It uses a Generic Software

Design Methodology to design these abstractions and to enable maximum reuse, flexibility,

and efficiency. A Generic Framework for Distributed Computing - GFDC developed in

this thesis can be used in a broad range of distributed applications implemented using

different technologies and programming languages.

Java has emerged as a platform of choice for developing distributed applications.

This thesis provides an implementation of GFDC in Java, as a set of generic libraries.

For a class of problems, which need reconfiguration and migration, researchers in the

Worldwide Computing Laboratory at Rensselaer Polytechnic Institute are developing the

SALSA programming language. The generic libraries that are developed in Java are

transparently integrated with SALSA.

GFDC and its implementation handle the distributed computing tasks and allow

programmers to concentrate on the actual application development. This results in a flex-

ible and efficient implementation along with reduced development time for the distributed

applications. The programmers who have little or no knowledge of distributed comput-

ing issues should be able to develop applications using GFDC. At the same time, GFDC

and its implementation is extensible to enable advanced programmers to customize and

enhance it, to tackle specific distributed computing issues.

xi



CHAPTER 1

Introduction

There is a growing interest in harnessing the power of the Internet, for computationally

intensive applications. Applications in different areas like SETI@Home [57] in Astron-

omy, Folding@home [23] and fightAIDS@home [22] in Life Sciences, and Great Internet

Mersenne Prime Search [30] in Mathematics are just a few examples of complex and time

consuming computations performed using idle resources on the Internet.

1.1 Issues in developing distributed applications

Irrespective of actual problems in different areas solved by these distributed appli-

cations, they share common issues related to distributed computing. Some of the issues

tackled in this thesis are:

1. Efficient Work Distribution: The distributed applications depending upon the

scale need to spread the work efficiently across different resources. This involves cate-

gorization of resources based on various parameters like processing power, memory, and

bandwidth available for the computation. The efficiency of a resource for a particular

computation changes during the life of the computation, and is different across various

computations, with different efficiency considerations. Once the efficiency parameters are

established, the machines or nodes that participate in the computation need to be cate-

gorized based on these parameters. The aim of the application is then to make maximum

use of the resources that are efficient by allocating more work to these resources. As the

run-time environments change from a fixed set of machines to a dynamic one where new

machines can join and existing machines can leave the computations any time, the task

becomes quite complex to keep track of the efficient resources.

The application programmer needs to work at a higher level to solve the application

specific problems, instead of worrying about these issues. This framework does efficient

work distribution, which is more or less transparent to the application programmer, de-

pending upon the nature and complexity of the application being developed.

2. Network Setup: A distributed computation needs to decide on the resources that

it will be using. This can be done either, during initialization, run-time, or a combination

of initialization and run-time. For static environments like a cluster, the resources avail-

1
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able for computation need to be provided during setup. Additionally, depending on the

application, these resources need to be categorized for efficiency.

For a dynamic environment, the application needs to keep track of resources that

might join or leave the computation at any time. As the resources participating in the

computation change, their relative efficiency changes, and the application needs to keep

track of these resources.

This framework provides a unified presentation of either Static environments, where

the resources allocated to the computation remain same throughout the computation,

or a Dynamic one, where they might change during the computation. This results in

minimal changes to the user code, when running the application on different execution

environment.

3. Load Balancing: As the number of resources and their relative efficiencies, change

during the lifetime of a distributed computation, the application needs to distribute the

work efficiently between the available resources, to make the maximum use of them. Dif-

ferent load distribution strategies are being researched in the Worldwide Computing Lab-

oratory at Rensselaer Polytechnic Institute and at other places. The framework enables

the library developer to plug these load balancing strategies in the framework and the

application developer, to make use of these strategies for optimum results.

4. Dynamic Reconfiguration: Dynamic reconfiguration is critical in the context

of distributed computing, as it allows the application to reconfigure itself to make the

optimum use of, the available resources. At the same time, it affects the way in which the

application is developed, since it is related to work distribution and load balancing. This

framework considers the mixing of dynamic reconfiguration with various work distribution

and load balancing strategies to get optimal results for the application.

5. Library Support Various libraries like STL (Standard Template Library) [58],

BGL (Boost Graph Library) [9], and Loki [45] have been successfully implemented. These

libraries make complex code available to average users and give expert users flexibility

to easily enhance the library. However, these libraries are not applicable in a distributed

environment.

Moreover, implementations of distributed algorithms and data structures, in the

form of libraries or reusable components, are not widely available. These results in con-

siderable development time spent in developing and implementing them, instead of directly

using them in user applications.
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6. Programming Language Support There is a need for enhanced programming

language level support for distributed computing, which can make the development of

distributed programs easier and more efficient. Effective programming language level

support for distributed applications would enable programmers to have constructs that

would result in simpler and smaller programs.

1.2 A Generic Framework for Distributed Computing

This thesis develops a generic framework for distributed computing to address these

issues. The various issues that were identified earlier in distributed application develop-

ment span programming languages, run-time systems, and library support. Hence, this

thesis addresses these issues individually or collectively at three different levels:

• Programming Language Level: Here we consider the programming languages and

language level features, that would make developing distributed applications easier

and more efficient.

• Library Level: Here we consider the libraries and components that can be developed

to enable application developer to use off-the-self code, to reduce development time.

We also consider a framework that would enable advanced programmers to develop

reusable libraries and components, for distributed applications.

• Run-Time Level: Here we develop abstraction and mechanism to hide the com-

plexities of resource management in distributed computing due to different kinds

of hardware architectures, operating and run-time systems, and network topologies.

This would enable the application developers to efficiently run their applications on

different sets of resources and topologies, with minimum changes to their application

code.

This three level strategy is good for tackling specific issues at appropriate levels. At

the same time, it allows us to account for cross-cutting issues that cannot be handled at a

single level. The major goal of this implementation is to address these issues at the library

level with some programming language level and run-time level support. Of the three levels

identified earlier, the library level is important, since the abstractions developed at library

level are independent of any particular run-time system or programming language. This

allows for its implementation in different programming languages on different architectures



4

Figure 1.1: Distributed computing issues addressed at three levels. The Pro-
gramming Language Level addresses the issues related to support
for synchronization, migration, and generic programming. The
Library Level addresses the work distribution strategies and de-
velopment of libraries implementing distributed algorithms and
data structures. The Run-time Level address the distributed com-
puting specific issues like dynamic reconfiguration, profiling, load
balancing and resource management.
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and run-time systems. The library level itself consists of various sub-levels to tackle

different issues, and the cross-cutting issues can be tackled in different ways specific to

programming languages and run-time systems, as long as the abstractions and interfaces

that they provide, remain consistent with the framework.

1.2.1 The Generic Programming Methodology Approach

The generic programming methodology refers to the programming language level

constructs that support polymorphism. Various programming languages support Para-

metric Polymorphism and/or Subtype Polymorphism which enables a polymorphic code

to be used across different types in an efficient manner.

In parametric polymorphism a method, class, or interface is parameterized by one or

more types. This enables the user to select the actual parameter type when the method,

class, or interface is instantiated. Parametric polymorphism is useful for defining generic

behavior where the actual parameters need not be related in the type hierarchy. It allows

the use of a single abstraction across many types.

Subtype polymorphism on the other hand, is useful for defining generic behavior

over a set of related types. Therefore, an entity that acts on a particular type can also

work on the types derived from that type.

A major part of generic programming is to identify and define the abstractions

needed, to implement generic components and libraries. Efficiency, extensibility, and user

friendliness are the major considerations while designing these generic components.

Various libraries like STL, BGL, and Loki have been successfully developed and

implemented, using this methodology. These libraries are not applicable to distributed

applications, since it was not their intended use. However, the study of their design

methodology and identified abstractions can be helpful while developing similar generic

libraries for distributed computing.

By having proper abstractions at correct levels, we can address the range of issues

that we identified earlier for distributed computing. This would help combine the various

abstractions in a generic way, so as to provide maximum number of possible solutions from

a limited amount of code. Hence, the issues in distributed computing at the library level

are addressed using this methodology.

The following three sections describe the motivation for addressing the issues in

distributed computing at the three levels using the generic programming approach.
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1.2.2 Programming Language Level

Java [37] has become a programming language of choice for developing distributed

applications. Library support and features for distributed technologies like RMI [55],

CORBA [16, 42, 53] and serialization have been major reasons for success of Java in

distributed computing.

Java does have limitations for certain classes of applications that need dynamic re-

configuration and migration due to Java’s passive object model. The researchers at the

Worldwide Computing Laboratory are developing SALSA [62], an actor-based program-

ming language for mobile and Internet computing as well as run-time support Internet

Operating System (IOS) [35] and Worldwide Computer (WWC) [61]. SALSA simplifies

programming dynamically-reconfigurable applications using the additional programming

language support for migration, reconfiguration, and asynchronous communication using

the Actor model [28].

