
A FRAMEWORK FOR THE DYNAMIC
RECONFIGURATION OF SCIENTIFIC APPLICATIONS

IN GRID ENVIRONMENTS

By

Kaoutar El Maghraoui

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Computer Science

Approved by the
Examining Committee:

Dr. Carlos A. Varela, Thesis Adviser

Dr. Joseph E. Flaherty, Member

Dr. Ian Foster, Member

Dr. Franklin Luk, Member

Dr. Boleslaw K. Szymanski, Member

Dr. James D. Teresco, Member

Rensselaer Polytechnic Institute
Troy, New York

April 2007
(For Graduation May 2007)

A FRAMEWORK FOR THE DYNAMIC
RECONFIGURATION OF SCIENTIFIC APPLICATIONS

IN GRID ENVIRONMENTS

By

Kaoutar El Maghraoui

An Abstract of a Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Computer Science

The original of the complete thesis is on file
in the Rensselaer Polytechnic Institute Library

Examining Committee:

Dr. Carlos A. Varela, Thesis Adviser

Dr. Joseph E. Flaherty, Member

Dr. Ian Foster, Member

Dr. Franklin Luk, Member

Dr. Boleslaw K. Szymanski, Member

Dr. James D. Teresco, Member

Rensselaer Polytechnic Institute
Troy, New York

April 2007
(For Graduation May 2007)

c© Copyright 2007

by

Kaoutar El Maghraoui

All Rights Reserved

ii

CONTENTS

LIST OF FIGURES . vii

LIST OF TABLES . xi

ACKNOWLEDGMENTS . xii

ABSTRACT . xiv

1. Introduction . 1

1.1 Motivation and Research Challenges 2

1.1.1 Mobility and Malleability for Fine-grained Reconfiguration . . 3

1.1.2 Middleware-driven Dynamic Application Reconfiguration . . . 6

1.2 Problem Statement and Methodology 8

1.3 Thesis Contributions . 10

1.4 Thesis Roadmap . 11

2. Background and Related Work . 13

2.1 Grid Middleware Systems . 14

2.2 Resource Management in Grid Systems 16

2.2.1 Resource Management in Globus 18

2.2.2 Resource Management in Condor 20

2.2.3 Resource Management in Legion 21

2.2.4 Other Grid Resource Management Systems 22

2.3 Adaptive Execution in Grid Systems 23

2.4 Grid Programming Models . 25

2.5 Peer-to-Peer Systems and the Emerging Grid 28

2.6 Worldwide Computing . 31

iii

2.6.1 The Actor Model . 31

2.6.2 The SALSA Programming Language 33

2.6.3 Theaters and Run-Time Components 36

3. A Middleware Framework for Adaptive Distributed Computing 37

3.1 Design Goals . 38

3.1.1 Middleware-level Issues . 38

3.1.2 Application-level Issues . 39

3.2 A Model for Reconfigurable Grid-Aware Applications 40

3.2.1 Characteristics of Grid Environments 40

3.2.2 A Grid Application Model . 42

3.3 IOS Middleware Architecture . 47

3.3.1 The Profiling Module . 48

3.3.2 The Decision Module . 51

3.3.3 The Protocol Module . 52

3.4 The Reconfiguration and Profiling Interfaces 53

3.4.1 The Profiling API . 53

3.4.2 The Reconfiguration Decision API 55

3.5 Case Study: Reconfigurable SALSA Actors 56

3.6 Chapter Summary . 57

4. Reconfiguration Protocols and Policies . 60

4.1 Network-Sensitive Virtual Topologies 60

4.1.1 The Peer-to-Peer Topology 61

4.1.2 The Cluster-to-Cluster Topology 62

4.1.3 Presence Management . 62

4.2 Autonomous Load Balancing Strategies 63

4.2.1 Information Policy . 65

4.2.2 Transfer Policy . 67

4.2.3 Peer Location Policy . 69

4.2.4 Load Balancing and the Virtual Topology 70

4.3 The Selection Policy . 71

4.3.1 The Resource Sensitive Model 71

4.3.2 Migration Granularity . 74

4.4 Split and Merge Policies . 75

iv

4.4.1 The Split Policy . 75

4.4.2 The Merge Policy . 76

4.5 Related Work . 77

4.6 Chapter Summary . 79

5. Reconfiguring MPI Applications . 80

5.1 Motivation . 81

5.2 Approach to Reconfigurable MPI Applications 82

5.2.1 The Computational Model . 82

5.2.2 Process Migration . 84

5.2.3 Process Malleability . 85

5.3 The Process Checkpointing Migration and Malleability Library 88

5.3.1 The PCM API . 89

5.3.2 Instrumenting an MPI Program with PCM 92

5.4 The Runtime Architecture . 92

5.4.1 The PCMD Runtime System 96

5.4.2 The Profiling Architecture . 98

5.4.3 A Simple Scenario for Adaptation 99

5.5 The Middleware Interaction Protocol 101

5.5.1 Actor Emulation . 101

5.5.2 The Proxy Architecture . 102

5.5.3 Protocol Messages . 102

5.6 Related Work . 105

5.6.1 MPI Reconfiguration . 105

5.6.2 Malleability . 107

5.7 Summary and Discussion . 109

6. Performance Evaluation . 111

6.1 Experimental Testbed . 111

6.2 Applications Case Studies . 112

6.2.1 Heat Diffusion Problem . 112

6.2.2 Search for the Galactic Structure 114

6.2.3 SALSA Benchmarks . 114

6.3 Middleware Evaluation . 115

6.3.1 Application-sensitive Reconfiguration Results 115

v

6.3.2 Experiments with Dynamic Networks 116

6.3.3 Experiments with Virtual Topologies 119

6.3.4 Single vs. Group Migration 125

6.3.5 Overhead Evaluation . 125

6.4 Adaptation Experiments with Iterative MPI Applications 128

6.4.1 Profiling Overhead . 129

6.4.2 Reconfiguration Overhead . 129

6.4.3 Performance Evaluation of MPI/IOS Reconfiguration 131

6.4.3.1 Migration Experiments 131

6.4.3.2 Split and Merge Experiments 132

6.5 Summary and Discussion . 135

7. Conclusions and Future Work . 138

7.1 Other Application Models . 139

7.2 Large-scale Deployment and Security 140

7.3 Replication as Another Reconfiguration Strategy 141

7.4 Scalable Profiling and Measurements 141

7.5 Clustering Techniques for Resource Optimization 142

7.6 Automatic Programming . 142

7.7 Self-reconfigurable Middleware . 142

References . 144

vi

LIST OF FIGURES

1.1 Execution time without and with autonomous migration in a dynamic
run-time environment. 4

1.2 Execution time with different entity granularities in a static run-time
environment. 5

1.3 Throughput as the process data granularity decreases on a dedicated node. 6

2.1 A layered grid architecture and components (Adapted from [14]). 15

2.2 Sample peer-to-peer topologies: centralized, decentralized and hybrid
topologies. 30

2.3 A Model for Worldwide Computing. Applications run on a virtual net-
work (a middleware infrastructure) which maps actors to locations in the
physical layer (the hardware infrastructure). 32

2.4 The primitive operations of an actor. In response to a message, an actor
can: a) change its internal state by invoking one of its internal methods,
b) send a message to another actor, or c) create a new actor. 33

2.5 Skeleton of a SALSA program. The skeleton shows simple examples of
actor creation, message sending, coordination, and migration. 34

3.1 Interactions between reconfigurable applications, the middleware ser-
vices, and the grid resources. 42

3.2 A state machine showing the configuration states of an application at
reconfiguration points. 43

3.3 Model for a grid-aware application. 46

3.4 The possible states of a reconfigurable entity. 48

vii

3.5 IOS Agents consist of three modules: a profiling module, a protocol mod-
ule and a decision module. The profiling module gathers performance
profiles about the entities executing locally, as well as the underlying
hardware. The protocol module gathers information from other agents.
The decision module takes local and remote information and uses it to
decide how the application entities should be reconfigured. 49

3.6 Architecture of the profiling module: this module interfaces with high-
level applications and with local resources and generates application per-
formance profiles and machine performance profiles. 50

3.7 Interactions between the profiling module and the Network Weather Ser-
vice (NWS) components. 51

3.8 Interactions between a reconfigurable application and the local IOS agent. 52

3.9 IOS Profiling API . 54

3.10 IOS Reconfiguration API . 58

3.11 A UML class diagram of the main SALSA/IOS Actor classes and behav-
iors. The diagram shows the relationships between the Actor, Univer-
salActor, AutonomousActor, and MalleableActor classes. 59

4.1 The peer-to-peer virtual network topology. Middleware agents repre-
sent heterogeneous nodes, and communicate with groups or peer agents.
Information is propagated through the virtual network via these commu-
nication links. 61

4.2 The cluster-to-cluster virtual network topology. Homogeneous agents
elect a cluster manager to perform intra and inter cluster load balancing.
Clusters are dynamically created and readjusted as agents join and leave
the virtual network. 62

