
A FAULT-TOLERANT HOME-BASED NAMING SERVICE
FOR MOBILE AGENTS

By

Cam Tolman

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

Approved:

Carlos Varela
Thesis Adviser

Rensselaer Polytechnic Institute
Troy, New York

April 2003
(For Graduation May 2003)

CONTENTS

LIST OF TABLES . iv

LIST OF FIGURES . v

ACKNOWLEDGMENTS . vi

ABSTRACT . vii

1. Locating Mobile Agents . 1

1.1 Broadcast . 3

1.2 Search . 3

1.3 Tracking . 4

1.4 Centralized Dedicated Naming Service . 4

1.5 Distributed Dedicated Naming Service . 5

2. Fault-Tolerant Home-Based Naming Service (FHNS) 6

2.1 Model . 6

2.2 Names . 6

2.3 Architecture . 8

2.4 Protocol . 11

2.5 Assessment . 14

2.5.1 Robustness . 14

2.5.2 Efficiency . 14

2.5.3 Scalability . 15

2.5.4 Security . 15

3. Implementation . 17

3.1 Context: World-Wide Computer (WWC) 17

3.2 Context: Chord . 19

3.3 FHNS Prototype Developed for the WWC 21

4. Performance Analysis . 25

4.1 Robustness . 25

4.2 Messaging Efficiency . 27

4.3 Time Efficiency . 28

4.4 Load Balancing . 28

ii

5. Related Work . 31

5.1 Intentional Naming . 31

5.2 Conventional Naming and Directory Services 32

5.3 Naming Services in Distributed Systems . 33

5.4 Decentralized Lookup Services . 37

5.4.1 Peer-to-Peer Lookup Services . 37

5.4.2 Distributed Hash-table Lookup Services 38

6. Future Work . 40

6.1 Optimizations . 40

6.2 Security . 40

6.3 Publish and Subscribe Model . 40

6.4 Multiple Namespaces . 41

6.5 Garbage Collection . 41

7. Conclusions and Contributions . 43

Literature Cited . 45

iii

LIST OF TABLES

2.1 Fundamental API for FHNS . 7

2.2 Example: Home Bases and the Assigned Identifiers 11

2.3 Example: The Agents’ Names and the Determined Identifiers 11

3.1 Home Base Coordination Protocol . 24

iv

LIST OF FIGURES

2.1 FHNS Namespace Presented as Logical Ring 10

2.2 FHNS Naming Example . 12

3.1 Actor Model for Concurrent Computation . 18

3.2 Home Base Architecture Example . 23

4.1 Faults and the Impact on Messaging . 26

4.2 Messages vs. Number of Nodes . 27

4.3 Request Processing Time . 28

4.4 Home Base Coverage . 29

4.5 Home Base Coverage With Virtual Nodes . 30

v

ACKNOWLEDGMENTS

For the research going into this thesis, I worked closely with members of two distributed

computing research teams. The first team is referred to as the Worldwide Computing

Research team. The individuals of this team provided a good amount of feedback on

this research and as such deserve an expression of thanks. The second team is called the

SALSA development team. The members of this team are also members of the first team,

so I am thanking them twice. My second expression of thanks is in regards to the help they

provided on the actual prototyping of the proposed naming service. The members of the

SALSA development team put in a good amount of time and effort in making the SALSA

distributed language more usable, and these efforts should not go unacknowledged. Keep

up the good work!

I would also like to extend my thanks to my thesis advisor, Carlos Varela, who

provided a great deal of assistance, guidance, and critical feedback on all the efforts made

for this thesis.

And lastly, I should acknowledge my employer General Dynamics Advanced Infor-

mation Systems in Pittsfield Massachusetts for the assistance they provided. Specifically,

they covered all the cost incurred from attending RPI and they also allowed a few hours

off on a weekly basis to attend classes and perform the research.

The courses and research that went into all my graduate studies have consumed a

great deal of time and have lead to many restless nights. But, those days are coming to

an end since I am now finished, and it is with the submission of this thesis. And, to be

honest, it is this very completion that fills me with the most gratitude.

vi

ABSTRACT

As a mobile software agent migrates to various host machines on a network, collaborating

agents need to be able to locate the mobile agent for communication. A naming service is

in charge of locating such an agent in a distributed system given its name. Three critical

characteristics of a naming service are: fault tolerance, scalability, and efficient name

resolution. Most naming services provide support for efficient name resolution but do not

address fault tolerance or scalability issues. Conversely, distributed hash-table approaches

to naming provide fault tolerance and scalability albeit at a sacrificed name resolution

performance. We introduce a Fault-Tolerant Home-Based Naming Service (FHNS) that

is robust and scalable yet enabling efficient name resolution.

An agent using FHNS has a unique name that encodes its home base. Home bases

are connected in a peer-to-peer manner. The agent’s run-time system is responsible for

keeping the agent’s home base informed of its network location. An agent obtains a

reference to another agent by knowing the name of that agent and requesting any home

base to resolve that agent’s location. Redundancy exists between neighboring home bases

to ensure the location of any given agent can still be resolved despite an agent’s respective

home base failing, thus eliminating single points of failure. In the event of a home base

failure, the failover procedure occurs transparently to the agents. Furthermore, FHNS has

optimal sequential fault tolerance behavior: if the home bases fail sequentially down to

any single remaining home base, FHNS is still able to resolve the location of every agent

in the distributed system.

Resolving the location of an agent with a distributed hash-table approach, such

as Chord or SPRR, requires O(log n) messages between home bases. In a worldwide

computing system with potentially billions of nodes, such a lookup could still take up

to 30 messages. Realizing that logarithmic lookups are not as efficient as needed for a

naming service, FHNS provides name to location resolution in one round-trip request (two

messages) in the general case. A logarithmic number of messages is only needed when a

direct request to a home base fails.

FHNS is a novel contribution being made to the field of mobile agent computing.

Fault-tolerant home-based naming can be incorporated into existing mobile agent plat-

forms to eliminate single points of failure without sacrificing efficient name resolution.

vii

CHAPTER 1

Locating Mobile Agents

A naming service maps a name for an entity to a set of labelled properties. The Domain

Name System (DNS) [37], for instance, is a network naming service that maps easy-to-

remember names to hard-to-remember network addresses. Similarly, name services can be

put to use in distributed computing architectures to map the identity of a mobile software

agent to its current location on the network. The Fault-Tolerant Home-Based Naming

Service (FHNS), presented in this thesis, is one such naming service.

The motivation to develop a new naming service comes from considering the under-

utilization of the Internet, which is predominately used for information retrieval, cor-

respondence, commerce, and file sharing. The Internet, which can be described as a

super-computer consisting of over a million processors, offers a vast amount of comput-

ing capability that has yet to be fully exercised. Substantial computations, such as data

mining, financial forecasting, and complex simulations, can be divided and distributed

across the Internet to be serviced by numerous machines concurrently. In order for these

computations to be distributed, a framework first needs to be structured and deployed.

The framework is required to be efficient, robust, scalable, and secure. The purpose of

this research, however, is not to present a distributed computing framework in its entirety

but to present a naming service that enables such a framework to meet a measure of the

identified requirements.

The requirements for a naming service intended for a network like the Internet are

equivalent to those placed on a distributed computing framework. The naming service

must be:

• Robust: Any one failure cannot result in the entire service failing. The naming

service must be resilient to node and link failures.

• Efficient: The messages associated with resolving the location of an agent should

be many times less than the number of nodes on the network. Not every node can

be queried when an agent is being located.

• Scalable: The service should allow nodes and agents to be located anywhere in the

world and be able to support a huge number of these entities.

1

2

• Secure: The service must ensure data integrity and thus protect the names it is

entrusted with from unauthorized modification or deletion.

And the names for the mobile agents must be:

• Unique: This is a requirement common to all naming services. In this case, the

requirement for uniqueness is even more extensive in that the names for the mobile

agents are to be globally unique.

• Persistent: The names must not change unless the naming service is notified.

• Human Readable: This is a requirement we place upon ourselves with the notion

that human readable names are easier to remember and use. A human readable name

can also indicate the purpose the agent serves, as would be the case of naming a

personal-calendar agent: JoeDoesCalendar. Furthermore, people have the possibility

to guess the agent name.

Mobile agents are best described as software processes that can migrate from one

host to another while executing their assigned tasks. In between migrations, a mobile

agent may need to interact with other agents to complete their jobs. Cabri, Leonardi, and

Zambonelli [12] identify 4 kinds of coordination models for agents to employ in interacting

with one another. The first model is based on direct coordination and involves the agents

sending messages directly to other agents. Direct coordination requires that agents know

the names of those agents with whom they wish to interact. The second coordination

model is referred to as meeting-oriented. The meeting-oriented model does not require

that agents know the names of other agents, instead an agent joins a known meeting point,

where it can interact and synchronize with other agents. The third model is the blackboard-

based model, where agents post and retrieve messages from a shared blackboard. One

advantage of the blackboard-based model is that the agents do not need to exist at the

same time. A sender can post and terminate before the receiver ever reads the message.

The final model is the Linda-like model, which is based on the associative mechanisms of

the Linda model of process creation and coordination [14]. As in the blackboard-based

model, a space is used to store and retrieve messages, called tuples; however, unlike the

blackboard-based model, the agents retrieve the messages in an associative way.

The mobile agents being considered in this thesis communicate directly with one

another and consequently direct coordination mechanisms are required. Say for instance,

3

a protein folding application decomposes the computations associated with protein fold-

ing into sub-computations to be processed by mobile software agents. These software

agents are dispersed throughout the Internet to perform their distributed tasks. After

performing a number of its computations, software agent GYPSY needs Software Agent

NOMAD’s results in order to continue with its computations. How does GYPSY locate

the whereabouts of NOMAD given that it could be at any node on the Internet? What

follows are possible strategies to address the problem of locating an agent for the purpose

of communicating directly with that agent [45, 50, 24].

1.1 Broadcast

One strategy would be for GYPSY to broadcast a request for NOMAD’s results

or current location. Software agent NOMAD would receive the requested broadcast and

would reply accordingly. Estimates on the size of the Internet are in the tens of millions

[62]. This solution is thus too expensive since every node on the Internet would receive

all such requests and consequently the scalability and efficiency requirements would be

breached.

A variation of the broadcast would be to only query a portion of the nodes on the

network as is done by issuing a multicast. GYPSY would be required to keep a list of all

possible locations where NOMAD could be. However, we assume agents are free to roam

the entire Internet and are not constrained to only move within a pre-defined subset of

nodes. Given that we do not place constraints on agent mobility, we cannot identify the

subset of nodes to query.

1.2 Search

Another solution would be for GYPSY to search for NOMAD. But how does GYPSY

conduct an efficient search for NOMAD? In the worst case, the search method would be as

expensive as a broadcast in that GYPSY contacts every node in its search for NOMAD.