Applications written in the SALSA programming language are compiled to Java and

hence preserves many of Java’s useful object oriented concepts. It also allows for creating

Java objects inside the Actors, which allows the SALSA programmers to use the Java

libraries and other existing Java classes. However, as SALSA is ultimately transformed

into Java, it has the inherent limitations of Java. These are the motivating factors for

adding generics to Java [10] and SALSA:

• Need for casting, which can get complex and complicated.

• Incorrect use of casting can result in run-time exceptions. This is especially im-

portant in distributed applications where it is desirable to detect as many errors as

possible, at compile time, instead of at run-time.

• Lack of compile-time support for generics leads to less reliable and more complex

libraries for developing distributed applications in Java and SALSA.

Thus, adding generics to SALSA and Java increases expressiveness and safety, that

is useful while developing generic libraries.

Additionally generics can be used for SALSA to enhance and enable specific features

like:

• The ability to specify the type of tokens at compile time.
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• Increase the expressiveness and safety of the actor behaviors and interfaces. This

can be done by making type parameters explicit in their declaration and definition.

That will make the type casts implicit for their use.

• Write libraries of families of similar actor behaviors based on combinations of tem-

plate arguments.

• Enhance the SALSA interface with IOS and WWC run-time to enable the program-

mers to describe the run-time actor topology for better profiling and reconfiguration

decisions by WWC/IOS.

1.2.3 Library Level

As discussed earlier, while developing distributed applications, the developer has to

addresses issues like efficient work distribution, network setup, load balancing, dynamic

reconfiguration, and replication. In addition to these issues, the common algorithms and

data structures have to be implemented by the developer. This creates the following

problems:

• An application developer who is generally an expert in the application area of the

problem, may not understand the issues related to distributed computing. This

discourages lot of application developers from successfully developing distributed

solutions for their problems.

• Even if the developer understands the various issues, and is able to implement the

solution, it may not be the best implementation, and can be improved.

• For successful implementations, there is a replication of similar code, to address the

issues related to distributed computing. This results in longer development cycles

as there is very little reuse of code. Additionally, with the growing research and use

of distributed algorithms and data structures, there is a need to implement these in

generic libraries so as to be available for use by average users.

The libraries developed for single machine or cluster computations do not address

these issues. Java has some library-level support to enable developing distributed ap-

plications. However, it lacks the application oriented libraries to do standard tasks in

distributed application development like work distribution and optimum resource utiliza-

tion.
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Salsa also lacks the library level support to enable faster and easier code develop-

ment. Hence, there is a need to have libraries, that would take advantage of the actor

model and SALSA programming language features. Just as the popularity of Java was

not only due to its programming language features, but also because of its library sup-

port for faster and reliable application development, we believe that further success of

Java and SALSA depends upon our ability to provide application oriented libraries and

programming language features for development of these libraries.

Hence, there is a need for developing efficient libraries that enable faster and easier

distributed application development. The libraries would reduce the inefficient imple-

mentations and considerable development time spent in common distributed computing

specific tasks across multiple applications. Developing libraries using generic programming

methodology would enable us to develop libraries that would enable maximum amount of

reuse.

1.2.4 Run-Time Level

The generic libraries ultimately need support and feedback from the run-time to

make decisions for aspects like efficient work distribution, network setup, load balancing,

dynamic reconfiguration, and replication. These libraries would depend on the profiling

and run-time characteristic provided by the run-time to dynamically optimize the appli-

cation. The run-time itself can be written in a modular way by using generic Java and/or

generic SALSA.

1.3 Evaluation Metrics

There are various programming languages and tools developed for general purpose

distributed programming. For specific application areas in distributed computing, various

programming languages like SALSA are being developed for dynamically reconfigurable

systems by enabling efficient migration.

The generic framework for distributed computing encompasses programming level

abstractions as well as network and machine level abstractions at lower level for the efficient

implementations of the higher level abstractions.

Therefore, the evaluation metrics for this implementation can be categorized as:

• Programmer level issues of implementing with or without the use templates, based

on following factors:
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– Simplicity.

– Ease of application development.

– Support for genericity.

• Run-Time level comparisons that consider issues like:

– Performance in terms of network and individual nodes.

– Scalability

– Ease of reconfiguration.

The programmer-level success metrics are discussed in the design section, and the

run-time level comparisons are made in the implementation section.

Structure of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents the abstrac-

tions and the design of the generic framework for distributed computation. Chapter 3

presents the implementation of the framework described in Chapter 2 in form of generic

components and libraries. Chapter 4 discusses the possible applications of the GFDC. It

also presents two sample applications developed using GFDC. The success metrics that

were discussed in Chapter 1 are applied to the implementations in Chapter 3 and the

relative advantages and disadvantages are evaluated in Chapter 5. Chapter 6 presents

related work in the area of distributed computing and generic programming. Chapter 7

discusses future work. Finally, Chapter 8 presents conclusions and contributions.



CHAPTER 2

Generic Framework for Distributed Computing (GFDC)

2.1 Overview of GFDC

Single machine abstractions required for Generic Programming [56] are very well

defined and implemented by STL, BGL and Loki. However, there is a lack of proper iden-

tification and implementation of the abstractions required for programming distributed

applications.

Generic programming is effective in providing language abstractions and inter-

changeable components to build generic libraries, which significantly reduces development

time without sacrificing efficiency. Generic distributed programming uses the underlying

philosophy of generic programming to develop concepts and generic libraries that will

result in faster and more efficient distributed application development.

Depending upon the scalability and performance requirements, the distributed ap-

plications vary from high performance clusters with low scalability, to Internet scale appli-

cations with low performance requirements, but high scalability. Therefore, even though

the requirements for developing distributed applications are similar, depending upon the

scalability and performance requirements, their relative importance for specific application

is different. However, all the applications still require most of efficient work distribution,

load balancing, dynamic reconfiguration, and replication strategies. The development

time can be further reduced, along with better implementations, if we are able to provide

generic distributed algorithms and data structures.

Hence, we follow a multi-level approach in designing the libraries and providing

appropriate abstractions at all the levels to handle the specifics. At higher level, we

provide concepts of distributed algorithms and data structures. At a lower level, we provide

the abstractions for the distributed computing specific issues like work distribution, load

balancing, dynamic reconfiguration, and replication. In a way, it is similar to STL, which

provides facilities for Algorithms and Containers, which store collections of other objects.

These higher level abstractions need Allocators at lower levels, to take care of memory

allocation issues specific to different architectures.

This design allows us to combine algorithms and containers at a higher level like STL.

At the same time, it also handles the specifics of the way in which these are implemented

10
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in the underlying distributed system at the lower level, which can range from a high

performance cluster to Internet. The conflicting nature and the wide variety of possible

distributed architectures that can be modeled, create the requirement of highly specific

configuration of these generic components depending on the application and execution

environment. Another conflicting requirement is to make these components generic and

simple enough that they can be used directly by an average programmer, but can be highly

customized by an advanced programmer.

We solve these problems by using policy-based design. Policies establish an interface

for a particular issue, and can be implemented in a variety of ways, as long as the policy

interface is maintained. This allows us to assemble a concept with complex requirements

out of multiple smaller concepts each of which takes care of only one behavioral or struc-

tural aspect. It involves creating a hierarchy of concepts gradually from the lower-most

level to the highest level that the programmer uses directly. However, by modifying or

providing different policy classes with consistent interfaces to pre-existing ones, a pro-

grammer is able to configure the libraries for his specific use at any and all levels of the

policy-based hierarchy.

Thus, a programmer can use the same distributed algorithm, or work distribution

design on the cluster and Internet by choosing appropriate network concepts for that

distributed implementation. At the same time, if required, he can modify the network

concept by creating or modifying a set of policy classes, and using them with the same

distributed algorithm or work distribution design to get better performance or scalability

out of his specific distributed environment. This allows us to develop a highly flexible

architecture by combining the concepts and policies provided by the library, with the new

policy classes created by the programmer that have different implementations of the same

policies.

For example, if we want to use the Farmer-Worker work distribution design strategy

to solve the Busy Beaver [12] on Internet, Missing Baryons on high performance cluster and

Twin Prime[8] on Intranet. In all these cases, the design strategy at higher level remains

the same and solves all the three problems, but the underlying distributed environment on

which the application would be run changes. This can be handled by choosing appropriate

lower level network category, assembling a specific network by combining existing, or new

categories of load balancing and dynamic reconfiguration categories.

The GFDC architecture presents this multi-level abstraction strategy to implement
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various distributed algorithms and data structures at higher level. At the same time,

distributed computing-specific components like efficient work distribution, network, load

balancing, dynamic reconfiguration, and replication can be implemented at middle and

lower levels.

The libraries using this architecture can be implemented in languages that have

support for Generic Programming. The critical thing is that even though dependent on

the features and limitations of the language, the actual implementations would be different,

they should follow the similar set of hierarchy and concepts that are developed to maintain

consistency. This is similar in spirit to the idea of generic containers and algorithms

in C++ and Java representing the same concept even though their implementation is

different. Sometimes, this may or may not be possible in all the implementations, or the

implementer can add own new concepts due to the unique advantages of that particular

implementation.