4.3 Scenarios of joining and leaving the IOS virtual network: (a) A node joins
the virtual network through a peer server, (b) A node joins the virtual
network through an existing peer, (c) A node leaves the virtual network. 64

4.4 Algorithm for joining an existing virtual network and finding peer nodes. 64

4.5 An example that shows the propagation of work-stealing packets across
the peers until an overloaded node is reached. The example shows the
request starting with a time-to-live (TTL) of 5. The TTL is decremented
by each forwarding node until it reaches the value of 0, then the packet
is no longer propagated. 65

4.6 Information exchange between peer agents using work-stealing request
messages. 68

viii

4.7 Plots of the expected gain decision function versus the process remaining
lifetime with different values of the number of migrations in the past.
The remaining lifetime is assumed to have a half-life time expectancy. . 73

5.1 Steps involved in communicator handling to achieve MPI process migration. . 85

5.2 Example M to N split operations. 87

5.3 Example M to N merge operations. 87

5.4 Examples of domain decomposition strategies showing block, column,
and diagonal decompositions for a 3D data-parallel problem. 88

5.5 Skeleton of the original MPI code of an MPI application. 93

5.6 Skeleton of the malleable MPI code with PCM calls: initialization phase. 94

5.7 Skeleton of the malleable MPI code with PCM calls: iteration phase. . . 95

5.8 The layered design of MPI/IOS which includes the MPI wrapper, the PCM

runtime layer, and the IOS runtime layer. 96

5.9 Architecture of a node running MPI/IOS enabled applications. 97

5.10 Library and executable structure of an MPI/IOS application. 98

5.11 A reconfiguration scenario of an MPI/IOS application. 100

5.12 IOS/MPI proxy software architecture. 103

5.13 The packet format of MPI/IOS proxy control and profiling messages. . . 105

6.1 The two-dimensional heat diffusion problem. 112

6.2 Parallel decomposition of the 2D heat diffusion problem. 113

6.3 Performance of the massively parallel unconnected benchmark. 116

6.4 Performance of the massively parallel sparse benchmark. 117

6.5 Performance of the highly synchronized tree benchmark. 117

6.6 Performance of the highly synchronized hypercube benchmark. 118

6.7 The tree topology on a dynamic environment using ARS and RS. 119

6.8 The unconnected topology on a dynamic environment using ARS and RS. 120

6.9 The hypercube application topology on Internet-like environments. . . . 121

6.10 The hypercube application topology on Grid-like environments. 121

ix

6.11 The tree application topology on Internet-like environments. 122

6.12 The tree application topology on Grid-like environments. 122

6.13 The sparse application topology on Internet-like environments. 123

6.14 The sparse application topology on Grid-like environments. 123

6.15 The unconnected application topology on Internet-like environments. . . 124

6.16 The unconnected application topology on Grid-like environments. . . . 124

6.17 Single vs. group migration for the unconnected application topology. . . 125

6.18 Single vs. group migration for the sparse application topology. 126

6.19 Single vs. group migration for the tree application topology. 126

6.20 Single vs. group migration for the hypercube application topology. . . . 127

6.21 Overhead of using SALSA/IOS on a massively parallel astronomic data-
modeling application with various degrees of parallelism on a static en-
vironment. 127

6.22 Overhead of using SALSA/IOS on a tightly synchronized two-
dimensional heat diffusion application with various degrees of parallelism
on a static environment. 128

6.23 Overhead of the PCM library. 129

6.24 Total running time of reconfigurable and non-reconfigurable execution
scenarios for different problem data sizes for the heat diffusion application.130

6.25 Breakdown of the reconfiguration overhead for the experiment of Fig-
ure 6.24. 130

6.26 Performance of the heat diffusion application using MPICH2 and
MPICH2 with IOS. 133

6.27 The expansion and shrinkage capability of the PCM library. 134

6.28 Adaptation using malleability and migration as resources leave and join 135

6.29 Dynamic reconfiguration using malleability and migration compared to
dynamic reconfiguration using migration alone in a dynamic virtual net-
work of IOS agents. The virtual network was varied from 8 to 12 to
16 to 15 to 10 to 8 processors. Malleable entities outperformed solely
migratable entities on average by 5%. 136

x

LIST OF TABLES

2.1 Layers of the grid architecture. 16

2.2 Characteristics of some grid resource management systems. 18

2.3 Examples of a Universal Actor Name (UAN) and a Universal Actor Lo-
cator (UAL). 35

2.4 Some Java concepts and analogous SALSA concepts. 35

4.1 The range of communication latencies to group the list of peer hosts. . . 69

5.1 The PCM API. 90

5.2 The structure of the assigned UAN/UAL pair for MPI processes at the
MPI/IOS proxy. 102

5.3 Proxy control message types. 104

5.4 Proxy profiling message types. 104

xi

ACKNOWLEDGMENTS

It is with great pleasure that I wish to acknowledge several people that have helped

me tremendously during the difficult, challenging, yet rewarding and exciting path

towards a Ph.D. Without their help and support, none of this work could have been

possible.

First and foremost, I am greatly indebted to my advisor Dr. Carlos A. Varela

for his guidance, encouragement, motivation, and continued support throughout my

academic years at RPI. Carlos has allowed me to pursue my research interests with

sufficient freedom, while always being there to guide me. Working with him has been

one of the most rewarding experiences of my professional life.

I am also deeply indebted to Professor Boleslaw K. Szymanski, my committee

member, for supporting my work. He has been very instrumental to the realization

of this work through his keen guidance and encouragement. Working with him has

been a great pleasure. I am also very thankful to the rest of my committee members,

Dr. Joseph E. Flaherty, Dr. Ian Foster, Dr. Franklin Luk, and Dr. James D. Teresco.

I am grateful to them for agreeing to serve on my committee and for their valuable

suggestions and comments.

Special thanks go to my colleague, Travis Desell for his key contributions to

the design and development of the Internet Operating System middleware. Many

thanks go also to the rest of the Worldwide Computing laboratory members, Wei-Jen

Wang, Jason LaPorte, Jiao Tao, and Brian Boodman for their valuable comments

and constructive criticism. My fruitful discussions and interactions with them helped

me grow professionally.

xii

I am grateful to the administrative staff of the Computer Science department,

who have spared no efforts helping me in various aspects of my academic life at RPI.

They were some of the best people I have ever worked with. In particular, I would like

to thank Pamela Paslow for her constant help and for also being a true friend. She

was always there for me in easy and difficult times. She has kept me on top of all the

necessary paperwork. I would like also to thank Jacky Carley, Shannon Carrothers,

Chris Coonrad, and Steven Lindsey.

I have been fortunate to have met great friends throughout my Ph.D journey.

They have bestowed so much love on me. I am forever grateful for their moral support,

encouragement, and true friendship. In particular I would like to thank Bouchra

Bouqata, Houda Lamehamedi, Fatima Boussetta, and Khadija Omo-meriem. Special

thanks go to Rebiha Chekired for caring for my baby, Zayneb, during the last year of

my Ph.D. She acted as a loving and caring second mother to my baby during times

I could not be around. I am forever grateful to her.

Last but not least, I am forever indebted to my husband, Bouchaib Cherif, my

parents, my sisters Hajar and Meriem, my brother Ahmed, and the rest of my family.

My husband has been a great source of inspiration to me. None of this would have

been possible without his love, support, and continuous encouragement. My parents’

prayers have always accompanied me. Their love keeps me going. My daughter

Zayneb has been the greatest source of motivation and inspiration during the last

year of my Ph.D. I am very lucky to have been blessed with her. I am grateful to all

of them. This work is dedicated to my family.

xiii

ABSTRACT

Advances in hardware technologies are constantly pushing the limits of processing,

networking, and storage resources, yet there are always applications whose computa-

tional demands exceed even the fastest technologies available. It has become critical

to look into ways to efficiently aggregate distributed resources to benefit a single ap-

plication. Achieving this vision requires the ability to run applications on dynamic

and heterogeneous environments such as grids and shared clusters. New challenges

emerge in such environments, where performance variability is the rule and not the

exception, and where the availability of the resources can change anytime. Therefore,

applications require the ability to dynamically reconfigure to adjust to the dynamics

of the underlying resources.

To realize this vision, we have developed the Internet Operating System (IOS),

a framework for middleware-driven application reconfiguration in dynamic execution

environments. Its goal is to provide high performance to individual applications in

dynamic settings and to provide the necessary tools to facilitate the way in which

scientific and engineering applications interact with dynamic environments and re-

configure themselves as needed. Reconfiguration in IOS is triggered by a set of de-

centralized agents that form a virtual network topology. IOS is built modularly to

allow the use of different algorithms for agents’ coordination, resource profiling, and

reconfiguration. IOS exposes generic APIs to high-level applications to allow for in-

teroperability with a wide range of applications. We investigated two representative

virtual topologies for inter-agent coordination: a peer-to-peer and a cluster-to-cluster

topology. As opposed to existing approaches, where application reconfiguration has

xiv

mainly been done at a coarse granularity (e.g., application-level), IOS focuses on mi-

gration at a fine granularity (e.g., process-level) and introduces a novel reconfiguration

paradigm, malleability, to dynamically change the granularity of an application’s en-

tities. Combining migration and malleability enables more effective, flexible, and

scalable reconfiguration.