In the best case GYPSY only has to query a small amount of nodes by minimizing the

search space. But how would this be done? Agents are not required to keep an itinerary

for themselves and so, as it was with a multicast, the subset of nodes could never be fully

identified. For the sake of argument, if we knew in advance an agent’s route of travel,

then an efficient searching algorithm would not be impractical. However, we assume the

mobile agents only know of each other by name and know nothing of each other’s routes

4

of travel. So, given this assumption, searching is not a feasible solution.

1.3 Tracking

Tracking is performed with the use of forwarding pointers that are distributed along

the path of the traversing mobile agent. Each time the agent changes its location a

pointer to the new location is deposited at the old location. So GYPSY locates NOMAD

by following the “bread crumbs” left by NOMAD. The problems that must be overcome to

use this service are numerous. First how does GYPSY determine the initial location of the

path to follow? An implicit requirement is placed on agents to know the first destination

of the agent being sought. Assuming that GYPSY does locate the path NOMAD has left,

a race condition could ensue between GYPSY and NOMAD. Also this naming service

is prone to failures anywhere along the chain of pointers and it does not allow these

forwarding pointers to be deleted in its simplest form.

Forwarding pointers are useful in other applications such as message forwarding and

distributed garbage collection [40] but in their simplest form, forwarding pointers are not

well suited for providing a naming service.

1.4 Centralized Dedicated Naming Service

Unlike the previously proposed strategy, the central service is a more traditional

naming service in that it follows the convention of a server and a request-issuing client. In

this naming service there is a single source containing a listing of all agent names that map

to the present location (i.e. host) of the agent respectively. So when GYPSY needs the

results from NOMAD, it would contact the naming service and the location of NOMAD

would be provided. Locations could be resolved with a single message loop: a request

and a reply. This is the best solution in terms of network communication. However,

the problem with this solution is that there is now a central point of failure. The central

naming service exists at a single location, which if that location fails then the entire service

fails. As already specified, the framework needs to be robust. Replication could be used to

achieve fault tolerance. But then this centralized service would have to handle all requests,

potentially on the order of “tens of millions” at a time. A bottleneck would be the result

and consequently the overall performance of the framework would be severely degraded.

Applying this solution would prevent us from meeting the scalability requirement.

5

1.5 Distributed Dedicated Naming Service

Now if the central naming service is distributed, the bottleneck problem is elim-

inated. A naming service that is “distributed and centralized” may appear to be an

oxymoron but it simply means that the network address mappings are not all at the same

location. Each software agent has a home base that keeps track of where that particular

software agent is at all times. So GYPSY would contact NOMAD’s home base, which

would then provide GYPSY with the current location of NOMAD. As with the central

naming service there still exists a single point of failure but it is on a per agent/agents

basis as opposed to a single point of failure for the entire system. Replication can be

employed to address this single point of failure drawback.

Also with the home base scheme, the original question of how to find mobile agents,

becomes a question of how to find the home base for a given agent? With a central naming

service, all agents go to a single source for the information they seek and all agents can

be provided the location of this single name server. There are numerous name servers

with the home base naming service and the agents must either know the specific name

server that stores the information it needs or the agents will need to know how to find

a particular name server. Since the home bases, which function as name servers, do not

ever change location, they will be easier to locate than transient agents.

Obviously, the Fault-Tolerant Home-Based Naming Service follows this very scheme.

Jumping ahead, it will be shown that this proposed naming service includes two ways of

locating the home base for a mobile agent: a location-dependent mechanism, which makes

locating trivial, and a location-independent mechanism.

Structure of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 presents the model

of the Fault-Tolerant Home-Based Naming Service including an assessment of its main

desired features. Chapter 3 presents an FHNS implementation that was tested. The results

of these tests are presented and evaluated in Chapter 4. Chapter 5 presents related work in

the area of naming services in distributed computing. And lastly, Chapter 6 and Chapter 7

presents some concluding remarks in regards to future work and the contributions of this

research.

CHAPTER 2

Fault-Tolerant Home-Based Naming Service (FHNS)

2.1 Model

The Fault-Tolerant Home-Based Naming Service conforms to the home base naming

service construct and as such each mobile agent has a home base that keeps track of that

agents location. The mobile agents can either specify their home base directly or can opt

to have a home base assigned. The naming service recognizes and is capable of resolving

two types of names: location-dependent names or location-independent names. Due to

this versatility, the service can effectively shift from a location-dependent service to a

location-independent service in the event of a node failure (i.e. home base failure).

FHNS is succinctly comprised of the following:

1. Unique Names: Mobile agents have unique names that are premised upon Uniform

Resource Identifiers (URI) [9]. The URI can take the form of a URL [8], which is

location-dependent and is how the agent specifies its home base, or the URI can take

the form of a URN [36], which is location-independent and requires a home base to

be assigned1.

2. Home Bases: Nodes on the network that provide the naming service for the mobile

agents.

3. Mapping Records: A record kept for a mobile agent that is kept current with the

agent’s location on the network. The record is stored at the agent’s respective home

base.

Table 2.1 details the API for the Fault-Tolerant Home-Based Naming Service, which

are the specific home base services.

2.2 Names

The location-dependent naming is attractive for the obvious reason that the loca-

tion of the home base is given explicitly. Consequently, the agents themselves can be
1The names adhere to the rules specified in the references with the one modification being made to the

names following the URN format.

6

7

Function Description
put(name, location) Binds a name to an initial location.
get(name) Returns the location for the given name.
update(name, location) Updates the location of the agent with the specified name.
delete(name) Remove the location record for the agent with the specified name.

Table 2.1: Fundamental API for FHNS

found quickly and efficiently simply by querying the respective home base. The location-

dependent names of an agent take the form of a URL where the general syntax is:2

<location-dependent name> ::= <scheme>:<scheme-specific-part>.

A URL contains the name of the scheme being used, which is an existing or ex-

perimental protocol. The scheme is followed by a colon and then a string (the <scheme-

specific-part>) whose interpretation depends on the scheme. For Internet schemes the

scheme specific part is written as follows:

//<user>:<password>@<host>:<port>/<url path>.

The optional elements are “<user>:<password>@”, “:<password>” and “:<port>”.

The scheme specific data begins with a double slash “//” to indicate that it complies with

the common Internet scheme syntax. The host field corresponds to the domain name of

the node, or home base for the purposes of FHNS. The url path is not an optional element

for FHNS and corresponds to the relative name of the agent. The names for an agent

are referred to as either relative or absolute. The absolute name refers to the name in

its entirety. The relative portion of the name refers to the name given to the agent that

distinguishes it from other agents using the same host as a home base.

Location-independent naming is appealing because it allows the home base to change

for a given agent. With location-independent naming, the names of an agent can take the

form of a URN. The URN syntax is:3

“urn:” <NID> “:” <NSS>.

The NID is the Namespace Identifier, and NSS is the Namespace Specific String. A

“:” delineates the three elements. The “urn” descriptor string is specified to be a required
2Refer to [8] for further details on the specific syntax of a URL.
3Refer to [36] for further details on the specific syntax of a URN.

8

element; however, for the purposes of FHNS this string will be replaced by another string

corresponding to an existing or experimental protocol. This modification allows for the

two types of names to share a common element. The FHNS modified URN will be written

as

<location-independent name> ::= <scheme> “:” <NID> “:” <NSS>.

A URN differs from a URL in that its primary purpose is persistent labelling of a

resource with an identifier as opposed to serving as a locater. The location of agents are

then resolved by using consistent hashing [30] and a lookup service such as the Chord

[49, 19] peer-to-peer lookup service. By using a peer-to-peer lookup service, the home

bases are required to keep a listing of other home bases so that when a lookup is required

a home base will be able to query other home bases for the information it needs, in this

case the location of an agent. A lookup is the process of a home base querying other

home bases and could be performed when servicing any of the naming service requests. A

lookup is not synonymous with the get service request.

2.3 Architecture

FHNS can be described as a layered architecture with DNS serving as an underlying

naming service. DNS is utilized by FHNS when resolving the domain name of a home

base to an IP address.

Names in the Domain Name System are apart of a naming hierarchy, with the most

significant part on the right. The left-most portion of the name corresponds to the name

given to the computer. Clients query local DNS servers for IP addresses. The Local server

starts with the root name server and recursively queries DNS servers until it finds a server

that has the answer. In the case of a client request regarding www.yahoo.com, the local

server queries a root DNS server then a com DNS server, and then finally the yahoo.com

server for the web server IP address.

Fault tolerance is defined as the ability of a system to respond gracefully to an

unexpected hardware or software failure. Fault tolerance for DNS is achieved with the use

of a designated primary server and a secondary or “back-up” server (or servers). If the

primary server fails, requests are directed to the secondary server. With this approach,

however, the notion of failover is always provided for the primary but not the secondary.

If the secondary server fails or the last “backup” server fails, there exists a fault in the

9

system. FHNS achieves fault tolerance with redundancy between home bases and provides

for an iterative failover capability. Each home base functions as both a primary and

secondary server. And each home base has a designated successor that is capable of

servicing requests on behalf of that home base in the event of a failure. Essentially, FHNS

is capable of recovering from all home bases, except one, failing.

Returning our attention back to DNS, when an organization wants to participate in

the Domain Name System, the organization must apply for a name under one of the top-

level domains (i.e. com, edu, gov, etc.). If the name is already in use, the organization will

not be allowed to use the name and thereby uniqueness is ensured among all the top-level

domain names. If the name is not already in use and the organization is allowed to use

the name. They then assume the responsibility of ensuring that names are unique with

respect to their domain. Names are kept unique in FHNS in a similar manner. In the

case of location-dependent naming the first part of the name, that being the host, must be

unique since it is a name in the Domain Name System. The name of the agent must then

be unique with respect to the home base (i.e. host). The home bases reject a put request if

the name requesting to be used is already in use—thereby ensuring uniqueness. Ensuring

unique naming with the location-independent names requires that both the namespace

identifier and the namespace specific string be unique. Again the home bases can reject

a put request if the namespace specific string is not unique relative to the namespace

identifier. A single global namespace identifier will be used, which is thus trivially unique

(multiple namespace identifiers are discussed in Chapter 6).

The namespace identifier corresponds to a logical ring with distinct points along the

ring called identifiers. A single home base is assigned to one of the identifiers by way of

consistent hashing. Consistent hashing is a distribution scheme that pertains to using a

hash function to distribute strings to a number (i.e. identifier) in the range [0,. . . , M],

where M is determined by the selected hashing function. Home Bases are assigned to

an identifier by hashing the domain name or the IP address. The URN of an agent is

also hashed and mapped to an identifier. The agent is then assigned a home base by

identifying the home base that has been mapped to a number greater than or equal to

the number the agent has been mapped to (0 is the first number greater than M , when

making assignments). All home bases belong to this single logical ring and each home

base keeps a routing table that lists other identifiers and the home bases associated with

10

Figure 2.1: FHNS namespace depicted as a logical ring with M identifiers.

those identifiers. The routing table contains log M entries4. Each home base has its

mapping records replicated at a number of home bases with identifiers greater than and

nearest to the identifier of the respective home base. The logical ring is not static, new

home bases can join and the mapping records will be transferred accordingly. Conversely,

home bases can leave the logical ring and one of the replicating home bases will assume

responsibility for the departed home base’s mapping records. However, the hosts that will

serve as home bases should be chosen judiciously since it would not be desirable to have a

home base that is only powered on for short durations, as would be the case with mobile

devices. Also, home bases are not restricted to being dedicated name servers only. Home

bases can be like other hosts in providing a platform for mobile agents to execute their

assigned tasks. Figure 2.1 depicts the FHNS namespace as a logical ring consisting of M

identifiers.
4Unless stated otherwise, all logarithms in this thesis are of base 2.