For example an actor-oriented programming language like SALSA, that is specially

designed to develop dynamically re-configurable open distributed applications, would be

able to implement additional concepts, not possible in traditional languages like C++.

However, its genericity is limited to a great extent by that of Java.

The work is not limited to a theoretical exercise of developing the architecture

and concepts, but also to implement it in different programming languages like Java and

SALSA, and to refine and improve the architecture from the experience gained during

the implementation. An interesting side effect of this would be a comparison of relative

advantages and disadvantages of implementations in these languages, and the ways to

improve the languages and their libraries so as to enable easier and efficient distributed

computing using these languages.

2.2 GFDC Architecture

The Generic Framework for Distributed Computing is a layered set of abstractions

as shown in Figure 2.1.

2.2.1 Resource Level

This is the lower level, and represents the various resources that are used in dis-

tributed computing. So, in case of Java we have Node, and in case of SALSA we have

Theater. These abstractions are similar as they are the resources where the actual com-

putation takes place.
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Figure 2.1: Generic Framework for Distributed Computation. In this multi-
level framework, various abstractions like resources, resource man-
agement and allocation, work distribution, distributed data struc-
tures, and algorithms are identified. It also presents the interac-
tion between these levels within the architecture, and also, the
interaction of the user application with the framework.
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2.2.2 Resources Managers Level

The Resources Managers manage the resources which can be any type of lower level

resource like Node or Theater which take part in the computation. The Static Resource

Manager and the Dynamic Resource Manager are two sample resource managers. The

static resource manager is used in the computations where the resources are allocated

for the computation before the computation begins. The dynamic resource manager is

responsible for keeping track of the resources in a dynamic environment, where a resource

may join or leave the computation at any point of time.

2.2.3 Work Distribution Level

This level requests the resources from the appropriate resource managers at the lower

level and uses those resources to distribute the work. Farmer-Worker and Hierarchical

are the two sample implementations of the Work Distribution.

In case of the farmer worker work distribution strategy, a single stable resource is

considered as the main node of the computation, and is assigned as the farmer. Farmer

then distributes the work to multiple workers.

In case of hierarchical work distribution strategy, a single stable resource is consid-

ered as the main node of the computation and is assigned as the farmer. The farmer then

distributes the work to multiple workers similar to the farmer worker strategy. The main

different is that the workers can be either Sub Farmers or Workers. Workers are resources

that would do the assigned work and report the work back to the farmer. Sub farmers can

in addition to doing the work on behalf of the farmer, can themselves act as farmers by

creating more workers and delegating some of the work to them. As the workers created

by the sub farmer can again be either sub farmer or worker a hierarchy of sub farmers and

workers is created depending on the need of the application.

2.2.4 Application Partitioning Level

Application Partitioning Strategies is used at the application level to distribute the

state space of the problem. Alternate distributes half of the states in the container to

the new resource for further computations. Sub Part distributes some percentage of the

states in the container to the new resource for further computations. Depending on the

size of sub part, those many states in the container, are transferred to the new resource

and hence the name, sub part.
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2.2.5 Distributed Algorithms and Data Structures Level

At this level, various distributed algorithms and data structures can be implemented.

This level utilizes the services provided by the lower levels of Work Distribution and

Application Partitioning Strategies.

This is similar in design to STL, where the containers and algorithms use allocators

to take care of machine dependent tasks like memory allocation. Similarly, in the context

of distributed computations, the network and work distribution tasks are performed by

lower levels while at higher level the developer can implement the various distributed

algorithms and data structures.

2.2.6 User Application Level

This is the user-level layer that interacts with the generic framework for the dis-

tributed computing architecture. Here the application developer utilizes the lower level

libraries to rapidly develop a distributed application. Generally, the user need not change

the components at various levels, and can use the components available from the library

itself. An advanced user can add specific components for the application being developed

as required, or modify existing components by mixing various components.
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Implementation

3.1 Overview

In earlier chapters, we discussed issues related to distributed computing, and how

they can be tackled using a multi-level generic framework. In this chapter, we introduce

an actual implementation of the various levels of this framework. At each level, classes

that present a minimum interface for that level along with their specialized versions are

presented.

The implementation is in generic Java (1.5.0-beta2-b51). This is the latest release of

Java that supports generics. All the classes that implement the generic framework for dis-

tributed computation are in gfdc package. The actual source code for the implementation

can be downloaded from www.cs.rpi.edu/wwc/gfdc

In the following section, we will be presenting the classes for each level, and discuss

their dependencies and uses by other classes in the framework.

3.2 Resources

This is the lowest level of the framework. At this level, we model the various types

of resources that are used in distributed computing. In case of Java or C++ we have

Node, which represents the machine where the computation take place. In case of SALSA

we have Theater which represents the theater in the context of a SALSA/WWC system.

These resources represent different physical and logical entities. However, their

abstractions are similar as they are the resources where the actual computation takes

place. The ResourceManagement class at the upper level uses these classes.

As shown in Figure 3.1, Resource is the abstract base class, and is the root class

for various types of resources. Sample resources like Theater and Node are derived from

Resource.

16
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Figure 3.1: UML class hierarchy of different types of Resources. Here Resource
is the abstract base class for various types of resources. Node and
Theater are the two sample derived classes.

3.2.1 Resource

This class acts as the base class for various types of resources. It has variables like

Name for name, ID for identification, and URI for Uniform Resource Identifier [7]. These

variables are used to identify and store information of the resources. It also has methods

to perform various activities on the resources by the classes in the higher level of the

framework. Some of the required methods are implemented in this class, so the derived

classes need not implement them unless required.

public abstract class Resource implements Serializable {

protected String Name = "NULL";
protected int ID = -1;
protected String URI = "NULL";

// Implements the methods that act on the member variables.
// These methods are overridden in the derived classes if required.

}

Figure 3.2: The Resource class is the abstract base class for classes that are part
of the resource level. It has the variables to completely describe
the resource and the methods required to act on them.
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3.2.2 Node

The Node class is used to model an available resource like machines with their

Internet Protocol IP addresses and port number. These kind of resources are generally

used by C++ and Java for distributed network computations. Along with the methods

derived from the base class, it has methods specific to its behavior.

public class Node extends Resource {

public Node () { ... }

public Node (String rURI) { ... }

public Node (String rName, String rURI) { ... }

public Node (String rName, String rURI, int rID) { ... }

}

Figure 3.3: The Node class is the specialization of the Resource class. It has the
overloaded constructors to accept resources that can be partially
or fully described.

3.2.3 Theater

The Theater class is used to model an available resource like theater in the context

of SALSA/WWC. It has additional member variables like Uniform Actor Locator UAL,

which is specific to the theater. It also has additional methods specific to its behavior,

along with the methods derived from the base class.

public class Theater extends Resource {

private String UAL = "NULL";

// Implements overloaded constructors.
// Implements methods to act on the new variable UAL.

}

Figure 3.4: The Theater class is the specialization of the Resource class. It has
an additional variable UAL to store the UAL of the agent in the
SALSA/WWC programming paradigm. It also has methods to
act on the UAL variable and overloaded constructors to accept
resources that can be partially or fully described.



19

3.3 Resource Managers

The resources managers are responsible for the resources taking part in the compu-

tation. The resources, which can be any type of lower level resource like Node or Theater,

are categorized and managed differently by the various Resource Managers.

ResourceManagement is the base class for the resource manager level. It is abstract,

and implements some common functionality that is needed by all the resource managers.

StaticResourceManager and DynamicResourceManager are the two derived classes of

ResourceManagement.

The StaticResourceManager know the resources allocated for the computation

before the computation begins. The DynamicResourceManager is responsible for keeping

track of the resources in a dynamic environment, where a resource may join or leave the

computation at any point of time.

Figure 3.5: UML class hierarchy of different types of resource managers. Here
Resource Management is the abstract base class for various types
of resources managers. Static Resource Manager and Dynamic
Resource Manager are the two sample derived classes.
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3.3.1 Resource Management

The ResourceManagement is the abstract base class which is the root for various im-

plementations of resource managers. Sample resource managers like StaticResourceManager

and DynamicResourceManager are derived from ResourceManagement.

ResourceManagement stores a list of resources in ResourceList those are available

to the computation. It also has the methods that are related to resource managements,

which are required by all resource managers. The class is parameterized for different types

of resources that it can handle.

public abstract class ResourceManagement<Res> implements Serializable {

private LinkedList <Res> ResourceList = new LinkedList <Res> ();

// Implements the methods that act on the member variables.
// These methods are overridden in the derived classes if required.

}

Figure 3.6: The ResourceManagement class is the abstract base class for the
classes that implement the Resource Management level. It is pa-
rameterized for the type resources that it manages. It has the
variables and methods to keep track of the resource that it is
managing.

3.3.2 Static Resource Manager

It is used for computations where the resources (machines/theaters) are known

initially. In the case of StaticResourceManager the resources are expected to be the

same during the computation.
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public class StaticResourceManager<Res>
extends ResourceManagement<Res> {

// Resources passed to it are added to the list of resources.
public StaticResourceManager(Res[] r){

// Copy the URI of all the Resources into the ResourceList.
for(int i = 0; i < r.length; i++)

addResource(r[i]);
}

}

Figure 3.7: The StaticResourceManager class extends the abstract
ResourceManagement class and is parameterized for the type
resources that it manages. It has the constructor that accepts and
array of resources that it will manage during the computation.