IOS has been used to reconfigure actor-oriented applications implemented using

the SALSA programming language and iterative process-oriented applications that

follow the Message Passing Interface (MPI) model. To benefit from IOS reconfig-

uration capabilities, applications need to be amenable to entity migration or mal-

leability. This issue has been addressed in iterative MPI applications by designing

and building a library for process checkpointing, migration, and malleability (PCM)

and integrating it with IOS. Performance results show that adaptive middleware can

be an effective approach to reconfiguring distributed applications with various ratios

of communication to computation in order to improve their performance, and more

effectively utilize dynamic resources. We have measured the middleware overhead

in static environments demonstrating that it is less than 7% on average, yet recon-

figuration on dynamic environments can lead to significant improvement in applica-

tion’s execution time. Performance results also show that taking into consideration

the application’s communication topology in the reconfiguration decision improves

throughput by almost an order of magnitude in benchmark applications with sparse

inter-process connectivity.

xv

CHAPTER 1
Introduction

Computing environments have evolved from single-user environments, to Massively

Parallel Processors (MPPs), to clusters of workstations, to distributed systems, and

recently to grid computing systems. Every transition has been a revolution, allowing

scientists and engineers to solve complex problems and sophisticated applications

that could not be solved before. However every transition has brought along new

challenges, new problems, and also the need for technical innovations.

The evolution of computing systems has led to the current situation, where

millions of machines are interconnected via the Internet with various hardware and

software configurations, capabilities, connection topologies, access policies, etc. The

formidable mix of hardware and software resources in the Internet has fueled re-

searchers’ interest to start investigating novel ways to exploit this abundant pool of

resources in an economic and efficient manner and also to aggregate these distributed

resources to benefit a single application. Grid computing has emerged as an am-

bitious research area to address the problem of efficiently using multi-institutional

pools of resources. Its goal is to allow coordinated and collaborative resource sharing

and problem solving across several institutions to solve large scientific problems that

could not be easily solved within the boundaries of a single institution. The concept

of a computational grid first appeared in the mid-1990’s, proposed as an infrastruc-

ture for advanced science and engineering. This concept has evolved extensively since

then and has encompassed a wide range of applications in both the scientific and

commercial fields [46]. Computing power is expected to become in the future a pur-

1

2

chasable commodity, like electrical power. Hence, the analogy often made between

the electrical power grid and the conceptual computational grid.

1.1 Motivation and Research Challenges

New challenges emerge in grid environments, where the computational, storage,

and network resources are inherently heterogeneous, often shared, and have a highly

dynamic nature. Consequently, observed application performance can vary widely and

in unexpected ways. This renders the maintenance of a desired level of application

performance a hard problem. Adapting applications to the changing behavior of

the underlying resources becomes critical to the creation of robust grid applications.

Dynamic application reconfiguration is a mechanism to realize this goal.

We denote by an application’s entity, a self-contained part of a distributed or

parallel application that is running in a given runtime system. Examples include

processes in case of parallel applications, software agents, web services, virtual ma-

chines, or actors in case of actor-based applications. Application’s entities could be

running in the same runtime environment or on different distributed runtime envi-

ronments connected through the network. They could be tightly coupled, exchanging

a lot of messages or loosely coupled, with no or few messages exchanged. Dynamic

reconfiguration implies the ability to modify the mapping between application’s enti-

ties and physical resources and/or modify the granularity of the application’s entities

while the application continues to run without any disruption of service. Applica-

tions should be able to scale up to exploit more resources as they become available or

gracefully shrink down as some resources leave or experience failures. It is impracti-

cal to expect application developers to handle reconfiguration issues given the sheer

size of grid environments and the highly dynamic nature of the resources. Adopt-

ing a middleware-driven approach is imperative to achieving efficient deployment of

applications in a dynamic grid setting.

Application adaptation has been addressed in previous work in a fairly ad-hoc

manner. Usually the code that deals with adaptation is embedded within the ap-

plication or within libraries that are highly application-model dependent. Most of

these strategies require having a good knowledge of the application model and a good

3

knowledge of the execution environments. While these strategies may work for dedi-

cated and fairly static environments, they do not scale up to grid environments that

exhibit larger degrees of heterogeneity, dynamic behavior, and a much larger number

of resources. Recent work has addressed adaptive execution in grids. Most of the

mechanisms proposed have adopted the application stop and restart mechanism; i.e.,

the entire application is stopped, checkpointed, migrated, and restarted in another

hardware configuration (e.g., see [72, 110]). Although this strategy can result in im-

proved performance in some scenarios, more effective adaptivity can be achieved if

migration is supported at a finer granularity.

1.1.1 Mobility and Malleability for Fine-grained Reconfiguration

Reconfigurable distributed applications can opportunistically react to the dy-

namics of their execution environment by migrating data and computation away

from unresponsive or slow resources, or into newly available resources. Application

stop-and-restart can be thought of as application mobility. However, application en-

tity mobility allows applications to be reconfigured with finer granularity. Migrating

entities can thus be easier and more concurrent than migrating a full application.

Additionally, concurrent entity migration is less intrusive.

To illustrate the usefulness of such dynamic application entity mobility, consider

an iterative application computing heat diffusion over a two-dimensional surface. At

each iteration, each cell recomputes its value by applying a function of its current

value and its neighbors’ values. Therefore, processors need to synchronize at every

iteration with their neighbors before they can proceed on to a subsequent iteration.

Consequently, the simulation runs as slow as the slowest processor in the distributed

computation, assuming a uniform distribution of data. Clearly, data distribution

plays an important role in the efficiency of the simulation. Unfortunately, in shared

environments, the load of involved processors is unpredictable, fluctuating as new

jobs enter the system or old jobs complete.

We evaluated the execution time of the heat simulation with and without the

capability of application reconfiguration under a dynamic run-time environment: the

application was run on a cluster and soon after the application started, artificial load

4

Non−reconfigurable Execution Time�
�
�
�

��Reconfigurable Execution Time

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

 400

 600

 800

 1,000

 1,200

 1,400

3.812.441.370.95

T
im

e(
s)

Data Size (Megabytes)

 200

 0

Figure 1.1: Execution time without and with autonomous migration in a
dynamic run-time environment.

was introduced in one of the cluster machines. Figure 1.1 shows the speedup obtained

by migrating the slowest process to an available node in a different cluster.

While entity migration can provide significant benefits in performance to dis-

tributed applications over shared and dynamic environments, it is limited by the

granularity of the application’s entities . To illustrate this limitation, we use another

iterative application. This application is run on a dynamic cluster consisting of five

processors (see Figure 1.2). In order to use all the processors, at least one entity

per processor is required. When a processor becomes unavailable, the entity on that

processor can migrate to a different processor. With five entities, regardless of how

migration is done, there will be imbalance of work on the processors, so each iteration

needs to wait for the pair of entities running slower because they share a processor.

In the example, 5 entities running on 4 processors was 45% slower than 4 entities

running on 4 processors, with otherwise identical parameters. One alternative to fix

this load imbalance is to increase the number of entities to enable a more even dis-

tribution of entities no matter how many processors are available. In the example of

Figure 1.2, 60 entities were used since 60 is divisible by 5, 4, 3, 2 and 1. Unfortunately,

the increased number of entities introduces overhead which causes the application to

run slower, approximately 7.6% slower. Additionally, this approach is not scalable,

as the number of entities required for this scheme is the least common multiple of

different combinations of processor availability. In many cases, the availability of

5

N=5��

��

�
�
�
�

��
N=P (SM)
N=P
N=60

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�

�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

 80
 100
 120
 140
 160
 180

54321

Ite
ra

tio
n

T
im

e(
se

c)

Number of Processors

 60
 40
 20
 0

Figure 1.2: Execution time with different entity granularities in a static
run-time environment.

resources is unknown at the application’s startup so an effective number of entities

cannot be statically determined. Figure 1.2 shows these two approaches compared

to a good distribution of work, one entity per processor. N is the number of entities

and P is the number of processors. N=P with split and merge (SM) capabilities

uses entities with various granularities, while N=P shows the optimal configuration

for this example (with no dynamic reconfiguration and middleware overhead). N=60

and N=5 show the best configuration possible using migration with a fixed number

of entities. In this example, if a fixed number of entities is used, averaged over all

processor configurations, using five entities is 13.2% slower, and using sixty entities

is 7.6% slower.

To illustrate further how process’s granularity impacts the node-level perfor-

mance, we run an iterative application with different numbers of processes on the

same dedicated node. The larger the number of processes, the smaller the data gran-

ularity of each process. Figure 1.3 shows an experiment where the parallelism of

an iterative application was varied on a dual-processor node. In this example, hav-

ing one process per processor did not give the best performance, but increasing the

parallelism beyond a certain point also introduces a performance penalty.