11

2.4 Protocol

As an example of how the naming service functions, we now present a description

of agents using the service. We begin with a 3-bit namespace, called drifters, and we will

use SHA-1 % 8 [59] as our hashing function. We identify 3 hosts to be our home bases

and assign them each an identifier.

NAME IDENTIFIER
rome:3030 7

hongkong:4040 0
newyork:5050 5

Table 2.2: Example: Home Bases and the Assigned Identifiers

In practice we would use a hashing function bigger than 3-bits to avoid collisions and

the identifiers would not be assigned but determined by hashing the domain name. Next

we introduce 4 mobile agents, half will use location-dependent names and the other half

of agents will use location-independent names. Our experimental naming service scheme

will be called fhns. Figure 2.2 illustrates these assignments.

RELATIVE NAME ABSOLUTE NAME IDENTIFIER
MIGRANT fhns://rome:3030/MIGRANT 6

TUMBLEWEED fhns://hongkong:4040/TUMBLEWEED 0
GYPSY fhns:drifters:GYPSY 4
NOMAD fhns:drifters:NOMAD 2

Table 2.3: Example: The Agents’ Names and the Determined Identifiers

The agents would need to be aware of at least one home base so that they could issue

a request to that home base to perform a put(<agent absolute name>, <agent location>).

Agents TUMBLEWEED and MIGRANT could issue the request to the host specified in

their names, which would then become their corresponding home base. GYPSY and

NOMAD could issue their requests to any of the home bases. The home base servicing

the request first hashes the names of these agents, GYPSY and NOMAD, to determine

the proper home bases and then forwards the request to those identified home bases.

home bases are able to forward requests by determining from their routing tables the host

nearest the identifier they are seeking.

If GYPSY wanted to communicate with MIGRANT it could request that the rome

host machine perform a get(fhns://rome:3030/MIGRANT) operation. The location of

12

1

26

0

drifters

a b

3
4

5

7 1

26

0

drifters

3
4

5

7

GYPSY

NOMAD

MIGRANT

TUMBLEWEED

Figure 2.2: (a) Populated 3-bit identifier space (b) home bases with mapping
records

MIGRANT would be provided with a single message loop (i.e. request and reply),

which is why we say that the location-dependent naming aspect of this naming service

is very efficient in resolving actor locations. But say GYPSY wanted to communicate

with NOMAD. GYPSY would direct a request to any of the home bases to perform a

get(fhns:drifters:NOMAD) operation. The home base, say hongkong, would first hash

the string “NOMAD”, which is the agent’s relative name, according to the SHA % 8

hashing function associated with the drifters namespace. The relative name of NOMAD

hashes to identifier 2. Hongkong would look into its routing table and see that newyork

maps to identifier 5, which is the node greater-than and closest to identifier 2. The

get(fhns:drifters:NOMAD) request would be handled by newyork and the results would

be forwarded to hongkong and then provided to GYPSY. Here it took more than a single

message loop to find the location of NOMAD. Location-independent naming does not give

as good results in resolving the location of agents since it requires that the home base for

an agent first be discovered. Finding the location of a home base could take O(log n)

messages when using the Chord lookup strategy, where n is the number of nodes in the

ring (i.e. home bases). When a home base is requested to determine the location of an

agent, it first checks the mapping records in its possession. If a mapping record is found,

13

it returns with the location of the agent. If a mapping record is not found, then the home

base forwards the request to the home base that is closest to the identifier to which the

name of the agent is mapped. The request is forwarded until it is serviced by the autho-

rized home base. To minimize the number of hops between nodes, the searching home

base can cache the location of an agent’s home base so as to avoid having to perform

another multi-message lookup for subsequent locate requests for the same agent.

Some time has passed and NOMAD decides to move from a host machine called

host1 to host2. It first requests a home base to perform an update(fhns:drifters:NOMAD,

host2) operation and then NOMAD moves to the new host. The agents are required to

provide a mechanism to handle messages in transit that were sent to the old location of

the agent. One way of handling this would be for the agent to leave behind a forwarding

pointer at the old location directing messages to the new location. The forwarding pointer

could be deleted by expiration or from a request made by the originating agent.

When the agents are done performing their tasks, they are able to remove themselves

from the system by issuing a delete(<agent absolute name>) request.

When a home base crashes and is removed from the network, the agents using that

home base still need to have some way of being located. The agents are still on the network

but the locating mechanism has been disrupted, and not addressing this contingency would

render these agents unreachable. Names that are location-independent lend themselves

nicely to fault tolerance since they are not bound to any home base explicitly. Using

Chord, we start with a logical ring and place home bases at distinct points along the ring

based upon their corresponding identifiers. Moving in a clockwise fashion, the subsequent

home bases keep copies of the mapping records belonging to the previous home bases. So

in the event that a home base fails, the subsequent home base will be able to service all

the requests that would have been handled by the now departed home base. Agents do

not become unreachable when their home base fails. The agents using location-dependent

names can still be found because the host portion of their names corresponds to a home

base and thus maps to an identifier. The subsequent identifier can easily be determined

and the replicating home base can thus be found. This does introduce a incongruity in

that the location-dependent name does not accurately give the location of the agents home

base, but there is no way to solve this problem since we wish names to be persistent even

in the event of a failure. This incongruity can be avoided by using location-independent

names.

14

2.5 Assessment

Desirable features are realized when allowing both location-dependent naming and

location-independent naming. These desirable features include fault tolerance, efficient

location resolution, and scalability. Conceptually, FHNS meets the requirements specified

for a large-scale naming service. The responsibility in meeting these requirements falls

upon the home bases.

2.5.1 Robustness

A fault tolerant infrastructure is erected when using consistent hashing and a lookup

service such as Chord. All home bases belong to this infrastructure. Although this in-

frastructure is primarily used for locating agents in the location-independent case, it can

be used to achieve fault tolerance in both the location-dependent naming and location-

independent naming cases. If a home base failure occurs, the subsequent home bases will

be able to provide redundancy for the mapping records belonging to that failed home base.

With location-independence, the lookup will advance around the circle until a mapping

record is found. In the location-dependent case, we know the home base that is unre-

sponsive since we know the home base of the agent. So all that needs to be done is to

determine the home base that is subsequent to the failed home base in the logical ring

and have all requests serviced by the subsequent home base.

2.5.2 Efficiency

It is clear that the best performance is obtained with location-dependent nam-

ing since it requires less messaging and no searching for the respective home base. In

fact the performance with location-dependent naming is as good as the performance of

the centralized dedicated naming service strategy. The performance is not as good with

location-independent naming but FHNS is amenable to optimizations such as caching.

Caching can be employed by the home bases to emulate the location-dependent naming

performance when location-independent naming is being used. An agent makes a request

for a naming service to be performed by a specific home base and if a lookup is required,

that home base can cache the results so that a search is not needed when asked to perform

another naming service for that same agent.

If caching is used, resource efficiency becomes an issue. The number of agents to

be cached should be capped so that resources are used efficiently. There are a number of

considerations for choosing the optimum cache size, which are beyond the scope of this

15

thesis. Essentially, the number of agent locations that are cached should be large enough

so as to minimize the cache miss rate and yield better performance.

2.5.3 Scalability

FHNS is scalable in terms of messaging when location-dependent naming is used. It

is likewise scalable with location-independent naming by using a scalable lookup service,

such as Chord. As previously stated, Chord resolves all lookups via O(log n) messages

to other nodes. Furthermore, Chord is able to insert new Home Bases or remove failed

Home Bases from the appropriate routing tables of existing Home Bases with O(log2 n).

Load balancing is defined as distributing processing, storage, and communications

activity evenly across servers so that no single server is overwhelmed. Consistent hashing

has the property of distributing keys among the identifiers in a relatively even manner

and as a result no single server is overwhelmed in regards to storing the keys. Consistent

hashing is only used with the location-independent names and so this load balancing

feature can be comprised with location-dependent names. To address this problem, home

bases are permitted to reject a put request containing a location-dependent name if that

home base is overloaded compared to its immediate neighbors. Further discussion is given

in Chapter 4 on how to use Chord to better distribute the keys.

A federated naming service is one that delegates control to various name servers

to eliminate a centralized bottleneck or single point of failure. Federation is of critical

importance in meeting the scalable and robust requirements. For instance, DNS is a

federated naming service that composes a global namespace for the Internet through a

hierarchy of lower level namespaces, with each namespace delegating control to the next

level down. FHNS is also a federated naming service but on a peer-to-peer basis as opposed

to the hierarchy structure of DNS.

2.5.4 Security

Security has not been entirely incorporated into FHNS; however, solutions have been

identified to address the security requirement. Data integrity can be ensured by using a

public-key encryption scheme as has been proposed for use by other naming services

such as DNS [10, 16, 18]. FHNS can be extended to incorporate these proposed security

extensions.

Using a public-key encryption scheme, malicious agents can be prevented from is-

suing an update or delete request on behalf of other agents. Likewise, a public-key

16

encryption scheme could be used to protect agents from fraudulent home bases that pro-

vide erroneous data.

Presently, the home bases are capable of providing a level of security by denying

put requests if the name an agent wishes to go by is already in use. In so doing, the home

bases ensure that names are unique. And here again the public-key encryption scheme

could be applied to allow the rebinding of a name already in use.

CHAPTER 3

Implementation

An instance of the Fault-Tolerant Home-Based Naming Service has been prototyped using

Chord as the lookup service. The prototype was then analyzed using the World-Wide

Computer (WWC) [56] as a test bed. What follows are brief descriptions of the WWC

and Chord. The architecture of the prototype is then described.

3.1 Context: World-Wide Computer (WWC)

In Chapter 1, we discussed frameworks that enable distributed computations to be

performed. One such framework has been constructed with the intent of being used on

the Internet. This framework recognizes the Internet’s vast computing capability with

its very name: the World-Wide Computer. The WWC enables tasks to be distributed

among participating computers. The present naming scheme for this framework uses a

home-based strategy and location-dependent names, which have an identical format to the

location-dependent names for FHNS. The name servers do not include any fault tolerant

features. So when a name server fails the agents that are bound to that name server

become unreachable to the other collaborating agents. FHNS is used to eliminate this

single point of failure.