3.3.3 Dynamic Resource Manager

It is used for computations where the resources (machines/theaters) are obtained

during run-time. In case of DynamicResourceManager the resources can change during

the computation. It has fetchResources() method to get resource list from server.

public class DynamicResourceManager<Resource>
extends ResourceManagement<Resource> {

public void fetchResources() {

// Get available resources from server at run-time.
}

}

Figure 3.8: The DynamicResourceManager class extends the abstract
ResourceManagement class and is parameterized for the type
resources that it manages. It resources that it manages can
change during the computation. It has method to get resources
from server at run-time.
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3.4 Resource Allocation

These implementations keep track of the resources that are available for the appli-

cation at a given point of time. They also keep track of the next resource to be allocated.

The higher level classes request resources from any one of these implementations.

Figure 3.9: UML class hierarchy of different types of Resource Allocations.
Here Resource Allocation is the abstract base class for vari-
ous types of resources allocators. RoundRobin, RandomAllocation,
Priority and SemiRandom are the sample derived classes.

ResourceAllocation is the abstract base class from which other classes are derived.

RoundRobin, Priority, SemiRandom and RandomAllocation are four sample implemen-

tations of the resource allocation which are derived from ResourceAllocation. These

classes override getCount() and setCount() methods as required for specific implemen-

tation.

As required, a user can add more resource allocation implementations for specific

applications.



23

3.4.1 ResourceAllocation

This is the abstract base class from which other classes are derived. It defines two

variables count and next to keep track of the total resources and the next resource to

be allocates respectively. It has getCount() and setCount() methods to act on these

variables.

public abstract class ResourceAllocation implements Serializable {

protected int count = 0; // Initially set to 0 to denote empty.

protected int next = -1; // Initially set to -1. It WILL be
// appropriately set by the getNext()
// method implemented in the derived class.

// The derived classes HAVE to implement this method
public abstract int getNext();

public int getCount() {
return count;

}
public void setCount(int c) {

count = c;
next = 0;

}
}

Figure 3.10: The ResourceAllocation class is the abstract base class for the
classes that implement the Resource Allocation level. The class
has variable to keep track of the total and next resource to be
allocated and the methods to act on those variables. It has an
abstract method getNext() which must be implemented by all the
concrete derived classes.
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3.4.2 Round Robin

In case of round-robin allocation of resources, the resources are allocated fairly every

time a request for resource allocation is made.

public class RoundRobin extends ResourceAllocation {

public RoundRobin() { }

public RoundRobin(int c) {

count = c;

}
public int getNext(){

if(next == count) // Check if next is equal to the limit.
next = 0; // In that case reset it to zero.

else // Or increment the next.
next++; // As next is initially set to -1 in

// base class. This works in all cases.

return next;
}

}

Figure 3.11: The RoundRobin class implements the getNext() method so that
the resource allocation is based on round-robin manner.

3.4.3 Priority

In case of priority allocation, the resources are allocated based on their priorities.

Priority can be assigned based on single or combination of resource attributes like stability,

processing speed or memory available.

public class Priority extends ResourceAllocation {

// Methods to allocate resources in a semi-random manner.

}

Figure 3.12: The Priority class implements the getNext() method so that the
resource allocation is based on the priorities of the resources.
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3.4.4 RandomAllocation

In case of RandomAllocation resource allocation any resource is allocated randomly.

In the getNext() function a random number is generated between the range of 0 to count.

public class RandomAllocation extends ResourceAllocation {

private Random rnext = new Random();

public RandomAllocation() {

}
public RandomAllocation(int c) {

count = c;

}
public int getNext(){

// Return a random number within a range specified by count.
return rnext.nextInt(count);

}
}

Figure 3.13: The RandomAllocation class implements the getNext() method so
that the resource allocation is done in a random manner.

3.4.5 SemiRandom

Some of the resources that have maximum priority are preferentially allocated and

other resources are allocated randomly or in a round-robin manner.

public class SemiRandom extends ResourceAllocation {

// Methods to allocate resources in a semi-random manner.
}

Figure 3.14: The SemiRandom class implements the getNext() method so that
the resource allocation is done in a semi-random manner. In
such a case, one or more special resources are allocated by special
requests and the remaining resources are allocated randomly.
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3.5 Work Distribution

Work distribution combines any implementation of ResourceManagement with any

implementation of ResourceAllocation to effectively allocate work among the resources

available to the computation.

3.5.1 Farmer Worker

In case of FarmerWorker work distribution strategy, a single stable resource is

considered as the main node of the computation and is assigned as the farmer. The

farmer then distributes the work to multiple workers according to the work allocation

strategy been used for the resources that are made available by the resource manager.
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public class FarmerWorker implements Serializable {

// StaticResourceManager used to manage Resources.
C1: private StaticResourceManager<Theater> srm;

// ResourceAllocation used to decide resource allocation
C2: private ResourceAllocation ra;

public void initializeFarmer(String[] args ) {

// These theaters are available for computation.
C3: Theater t[] = new Theater[args.length-2];

// Initialize all the Theaters

// Store these theaters to create workers required
C4: srm = new StaticResourceManager<Theater>(t);

// Initialize the resource allocator
C5: ra = new RoundRobin(args.length - 3);

}

public void createWorkers(int count) {
for(int i = 0; i< count; i++)
{

C6: Theater th = srm.getResource(ra.getNext());

// store the UAN of the worker in the list
C7: sub_farmers.addLast(th.getURI() + "worker" + (i+1)) ;

...
}

}

// Other methods of the FarmerWorker class
}

Figure 3.15: The FarmerWorker class implements the FarmerWorker work dis-
tribution strategy. C1: StaticResourceManager is declared for
resource type Theater. C2: ResourceAllocation variable ra is
declared. C3: An array of Theater is created and each the-
ater is initialized. C4: StaticResourceManager is defined with
array of Theater from C3. C5: ResourceAllocation ra is as-
signed an object of type RoundRobin. C6: According to the
ResourceAllocation ra a new resource of the type Theater is re-
quested from StaticResourceManager srm. C7: Worker is added
to the list of workers.
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3.5.2 Hierarchical

In case of Hierarchical work distribution strategy a single stable resource is consid-

ered as the main node of the computation and is assigned as the farmer. The farmer then

distributes the work to multiple workers according to the WorkAllocation strategy been

used and the resources made available by the ResourceManager. These workers can be

either sub farmers or workers. Workers are resources that would do the assigned work and

report the work back to the farmer. Sub farmers can in addition to doing the work on

behalf of the farmer, themselves act as farmers by creating more workers and delegating

some work to them. As the workers created by the Sub Farmer can again be either sub

farmer or worker, a hierarchy of sub farmers and workers is created depending on the need

of the application.

public class Hierarchical implements Serializable {

// StaticResourceManager used to manage Resources.
C1: private StaticResourceManager<Theater> srm;

// ResourceAllocation used to decide resource allocation
C2: private ResourceAllocation ra;

// Other methods of the Hierarchical class

}

Figure 3.16: The Hierarchical class implements the Hierarchical work distri-
bution strategy. C1: StaticResourceManager is declared for re-
source type Theater. C2: ResourceAllocation variable ra is de-
clared. It also implements the required methods for managing
the resources.
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3.6 Application Partitioning

Application partitioning is used at the application level to distribute the state space

of the problem.

3.6.1 Alternate

It uses the work distribution policy to distribute half of the states to the new resource

for further computations. The alternate states are transferred to the new resource and

hence, the name Alternate.

public class Alternate <List, WorkDistribution> { ... }

Figure 3.17: The Alternate class implements the Alternate work distribution
policy.

3.6.2 Sub Part

It uses the work distribution policy to distribute some portion of the work to the

new Resource for further computations. Depending on the size of sub part, that much

work is transferred to the new resource and hence, the name Sub Part.

public class SubPart <List, WorkDistribution> { ... }

Figure 3.18: The SubPart class implements the Sub Part work distribution
policy.



CHAPTER 4

Applications

4.1 Overview

The Generic Framework for Distributed Computing provides a hierarchical frame-

work of abstractions. These abstractions and their implementations can be combined in

different ways to get a large number of execution frameworks for distributed computations.

The flexibility of the architecture allows the creation of additional abstractions aug-

menting existing abstractions, thus enabling the development a wide range of distributed

computing applications.

At the same time, by choosing the correct set of abstractions and interchanging

them, the programmer can scale and configure the application as it evolves.

GFDC essentially allows the programmer to:

• Execute the same application in a host of different environments and scale, by

choosing different set of abstractions. For example, a data intensive application that

relies on distributing the data over a large number of nodes can be implemented at

a cluster level or at an Internet level by choosing appropriate Resource Managers

and Work Distribution Strategies.