We introduce the concept of mobile malleable entities to solve the problem of

appropriately using resources in the face of a dynamic execution environment where

the available resources may not be known. Instead of having a static number of

entities, malleable entities can split, creating more entities, and merge, reducing the

6

Figure 1.3: Throughput as the process data granularity decreases on a
dedicated node.

number of entities, redistributing data based on these operations. With malleable

entities, the application’s granularity, and as a consequence, the number of entities,

can also be changed dynamically. Applications define how entities split and merge,

while the middleware determines when based on resource availability information,

and what entities to split or merge depending on their communication topologies. As

the dynamic environment of an application changes, in response, the granularity and

data distribution of that application can be changed to utilize its environment most

efficiently.

1.1.2 Middleware-driven Dynamic Application Reconfiguration

There are a number of challenges to enable dynamic reconfiguration in dis-

tributed applications. We divide them into middleware challenges, programming

technology challenges, and the interface between the middleware and the applica-

tions.

7

Middleware-level Challenges

Middleware challenges include the need for continuous and non-intrusive profiling

of the run-time environment resources and to determine when it is expected that an

application reconfiguration will lead to performance improvements or better resource

utilization. A middleware layer needs to accomplish this in a decentralized way, so as

to be scalable. The meta-level information that the middleware manages must include

information on the communication topology of the application entities to co-locate

those that communicate extensively whenever possible, avoiding high-latency commu-

nication. A good compromise must also be found between highly accurate meta-level

information—but potentially very expensive to obtain and with a cost of intrusiveness

to running applications—and partial, inaccurate meta-level information—that may

be cheap to obtain in non-intrusive ways but may lead to far from optimal reconfig-

uration decisions. Since no single policy fits all, modularity is needed to be able to

plug in and fine tune different resource profiling and management policies embedded

in the middleware.

Application-level Challenges

The middleware can only trigger reconfiguration requests to applications that sup-

port them. Programming models advocating for a clean encapsulation of state inside

the application entities and asynchronous communication among entities, make the

process of reconfiguring applications dynamically much more manageable. This is be-

cause there is no need for replicated shared memory consistency protocols and preser-

vation of method invocation stacks upon entity migration. While entity mobility is

relatively easy and transparent for these programming models, entity malleability

requires more cooperation from the application developers as it is highly application-

dependent. For programming models where shared memory or synchronous commu-

nication are used, application programming interfaces need to be defined to enable

developers to specify how application entity mobility and malleability are supported

by specific applications. These models make the reconfiguration process less trans-

parent and sometimes limit the applicability of the approach to specific classes of

applications, e.g., massively parallel or iterative applications.

8

Cross-cutting Challenges

Finally, applications need to collaborate with the middleware layer by exporting

meta-level information on entity interconnectivity and resource usage and by pro-

viding operations to support potential reconfiguration requests from the middleware

layer. This interface needs to be as generic as possible to accommodate a wide variety

of programming models and application classes.

1.2 Problem Statement and Methodology

The focus of this research is to build a modular framework for middleware-

driven application reconfiguration in dynamic execution environments such as Grids

and shared clusters. The main objectives of this framework are to provide high per-

formance to individual applications in dynamic settings and to provide the necessary

tools to facilitate the way in which scientific and engineering applications interact

with dynamic execution environments and reconfigure themselves as needed. Hence,

such applications will be allowed to benefit from these rapidly evolving systems and

from the wide spectrum of resources available in them.

This research addresses most of the issues described in the previous section

through the following methodology.

A Modular Middleware for Adaptive Execution

The Internet Operating System (IOS) is a middleware framework that has been

built with the goal of addressing the problem of reconfiguring long running applica-

tions in large-scale dynamic settings. Our approach to dynamic reconfiguration is

twofold. On the one hand, the middleware layer is responsible for resource discovery,

monitoring of application-level and resource-level performance, and deciding when,

what, and where to reconfigure applications. On the other hand, the application

layer is responsible for dealing with the operational issues of migration and malleabil-

ity and the profiling of application communication and computational patterns. IOS

is built with modularity in mind to allow the use of different modules for agents

coordination, resource profiling and reconfiguration algorithms in a plug and play

fashion. This feature is very important since there is no “one size fits all” method for

9

performing reconfiguration for a wide range of applications and in highly heteroge-

neous and dynamic environments. IOS is implemented in Java and SALSA [114], an

actor-oriented programming language. IOS agents leverage the autonomous nature of

the actor model and use several coordination constructs and asynchronous message

passing provided by the SALSA language.

Decentralized Coordination of Middleware Agents

IOS embodies resource profiling and reconfiguration decisions into software agents.

IOS agents are capable of organizing themselves into various virtual topologies. De-

centralized coordination is used to allow for scalable reconfiguration. This research

investigates two representative virtual topologies for inter-agent coordination: a peer-

to-peer and a cluster-to-cluster coordination topology [73]. The coordination topology

of IOS agents has a great impact on how quickly reconfiguration decisions are made.

In a more structured environment such as a grid of homogeneous clusters, a hierar-

chical topology generally performs better than a purely peer-to-peer topology [73].

Generic Interfaces for Portable Interoperability with Applications

IOS exposes several APIs for profiling applications’ communication patterns and

for triggering reconfiguration actions such as migration and split and merge. These

interfaces shield many of the intrinsic details of reconfiguration from application de-

velopers and provide a unified and clean way of interaction between applications and

the middleware. Any application or programming model that implements IOS generic

interfaces becomes reconfigurable.

A Generic Process Checkpointing, Migration and Malleability Scheme for

Message Passing Applications

Migration or malleability capabailities are highly dependent on the application’s

programming model. Therefore, there has to be built-in library or language-level

support for migration and malleability to allow applications to be reconfigurable.

Part of this research consists of building the necessary tools to allow message passing

applications to become reconfigurable with IOS. A library for process checkpoint-

ing, migration and malleability (PCM) has been designed and developed for MPI

10

iterative applications. The PCM is a user-level library that provides checkpointing,

profiling, migration, split, and merge capabilities for a large class of iterative appli-

cations. Programmers need to specify the data structures that must be saved and

restored to allow process migration and to instrument their application with few PCM

calls. PCM also provides process split and merge functionalities to MPI programs.

Common data distributions are supported like block, cyclic, and block-cyclic. PCM

implements IOS generic profiling and reconfiguration interfaces, and therefore enables

MPI applications to benefit from IOS reconfiguration policies.

The PCM API is simple to use and hides many of the intrinsic details of how

to perform reconfiguration through migration, split and merge. Hence, with mini-

mal code modification, a PCM-instrumented MPI application becomes malleable and

ready to be reconfigured transparently by the IOS middleware. In addition, legacy

MPI applications can benefit tremendously from the reconfiguration features of IOS

by simply inserting a few calls to the PCM API.

1.3 Thesis Contributions

This research has generated a number of original contributions. They are sum-

marized as follows:

1. A modular middleware for application reconfiguration with the goal of main-

taining a reasonable performance in a dynamic environment. The modularity

of our middleware is demonstrated through the use of several reconfiguration

and coordination algorithms.

2. Fine-grained reconfiguration that enables reasoning about application entities

rather than the entire application and therefore provides more concurrent and

efficient adaptation of the application.

3. Decentralized and scalable coordination strategies for middleware agents that

are based on partial knowledge.

4. Generic reconfiguration interfaces for application-level profiling and reconfigu-

ration decisions to allow increased and portable adoption by several program-

ming models and languages. This has been demonstrated through the successful

11

reconfiguration of actor-oriented programs in SALSA and process-oriented pro-

grams using MPI.

5. A portable protocol for inter-operation and interaction between applications

and the middleware to ease the transition to reconfigurable execution in grid

environments.

6. A user-level checkpointing and migration library for MPI applications to help

develop reconfigurable message passing applications.

7. The use of split and merge or malleability as another reconfiguration mechanism

to complement and enhance application adaptation through migration. Support

of malleability in MPI applications developed by this research is the first of its

kind in terms of splitting and merging MPI processes.

8. A resource-sensitive model for deciding when to migrate, split, or merge appli-

cation’s entities. This model enables reasoning about computational resources

in a unified manner.

1.4 Thesis Roadmap

The remainder of this thesis is organized as follows:

• Chapter 2 discusses background and related work in the context of dynamic

reconfiguration of applications in grid environments. It starts by giving a litera-

ture review of emerging grid middleware systems and how they address resource

management. It then reviews existing efforts for application adaptation in dy-

namic grid environments. An overview of programming models that are suitable

for grid environments is given. Finally background information about world-

wide computing, the actor model of computation and the SALSA programming

language is presented.

• Chapter 3 starts first by presenting key design goals that have been fundamen-

tal to the implementation of the Internet Operating System (IOS) middleware.