The Actor model for concurrent computation in distributed systems [1] defines pre-

cisely a type of mobile agent known as an actor. An actor provides a unit of encapsulation

for both state and a thread of control manipulating that state. Communication between

actors is purely based on asynchronous message passing. Actors are reactive entities that

respond to messages. Referring to Figure 3.1, a message triggers an actor to take one

of three courses of action, the actor can: (1) modify its own state, (2) send messages to

known actors, or (3) create new actors. Along with a state and single thread of control,

each actor has a unique mail address to where messages can be sent. These messages

are buffered in the actor’s mailbox until the actor is ready to service them. There are no

restrictions on the ordering of messages, and as such there is no guarantee that the actor

processes messages in the order that they were sent. The only guarantee is that the actor

will eventually process any message sent to it. In the WWC actors are extended with the

capability of migrating from one node to another and are called universal actors.

SALSA is an actor programming language based on Java [57]. SALSA stands for

17

18

Figure 3.1: Actor Model for Concurrent Computation.

Simple Actor Language, System, and Architecture. The language simplifies programming

dynamically reconfigurable applications for the WWC by providing universal names, ac-

tive objects, and migration. Programs written in SALSA are compiled into Java source

files [29]. The Java source files are then compiled to produce the bytecode recognized by

Java Virtual Machines [35]. The SALSA language preserves many of Java’s useful object-

oriented concepts such as encapsulation, inheritance, and polymorphism. In SALSA,

programs are grouped together in modules versus Java packages. And whereas a Java

program consists of classes, objects, and methods, the SALSA program consists of be-

haviors, actors, and messages (the state of an actor is composed of private Java objects).

A key difference between a method and a message is that objects block when a method

is invoked, but actors do not block when they send a message due to the asynchronous

nature of communication. An implementation of FHNS has been incorporated into the

SALSA language so it can be used in the WWC.

The World-Wide Computer has been introduced to make it possible to pool the

computing ability of devices that can communicate over a wide-area network such as the

19

Internet. The WWC consists of a set of virtual machines, or theaters, hosting universal

actors. The universal actors are reachable throughout the Internet by their globally unique

Universal Actor Names (UAN). The UAN identifiers persist over the lifetime of an actor

and are used to obtain the actor’s current theater. The Universal Actor Locator (UAL)

represents the location of this theater. Universal actors extend actors in that they are

able:

• to bind to a unique global name and to an initial theater,

• to obtain references to their peers from their names,

• to communicate through message passing in a location-independent manner, and

• to migrate from one theater to another.

In summation, the WWC is comprised of universal actors, theaters, and dedicated name

servers.

An example of a UAN is

uan://wwc.publisher.com:3030/poemAgent.

The relative name of this actor is poemAgent, wwc.publisher.com is the name server

or home base, and uan is the naming service protocol. The UAN has an identical format

to the location-dependent names of FHNS. The naming server keeps tabs on where the

agent is located be receiving information in the form of UALs. In this example, say the

actor’s UAL is

rmsp://wwc.editor.com:4040/poemAgent.

The naming server knows from this UAL that the poemAgent is located at the

wwc.editor.com theater. The rmsp refers to a Remote Message Sending Protocol that

enables sending messages to remote actors. The format for UANs has been augmented so

as to support location-independent names for FHNS.

3.2 Context: Chord

Chord is a distributed lookup protocol that addresses the problem of efficiently

locating data in peer-to-peer networks. The Chord protocol supports just one operation:

given a key, it maps the key onto a node. The key can be associated with a particular data

20

item and together both the key and data are stored at the node to which the key maps.

The data is then located by a lookup(key) algorithm that yields the value associated with

that key, which could be the IP address for a given node on the Internet.

The consistent hash function assigns each node and key (such as the name of an

agent) in the system an m-bit identifier. The node identifiers can be established by hashing

the IP address or domain name. Likewise the identifiers for the keys, which are strings,

are established by hashing the keys themselves. As with any hash function, collisions can

occur. Collisions between keys are unimportant since keys are allowed to map to the same

identifier and it is the keys themselves that must be unique. Collisions between nodes

must be avoided in order for Chord to work correctly. Chord does not prevent collisions.

FHNS can prevent a node collision at the point a node attempts to join the system by not

allowing the node to join if it hashes to an identifier already in use. This solution would

not work if two nodes join simultaneously and they both hash to the same identifier. But

a simultaneous join collision is an unlikely occurrence so it will not be accounted for by

FHNS.

Once the keys and nodes have been mapped to identifiers, the keys are then assigned

to nodes. Any given key is stored at the first node whose identifier is equal to or greater

to the key’s identifier, where the last identifier in the identifier space is less-than the first

identifier to effectively give a logical ring or an identifier circle.

Each node maintains a routing table with m entries, where m is the number of bits

in the binary representation of the key or node identifiers. The routing table is called

the node’s finger table and the ith entry in this table is given by n + 2i−1, where n is the

identifier of the node and 1 ≤ i ≤ m. The node storing the identifier given by the ith entry

is listed in the finger table as the node to forward requests to when the n + 2i−1 identifier

is sought. Also listed in a node’s finger table is the node previous to it in the identifier

circle and is referred to as the predecessor.

If a node gets a lookup request for an identifier not listed in its finger table, it

forwards the request to the entry in its finger table that lists an identifier closest to, but

less than or equal to, the requested identifier.

In a dynamic network, nodes can join and leave at anytime. When a node joins the

ring it has to request that an existing node provide the location of its nearest neighbors

in the identifier space. Once the joining node receives its finger table information, it then

requests that the keys it is responsible for be transferred. When a node leaves the network

21

gracefully, it transfers its keys and has its neighbors update their finger tables accordingly.

Nodes leave and join the Chord identifier circle at a cost, with high probability, of O(log2 n)

messages.

Each node’s nearest neighbor or neighbors keeps copies of the keys belonging to

that node. So when a node fails, the nearest neighbor of that node can service the

lookup operation directed to the failed node. Chord does not specify the number of

neighbors that should provide redundancy but this number does correspond to the amount

of fault tolerance attainable. If ten neighbors provide redundancy, then the system can

conceptually recover without losing any of the keys in the event of ten simultaneous node

failures.

The nodes perform stabilizing procedures in which they determine if their prede-

cessor and immediate successor information is correct. By performing stabilization, the

immediate neighbors of a failed node will see that it is not responding and will take the

appropriate measures to recover from the failure by updating their finger tables. Chord

does not specify how often to perform stabilization; however, the Chord test-case imple-

mentation performed stabilization at an average rate of 0.5 invocations per minute.

3.3 FHNS Prototype Developed for the WWC

The WWC already has a naming service in place that uses location-dependent

names. This naming service is first extended to use location-independent names. A UAN

can take the traditional form, specifically

uan://<home base host>:<port>/<actor relative name>.

A UAN can also take the location-independent form,

uan:WWC:<actor relative name>.

The namespace identifier, for this prototype, is called WWC and the corresponding

hashing function to be used will be SHA-1 [59], which hashes the given inputs to a 160-bit

identifier. The namespace will encompass all identifiers greater than or equal to 0 and less

than

10016 or

146150163733090291820368483271628301965593254297610

22

A unique type of theater has been developed to serve as the home bases for FHNS

and are called home base theaters. The naming service has been incorporated into these

theaters instead of using dedicated naming servers. This is done to better ensure fault-

tolerance. The alternative would be to have the actors keep a listing of home bases that

they could query. A Denial of Service (DoS) could result if the home bases that an actor

had a listing for had all failed. Having the actors direct all requests, with the exception

of the put request, to the theater where they are presently “performing” ensures that the

naming service is always available to the actors.

The test case consists of universal actors and home base theaters. These home

base theaters host the universal actors and also serve as the name servers. Figure 3.2

depicts the structure of the home base theaters in the WWC. The figure also illustrates

the other services provided by these theaters. In keeping with the “Broadway” manner of

speaking, the home base theaters have a single stage manager that listens on a particular

port for requests. Upon receiving a request, the stage manager delegates responsibility to

servicing the request to a stage hand that is chosen from a thread pool. As illustrated in

Figure 3.2 a home base theater can service a naming request using the Universal Actor

Naming Protocol (UANP), a message directed to a hosted actor using the Remote Message

Sending Protocol (RMSP), a hosting request also using (RMSP), or a coordination request

using the Home Base Coordination Protocol (HBCP).

The methods belonging to the Universal Actor Naming Protocol are identical to

the methods in the API for the Fault-Tolerant Home-Based Naming Service. The Fault-

Tolerant Home-Based Naming Service is thus capable of servicing all UANP requests. One

modification to UANP that was needed was to change it from being a strictly text-based

protocol to being able to use Java objects. This was done to facilitate communication in

that all requests could come into the home base over the same port.

When a message is received via RMSP, the stage hand servicing the request obtains

from the registry a reference to the universal actor to whom the message is intended and

places the message in the actor’s mailbox.

A migrating actor comes into the home base theater through the same port as the

other types of communications. The actor is registered with the home base and then is

left to act upon the messages in its mailbox.

The Home Base Coordination Protocol provides the methods necessary for home

bases to transfer needed information to participate in the namespace (logical ring). Ta-

23

Figure 3.2: A Home Base Theater in the WWC.

ble 3.3 details the different HBCP requests and corresponding services.

The system is initialized by a single home base theater being started. The domain

name of the machine the home base theater is running on along with the port number is

hashed according to the WWC namespace hashing algorithm and an identifier is assigned.

Notice that the domain names are being hashed and not the IP addresses. This is not to

say that the IP address cannot be used, they in fact can. However, for any given node

either the domain name needs to be used in all cases or the IP address since the IP address

and domain name will hash to different identifiers.

Other home base theaters can then join the system by contacting a home base theater

that already belongs to the system and retrieving the necessary routing table information.

A joining home base theater, or node as it is referred in the proceeding explanations,

first determines its identifier. It then issues a nodejoin request to an existing node. The

servicing node returns with the name of the joining nodes immediate successor. The joining

node then issues an initialize request to its immediate successor. The successor then

provides the name of the joining node’s predecessor and the nodes to list in its routing table

and also the nodes that need to be informed of this node joining. The joining node then

requests its successor provide the keys that it is responsible for with a getkeys request.