• Execute similar application on the same set of abstractions that have been proved ef-

fective by earlier applications. For example, various applications like Folding@home

and fightAIDS@home are similar applications that are developed using the compu-

tational model of SETI@Home. Therefore, once the combination of a set of abstrac-

tions for a particular type of problem is established, other similar application can

be easily and efficiently developed.

Some of the sample applications that can be implemented using GFDC are:

• Applications in physics and biology that need high performing clusters with low

latencies, for studying the data from live experiments would be easily developed

using GFDC. They can use the StaticResourceManager and FarmerWorker or

Hierarchical work distribution strategies that are part of GFDC.

30
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• Applications that distribute streaming audio or video signals can be easily developed

using GFDC. They can use the StaticResourceManager or DynamicResourceManager

and FarmerWorker work distribution strategies that are part of GFDC.

• Distributed storage system can be implemented using GFDC by using existing lower

level abstractions and newer higher level abstractions.

• Applications that need to compute the solution by working on huge data sets. Such

application are present in number of areas discussed earlier like SETI@Home in As-

tronomy, Folding@home and fightAIDS@home in Life Sciences, and Great Internet

Mersenne Prime Search in Mathematics. The developers of these applications can

use GFDC to simplify the application development by relying on GFDC to imple-

ment distributed computing tasks. This would allow them to concentrate on the

actual application development. They can use the DynamicResourceManager and

FarmerWorker or Hierarchical work distribution strategies that are part of GFDC.

In the following section, we describe the actual implementation of two different

applications on same set of abstractions.
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4.2 Sample Application Implementations

In this section, we present two applications that are developed using the frame-

work. The Most Productive Turing Machine and a Distributed Search application. Both

these applications distribute the work than needs to be done over multiple resources. A

FarmerWorker work distribution strategy with a StaticResourceManager resource man-

ager is used. As the applications are developed in SALSA, the resource of type Theater

is used in both the applications. RoundRobin resource allocation is used in both the cases.

The following two subsections explain the application and the results in detail.

4.2.1 Most Productive Turing Machine

The Most Productive Turing Machine problem also called as Busy Beaver, is defined

as follows:

Consider an n-state binary alphabet turing machine with an infinite tape that is

initially blank. The n-state machine which will leave maximum number of 1’s on the tape

before coming to a halt is called the busy beaver and the number of 1’s left on tape is

called the productivity of that machine. Then depending on the combinations of explicit or

implicit halt, position of head in halt position, quadruple or quintuple formalism, relative

position of 1’s on the tape at the halt state various variants of the busy beaver are defined.

For smaller values of n (number of states of Turing Machine) like 1 or 2 the Busy

Beaver can be found. But for higher values of n, the search tree of the machines to be

considered even after all the optimizations in the search process becomes huge and each

machine take enormous number of steps before coming to halt.

The MostProductiveTuringMachine program developed in SALSA language is

used to distribute the work among multiple computers to find the busy beaver champion.

We are using Farmer-Worker work distribution strategy to a distributed computation on

different theaters.

The MostProductiveTuringMachine has other files that are required for the com-

putation are not shown below. What is shown below is the MostProductiveTuringMachine

SALSA file which uses the generic framework for distributed computing for faster and ef-

ficient application development.

Initially the MostProductiveTuringMachine calls the finit() method of the

FarmerWorker for initialization during which it passes the list of resources available for

computation to the FarmerWorker.

Then it calls the createWorkers() method with appropriate argument to indicate
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the number of workers that would be needed by the application. It then creates those

workers and the farmer and calls the initializeFarmer() method of itself to start the

computation.

The initialize() method then distributed the work using FarmerWorker work

distribution strategy and calls its compute() method in various workers. The workers

perform computation and report the results back to the farmer.

In the collector() method of the farmer a track is kept using the FarmerWorker

of the workers that have finished the computation. Once all the workers report the results

back, the farmer publishes the final results and ends the computation.

In the Figure 4.2, you can the result of running the most productive turing machine

application. The three windows on the right hand side are the worker theaters that display

messages about the status of computation and result. The window on the top left hand

side shows the computation from the perspective of the farmer. The farmer displays that

the results. The naming server is seen in the bottom right window. The application scripts

are run by the user in the bottom left window.
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behavior MostProductiveTuringMachine {

C1: private FarmerWorker fw = new FarmerWorker();

void Collector(String workerId)
{

C2: fw.decWorkerCount();
...

}
void initialize( ... )
{

...
C3: for(int i=0; i < fw.getWorkerLimit()

&& machines.size() > 0; i++ ) {
C4: MostProductiveTuringMachine machine =

new MostProductiveTuringMachine(new UAN(fw.getWorker(i)));
fw.incrementWorkerCount();
machine<-compute( ... );
...

}
}
void act(String[] args )
{

C5: fw.initializeFarmer(args);

C6: fw.createWorkers(3); // Only three workers needed.

for(int i = 0; i < 3; i++) {
MostProductiveTuringMachine machine =
new MostProductiveTuringMachine();

C7: machine<-bind( fw.getWorker(i), fw.getWorkerUAL(i))@
machine<-print(" Worker " + (i+1) + " created");

}
...
}

// Other methods of MostProductiveTuringMachine class
}

Figure 4.1: The MostProductiveTuringMachine class implements the MostPro-
ductiveTuringMachine application. C1: An instance of Farmer
Worker work distribution strategy is created. C2,C3,C4,C7: Var-
ious methods of FarmerWorker are called. C5: FarmerWorker is ini-
tialized. C6: FarmerWorker is called to create required number of
workers.
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Figure 4.2: Result obtained from the execution of the Most Productive Turing
Machine application. The three windows on the right hand side
are the worker theaters that display messages about the status of
computation and result. The window on the top left hand side
shows the computation from the perspective of the farmer. The
farmer displays that the results. The naming server is seen in the
bottom right window. The application scripts are run by the user
in the bottom left window.
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4.2.2 Distributed Search

The Distributed Search problem involves finding an element across a given set of

elements. The problem involves distributing the set across multiple resources so that each

resource looks for the number in the subset assigned to it.

As each of the multiple resources look for a number in the assigned subset, dis-

tributed approach is generally faster as compared to a single machine looking through an

entire set. A single machine takes a liner time that depends upon the size of the data set.

As the data set increases in size, the single machine will take correspondingly more time

to find the solution. However, by adding n resources in a distributed search, the search

time is reduced by a factor n. For distributed search, some time is spent on initial setup

and final reporting due to network latencies. Hence,

Search time for distributed search = Search time for single resource search / n +

Time required for setup and reporting.

For searching over large data sets, time spent on initial setup and final reporting

due to network latencies is small as compared to the time saved by distributing the search

over multiple machines.

Hence, the distributed search approach is efficient that a single resource approach

when the data sets are substantially large. It should not be used for small data sets, where

a single resource search would be more efficient.

Initially the DistributedSearch calls the initializeFarmer() method of the

FarmerWorker for initialization during which it passes the list of resources available for

computation to the FarmerWorker.

Then it calls the createWorkers() method with appropriate argument to indicate

the number of workers that would be needed by the application. It then creates those

workers and the farmer and calls the initialize() method of itself to start the compu-

tation.

The initialize() method then distributes the work using FarmerWorker work

distribution strategy and calls its compute() method in various workers. The workers

perform computation and report the results back to the farmer.

In the collector() method of the farmer a track is kept using the FarmerWorker

of the workers that have finished the computation. Once all the workers report the results

back, the farmer publishes the final results and ends the computation.

In the Figure 4.4, you can the result of running the search application. The three
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windows on the right hand side are the worker theaters that display messages about the

status of computation and result. Here, one of the workers found the element while others

did not. The window on the top left hand side shows the computation from the perspective

of the farmer. The farmer displays that the element was found as one of the workers found

it. The naming server is seen in the bottom right window. The application scripts are run

by the user in the bottom left window.
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behavior DistributedSearch {

C1: private FarmerWorker fw = new FarmerWorker();

void Collector(Boolean found) {

C2: fw.decWorkerCount();

if(found.booleanValue() == true) {
standardOutput<-println(" The number was found");

}

C3: if(fw.getWorkerCount() == 0)
...

}

void init( ... ) {
...

C4: DistributedSearch search =
new DistributedSearch(new UAN(fw.getWorker(i)));

C5: fw.incWorkerCount();
search<-compute( ... );
...

}

void act(String[] args ) {
C6: fw.finit(args);
C7: fw.createWorkers(3);

for(i = 0; i < 3; i++) {
DistributedSearch search = new DistributedSearch();

C8: search<-bind( fw.getWorker(i), fw.getWorkerUAL(i))@
...

}
...

}

// Other methods of DistributedSearch class
}

Figure 4.3: The DistributedSearch class implements the DistributedSearch ap-
plication. C1: An instance of FarmerWorker work distribution strat-
egy is created. C2,C3,C4,C5,C8: Various methods of FarmerWorker
class are called. C6: FarmerWorker is initialized. C7: FarmerWorker
is called to create required number of workers.
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Figure 4.4: Result obtained from the execution of the Distributed Search ap-
plication. The three windows on the right hand side are the worker
theaters that display messages about the status of computation
and result. Here one of the workers found the element while oth-
ers did not. The window on the top left hand side shows the com-
putation from the perspective of the farmer. The farmer displays
that the element was found as one of the workers found it. The
naming server is seen in the bottom right window. The application
scripts are run by the user in the bottom left window.