These include operational and architectural goals at both the middleware-level

12

and application-level. Then the architecture of IOS is explained. This chapter

also explains in details the various modules of IOS and its generic interfaces for

profiling and reconfiguration.

• Chapter 4 presents the different protocols and policies implemented as part

of the middleware infrastructure. The protocols deal with coordinating the

activities of middleware agents and forwarding work-stealing requests in a peer-

to-peer fashion. At the core of the adaptation strategies, a resource-sensitive

model is used to decide when, what and where to reconfigure application entities.

• Chapter 5 explains how iterative MPI-based applications are reconfigured us-

ing IOS. First the checkpointing, migration, and malleability (PCM) library

is presented. The chapter then proceeds by showing how the PCM library is

integrated with IOS and the protocol used to achieve this integration.

• Chapter 6 presents various kinds of experiments conducted in this research

and the results obtained. In the first section, the performance evaluation of

the middleware is given including evaluation of the protocols, scalability, and

overhead. The second section presents various experiments that evaluate the

reconfiguration functionalities of IOS using migration, split and merge, and a

combination of them.

• Chapter 7 concludes this thesis with a discussion of future directions.

CHAPTER 2
Background and Related Work

The deployment of grid infrastructures is a challenging task that goes beyond the

capabilities of application developers. Specialized grid middleware is needed to miti-

gate the complex issues of integrating a large number of dynamic, heterogeneous, and

widely distributed resources. Institutions need sophisticated mechanisms to lever-

age and share their existing information infrastructures in order to be part of public

collaborations.

Grid middleware should address the following issues:

• Security. The absence of central management and the open nature of grid

resources result in having to deal with several administrative domains. Each one

of them brings along different resource access policies and security requirements.

Being able to access externally-owned resources requires having the necessary

credentials required by the external organizations. Users should be able to log on

once and execute applications across various domains 1. Furthermore, common

methods for negotiating authorization and authentication are also needed.

• Resource management. Resource management is a fundamental issue for

enabling grid applications. It deals with job submission, scheduling, resource al-

location, resource monitoring, and load balancing. Resources in the grid have a

very transient nature. They can experience constantly changing loads and avail-

1 This capability of being able to log on once instead of logging in all used machines is referred
to in the computational grid community as the single sign-on policy.

13

14

ability because of shared access and the absence of tight user control. Reliable

and efficient execution of applications on such platforms requires application

adaptation to the dynamic nature of the underlying grid environments. Adap-

tive scheduling and load balancing are necessary to achieve high performance

of grid applications and high utilization of systems’ resources.

• Data management. Since grid infrastructures involve widely distributed re-

sources, data and processing might not necessarily be collocated. Concerns

in data management arise such as how to efficiently distribute, replicate, and

access potentially massive amounts of data.

• Information management. Being able to make informed decisions by re-

source managers requires the ability to discover available resources and learn

about their characteristics (capacities, availability, current utilization, access

policies, etc). Grid information services should allow the monitoring and dis-

covery of resources and should make them available when necessary to grid

resource managers.

This chapter focuses mainly on existing research in the area of grid resource

management. The chapter is organized as follows. Section 2.1 surveys existing grid

middleware systems. Section 2.2 discusses related work in resource management in

grid systems. Section 2.3 discusses existing work in adaptive execution of grid appli-

cations. Section 2.4 presents various programming models that are good candidates

for developing grid applications. In Section 2.5, we review basic peer-to-peer concepts

and how they have been used in grid systems. Finally, Section 2.6 gives an overview

about the worldwide computing project and presents several key concepts that have

been fundamental to this dissertation.

2.1 Grid Middleware Systems

Over the last few years, several efforts have focused on building the basic soft-

ware tools to enable resource sharing within scientific collaborations. Among these

efforts, the most successful have been Globus [45], Condor [105], and Legion [29].

15

Figure 2.1: A layered grid architecture and components (Adapted
from [14]).

The Globus toolkit has emerged as the de-facto standard middleware infras-

tructure for grid computing. Globus defines several protocols, APIs, and services

that provide solutions to common grid deployment problems such as authentication,

remote job submission, resource discovery, resource access, and transfer of data and

executables. Globus adopts a layered service model that is analogous to the layered

network model. Figure 2.1 shows the layered grid architecture that the Globus project

adopts. The different layers of this architecture are briefly described in Table 2.1.

Condor is a distributed resource management system that is designed to support

high-throughput computing by harvesting idle resource cycles. Condor discovers idle

resources in a network and allocates them to application tasks [104]. Fault-tolerance

is also supported through checkpointing mechanisms.

Legion specifies an object-based virtual machine environment that transparently

16

Layer Description

Grid Fabric Distributed resources such as clusters,
machines, supercomputers, storage devices,
scientific instruments, etc.

Core Middleware A bag of services that offer remote process
management, allocation of resources from different
sites to be used by the same application, storage
management, information registration and
discovery, security, and Quality of Service (QoS).

User Level Middleware A set of interfaces to core middleware services to
provide higher levels of abstractions to end
applications. These include resource brokers,
programming tools, and development environments.

Grid Applications Applications developed using grid-enabled programming
models such as MPI.

Table 2.1: Layers of the grid architecture.

integrates grid system components into a single address space and file system. Legion

plays the role of a grid operating system by addressing issues such as process man-

agement, input-output operations, inter-process communications, and security [80].

Condor-G [49] combines both Condor and Globus technologies. This merging

combines Condor’s mechanisms for intra-domain resource management and fault-

tolerance with Globus protocols for security, and inter-domain resource discovery,

access, and management. Entropia [30] is another popular system that utilizes cycle

harvesting mechanisms. Entropia adopts similar mechanisms to Condor for resource

allocation, scheduling and job migration. However, it is tailored only for Microsoft

Windows 2000 machines, while Condor is tailored for both Unix and Windows plat-

forms. WebOS [111] is another research effort with the goal of providing operating

system’s services to wide area applications, such as, resource discovery, remote process

execution, resource management, authentication, security, and a global namespace.

2.2 Resource Management in Grid Systems

The nature of grid systems has dictated the need to come up with new mod-

els and protocols for grid resource management. Grid resource management differs

17

from conventional cluster resource management in several aspects. In contrast to

cluster systems, grid systems are inherently more complex, dynamic, heterogeneous,

autonomous, unreliable, and scalable. Several requirements need to be met to achieve

efficient resource management in grid systems:

• Site autonomy. Traditional resource management systems assume tight con-

trol over the resources. These assumptions make it easier to design efficient

policies for scheduling and load balancing. Such assumptions disappear in grid

systems where resources are dispersed across several administrative domains

with different scheduling policies, security mechanisms, and usage patterns.

Additionally, resources in grid systems have a non-deterministic nature. They

might join or leave at any time. It is therefore critical for a grid resource man-

agement system to take all these issues into account and preserve the autonomy

of each participating site.

• Interoperability. Several sites use different local resource management sys-

tems such as the Portable Batch System (PBS), Load Sharing Facility (LSF),

Condor, etc. Meta-schedulers need to be built that are able to interface and

inter-operate with all the different local resource managers.

• Flexibility and extensibility. As systems evolve, new policies get imple-

mented and adopted. The resource management system should be extensible

and flexible to accommodate newer systems.

• Support of negotiation. QoS is an important requirement to meet several

application requirements and guarantees. Negotiation between the different

participating sites is needed to ensure that the local policies will not be broken

and that the running applications will satisfy their requirements with certain

guarantees.

• Fault tolerance. As systems grow in size, the chance of failures becomes

non-negligible. Replication, checkpointing, job restart, or other forms of fault-

tolerance have become a necessity in grid environments.

18

System Architecture Resource QoS and Scheduling

Discovery/ Profiling

Dissemination/

Globus Hierarchical Decentralized Partial support of QoS, Decentralized,

query discovery, state estimation relies uses external

periodic push on external tools schedulers for

dissemination such as NWS for intra-domain

profiling and forecasting scheduling

of resources’ performance

Condor Flat Centralized No support of QoS, Centralized

query discovery, matchmaking between

periodic push client requests and

dissemination resources’ capabilities

Legion Hierarchical Decentralized Partial support of QoS, Hierarchical

query discovery, several schedules could

periodic pull be generated, the best is

dissemination selected by the scheduler

Table 2.2: Characteristics of some grid resource management systems.

• Scalability. All resource management algorithms should avoid centralized pro-

tocols to achieve more scalability. Peer-to-peer and hierarchical approaches will

be good candidate protocols.

The subsequent section surveys main grid resource management systems, how

they have addressed some of the above discussed issues, and their limitations. For

each system, we will discuss its mechanisms for resource dissemination, discovery,

scheduling, and profiling. Resource dissemination protocols can be classified as either

using push or pull models. In the push model, information about resources is peri-

odically pushed to a database. The opposite is done in a pull model, where resources

are periodically probed to collect their information about them. Table 2.2 provides a

summary of some characteristics of the resource management features of the surveyed

systems.