24

Request and Service Description
NODEJOIN Request made by a joining node where the servicing node

returns with the requesting node’s immediate successor
INITIALIZE A joining node obtains its predecessor and routing entries

from its successor
UPDATECOVERAGE Joining or leaving node is inserted or removed and requests

its successor and predecessor to update their Namespace
coverage

GETKEYS A joining node is provided the keys it is responsible for by
its successor

REPLICATE A node requests its successor to replicate the specified
actor mapping

UPDATETABLE A node has either joined or left (failed) and other nodes
are informed to update their tables

GETNODE Gets the node covering the region where the given Namespace
identifier belongs

STABILIZE A node periodically confirms the presence of its successor
and predecessor

Table 3.1: Home Base Coordination Protocol

Next the joining node issues updatetable requests to those nodes identified that need to

be informed of this nodes presence. Afterwards, the joining node tells its predecessor and

immediate successor to update their coverage with an updatecoverage request. Upon

completion of these requests, the joining node is now a part of the system and it begins

its stabilization cycle. The stabilization cycle involves a node issuing a stabilize request

to both its predecessor and successor. The predecessor returns with its predecessor and

the successor returns with its successor. So in the event of a successor or predecessor

failure, the node will already know of that particular node that will assume the role of the

failed successor or predecessor. When the node, home base theater, receives a UANP put,

update, or delete naming request, it sends a HBCP replicate request to its successor

so as to keep the location maps and redundant location maps consistent.

Universal actors can enter the system at any point after the initial home base theater

is up and listening for requests. The universal actors become reachable to other universal

actors by issuing a put(UAN, UAL) request to one of the home base theaters.

CHAPTER 4

Performance Analysis

The FHNS prototype has been put through different tests. The intent for these tests is

to gather metrics that will support the assertions made in Chapter 2 regarding FHNS

being efficient, scalable, and robust. In the first test case, both location-independent

and location-dependent names will be used. The results obtained from this first test

case will pertain to resilience of FHNS in the event of a home base failure and is used

to illustrate robustness. Messaging efficiency and scalability are evaluated in the next

test case. The processing time to service requests for location-independent names versus

location-dependent names is evaluated. Lastly, a scalability analysis pertaining to the

load balancing capabilities is then detailed.

Before going further with the analysis, the reader should consider the specific imple-

mentation of the prototype. The tests that have been outlined are intended to measure the

performance of the FHNS model; however, the tests predominately relate to the specific

implementation of using Chord as the lookup service.

Bearing the impact of Chord upon these results, the analysis of FHNS continues

with the first test case regarding robustness5.

4.1 Robustness

The primary objective with using a lookup service such as Chord is to incorporate

the fault tolerance features into FHNS. Since fault tolerance is the primary concern, this

capability was tested to establish that the FHNS model is sound. We begin with 8 home

bases and fail the home bases one by one, effectively degrading the distributed naming

system to a centralized naming system. After each home base failure, get requests are

made for all the actors in the system to confirm that they are all still reachable. The

maximum number of messages it takes to have a request serviced is recorded. For this

test, there are an equal number of actor location-dependent names as there are actors

with location-independent names.
5The tests are conducted using machines with the following specifications:

1. Processor: Pentium (233MHz-1GHz)

2. Network: 100BaseT Ethernet

3. OS / Software: Windows 2000, Java SDK 1.4, SALSA ver 0.5

25

26

Figure 4.1: Single and Sequential Home Base Failures going from a total of 8
Home Bases to 1.

When the home base of an actor with a location-dependent name fails, FHNS hashes

the domain name and port number for that failed home base and determines the imme-

diate successor of the failed home base using a getnode request. Once the successor is

determined, the request is then forwarded. It is known that the immediate successor of the

failed home base has a redundant location map for the failed home base. The immediate

successor is thus capable of servicing requests that were intended for its predecessor, which

is the failed home base.

Figure 4.1 shows the number of messages it takes to find the back-up home base.

The home bases refer to both their immediate location map and their redundant location

map when servicing a request and this explains why only one message is needed when two

home bases are present. The figure illustrates that FHNS can recover from all home bases

failing except for one.

Performance regarding multiple home bases concurrently failing is not evaluated

since it is known that this implementation has a single replication depth. Only a home

base’s immediate successor provides redundancy. If both the home base and its successor

failed then there would be actors that would be rendered unreachable. It follows that if the

replication depth was doubled, FHNS could recover from two consecutive and concurrent

home bases failing. Increasing the replication depth, however, also has the disadvantage

of increasing the number of HBCP replication requests.

The failed nodes are identified by the home bases periodically performing a sta-

bilization routine. Stabilization involves a home base attempting to communicate with

its predecessor and successor. If the home base is not able to communicate it takes the

appropriate measures to replace the failed node and transfers and replicates the mapping

27

Figure 4.2: Message Count versus Number of Home Bases.

records as needed.

4.2 Messaging Efficiency

Next we turn to the number of messages it takes for FHNS to service a request

in a fault-free system. By messaging we count only the requests and forwarded requests

and not the responses. When location-dependent names are used only a single message

is needed. The messages needed for location-independent names depend on the lookup

service employed. Stoica et al [49] state that with high probability, Chord resolves a lookup

with O(log n) messages. This assertion was confirmed by testing. Figure 4.2 shows the

log n trend with line a and line b is the average number of messages it took for FHNS,

using Chord, to resolve a lookup pertaining to location-independent names. When only

two home bases are present, it can take two messages to resolve a lookup; specifically

the original request and the forwarded request. In the presence of n home bases, where

(n > 2), it takes on average less than O(log n) messages.

28

Figure 4.3: Prototype Request Processing Time when Using Location-
Independent Names.

4.3 Time Efficiency

FHNS is indeed highly efficient when location-dependent names are used. Its effi-

ciency is put into question with location-independent names. If we do not consider network

communication, the Request Processing Time (RPT) when using location-independent

names is over 3 times that of the processing for location-dependent names. FHNS takes on

average 420µs to process a location-independent request and 130µs to process a location-

dependent request. This time corresponds to the time elapsed from a home base receiving

a request to the generation of a response.

If we consider communication over the network, the total RPT is in the milliseconds.

It takes, on average, 14ms for FHNS to service a put request that requires no hops be

taken. Approximately half this time is spent communicating with the requester and the

other half communicating a replicate request. When hops are necessitated, the latency

is increased by the number of hops. Figure 4.3 shows the minimum and maximum RPTs

experienced by FHNS when servicing location-independent put requests. Due to these

latencies, the location-dependent names are the preferred format for actor names.

4.4 Load Balancing

To fully meet the efficiency and scalability requirements, the home bases can not be

too overloaded, else there is the potential for a bottleneck. By using Chord as the lookup

service, FHNS is able to attain load balancing. Ideally, load balancing entails that given

29

Figure 4.4: (a)The Mapping Records coverage and (b)Namespace coverage di-
vided among 8 Home bases.

K identifiers and H home bases, each home base is responsible for K/H identifiers6. In

practice, however, the number of identifiers and mapping records per home base exhibits

large variations. For instance, when the FHNS prototype consists of 2 home bases, one of

the home bases covers 53% of the namespace identifiers and the other home base covers

the remaining 47%. In contrast when two additional home bases are added giving a total

of 4, 2 of these home bases each only cover 1% of the namespace identifiers, another covers

38%, and the last home base’s coverage increases from 53% to 60%.

Figure 4.4 illustrates the namespace identifier coverage and the mapping record

coverage. It can be seen from this figure that load balancing is not sufficiently achieved.

It could be argued that load balancing is achieved by half the nodes but it certainly

cannot be said for them all. Also depicted in the figure is the obvious correlation between

namespace identifier coverage and mapping record coverage. The home bases with larger

namespace coverage also store more of the mapping records.

The region for a node begins at the node’s predecessor’s identifier and spans all

identifiers up to the node’s identifier. Stocia et al [49] propose that each node (home base)

divide the namespace into (O(log n) + 1) regions of coverage. In order to do this, the

nodes would each have O(log n) virtual nodes. Applying this proposal has the effect of

“balancing” the coverage amongst the nodes. Figure 4.5 depicts how using virtual nodes

equalizes the coverage among the home bases. Although not necessarily ideal, a level of
6Assumes all keys are equally “popular” and the nodes are homogeneous.

30

Figure 4.5: (a)Namespace coverage divided among 4 Home Bases,
(b)Namespace Coverage divided among 4 Home Bases with
8 Virtual Nodes (c) Total Namespace Coverage with Virtual
Nodes.

load balancing is thus achieved when using Chord as a lookup service and having each

home base cover (O(log n) + 1) regions. A node’s total namespace coverage is the

summation of the node’s “non-virtual” coverage and its virtual coverage.

Conclusion Drawn from Analysis

The analysis shows that there is a great amount of delay and communication associ-

ated with servicing the location-independent names in comparison to the delays and com-

munication associated with location-dependent names. Consequently, it is recommended

that location-dependent names be used as a first choice. Furthermore, it is recommended

that the fault-tolerant infrastructure that has been established for location-independent

names be used for its failover capabilities.

CHAPTER 5

Related Work

The related fields of work discussed in this chapter are categorized into four sections. The

first section presents related work on intentional naming. Conventional naming services

are discussed in section 5.2. Section 5.3 presents different types of naming services used

in common mobile agent architectures. Section 5.4 presents other types of peer-to-peer

lookup services that could be used by FHNS in lieu of Chord.

5.1 Intentional Naming

Active Names [53], used in WebOS [2], map a name to a chain of mobile programs

that can customize how a service is located and also how its results are transformed and

transported back to the client. Active Names are application oriented. For example,

when an individual accesses a web page from their Portable Digital Assistant (PDA) by

using Active Names, the web page being visited can be transformed and resized to fit

better on the PDA screen. Active Names are motivated by the observation that end users

are no longer interested in the address to contact for a resource, but the resource itself.

A similar characteristic shared by FHNS and Active Names is that the names in FHNS

determine how an agent is located, which is comparable to an Active Name mobile program

customizing how a service is located. Furthermore, these customizations are accomplished

transparently to the user.

An intentional name-specifier [22] describes the intent of the application for which

the name is being used. The intentional naming architecture uses this name-specifier as

part of the naming service it provides. A name-specifier could be [service=camera]

[function=snapshot], where contained in the name is the particular service and the

desired intent. The name would be resolved by traversing a name tree and reaching the

snapshot function. FHNS takes the traditional approach to naming where names are used

by applications as a means to reach a location in the network topology. An agent would

use FHNS to get the location of an agent that provides a camera service, and then the

agent would be able to fulfill its intent by messaging the photographing agent to take a

picture.

While active names and name-specifiers can resolve to different resources, as long

as they satisfy the user’s intent, such an intentional naming scheme would have to be

31

32

simulated by FHNS with service broker agents.

5.2 Conventional Naming and Directory Services

The Domain Name System (DNS) [37] translates Internet domain names to Internet

Protocol(IP) addresses. This system has already received a lot of discussion throughout

this thesis. It is mentioned here again since it is arguably the most conventional naming

service presently in use. DNS achieves fault tolerance with the concept of a primary and

secondary name server. Clients redirect requests to the secondary server when the primary

server has failed.

Windows Internet Naming Service (WINS) [25] is a specific naming service used by

Microsoft Windows NT and 2000 Servers. The naming service maps workstation names

and locations with IP addresses and it does so without the user or an administrator having

to be involved in each configuration change. WINS automatically creates a computer

name-IP address mapping entry in a table, ensuring that the name is unique and not a

duplicate of someone else’s computer name. If the workstation is later moved to another

geographic location, the subnet part of the IP address is likely to change. WINS will

automatically update the new subnet information in the WINS table. WINS is able to

support this “mobility” feature because the name of the workstations are unique not only

within the subnet but also within the whole network. Windows 2000 and Windows 98

clients specify more than a single WINS server (up to a maximum of 12 addresses) per

network interface. The extra WINS server addresses are used to resolve names only if the

primary WIN server fails to respond.