CHAPTER 5

Analysis

5.1 Overview

The Generic Framework for Distributed Computation is implemented in Java, and

can be used by Java as well as SALSA applications. With the development of the Generic

Framework for Distributed Computation, we present the analysis of application develop-

ment with SALSA and Java.

In the following sections, we present the SALSA programming language and ar-

chitecture. We present the enhanced SALSA architecture with Generic Framework for

Distributed Computation. We then present the analysis based on the key evaluation

metrics established earlier.

5.2 Analysis of SALSA with GFDC

In this section, we will describe the current SALSA architecture and the enhanced

architecture, by adding a generic framework for distributed computing, to SALSA. To com-

pare the advantages and disadvantages, we will consider the Most Productive Turing

Machine example, presented in the earlier section.

5.2.1 SALSA Architecture

SALSA is specifically developed for programming dynamically reconfigurable dis-

tributed applications by the researchers at the Worldwide Computing Laboratory at Rens-

selaer Polytechnic Institute. In the context of SALSA and WWC the current architecture

for application development is as follows:

An application programmer develops the application in SALSA. The programmer

can also use Java classes in SALSA. The SALSA part is compiled into Java and combined

with other Java code if present along with Actor Libraries to get class files. The class file

is then executed.

In this architecture there is SALSA language and Java library level support for

distributed application development. Therefore, every time the developer needs to write

code for distributed computation specific tasks. This result in inefficient implementations

and considerable development time spent in distributed computing specific tasks such as

40
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Figure 5.1: SALSA Architecture. In this architecture the application devel-
oper has to code all the things required for distributed computa-
tion along with the application itself. The application programs
are then compiled by the SALSA compiler and combined with the
SALSA actor library to give the Java byte-code, which is then
executed.
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efficient work distribution, network setup, load balancing, dynamic reconfiguration, and

replication, rather than actual application development.

For example, in the case of MostProductiveTuringMachine the application pro-

grammer had to develop two source files, Farmer.salsa and Worker.salsa. The pro-

grammer had to take care of proper setup of resources. The programmer also had to

manage these resources along with creating new workers for the computation. The pro-

grammer had to keep track of resources and allocation and do some load balancing. This

resulted in lot of time spent on distributed computing specific tasks instead of actual

application development.

In the next section, we will consider how the application development was made

easier by adding generic framework for distributed computing to SALSA.

5.2.2 Enhanced SALSA Architecture with GFDC

In the context of SALSA and WWC, the enhanced architecture for application

development is as follows:

The programmer develops the application in SALSA. Then the SALSA part is com-

piled into Java and combined with other Java code if present along with actor libraries to

get Java byte-code as was the case earlier.

The major difference in this architecture is the addition of the Generic Framework

for Distributed Computation, as shown in Figure 5.2. This gives the application devel-

oper efficient and tested code, to perform distributed computing specific tasks, such as

efficient work distribution, network setup, load balancing, dynamic reconfiguration, and

replication.

This allows the application developer to concentrate on actual application develop-

ment instead of distributed computing issues. Finally, as was the case earlier, the Java

byte-code is then executed. Therefore, there are no run-time changes required in the

architecture.

With this architecture in the case of MostProductiveTuringMachine the applica-

tion programmer has to develop only one source file, MostProductiveTuringMachine.salsa.

The programmer does not have to take care of proper setup of resources. The programmer

also does not need to manage these resources, along with creating new workers for the

computation. Keeping track of resources and allocation is taken care by the architecture.

This allows the programmer to spend more time on actual application development.
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Figure 5.2: Enhanced SALSA Architecture with GFDC. In this architecture,
the application developer only has to code the things required by
the application. The application programs are then compiled by
the SALSA compiler, and combined with the SALSA actor library
and Generic Framework for Distributed Computation implement-
ing libraries, which take care of distributed computing issues. The
programmer then executes the generated class files.
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5.2.3 Comparison of Two Approaches Using Evaluation Criteria

The earlier sections described the existing SALSA architecture and the enhanced

SALSA architecture with GFDC. In the following section, we discuss the advantages and

disadvantages of the two approaches.

MPTM in SALSA MPTM in SALSA with GFDC
Number of User Files 2 1

Lines of Code 388 299
Code Simplicity Difficult Medium

Implicit Support for No Limited to Java Code
Genericity

Ease of Application Difficult Medium
Development

Ease of Change/Scalability Major Modifications Minor Modifications
Ease of Reconfiguration Medium Medium with current

implementation

Table 5.1: Table comparing the relative advantages and disadvantages of im-
plementing the Most Productive Turing Machine (MPTM) in
SALSA as opposed to SALSA with Generic Framework for Dis-
tributed Computation (GFDC). From the comparisons it is clear
that the SALSA with GFDC is easier and faster to code. The pro-
gram size is small, and programmer does not need to know the
details of the distributed computing issues.

As shown in Table 5.1, the application using SALSA with GFDC is easier to develop.

It has less number of source files and code to be written by the programmer. The lines

of code shown in the table does not include the application specific code in Java that is

common to both the architectures. The lines of code refer to the SALSA code that is used

for distributed computation. The code that the programmer no longer has to write, is the

critical code for aspects related to distributed computing which he/she may or may not

be familiar with.

The GFDC implementation also has implicit support for genericity at Java level of

the libraries. Hence, it is easy to change around components and scale well. As the critical

code required for distributed computing is already supplied by the library application

development is easy.

The implementation does not give any significant performance improvements. With

the implementation of DynamicResourceManager, the application will give a better per-

formance due to better reconfiguration and profiling that would be available through the
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DynamicResourceManager. Further improvements to the GFDC framework will make

distributed application development more easier and faster.



CHAPTER 6

Related Work

6.1 Overview

In this chapter, we present the work related to our Generic Framework For Dis-

tributed Computing. The framework addresses the distributed computing issues at lan-

guage, library, and run-time levels. The related work chapter is also organized with the

same structure. It presents and compares related work at the same three levels:

• Programming Language Level: Related programming languages and programming

language features are presented and compared. The languages are discussed in the

context of the support for generic programming [38] and distributed computing.

• Library Level: Generic libraries and components have been developed to enable

application developers to use off-the-self code, to reduce development time. We

consider the design philosophies and the applications areas of these libraries.

• Run-Time Level: Related run-time systems that hide the complexities of distributed

network computations from the user applications are presented.

6.2 Programming Languages

In this section, we discuss various languages for their support for generics and dis-

tributed computing. We present the enhanced language level support for distributed

computing which can make the development of distributed programs easier and more ef-

ficient. For the languages that are presented, we discuss the support for both Parametric

Polymorphism and/or Subtype Polymorphism, which enables development of generic code.

In the following subsections, we will discuss some of these languages and their relevance

to the generic framework for distributed computing is discussed at the end.

6.2.1 C++

C++ [19] provides one of the most comprehensive sets of language features for

generic programming. In particular, it provides support for operator overloading and

templates. The template mechanism in C++ is very advanced. C++ templates support

partial specialization and template meta-programming. These features are helpful and

46
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essential to write efficient and reusable generic code. C++ also provides type alias using

typedef declarations. C++ also provides implicit instantiation in which type parameters

can be deduced without requiring explicit syntax for instantiation.

C++ support for generics does have some limitations. C++ does not contain any

explicit mechanism for constraining templates. This facility is present in Java and C#

[18, 33, 41]. Additionally, C++ generics does not allow for separate compilation which is

allowed in Java. Separate compilation enables generic functions to be type-checked and

compiled independently from their use. A very good comparison of C++ and Java support

for generics is present in [29]. Overall, C++ support for generics is very comprehensive

and better than Java.

However, with respect to distributed computation, Java provides more functionality

than C++. It provides various facilities like Remote Method Invocation (RMI) [55], Serial-

ization and Reflection [34]. Both C++ and Java provide Common Object Request Broker

Architecture (CORBA) [16, 42, 42] libraries for distributed application development.

6.2.2 Java

Java [32] supports subtype polymorphism as all the objects are derived from the

root class called Object. This allowed the development of generic libraries for Containers

and Algorithms by assuming the argument object of the type Object and then casting the

actual object as per the user requirements. This works fine but has two major drawbacks:

• Casting can get complex and complicated.

• Incorrect use of casting can result in run-time exceptions.

There have been numerous proposals [1, 54, 50, 13, 10] for adding genericity to Java.

Adding genericity to the Java programming language gives expressiveness and safety, by

making type parameters explicit, and making type casts implicit. This is crucial for using

libraries such as collections, implementing generic utility classes in a flexible and safe way

by removing the need to cast, and allowing more errors to be caught at compile time.