2.2.1 Resource Management in Globus

A Globus resource management system consists of resource brokers, resource

co-allocators, and resource managers, also referred to as Globus Resource Alloca-

19

tion Managers (GRAM). The task of co-allocation refers to allocating resources from

different sites or administrative domains to be used by the same application. Dissem-

ination of resources is done through an information service called the Grid Informa-

tion Service (GIS), also known as the Monitoring and Discovery Service (MDS) [36].

MDS uses the Lightweight Directory Access Protocol [34] (LDAP) to interface with

the gathered information about resources. MDS stores information about resources

such as the number of CPUs, the operating systems used, the CPU speeds, the net-

work latencies, etc. MDS consists of a Grid Index Information Service (GIIS) and a

Grid Resource Information Service (GRIS). GRIS provides resource discovery services

such as gathering, generating, and publishing data about resource characteristics in

an MDS directory. GIIS tries to provide a global view about the different information

gathered from various GRIS services. The aim is to make it easy for grid applications

to look-up desired resources and match them to their requirements. GIIS indexes the

resources in a hierarchical name space organization. Resource information is updated

in GIIS by push strategies. Resource brokers discover resources by querying MDS.

Globus relies on local schedulers that implement Globus interfaces to resource

brokers. These schedulers could be application-level schedulers (e.g. AppleS [16]),

batch systems (e.g. PBS), etc. Local schedulers translate application requirements

into a common language, called Resource Specification Language (RSL). RSL is a set

of expressions that specify the jobs and the characteristics of the resources required

to run them. Resource brokers are responsible for taking high level descriptions of

resource requests and translating them into more specialized and concrete specifica-

tions. The transformed request should contain concrete resources and their actual

locations. This process is referred to as specialization.

Specialized resource requests are passed to co-allocators who are responsible for

allocating requests at multiple sites to be used simultaneously by the same applica-

tion. The actual scheduling and execution of submitted jobs is done by the local

schedulers. GRAM authenticates the resource requests and schedules them using the

local resource managers. GRAM tries to simplify the development and deployment of

grid applications by providing common APIs that hide the details of local schedulers,

queuing systems, interfaces, etc. Grid users and developers do not need to know all

20

the details of other systems. GRAM acts as an entry point to various implementations

of local resource management. It uses the concept of the hour-glass where GRAM is

the neck of the hourglass, with applications and higher-level services (such as resource

brokers or meta-schedulers) above it and local control and access mechanisms below

it.

To sum up, Globus provides a bag of services to simplify resource management

at a meta-level. The actual scheduling needs still be done by the individual resource

brokers. Ensuring that an application efficiently uses resources from various sites

is still a complex task. Developers still need to bear the burden of understanding

the requirements of the application, the characteristics of the grid resources, and the

optimal ways of scheduling the application using dynamic grid resources to achieve

high performance.

2.2.2 Resource Management in Condor

The philosophy of Condor [105] is to maximize the utilization of machines by

harvesting idle cycles. A group of machines managed by a Condor scheduler is called

a Condor pool. Condor uses a centralized scheduling management scheme. A ma-

chine in the pool is dedicated to scheduling and information management. Submitted

jobs are queued and transparently scheduled to run on the available machines of the

pool. Job resource requests are communicated to the manager using the Classified

Advertisements (ClassAds) [35] resource specification language 2. Attributes such as

processor’s type, operating system, and available memory and disk space are used to

indicate jobs’ resource requirements.

Resource dissemination is done through periodic push mechanisms. Machines

periodically advertise their capabilities and their job preferences in advertisements

that use also ClassAds specification language. When a job is submitted to the Condor

scheduler by a client machine, matchmaking is used to find the jobs and machines

that best suit each other. Information about the chosen resources is then returned to

the client machine. A shadow process is forked in the the client machine to take care

of transferring executables and I/O redirection.

2 The resource specification language used by Globus follows Condor’s model for ClassAds. How-
ever Globus’s language is more flexible and expressive.

21

Flocking [39] is an enhancement of Condor to share idle cycles across several

administrative domains. Flocking allows several pool managers to communicate with

one another and to submit jobs across pools. To overcome the problems of not having

shared file systems, a split-execution model is used: I/O commands generated by a

job are captured and redirected to the shadow process running on the client machine.

This technique avoids transferring files or mounting foreign file systems.

Condor supports job preemption and check-pointing to preserve machine au-

tonomy. Jobs can be preempted and migrated to other machines if their current

machines decide to withdraw from the computation.

Condor adopts the philosophy of high throughput computing (HTC) as opposed

to high performance computing (HPC). In HTC systems, the objective is to maxi-

mize the throughput of the entire system as opposed to maximizing the individual

application response time in HPC systems. A combination of both paradigms should

exist in grids to achieve efficient execution of multi-scale applications. Improving

utilization and overall response and running time for large multi-scale applications

are both important to justify the applicability for grid environments. On the one

hand, application users will not be willing to use grids unless they expect to improve

dramatically their performance. On the other hand, the grid computing vision tries

to minimize idle resources by allowing resource sharing at a large scale.

2.2.3 Resource Management in Legion

Legion [29] is an object-based system that provides an abstraction over wide

area resources as a worldwide virtual computer by playing the role of a grid operating

system. It provides some of the traditional features that an operating system provides

in a grid setting such as a global namespace, a shared file system, security, process

creation and management, I/O, resource management, and accounting [80]. Every-

thing in Legion is an object, an active process that reacts to function invocations

from other objects in the system. Legion provides high-level specifications and pro-

tocols for object interaction. The implementations still have to be done by the users.

Legion objects are managed by their own class object instances. The class object is

responsible for creating new instances, activating or deactivating them, and schedul-

22

ing them. Legion defines core objects that implement system-level mechanisms: host

objects represent compute resources while vault objects represent persistent storage

resources.

The resource management system in Legion consists of four components: a

scheduler, a schedule implementor, a resource database, and the pool of resources.

Resource dissemination is done through a push model. Resources interact with the

resource database, also called the collection. Users or schedulers obtain information

about resources by querying the collection. For scalability purposes, there might

be more than one collection object. These objects are capable of exchanging infor-

mation about resources. Scheduling in Legion has a hierarchical structure. Higher

level schedulers schedule resources on clusters, while lower-level schedulers sched-

ule jobs on the local resources. When a job is submitted, an appropriate scheduler

(Application-specific scheduler or a default scheduler) is selected from the framework.

The scheduler, also called the enactor object is responsible for enforcing the schedule

generated. There might be more than one schedule generated. The best schedule is

selected. When it fails the next best is tried until all the schedules are exhausted.

Similar to Globus, Legion provides a framework for creating, and managing

processes in a grid setting. However, achieving high performance is still a job that

needs to be done by the application developers to make efficient use of the overall

framework.

2.2.4 Other Grid Resource Management Systems

Several resource management systems for grid environments exist beside the dis-

cussed systems. 2K [65], is a distributed operating system that is based on CORBA.

It addresses the problems of resource management in heterogeneous networks, dy-

namic adaptability, and configuration of entity-based distributed applications [64].

Bond [60] is a Java distributed agents system. The European DataGrid [56] is a

Globus-based system for the storage and management of data-intensive applications.

Nimrod [5] provides a distributed computing system for parametric modeling that

supports a large number of computational experiments. Nimrod-G [25] is an ex-

tension of Nimrod that uses the Globus services and that follows a computational

23

economical model for scheduling. NetSolve [27] is a system that has been designed

to solve computational science problems through a client-agent-server architecture.

WebOS seeks to provide operating system services, such as client authentication,

naming, and persistent storage to wide area applications [111].

There is a large body of research into computational grids and grid-based mid-

dleware, hence this section only attempts to discuss a selection of this research area.

The reader is referred to [66] and [115] for a more comprehensive survey of systems

geared toward distributed computing on a large-scale.

2.3 Adaptive Execution in Grid Systems

Globus middleware provides services needed for secure multi-site execution of

large-scale applications gluing different resource management systems and access poli-

cies. The dynamic and transient nature of grid systems necessitates adaptive mod-

els to enable the running application to adapt itself to rapidly changing resource

conditions. Adaptivity in grid computing has been mainly addressed by adaptive

application-level scheduling and dynamic load balancing. Several projects have de-

veloped application-oriented adaptive execution mechanisms over Globus to achieve

an efficient exploitation of grid resources. Examples include AppleS [17], Cactus-

G [12], GrADS [40], and GridWay [59]. These systems share many features with

differences in the ways they are implemented.

AppleS [17] applications rely on structural performance models that allows pre-

diction of application performance. The approach incorporates static and dynamic

resource information, performance predictions, application and user-specific informa-

tion and scheduling techniques to adapt to application’s execution “on-the-fly”. To

make this approach more generic and reusable, a set of template-based software for a

collection of structurally similar applications has been developed. After performing

the resource selection, the scheduler determines a set of candidate schedules based

on the performance model of the application. The best schedule is selected based

on user’s performance criteria such as execution time and turn-around time. The

schedule generated can be adapted and refined to cope with the changing behavior of

resources. Jacobi2D [18], Complib [94], and Mcell [28] are examples of applications

24

that benefited from the application-level adaptive scheduling of AppleS.