The Network Information System (NIS) [3] is a network naming and administration

system for smaller networks developed by Sun Microsystems. An enhancement of NIS,

called NIS+, provides additional security and other facilities. Using NIS, each host client

or server computer in the system has knowledge about the entire system, which is a

permissible characteristic for smaller networks. A user at any host can get access to files or

applications on any host in the network with a single user identification and password. NIS

is similar to DNS but somewhat simpler and specifically designed for a smaller network.

Also similar to DNS, NIS achieves fault tolerance with the use of redundant servers. The

use of NIS is expected to wane in the coming years and will eventually be superseded by

other naming and directory services such as LDAP [52].

Directory services are comparable to naming services. But whereas a naming service

33

maps names to locations, the directory service maps names to locations as well as to files,

people, services, or other entities.

The X.500 Directory Service [11] is a protocol for managing online directories of

users and resources. X.500 is described as a global White Pages directory. A user of

this service is able to look up people in a user-friendly way by name, department, or

organization. Many organizations have created an X.500 directory. Because these direc-

tories are organized as part of a single global directory, you can search for hundreds of

thousands of people from a single place on the World-Wide Web. Analogous to the tree

structure of DNS, the X.500 directory is organized under a common “root” directory in a

“tree” hierarchy of: country, organization, organizational unit, and person. An entry at

each of these levels must have certain attributes; some can have optional ones established

locally. Like DNS, X.500 also provides autonomy. Each organization can implement a

directory in its own way as long as it adheres to the basic schema or plan. The distributed

global directory works through a registration process and one or more central places that

manage many directories. The Lightweight Directory Access Protocol (LDAP) [4] is a

“lightweight” (smaller amount of code) version of the Directory Access Protocol (DAP),

which is part of X.500. Fault tolerance is achieved by replicating the directory data to

multiple locations, and then having a designated primary directory server and associated

secondaries.

The Java Naming and Directory Interface (JNDI) [44] is an API specified in Java

that provides both naming and directory functionality. Using JNDI, Java applications

can store and retrieve named Java objects belonging to any naming service provided that

the naming service has a plugged in service provider. The service provider is an imple-

mentation of the JNDI Service Provide Interface (SPI). So JNDI is not a defined naming

service on its own but rather a tool which makes various naming services available to Java

objects. The SPI provides the critical mechanisms for implementing the FHNS API, but

it was not used in the prototype. The SPI also supports federation, which is necessary for

the home bases to forward requests to one another and distribute responsibility. Presently,

LDAP and DNS implementations are available from Sun Microsystems.

5.3 Naming Services in Distributed Systems

Common Object Request Broker Architecture (CORBA) [5] [63] is an architecture

and specification for creating, distributing, and managing distributed program objects

34

versus mobile software agents. IIOP (Internet Inter-ORB Protocol) [26] is a protocol that

makes it possible for distributed programs written in different programming languages to

communicate over the Internet. The CORBA COS (Common Object Services) naming

service [51] provides a tree-like directory for object references similar to the way a file

system provides a directory structure for files. The naming service enables an object

to invoke the services of another object via Remote Procedure Calls. A name is bound

to an object through a bind or rebind operation and unbound via an unbind operation.

The object is then later found through a resolve operation. CORBA is widely used

for distributed computing between heterogeneous platforms and its services are used by

mobile agent platforms. It is worth pointing out that the operations used for naming are

analogous to the one presented for FHNS. But unlike the home bases of FHNS, CORBA

name servers exist as single points of failure. The name servers in CORBA maintain

name-to-object mappings. The objects are rendered unreachable when the respective

name server is unavailable. Realizing that this is a problem that needs addressing, efforts

have been made to make the CORBA name service fault tolerant. Electra [32] provides an

infrastructure for users to develop reliable distributed computing applications, including an

adaptive component for dynamic updates. Electra is built using CORBA, and addresses a

number of issues resulting from CORBA’s inherent inability to provide reliable distributed

communication.

The 2K global naming service [27] is a naming service for use in the 2K Operating

System [23]. The 2K OS is based on the CORBA middleware and is described as being

a distributed, object-oriented, network-centric and adaptable operating system. The 2K

naming service builds upon and enhances the COS naming service. The 2K naming

service provides a global namespace with a global root and it also provides a model for

administering the namespace. The 2K naming service, however, does not address the

single points of failure inherent with the COS naming service.

Java Remote Method Invocation (RMI) [48] enables an object (client) to invoke

the methods belonging to another object (server) running on a different JVM. The client

object obtains a reference to the server object via the RMI registry. The registry func-

tions as a name server by keeping a name to remote object mapping, where the remote

object mapping includes the network location of the object. A server object registers

a name with the registry using a bind or a rebind method call. The client obtains

a reference to the remote object by using the name of the object in a lookup method

35

call. For instance, assume a registry is running on host.net and listening for requests

to come in over port 1099. A server object, called cameraObject, registers itself by issu-

ing a rebind(//host.net:1099/camera, cameraObject) request. The full name, or absolute

name, of the server object is //host.net:1099/camera. The names are virtually identical

to the location-dependent names of FHNS, where the registry servers can be likened to

home bases. The client object issues a lookup(//host.net:1099/camera) and receives a

reference to the cameraObject that can be used to invoke methods belonging to this ob-

ject. If host.net experienced a power failure and was shut off, the cameraObject would

no longer be accessible. This is another case where the name servers exist as a single

point of failure. Redundancy can be achieved by a server object registering with multi-

ple registry servers. This approach entails that the clients have a priori knowledge of all

these registry servers. Furthermore, the client has to identify when a registry server has

failed and be able to recover accordingly. Compare this approach to FHNS, where failover

happens transparently to the clients. Filterfresh [6] uses another approach in addressing

these single points of failure and builds a fault tolerant infrastructure with the use of FT

registries. FT registries are a group of replicated RMI registry servers. Filterfresh extends

the RMI interface by introducing a multibind method. The mapping from server name

to remote object is stored at numerous registry servers. Filterfresh allows for new FT

registry servers to join a group to provide for more redundancy. With FHNS, new name

servers do not need to be added to provide for more redundancy. FHNS uses existing

name servers in the name identifier space (i.e. identifier circle with Chord), where every

node has a corresponding backup. If more redundancy is desired, the number of backups

per node can be increased to span across more nodes within the name identifier space and

so the addition of new servers is not needed. Taking an approach similar to Filterfresh,

the RMI registry servers could be extended to serve as FHNS home bases. Doing so will

have less of an impact on those mobile agent systems presently using RMI that want to

incorporate FHNS.

The Globe Location Service (i.e. naming service for mobile agents) [54, 55] maps

object identifiers to locations to support mobile objects. Globe arranges the Internet as a

hierarchy of geographical, topological, or administrative regions, effectively constructing

a static world-wide search tree analogous to DNS. In its most basic organization, the

Globe Location Service does not scale since the higher level directory nodes in the search

tree have to handle a large number of requests and they also have high storage demands.

36

The authors propose that the directory nodes be partitioned such that each subnode is

responsible for a subset of the records originally stored at the directory node. However,

even with this solution, it has yet to be shown that the service is scalable in terms of

servicing requests. Fault tolerance is supported by the directory nodes in the same way

that DNS name servers are replicated.

There are many mobile agent platforms that are in development to support dis-

tributed computing. Mentioned here are a few representative ones. Chapter 1 iden-

tified coordination mechanisms that could be used by interacting mobile agents. The

blackboard-based coordination model, for example, is used in the Ambit [13] formal model

for mobile computation. And the meeting-oriented model is used by the MOLE [7] mobile

agent system. This thesis was centrally focused on the direct coordination model and the

mobile agent platforms that use this type of coordination.

Java is characterized as being an object-oriented, distributed, interpreted, robust, se-

cure, platform-independent, portable, multithreaded, and dynamic language. Due to these

characteristics there are many mobile agent platforms that are Java-based. These Java-

based agent systems can exploit the RMI mechanism to transparently invoke a method of

a remote object and as such a direct coordination mechanism is already provided. What

follows are descriptions of Java-based mobile agent systems.

The World-Wide Computer [56] was described in detail in Chapter 3. An FHNS

implementation has been developed for use by the WWC to address the single points of

failure with the dedicated name servers.

Concordia [28], Odyssey [39], and JAFMAS [15] are all agent systems that use RMI

and serialization for agent mobility and messaging. The registries of RMI, exist in these

systems as single points of failure. Agents become unreachable when their corresponding

registry server fails.

The Agent Naming System (ANS) [38] is a specific naming system intended for

use by the Aglet system of mobile agents [64, 33]. ANS associates names with places

as opposed to having names associated with aglets. An aglet then uses ANS to move

from one place to another by referring to the names of those places. ANS facilitates

mobility but doesnt explicitly address how the aglets locate each other for the purposes

of communication. Presumably this service is meant to be used in conjunction with an

existing naming service for aglets. The Aglet system is Java-based and it uses standard

communication and naming mechanisms in place, specifically RMI and CORBA.

37

The Web Agent-based Service Providing (WASP) [67] project consists of mobile

agents that move across web servers. The agents have URL-style names that are used

to locate the agents. An agent begins its tasks at a particular web server and when it

moves to its next location, it leaves behind a pointer that it continuously notifies when it

relocates. The web server storing this pointer can be called a “home base”. Other agents

use these pointers to obtain references to those agents with whom they wish to interact.

Once again, a single point of failure exists. When the “home base” web server fails, the

pointers are gone and the respective agents are not accessible.

The Cognitive Agent Architecture (Cougaar) [65] is another Java-based architecture

for the construction of large-scale distributed agent based applications. Cougaar includes a

distributed naming service for finding other Cougaar agents. The current implementation

uses JNDI over RMI to a single naming server.

Single points of failure exist in all the direct coordination mechanism employed by

these agent systems. The Fault-Tolerant Home-Based Naming Service addresses this very

problem, without compromising lookup efficiency in the general case.

5.4 Decentralized Lookup Services

5.4.1 Peer-to-Peer Lookup Services

Gnutella [66] and Freenet [17] are peer-to-peer file sharing programs that provide a

lookup service for locating files. In Gnutella, requests for a file are flooded with a certain

scope, which effectively means there could be files available that are not found because

they are outside the scope. Flooding on every request is not scalable and the service is

not capable of giving a definitive success or failure for a given lookup. A naming service

must be capable of giving a definitive success or failure and so the flooding approach was

never considered an option in locating mobile agents. Freenet also does not give definitive

successes or failures.