In a way, this is similar to C++ template implementation without the support

for features like partial specialization and template meta-programming. However, a new

language construct called wildcards, is one of the features that is present in Java but not

in C++. This is possible due to the use of Object as super class of all classes in Java,

which is not possible in C++.
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Wildcards [11] increase the flexibility of object-oriented type systems with param-

eterized classes. Based on the notion of use-site variance, wildcards provide a type-safe

abstraction over different instantiations of parameterized classes by using ? to denote

unspecified type arguments. Thus, they essentially unify the distinct families of classes

often introduced by parametric polymorphism.

6.2.3 SALSA

SALSA (Simple Actor Language System and Architecture) is an actor-oriented pro-

gramming language that is useful for developing distributed applications that need dy-

namic reconfiguration. Some of the major features of SALSA are:

• First class support for unbounded concurrency.

• Communication amongst actors using asynchronous message passing.

• Universal naming model.

• Support for actor migration.

• Location-transparent message sending using UAN (Universal Actor Names).

• High level abstractions for programmers to facilitate coordination of concurrent

activities like:

– Token-passing continuations.

– Join blocks.

– Named tokens.

– First-class continuations.

SALSA is based on an Actor model [2] of concurrent computation for distributed

systems, which provides a unit of encapsulation for both the state and a thread of control,

that manipulates that state. Actors communicate amongst each other by exchanging

messages asynchronously.

In response to a message, an actor may perform one of the following actions:

• Change its current state and possibly also change its behavior.

• Migrate to a new location.
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Figure 6.1: An actor upon receiving a message either (1) Changes it’s internal
state, (2) Migrate to a new location, (3) Send messages to other
Actors or (4) Create new Actors.
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• Send messages asynchronously to other actors.

• Create new actors with a specified behavior.

6.2.4 Discussion

In addition to the three languages discussed earlier, there are other programming

languages that support distributed computing and generics. Programming languages like

Eiffel [47], Haskell [40] and ML [49] support generics to varying degrees. Programming

languages like Erlang [20], Nomadic Pict [63, 52], and JoCaml [39], are specifically de-

signed to support distributed and concurrent computations.

Chapter 2 presented a generic framework for distributed computing, whose imple-

mentation in generic Java was shown in Chapter 3. However, the implementation is not

limited to generic Java and is implementable in these languages. This would enable the

implementation to make use of the relative strong points of various languages with re-

spect to genericity and support for distributed computation to effectively implement the

framework.

The generic Java implementation was limited by the support for genericity that Java

has as compared to C++. However, Java’s better support for distributed computations

was the motivating factor in deciding for implementation in generic Java. C++ implemen-

tation of this framework would be more comprehensive and effective due to its support

for genericity. However, much code would have to be written for distributed computing-

specific tasks, due to the limited support of those tasks, in C++. SALSA was used to

develop the applications that use the framework used in generic Java. With further en-

hancement to SALSA discussed in the future work, implementation of this framework in

SALSA should be possible. It is also desirable as SALSA has extensive support for dis-

tributed computing and with addition of generics, it would be one of the ideal languages

to develop distributed applications.

6.3 Generic Libraries

Here we consider the generic libraries and components that have enabled application

developer to use off-the-self code to reduce development time. For designing the generic

components the developer has to identify and define a family of abstractions that are

all related by a common set of requirements [56]. This is the critical part of developing

generic components. These sets of requirements should be as general as possible but still
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restrictive enough that programs can be written efficiently for different abstractions that

satisfy the requirements. In the following subsections, we will discuss some of the widely

used generic libraries.

6.3.1 Standard Template Library (STL)

STL [58, 6, 3] is a framework built on the foundations of generic programming.

The framework involves the actual library as well as the definitions of abstractions like

containers, iterators, algorithms, function objects, adaptors, and allocators. STL enables

faster program development by providing commonly required data structures like list,

vector, and hash table in the form of various containers. Common data structures can be

derived from the basic containers using various adapters. At the same time, it provides

commonly used algorithms for sorting and searching. The functionality of the algorithms

can be customized by using function objects. The containers and algorithms can work on

each other through various iterators. Due to the extensive use of templates in STL, the

algorithms and containers can be used on any type, which satisfies their requirements.

6.3.2 Boost Graph Library (BGL)

BGL [9, 60, 59] is a collection of containers and algorithms for performing common

graph related operations. BGL provides a generic interface to the user, to access the

structure of the graph but at the same time, hides the details of the graph data structure

implementation. It presents an open interface, so that any graph library that implements

this interface will be interoperable with the BGL generic algorithms, and with other

algorithms that also use this interface. Towards this goal, BGL provides some general

purpose graph classes that conform to this interface and allows the user to add newer

classes that are better for certain situations. The only restriction on these classes is that

they should conform to the interface defined in the BGL.

6.3.3 Loki

Loki [45] is a C++ library that contains flexible implementations of common design

patterns. The patterns are implemented using a generic programming methodology. Some

of the common components implemented in Loki are generalized functors, singletons, smart

pointers, object factories, abstract factories, and visitors.

In Loki, C++ templates are used to implement a policy-based design. A policy

establishes an interface for a specific issue. The actual implementation of the policy can
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vary as long as the policy interface is maintained. A class with complex behavior can be

constructed by using multiple smaller and simpler classes. These smaller classes take care

of only one behavioral or structural aspect. By combining smaller policies in different

ways, a large number of complex behaviors can be generated. This makes Loki a flexible

and highly reusable library.

6.3.4 Discussion

Libraries such as STL, BGL, and Loki can be used internally by the distributed ap-

plications. However, they do not provide abstractions necessary for distributed computing-

specific tasks. They also do not implement any distributed algorithms or data structures

[46, 5], that can be used directly. These libraries are important, as the understanding of

their design is useful while identifying the abstractions in the distributed context.

6.4 Run-Time Systems

In the context of distributed applications development, run-time systems are im-

portant, as they hide the complexities of distributed computations from user applications.

Various distributed computing issues like efficient work distribution, load balancing, dy-

namic reconfiguration, and profiling, are handled at this level. Moreover, some of the

run-time systems hide the differences in the hardware, operating system and network

setup, and present a consistent virtual computer which is easy to program. In the follow-

ing subsections, we will discuss some of these run-time systems and their relevance to the

generic framework for distributed computing is discussed at the end.

6.4.1 Globus

Globus [31, 25, 26] enables the application of Grid [27, 24] concepts to scientific and

engineering computing. Grid enables securely and effectively exposing high-end comput-

ers, networks, databases, and scientific instruments owned and managed by multiple orga-

nizations for collaborative use. Grid applications are data and/or computation-intensive.

In addition, they often require secure resource-sharing across organizational boundaries.

These issues are currently not easily handled by Internet and Web infrastructures. The

Globus Toolkit addresses these problems. It is a collection of services and components

than can be used independently or together to develop applications in this framework.

Globus identifies three types of users:
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• Grid Builders These users actually create the production grid computing envi-

ronments which are directly or indirectly used by the other two users. NASA’s

Information Power Grid [51], the European DataGrid Project [21] and the ASCI

Distributed Resource Management Project [4] are examples of grid builders.

• Application Framework Developers These developers build the software frameworks

using the Globus services. The frameworks facilitate the development and execution

of different kinds of applications. CAVERNsoft [14] framework for tele-immersive

applications, Condor-G [15] and Linear Systems Analyzer [44] are the examples of

frameworks developed by application framework developers.

• Application Developers Application developers use Globus services to develop inno-

vative Grid-based applications. These applications are developed either directly or

by using grid-enabled tools. Remote supercomputing, distributed supercomputing,

and supercomputer-enhanced scientific instruments are examples of these applica-

tions.

6.4.2 Java Virtual Machine

Java Virtual Machine (JVM)[43] is a run-time environment required for running

Java programs. Java programs are interpreted by the interpreter that is built into the

JVM. The Java source file is compiled into a class file that is then interpreted by the

JVM during execution. The source code is compiled into a Java byte-code class file that is

independent of any machine architecture or operating system. Thus, the same byte code

can be used across multiple machines with different hardware, software architectures, and

systems, as long as they have the required JVM.

This is critical in distributed systems where the applications use large number of

resources to perform computations. As the JVM presents a consistent virtual machine,

the distributed application that is coded in Java does not have to deal with the different

machine architecture or operating systems. This allows the distributed application to use

maximum number of available resources.

The JVM runs on the Operating System, and has Security Manager built into it.

Therefore, an application running in JVM can rarely crash or attack the system. The

most that it can do is to crash the JVM, which would never be catastrophic unlike the

crashing of the operating system itself. This is also critical for distributed applications as

they use the resources that are volunteered by the different users. So unless the users are
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sure about the safety of the applications that are running, they would not be wiling to

volunteer their resources.

JVM is one of the important facilitator of creating distributed applications in the

Java programming language. It enables using resources with different types of hardware

and software in a safe manner.

6.4.3 World-Wide Computer

The World-Wide Computer (WWC) is the run-time system for programs written

in the SALSA programming language. Just like Java programs run on the JVM ab-

straction, SALSA programs run on the Theater abstraction. In Java, JVM presents a

homogeneous view of the underlying heterogeneous hardware architectures and operating

systems. Similarly, in SALSA, an agent-based language for distributed programming, the

theaters provide a run-time layer between actors and JVMs. A theater hosts multiple ac-

tors, and provides support for message passing, remote communication, and other features

specific to SALSA.