Adaptive grid execution has been also explored in the Cactus project through

support of migration [69]. Cactus is an open source problem-solving environment de-

signed for solving partial differential equations. Cactus incorporates, through special

components referred to as grid-aware thorns [11], adaptive resource selection mecha-

nisms to allow applications to change their resource allocations via migration. Cactus

uses also the concept of contract violation. Application migration is triggered when-

ever a contract violation is detected and the resource selector has identified alternative

resources. Checkpointing, staging of executables, allocation of resources, and appli-

cation restart are then performed. Some application-specific techniques were used to

adapt large applications to run on the grid such as adaptive compression, overlapping

computation with communication, and redundant computation [12].

The GrADS project [40] has investigated also adaptive execution in the con-

text of grid application development. The goal of the GrADS project is to simplify

distributed heterogeneous computing in the same way that the World Wide Web

simplified information sharing. Grid application development in GrADs involves the

following components: 1) Resource selection is performed by accessing Globus MDS

and the Network Weather Service [117] to get information about the available ma-

chines, 2) An application-specific performance modeler is used to determine a good

initial matching list for the application, 3) and a contract monitor, which detects per-

formance degradation and accordingly does rescheduling to re-map the application

to better resources. The main components involved in application adaptation are the

contract monitor, the migrator, and the rescheduler which decides when to migrate.

The migrator component relies on application-support to enable migration. The Stop

Restart Software (SRS) [110] is a user-level checkpointing library used to equip the

application with the ability to be stopped, checkpointed, and restarted with a dif-

ferent configuration. The Rescheduler component allows migration on-request and

opportunistic migration. Migration cost is evaluated by considering the predicted

remaining execution time in the new configuration, the current remaining execution

time, and the cost of rescheduling. Migration happens only if the gain is greater than

a 30% threshold [109].

25

In the GridWay [59] project, the application specifies its resource requirements

and ranks the needed resources in terms of their importance. A submission agent

automates the entire process of submitting the application and monitoring its perfor-

mance. Application performance is evaluated periodically by running a performance

degradation evaluator program and by evaluating the accumulated suspension time.

The application has a job template which contains all the necessary parameters for

its execution. The framework evaluates if migration is worthwhile or not in case of

a rescheduling event. The submission manager is responsible for the execution of a

job during its lifetime. It is also responsible for performing job migration to a new

resource. The framework is responsible for submitting jobs, preparing RSL files, per-

forming resource selection, preparing the remote system, canceling the job in case of a

kill, stop, or migration event. When performance slowdown is detected, rescheduling

actions are initiated to detect better resources. The resource selector tries to find

jobs that minimize total response time (file transfer and job execution). Application-

level schedulers are used to promote the performance of each individual application

without considering the rest of the applications. Migration and rescheduling could

be user-initiated or application-initiated.

2.4 Grid Programming Models

To achieve an application adaptation to grid environment, not only should the

middleware provide the necessary means for state estimation, and reconfiguration of

resources. The application’s programming model should also allow the application to

react to the different reconfiguration requests from the underlying environment. This

functionality can take different forms, such as application migration, process migra-

tion, checkpointing, replication, partitioning, or change of application granularity.

We describe in what follows existing programming models that appear to be

relevant to grid environments and that provide some partial support for reconfigura-

tion.

• Remote procedure calls (RPC) [20]. RPC uses the client-server model

to implement concurrent applications that communicate synchronously. The

RPC mechanism has been traditionally tailored for single-processor systems

26

and tightly coupled homogeneous systems. GridRPC is a collaboration effort

to extend the RPC model to support grid computing and to standardize its

interfaces and protocols. The extensions consist basically of providing support

for coarse-grained asynchronous systems. NetSolve [27] is a current implemen-

tation of GridRPC [92] based on a client-agent-server system. The role of the

agent is to locate suitable resources and select the best ones. Load balancing

policies are used to attempt a fair allocation of resources. Ninf [91] is another

implementation built on top of Globus services.

• Java-based models. Java is a powerful programming environment for de-

veloping platform-independent distributed systems. It was originally designed

with distributed computing in mind. The applet and Remote Method Invoca-

tion (RMI) models are some features of this design. The use of Java in grid

computing has gained even more interest since the introduction of web services

in the OGSI model. Several APIs and interfaces are being developed and inte-

grated with Java. The Java-Grande project is a huge collaborative effort trying

to bring Java platform up-to-speed for high-performance applications. The Java

Commodity Grid (CoG) toolkit [70] is another effort for providing Java-based

services for grid-computing. CoG provides an object-oriented interface to stan-

dard Globus toolkit services.

• Message passing. This model is the most widely used programming model for

parallel computing. It provides application developers with a set of primitive

tools that allow communication between the different tasks, collective operations

like broadcasts and reductions, and synchronization mechanisms. However,

message passing is still a low-level paradigm and does not provide high-level

abstractions for task parallelism. It requires a lot of expertise from developers

to achieve high performance. Popular message passing libraries include MPI

and the Parallel Virtual Machine (PVM) [41]. MPI has been implemented suc-

cessfully on massively parallel processors (MPPS) and supports a wide range

of platforms. However, existing portable implementations target homogeneous

systems and have very limited support for heterogeneity. PVM provides sup-

27

port for dynamic addition of nodes and host failures. However, its limited

ability to meet the required high performance on tightly coupled homogeneous

systems did not encourage a wide adoption. Extensions to MPI to meet grid

requirements have been actively pursued recently. MPICH-G2 is a grid-enabled

implementation of MPI based on MPICH, a portable implementation of MPI.

MPICH-G2 is built upon the Globus toolkit. MPICH-G2 allows the use of

multiple heterogeneous machines to execute MPI applications. It automatically

converts data in messages sent between machines of different architectures and

supports multi-protocol process communication through automatic selection of

TCP for inter-machine messaging and more highly optimized vendor-supplied

MPI implementations (whenever available) for intra-machine messaging.

• Actor model [7, 54]. An actor is an autonomous entity that encapsulates

state and processing. Actors are concurrent entities that communicate asyn-

chronously. Processing in actors is solely triggered by message reception. In

response to a message, an actor can change its current state, create a new actor,

or send a message to other actors. The anatomy of actors facilitates autonomy,

mobility, and asynchronous communication and makes this model attractive for

open distributed systems. Several languages and frameworks have implemented

the Actor model (e.g., SALSA [114], Actor Foundry [81], Actalk [23], THAL [63]

and Broadway [97]). A more detailed discussion of the Actor model and the

SALSA language is given in Section 2.6.

• Parallel Programming Models. Several models have emerged to abstract

application parallelism on distributed resources. The Master-Worker (MW)

model is a traditional parallel scheme whereby a master task defines dynam-

ically the tasks that must be executed and the data on which they operate.

Workers execute the assigned tasks and return the result to the master. This

model exhibits a very large degree of parallelism because it generates a dy-

namic number of independent tasks. This model is very well suited for grids.

The AppleS Master Worker Application Template (AMWT) provides adap-

tive scheduling policies for MW applications. The goal is to select the best

28

placement of the master and workers on grid resources to optimize the overall

performance of the application. The Fork-join model is another model where

the degree of parallelism is dynamically determined. In this model, tasks are

dynamically spawned and data is dynamically agglomerated based on system

characteristics such as the amount of workload or the availability of resources.

This model employs a two-level scheduling mechanism. First a number of vir-

tual processors are scheduled on a pool of physical processors. The virtual

processors represent kernel-level threads. Then user-level threads are spawned

to execute tasks from a shared queue. The forking and joining is done at the

user-level space because it is much faster than the kernel-level thread. Several

systems have implemented this model such as Cray Multitasking [88], Process

Control [51], and Minor [76]. All the afore mentioned implementations have

been targeted mainly for shared-memory and tightly coupled systems. Other

effective parallel programming models have been studied, such as divide and

conquer applications and branch and bound. The Satin [112] system is an ex-

ample of a hierarchical implementation of the divide and conquer paradigm

targeted for grid environments.

2.5 Peer-to-Peer Systems and the Emerging Grid

Grid and peer-to-peer systems share a common goal: sharing and harnessing

resources across various administrative domains. However they both evolved from

different communities and provide different services. Grid systems focus on providing

a collaborative platform that interconnects clusters, supercomputers, storage systems,

and scientific instruments from trusted communities to serve computationally inten-

sive scientific applications. Grid systems are of moderate size and are centrally or

hierarchically administered. Peer-to-peer (P2P) systems provide intermittent par-

ticipation for significantly larger untrusted communities. The most common P2P

applications are file sharing and search applications. It has been argued that grid

and P2P systems will eventually converge [48, 99]. This convergence will likely hap-

pen when the participation in grid increases to the scale of P2P systems, when P2P

systems will provide more sophisticated services, and when the stringent QoS require-

29

ments of grid systems are loosened as grids host more popular user applications. In

what follows, we give an overview of P2P systems. Then we give an overview of some

research efforts that have tried to utilize P2P techniques to serve grid computing.