JXTA [20] is a Java-based technology that provides a set of open protocols that

allow any connected device on the network to communicate and collaborate in a P2P

manner. To achieve this goal, the JXTA platform is composed of classes and methods for

managing and transmitting application and control data between JXTA compatible peer

platforms. One protocol that relates to decentralized lookup services is the Peer Resolver

protocol. This protocol allows a peer to send and receive generic queries to find or search

for peers, peer groups, and other information. A resolver, from a JXTA perspective,

38

resolves a question to an answer. The resolver should be thought of as a network-wide

query. Instead of specifying a single peer, a group of peers is queried. The messages of

the resolver are quite simple. The messages, however, are not guaranteed to reach their

destinations nor are the results, if they exist, guaranteed to arrive back at the source of the

query. So, given this acknowledgement, the lookup service presently provided by JXTA is

like the lookup services provided by Freenet and Gnutella in that definitive successes or

failures are not given.

5.4.2 Distributed Hash-table Lookup Services

Chord [49] has received a lot of attention in this thesis already, it is presented here

again to discuss other Chord-based naming services that have been developed and eval-

uated. One such implementation is called DDNS [18]. DDNS stores and retrieves DNS

records using a Chord-based distributed hash table. The system could accept conven-

tional DNS queries, perform the appropriate Chord lookup, and then send a conventional

response. An evaluation of the system showed that that the system adequately achieved

load balancing. The evaluation also showed that there is a large latency introduced with

using DDNS over DNS, it takes nearly 8 times as long to service a request. Another

peer-to-peer DNS implementation was developed to address Denial of Service (DoS) at-

tacks [58]. This later implementation demonstrated that Chord can provide the fault

tolerance needed to prevent a Denial of Service.

The following lookup services are similar to Chord in many respects. In the later

two cases, the lookup services yield better performance than Chord.

CAN [42] is described as being a distributed infrastructure that provides hash table

like functionality on an Internet scale. This infrastructure is specifically used to map keys

to values as is done with consistent hashing and Chord. Unlike Chord, CAN uses a d-

dimensional identifier space. Strings are hashed for each dimension to give a corresponding

coordinate in all such dimensions. CAN routes in O(d∗n1/d) messages. In order to achieve

logarithmic scalability, CAN needs to set d = log n, which requires that the number of

nodes n be known in advance. CAN does not appear to offer any advantages over Chord.

Tapestry [60], as used in the OceanStore [31] wide-area storage system and also

used in the Bayeux [61] wide-area data dissemination architecture, is a location routing

infrastructure that provides location-independent routing of messages. Tapestry maps

nodes and names to identifiers and uses suffix-routing when performing a lookup. For

39

instance to route from the node with an identifier 5324 to a node with identifier 0629,

the path traversed would look something like 5324 → 2349 → 1429 → 7629 → 0629.

Each node maintains a routing table with b ∗ logb n entries at each level, where b is the

base of the identifiers. Redundancy is used between neighboring nodes for fault tolerance.

The routing mechanism is also fault tolerant since nodes can route around a failed node.

Compared to Chord, this hypercube type of routing is arguably more complex but still

effective in resolving a lookup in O(log n). The performance achieved with a lookup in

Tapestry match those available with Chord.

Pastry [46], used in the SCRIBE [47] event notification infrastructure and also used

in the PAST [21] peer-to-peer storage utility, is similar to the hypercube routing used by

Tapestry. Pastry, however, is able to resolve a location in log2b n messages, where b is

a configuration parameter with a typical value of 4. The routing table for nodes using

Pastry contain up to log2b n rows with 2b − 1 entries each. The nodes also maintain

additional routing information: a neighborhood set and a leaf set. The neighborhood set

contains |M | entries and the leaf set contains |L| entries, where typical values for |M |

and |L| are 2b and 2 ∗ 2b. The routing tables are more complex than the routing tables

for the other lookup services. This complexity would be most reflected in maintaining

accurate routing information and in the initialization of the table when a node joins the

system. However, with a more complex routing table comes better performance in terms

of efficient lookups. An FHNS implementation using Pastry will yield better performance

with respect to lookups.

SPRR, Simple Plaxton, Rajaraman, and Richa [41, 34], is another distributed data

lookup scheme. Of all these service, SPPR is most similar to Chord. One notable difference

is that an SPRR node has entries in its routing table for both its forward neighbors in

the logical ring as well as its backward neighbors. Another difference is that when a node

leaves or joins in Chord, O(log2 n) messages could result. SPRR performs all operations

for node-joins, node-leaves, and lookups in O(log n) messages. An FHNS implementation

using SPRR would give better performance in a highly dynamic system with nodes joining

and leaving frequently.

CHAPTER 6

Future Work

6.1 Optimizations

There are disadvantages to FHNS in regards to location-independent naming. As

already identified, caching could be employed to better the performance. Another draw-

back with using a location-independent mechanism is the upkeep of the routing table

information. Chord specifies that a stabilization algorithm be performed periodically,

which introduces overhead. The prototype performs stabilization every couple of seconds,

which could be too much in some cases or not enough in other cases. More research and

testing is needed in coming up with an adequate and efficient stabilization algorithm.

6.2 Security

From researching other name services it becomes apparent that security and naming

are two problems that are addressed separately. This most likely is due to the fact that

security is a very broad subject that has far-reaching ramifications. There are numerous

issues pertaining to security in a distributed computing framework. The mobile agents

themselves have to be kept secure from malicious hosts and malicious agents. The hosts

have to be kept secure from malicious agents. Naming service security pertains to data

integrity and there are solutions in place to maintain data integrity such as public-key

encryption schemes as was discussed in Chapter 3.

Another problem pertaining to security is too much restriction as is experienced

with firewalls. This too is to be addressed in the security research efforts.

6.3 Publish and Subscribe Model

The publish-subscribe paradigm is not presently employed by FHNS. The publish-

subscribe paradigm would entail that a home base subscribe to another home base that

informs the subscribing home base when an agent they are tracking on behalf of another

agent relocates. The cached references would be kept current by a pushing mechanism.

So say GYPSY queried HomeBase1 for NOMADS location. HomeBase1 determines that

HomeBase2 is the home base for Nomad. HomeBase1 subscribes to HomeBase2 with re-

spect to NOMAD. Each time NOMAD relocated, HomeBase2 would notify HomeBase1.

40

41

If NOMAD moved on average 40 times in a certain time frame and GYPSY communi-

cated with NOMAD on average 2 times in the same time frame, the publish-subscribe

model would yield 10 times the amount of messages than the present version of FHNS

using location-dependent names. Conversely, however, the publish-subscribe model would

yield less messaging than the present version of FHNS if GYPSY communicated with

NOMAD more frequently than NOMAD relocated. But there is no way to determine at a

comprehensive level what the participating agents will do more frequently: communicate

or relocate. Currently, FHNS is driven by need: home bases pull the information they

need and only when the need arises. Future research will determine if a publish-subscribe

service should be incorporated into FHNS and to what degree.

6.4 Multiple Namespaces

One of the main features of DNS is autonomy. The system is designed to allow each

organization to assign names to computers or to change the names within their domain

without having to inform or seek the approval from a central authority. FHNS should

likewise permit autonomy in terms of namespace identifiers. Organizations could then

construct their own namespaces much in the same way that they extend their respective

domains. The namespace identifier could be a key belonging to the global namespace,

effectively giving a ring of rings. The key would map to a node or nodes belonging to

the organizational namespace so that agents could communicate between namespaces.

location-independent names facilitate multiple namespaces and could be extended to look

something like

urn :< Global Namespace > < Organizational Namespace >:< NSS > .

Location-dependent names pose a problem when home bases fail since the namespace that

the failed home base belonged to is not known, and consequently the successor for the

failed home base can not be determined. Multiple rings reintroduce the problem of agents

becoming unreachable. Solutions to this specific problem and other potential problems

are a topic of ongoing research [60, 46, 42].

6.5 Garbage Collection

Garbage collection is a seemingly divergent topic to naming services. However, dis-

tributed garbage collection (DGC) is an interesting problem. The question to be answered

42

is how does a system know when an agent is garbage? In the WWC, for example, uni-

versal actors are not garbage collected and resources are never recovered because other

actors can create references to the universal actors from their UANs. Some of the DGC

solutions that have been presented involve a “stop the world” approach where the system

is analyzed and all the agents that do not have a reference being made to it from some es-

tablished root are said to be garbage and are later collected. FHNS provides a mechanism

that could be used instead of a “stop the world” approach. Home Bases could also serve

as distributed garbage collectors. The Home Bases can know when an agent has references

made to it by tracking the specific get requests for a given agent. Agents that have not

had a reference made to it within a given number of time frames could be a candidate for

collection [43].

CHAPTER 7

Conclusions and Contributions

The Fault-Tolerant Home-Based Naming Service is a novel approach to locating mobile

agents in a distributed computing framework. FHNS builds upon DNS and a peer-to-peer

lookup service. And as a result of this meshing, this naming service is fault-tolerant as

was shown by using a lookup service such as Chord. This naming service is also very

efficient in resolving the location of a mobile agent.

Contributions of the Thesis

The specific contributions made in this thesis are as follows:

1. A naming service specifically designed for use by mobile agents. From the

research that has been done, it was observed that efforts on the specific topic of

naming services for mobile agents has not received much attention, at least when

compared to mobile agent security, mobility, and messaging. Also from researching

the naming services in current mobile agent platforms, it was observed that efforts

do need to be focused on this very topic. Most Java-based agent systems use RMI

or Corba which introduce single points of failure.

2. A naming service that is highly efficient, fault tolerant, and scalable.

Location-dependent naming services, such as the one found in RMI for instance, are

efficient in resolving a name to a location but introduce a single point of failure.

FHNS is as efficient as these location-dependent naming services and it is also fault

tolerant. Furthermore, the fault tolerance extension does not degrade the efficiency

in resolving location-dependent names until a failure occurs.

3. A naming service with more extensive fault tolerance than the conven-

tional redundancy model. Fault tolerance is a critical requirement with a naming

service. Traditional redundancy schemes involve a designated primary server and

an associated secondary server. The secondary server, however, does not necessarily

have a back up. So when the primary fails, the system can no longer be described

as being fault tolerant because the secondary, or the new primary, server can not

fail. With FHNS, each server has a backup and each server is a backup for another

43

44

server. The servers can fail down to a single remaining server and FHNS will still

work as needed.

There are numerous mobile agent systems currently in development. Many of the

systems are Java-based and have agents that communicate directly with other agents. Di-

rect communication requires direct coordination mechanisms. From researching numerous

mobile agent systems, it was observed that the naming mechanisms currently employed

by these same systems are not as efficient as they could be and/or they are not robust.

FHNS could be incorporated by these mobile agent systems to realize an efficient and

robust naming mechanism.

Literature Cited

[1] Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. A foundation for

actor computation. Journal of Functional Programming, 7(1):1–72, 1997.