As the theater is ultimately running on a JVM, an agent can run on any machine

that has a theater running on it, irrespective of its hardware and software architecture.

This enables a computation to utilize potentially large number of computers throughout

the world as long as they have supporting JVM and WWC Theater running on them.

This enables SALSA/WWC, to harness the power of a large number of computers over

the Internet to perform complex distributed computations.

6.4.4 Internet Operating System

As the application’s size and complexity increases, it becomes difficult for the pro-

grammer to deal with issues like profiling, efficient resource allocation, dynamic reconfig-

uration, and automatic migration, to make the best use of the available resources. Just

as the Operating System provides the functionality for process and threads on a single

machine, the Internet Operating System (IOS)[35, 17] is used to deal with these issues in

the context of SALSA/WWC.

The IOS is implemented in a decentralized way on top of the Java Virtual Ma-

chines running on different physical machines. It efficiently manages resources (CPU,

memory, and network) available to applications running on WWC. It enables efficient

re-configuration of applications during run-time to take maximum advantage of available



55

resources, and at the same time does load balancing to make sure that all theaters get

optimal number of actors, and no actor starves for execution environment and resources.

Some of the major issues that IOS addresses are similar to what a Operating System

does in the context of single computer, and what a Network Operating System does in

case of a network:

• IOS is responsible for different sets of resources like procession power, memory, and

network.

• Provide fair set of resources to competing set of actors or computations.

• Deal with issues unique to the Internet-scale applications like:

– Security.

– Soft and hard failure of resources.

– Profiling and scheduling dynamic resources.

6.4.5 Discussion

Along with the run-time systems discussed above there are other significant systems

like the Microsoft .NET Framework [48] with its Microsoft Common Language Runtime

(CLR). This framework supports development of distributed applications and web services

using a variety of languages. The C# and C++ languages also have support for genericity,

which makes .NET an easy framework to develop distributed applications. A C# or

C++ implementation of the generic framework for distributed computing on the .NET

framework can be useful.

However, .NET is specific to Microsoft framework and is relatively new. Java using

the J2EE [36] framework is a widely used and stable implementation. As discussed earlier,

it has extensive support for distributed computing and has recently been enhanced with

the addition of generics. Hence, Java on J2EE framework was the choice for the sample

implementation of the generic framework for distributed computing.

Globus is fast gaining popularity, and the lower level abstractions of the generic

framework for distributed computing can be employed to use the facilities provided by

Globus. This would give the application developers using the generic framework for dis-

tributed computing, a wider choice of the target execution environments, for their dis-

tributed applications.



CHAPTER 7

Future Work

7.1 Development of Abstractions for GFDC

The Generic Framework for Distributed Computing identifies the abstractions at

multiple levels as well as the interdependencies between these abstractions. In the sequen-

tial computation paradigm, different types of abstraction were incrementally identified in

generic libraries such as STL, BGL, and Loki.

Similarly, due to the intrinsic complexities of distributed computation, more ab-

stractions will be required to define certain class of concepts. These abstractions may or

may not be related to the abstractions defined in GFDC. However, the Generic Framework

for Distributed Computing can act as a starting point for identifying these abstractions.

7.2 Implementation Of All Abstractions Of GFDC

The Generic Framework for Distributed Computing is a comprehensive set of ab-

stractions, that can be used to model a range of problems, by correct combination of

different abstractions.

This thesis has presented the abstractions and a sub-set of implementation of these

abstractions. For the effective and widespread use of this framework, it is necessary to

comprehensively implement all the abstractions.

When all the sets of abstractions are available, the programmer would be able to eas-

ily mix and match the combinations of the implementations of different abstractions. This

would enable the programmer to get the best possible implementation of the distributed

application.
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7.3 Implementation of Generic SALSA

As discussed in Chapter 1, applications written in the SALSA programming lan-

guage are compiled to Java, which enables creation of Java objects inside the SALSA

behaviors @ not clear @. This allows the SALSA programmers to use the Java libraries

and other existing Java classes.

The thesis presented two applications, Most Productive Turing Machine and Dis-

tributed Search that were developed in SALSA. As SALSA actors can create and use Java

objects, these applications used the generic libraries and components developed in generic

Java. However, even though SALSA programs are translated in Java, it still does not have

support for generics. This limits the use by SALSA applications of libraries developed in

generic Java using GFDC.

A generic SALSA implementation that will support templates would allow SALSA

programmers to fully utilize the generic components and libraries developed using GFDC.

Moreover, it would enable the SALSA programmers to create generic libraries in SALSA

itself. It would also enable programmers to develop libraries leveraging SALSA-specific

features like continuations, support for migration, and dynamic reconfiguration. These

libraries can also use the functionality provided by generic Java libraries developed using

GFDC, as the SALSA libraries written in SALSA code will eventually be translated to

Java.

Figure 7.1 shows the architecture of the generic SALSA implementation.

The difference between Figure 5.1, which shows the current architecture of SALSA

and Figure 5.2, which shows the enhanced SALSA architecture, is the addition of the

generic framework for distributed computing. This enables the Java and to some extent,

the SALSA applications to make use of the generic libraries made available using GFDC.

Now with the proposed generic SALSA architecture, programmers will be able to

write generic SALSA libraries. They will also be able to fully utilize the functionality

provided by the generic Java code, as now they will be able to write generic Java code in

SALSA.

As shown in the Figure 7.1, the generic SALSA code and libraries will be compiled by

the generic SALSA compiler to generate generic Java code. Then this code along with the

components and libraries developed in generic Java using the framework will be combined

by the generic Java compiler to produce the Java byte-code that can be executed.
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Figure 7.1: Programming using Generic SALSA Libraries. In this architec-
ture, the programmer will be able to write generic code in SALSA
and use the generic SALSA code from the libraries. The generic
SALSA compiler will compile the code into generic Java. The Java
compiler will combine this code with the generic Java code devel-
oped to give a class file that can be executed. The programs in
this architecture will be smaller, simpler, and more efficient, with
less development time.
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7.4 Implementation of GFDC in other Languages

This thesis has implemented the generic framework for distributed computing in

Java. However, the abstractions that are developed as part of the framework are language-

independent.

Hence, the framework should be implemented in different languages like C++ and

C#. This will allow application developers in those languages to make use of this frame-

work. At the same time, the experiences gained while implementing the framework in

different languages will be useful in validating and refining the framework.



CHAPTER 8

Conclusions and Contributions

8.1 Conclusion

There is an increasing adoption of the distributed computing paradigm, to solve

computationally intensive problems that would otherwise take a long time to solve on

a single computer. This thesis identified a major problem being faced in programming

distributed applications, that considerable time is being spent in developing distributed

computing specific tasks, rather than actual application development. The users who may

not familiar with the distributed computing specific tasks, find it difficult to develop such

applications, or develop inefficient applications even after a long development time.

This thesis identified and developed abstractions to enable designing and develop-

ing generic components and libraries for distributed computations. The Generic Frame-

work for Distributed Computations that was developed is applicable to a broad range of

distributed applications implemented using different technologies and programming lan-

guages. The thesis used a Generic Software Design Methodology to design these abstrac-

tions to allow for maximum reuse, flexibility, and efficiency.

This thesis provides an implementation of this framework in Java for developing

distributed applications in Java. The SALSA programming language is used for a class

of problems that need dynamic reconfiguration and migration. The generic libraries de-

veloped in Java were integrated with SALSA transparent to the application developer,

to enable the SALSA developers make use of these libraries. The framework and its im-

plementation make development of distributed applications easier, faster, and less error-

prone.

The framework enables an average programmer with little knowledge of distributed

computing issues, to develop efficient distributed applications easily and quickly. The

framework and libraries allow advanced programmers, to further extend the framework

and libraries, and to tackle distributed computing issues specific to their applications.

The thesis has identified the key evaluation criteria for success of the framework.

These criteria were satisfied as discusses in the analysis chapter. The future work described

the current implementation and possible extensions of the architecture. It also presented

the case for the development of a Generic SALSA language to make maximum use of this
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framework and its libraries.

8.2 Contribution

Following are the contributions of this thesis:

• Identification and design of abstractions to enable designing and developing generic

components and libraries for distributed computations.

• Extension of use of generic software design methodology to distributed computing.

• Implementation in Java of the generic framework for distributed computation. This

validates the framework.

• Presentation of sample applications to enable average programmers to use the frame-

work.

• Discussion of further architecture and implementation improvements to the frame-

work.

• Motivation of the development of Generic SALSA programming language to effec-

tively address a class of problems that need dynamic reconfiguration and migration.

Additionally, applications using these libraries were presented, and advantages and

disadvantages of developing these applications with or without generic libraries, were

discussed.

The generic framework for distributed computation will serve as a sample implemen-

tation as well as a template for future language additions, and newer library development.
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