[2] Mike Dahlin Eshwar Belani David Culler Paul Eastham Amin Vahdat,

Tom Anderson and Chad Yoshikawa. WebOS: Operating system services for wide

area applications. In Proceedings of the Seventh Symposium on High Performance

Distributed Computing, 1998.

[3] Y. Amir, D. Breitgand, G. Chockler, and D. Dolev. Group communication as an

infrastructure for distributed system management. In International Workshop on

Services in Distributed and Networked Environment, pages 84–91, 1996.

[4] Brian Arkills. LDAP Directories explained: an introduction and analysis. Addison

Wesley Longman INC, 2003.

[5] Henry Balen. Distributed Object Architectures with CORBA. Cambridge University

Press, 2000.

[6] Arash Baratloo, P. Emerald Chung, Yennun Huang, Sampath Rangarajan, and

Shalini Yajnik. Filterfresh: Hot replication of Java RMI server objects. In

Proceedings of the 4th Conference on Object-Oriented Technologies and Systems

(COOTS), pages 65–78, Santa Fe, New Mexico, 1998.

[7] Joachim Baumann, Fritz Hohl, and Kurt Rothermel. Mole - concepts of a mobile

agent system. Technical Report TR-1997-15, 1997.

[8] Tim Berners-Lee. Uniform Resource Locators (URL). Informational RFC 1738,

1994.

[9] Tim Berners-Lee. Uniform Resource Identifiers (URI): Generic Syntax.

Informational RFC 2396, 1998.

[10] Marc Branchaud. A Survey Of Public-Key Infrastructures. Master’s thesis, McGill

University, Montreal, 1997.

[11] S. Heker C. Weider, J. Reynolds. Technical Overview of Directory Services Using

the X.500 Protocol. RFC 1309, 1992.

45

46

[12] G. Cabri, L. Leonardi, and F. Zambonelli. How to Coordinate Internet Applications

based on Mobile Agents. In Proc. 7th IEEE Workshops on Enablings Technologies:

Infrastructure for Collaborative Enterprises (WETICE), pages 104–109, Stanford,

CA, 1998. IEEE Computer Society Press.

[13] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Foundations of Software

Science and Computation Structures: First International Conference, FOSSACS

’98. Springer-Verlag, Berlin Germany, 1998.

[14] Nicholas Carriero and David Gelernter. Linda in context. Communications of the

ACM, 32(4):444–458, 1989.

[15] D. Chauhan. JAFMAS: A Java-based Agent Framework for Multiagent Systems

Development and Implementation. PhD thesis, University of Cincinnati, 1997.

[16] S. Cheung. An Intrusion Tolerance Approach for Protecting Network

Infrastructures. PhD thesis, University of California, Davis, 1999.

[17] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A

distributed anonymous information storage and retrieval system. Lecture Notes in

Computer Science, 2009:46+, 2001.

[18] R. Cox, A. Muthitacharoen, and R. Morris. Serving dns using a peer-to-peer lookup

service. In IPTPS, 2002.

[19] Frank Dabek, Emma Brunskill, M. Frans Kaashoek, David Karger, Robert Morris,

Ion Stoica, and Hari Balakrishnan. Building peer-to-peer systems with Chord, a

distributed lookup service, 2001.

[20] Darren Govoni Juan Carlos Soto Daniel Brookshier, Navaneeth Krishnan. JXTA:

Java P2P Programming. Prentice Hall PTR, 2002.

[21] P. Druschel and A. Rowstron. PAST: A large-scale, persistent peer-to-peer storage

utility. In HotOS VIII, pages 75–80, Schloss Elmau, Germany, May 2001.

[22] Hari Balakrishnan Elliot Schwartz, William Adjie-Winoto. An Architecture for

Intentional Name Resolution and Application-level Routing. Technical Report

MIT/LCS/TR-775, 1999.

47

[23] M. D. Mickunas K. Nahrstedt F. J. Ballesteros. F. Kon, R. Campbell. 2K: A

Distributed Operating System for Heterogeneous Environments. Technical Report

UIUCDCS-R-99-2132, Department of Computer Science, University of Illinois at

Urbana-Champaign, December 1999.

[24] G. H. Forman and J. Zahorjan. The challenges of mobile computing. Technical

Report TR-93-11-03, IEEE Computer, 1993.

[25] Desmond Fuller. Windows NT Browsing WINS and Directory Service. Macmillan

Computer Publishing, 1998.

[26] Michael Hittesdorf. CORBA IIOP Clearly Explained. Morgan Kaufmann Publishers

INC, 2000.

[27] Muhammad Ziauddin Hydari. Design of the 2K Naming Service.

[28] M. ITA. Concordia: An infrastructure for collaborating mobile agents.

[29] B. Joy J. Gosling and G. Steele. The Java Language Specification. Addison Wesley,

1996.

[30] David Karger, Eric Lehman, Tom Leighton, Mathhew Levine, Daniel Lewin, and

Rina Panigrahy. Consistent hashing and random trees: Distributed caching

protocols for relieving hot spots on the world wide web. In ACM Symposium on

Theory of Computing, pages 654–663, May 1997.

[31] John Kubiatowicz, David Bindel, Yan Chen, Patrick Eaton, Dennis Geels,

Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westly Weimer,

Christopher Wells, and Ben Zhao. Oceanstore: An architecture for global-scale

persistent storage. In Proceedings of ACM ASPLOS. ACM, November 2000.

[32] Sean Landis and Silvano Maffeis. Building reliable distributed systems with

CORBA. Theory and Practice of Object Systems, 3(1):31–43, 1997.

[33] D.B. Lange and M. Oshima. Programming and Deploying Mobile Agents with Java

Aglets. Addison Wesley Longman INC, 1998.

[34] Xiaozhou Li and C. Greg Plaxton. On name resolution in peer-to-peer networks. In

Proceedings of the second ACM international workshop on Principles of mobile

computing, pages 82–89. ACM Press, 2002.

48

[35] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison

Wesley, 1997.

[36] R. Moats. URN Syntax. Informational RFC 2141, 1997.

[37] P. Mockapetris. Domain Names - Implementation and Specification. RFC 1035,

1987.

[38] Tomasz Muldner and Thian Tin Ter. Building Infrastructure for Mobile Software

Agents. World Conference on the WWW and Internet WEBNETC, 2000:419–424,

2000.

[39] Brian D. Noble, Morgan Price, and Mahadev Satyanarayanan. A programming

interface for application-aware adaptation in mobile computing. Technical Report

CS-95-119, Proceedings of the Second USENIX Symposium on Mobile and

Location-Independent Computing, 1995.

[40] Ian Piumarta, Marc Shapiro, and Paulo Ferreira. Garbage collection in distributed

object systems. In Workshop on Reliability and Scalability in Distributed Object

Systems, OOPSLA’95, Austin, TX, 1995.

[41] C. Greg Plaxton, Rajmohan Rajaraman, and Andrea W. Richa. Accessing nearby

copies of replicated objects in a distributed environment. In ACM Symposium on

Parallel Algorithms and Architectures, pages 311–320, 1997.

[42] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker.

A scalable content-addressable network. In Proceedings of the 2001 conference on

applications, technologies, architectures, and protocols for computer

communications, pages 161–172. ACM Press, 2001.

[43] Helena C. C. D. Rodrigues and Richard E. Jones. A cyclic distributed garbage

collector for Network Objects. In Ozalp Babaoglu and Keith Marzullo, editors,

Tenth International Workshop on Distributed Algorithms WDAG’96, pages 123–140,

Bologna, Italy, October 1996. Springer.

[44] Scott Seligman Rosanna Lee. JNDI API Tutorial and Reference: Building

Directory-Enabled Java Applicaitons. Addison Wesley Longman INC, 2000.

49

[45] V. Roth. Scalable and secure global name services for mobile agents. In 6th

ECOOP Workshop on Mobile Object Systems: Operating System Support, Security

and Programming Languages, 2000.

[46] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object

location, and routing for large-scale peer-to-peer systems. Lecture Notes in

Computer Science, 2218:329+, 2001.

[47] Antony I. T. Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Druschel.

SCRIBE: The design of a large-scale event notification infrastructure. In Networked

Group Communication, pages 30–43, 2001.

[48] Prashant Sridharan. Advanced Java Networking. Prentice Hall PTR, 2002.

[49] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari

Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet

applications. In Proceedings of the 2001 conference on applications, technologies,

architectures, and protocols for computer communications, pages 149–160. ACM

Press, 2001.

[50] Karim Taha and Thomi Pilioura. Agent Naming and Locating: Impact On Agent

Design. Technical report, 1999.

[51] William A. Ruh Thomas J. Mowbray. Inside CORBA. Addison Wesley Longman

INC, 1997.

[52] Michael Haines Tom Bialaski. Solaris and LDAP Naming Service: Deploying LDAP

in the Enterprise. Prentice Hall, 2001.

[53] Amin Vahdat, Michael Dahlin, Thomas E. Anderson, and Amit Aggarwal. Active

Names: Flexible Location and Transport of Wide-Area Resources. In USENIX

Symposium on Internet Technologies and Systems, 1999.

[54] Maarten van Steen, Franz J. Hauck, Gerco Ballintijn, and Andrew S. Tanenbaum.

Algorithmic design of the globe wide-area location service. The Computer Journal,

41(5):297–310, 1 1998.

[55] Maarten van Steen, Franz J. Hauck, and Andrew S. Tanenbaum. A model for

worldwide tracking of distributed objects. In Proceedings of the TINA’96

Conference, 1996.

50

[56] Carlos Varela. Worldwide Computing with Universal Actors: Linguistic Abstractions

for Naming, Migration, and Coordination. PhD thesis, University of Illinois at

Urbana-Champaign, 2001.

[57] Carlos Varela and Gul Agha. Programming dynamically reconfigurable open

systems with SALSA. ACM SIGPLAN Notices. OOPSLA’2001 Intriguing

Technology Track Proceedings, 36(12):20–34, December 2001.

http://www.cs.rpi.edu/˜cvarela/oopsla2001.pdf.

[58] Min Wu and Omar Bakr. Peer-to-Peer DNS infrastructure against DoS attacks.

www.mit.edu/ minwu/download/6829.pdf.

[59] Fips 180-1. secure hashing standard. U.S. Department of Commerce/NTIS,

National Technical Information Services, April 1995.

[60] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure for

fault-tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141,

UC Berkeley, April 2001.

[61] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz. Bayeux: An

architecture for scalable and fault-tolerant widearea data dissemination, 2001.

[62] Estimates on the Size of the Internet.

http://www.netbook.cs.purdue.edu/othrpags/qanda262.htm.

[63] Common Object Request Broker Architecture. http://www.omg.org.

[64] Aglet Workbench from IBM. http://www.trl.ibm.co.jp/aglets/index.html.

[65] Cognitive Agent Architecture (Cougaar). http://www.cougaar.org/.

[66] Gnutella. http://gnutella.wego.com/.

[67] The WASP Project Approach. http://wasp.cs.vu.nl/wasp/.