The peer-to-peer paradigm is a successful model that has been proved to achieve

scalability in large-scale distributed systems. As opposed to traditional client-server

models, every component in a P2P system assumes the same responsibilities acting as

both a client and a server. The P2P approach is intriguing because it has managed to

circumvent many problems with the client/server model with very simple protocols.

There are two categories of P2P systems based on the way peers are organized and

on the protocol used: unstructured and structured. Unstructured systems impose

no structure on the peers. Every peer in an unstructured system is randomly con-

nected to a number of other peers (e.g. Examples include Napster [3], Gnutella [33],

and KaZaA [2]). Structured P2P systems adopt a well-determined structure for in-

terconnecting peers. Popular structured systems include Chord [79], Pastry [74],

Tapestry [119], and CAN [98].

In a P2P system, peers can be organized in various topologies. These topologies

can be classified into centralized, decentralized and hybrid. Several p2p applications

have a centralized component. For instance, Napster, the first file sharing applica-

tion that popularized the P2P model, has a centralized search architecture. However,

the file sharing architecture is not centralized. The SETI@Home [13] project has

a fully centralized architecture. SETI@Home is a project that harnesses free CPU

cycles across the Internet (SETI is an acronym of Search for Extra-Terrestrial Intelli-

gence). The purpose of the project is to analyze radio telescope data for signals from

extra-terrestrial intelligence. One advantage of the centralized topology is the high

performance of the search because all the needed information is stored in one central

location. However, this centralized architecture creates a bottleneck and cannot scale

to a large number of peers. In the decentralized topology, peers have equal respon-

sibilities. Gnutella [33] is among the few pure decentralized systems. It has only an

initial centralized bootstrapping mechanism by which new peers learn about existing

peers and join the system. However, the search protocol in Gnutella is completely de-

centralized. Freenet is another application with a pure decentralized topology. With

30

Centralized Decentralized Hybrid

Figure 2.2: Sample peer-to-peer topologies: centralized, decentralized and
hybrid topologies.

decentralization comes the cost of having a more complex and more expensive search

mechanism. Hybrid approaches emerged with the goal of addressing the weaknesses

of centralized and decentralized topologies, while benefiting from their advantages.

In a hybrid topology, peers have various responsibilities depending on how important

they are in the search process. An example of a hybrid system is the KazaA [2]

system. KazaA is a hybrid of the centralized Napster and the decentralized Gnutella.

It introduced a very powerful concept: super peers. Super peers act as local search

hubs. Each super peer is responsible for a small portion of the network. It acts as a

Napster server. These special peers are automatically chosen by the system depend-

ing on their performance (storage capacity, CPU speed, network bandwidth, etc) and

their availability. Figure 2.2 shows example centralized, decentralized, and hybrid

topologies.

P2P approaches have been mainly used to address resource discovery and pres-

ence management in grid systems. Most current resource discovery mechanisms are

based on hierarchical or centralized schemes. They also do not address large scale dy-

namic environments where nodes join and leave at anytime. Existing research efforts

have borrowed several P2P dynamic peer management and decentralized protocols

to provide more dynamic and scalable resource discovery techniques in grid systems.

In [48] and [100], a flat P2P overlay is used to organize the peers. Every virtual

organization (VO) has one or more peers. Peers provide information about one or

31

more resources. In [48], different strategies are used to forward queries about resource

characteristics such as random walk, learning-based, and best-neighbor. A modified

version of the Gnutella protocol is used in [100] to route query messages across the

overlay of peers. Other projects [75, 83] have adopted the notion of super peers

to organize, in a hierarchical manner, information about grid resources. Structured

P2P concepts have also been adopted for resource discovery in grids. An example is

the MAAN [26] project that proposes an extension of the Chord protocol to handle

complex search queries.

2.6 Worldwide Computing

Varela, et al. [10] introduced the notion and vision of the World-Wide Computer

(WWC) which aims at turning the widespread resources in the Web into a virtual

mega-computer with a unified, dependable and distributed infrastructure. The WWC

provides naming, mobility, and coordination constructs to facilitate building widely

distributed computing systems over the Internet. The architecture of the WWC

consists of three software components: 1) SALSA, a programming language for appli-

cation development, 2) a distributed runtime environment with support for naming

and message sending, and 3) a middleware layer with a set for services for recon-

figuration, resource monitoring, and load balancing. Figure 2.3 shows the layered

architecture of the World-Wide Computer.

The WWC views all software components as a collection of actors. The Actor

model has been fundamental to the design and implementation of the WWC architec-

ture. We discuss in what follows concepts related to the Actor model of computation

and the SALSA programming language.

2.6.1 The Actor Model

The concept of actors was first introduced by Carl Hewitt at MIT in the 1970’s to

refer to autonomous reasoning agents [54]. The concept evolved further with the work

of Agha and others to refer to a formal model of concurrent computation [9]. This

model contrasts with (and complements) the object-oriented model by emphasizing

concurrency and communication between the different components.

32

Figure 2.3: A Model for Worldwide Computing. Applications run on a vir-
tual network (a middleware infrastructure) which maps actors
to locations in the physical layer (the hardware infrastructure).

Actors are inherently concurrent and distributed objects that communicate with

each other via asynchronous message passing. An actor is an object because it encap-

sulates a state and a set of methods. It is autonomous because it is controlled by a

single thread of execution. When an actor receives a message, one of three primitive

operations might happen (see Figure 2.4):

• changing its internal state through invoking one of its internal methods,

• sending a message to another actor, or

• creating a new actor.

Actor methods are atomic operations. In other words, while an actor is exe-

cuting one of its methods, it cannot be interrupted by another message. An actor

maintains a mailbox where it buffers received messages until it is ready to respond

to them. There is no guarantee that messages will be processed in the order in which

they were sent. The only guarantee is that any message will eventually be processed

by the receiving actor.

33

Figure 2.4: The primitive operations of an actor. In response to a mes-
sage, an actor can: a) change its internal state by invoking one
of its internal methods, b) send a message to another actor, or
c) create a new actor.

The anatomy of actors simplifies concurrency, synchronization, coordination,

namespace management, memory management, scheduling, and mobility in dis-

tributed systems. The actor model has been successfully used in several applica-

tions. To name a few: enterprise integration [106], real-time programming [87], fault-

tolerance [8], and distributed artificial intelligence [43].

2.6.2 The SALSA Programming Language

SALSA [114] is a language for developing actor-oriented applications. SALSA

is an acronym for Simple Actor Language System and Architecture. SALSA is pre-

processed to Java. Therefore it inherits all the object-oriented features of Java such

as inheritance, encapsulation, and polymorphism. SALSA provides programming ab-

stractions to implement actor primitives notably creation and asynchronous commu-

nication. It has been designed with additional extensions to facilitate programming

34

�

module example . s a l s a behavior ;

behavior SalsaBehavior {

// cons t ruc t o r
void SalsaBehavior (){

//do something
}

void message1 (){
//do something

}
void message2 (){

//do something
}

void act (S t r ing arguments []) {

//Actor c r ea t i on
// Creates an ac tor wi th the Sa l saBehav ior behavior
//wi th a g iven name at a s p e c i f i c l o c a t i o n .

SalsaBehavior myactor = new SalsaBehavior ()
at (myUAN, myUAL) ;

//Message sending
myactor<−message1 () ;

//Send the message p r i n t l n to the ac tor sandardOutput
standardOutput<−p r i n t l n ("sample message") ;

//Actor migrat ion
// This r e s u l t s i n t o migra t ing the ac tor myactor to
// the l o c a t i o n newUAL
myactor<−migrate (newUAL) ;

//Coordinat ion example
//Enforcing the oder o f message proce s s ing
// the ac tor myactor shou ld proces s message1 b e f o r e
// proce s s ing message 2
myactor<−message1 () @myactor<−message2 () ;

}

� �

Figure 2.5: Skeleton of a SALSA program. The skeleton shows simple
examples of actor creation, message sending, coordination, and
migration.

35

Type Example

URL http://wcl.cs.rpi.edu/
UAN uan://europa.wcl.cs.rpi.edu:3030/myID
UAL rmsp://io.wcl.cs.rpi.edu:4040/myLocation

Table 2.3: Examples of a Universal Actor Name (UAN) and a Universal
Actor Locator (UAL).

JAVA Concepts Analogous SALSA Concepts

Object Actor
Class Behavior
Method Message Handler
main Method act Message
Method Invocation Message Sending
Package Module

Table 2.4: Some Java concepts and their analogous SALSA concepts.

reconfigurable distributed applications:

• Universal naming. Every actor has a unique name that is used as a point of

contact by other actors. Message sending can simply be done by just knowing

the universal name of an actor. In SALSA’s terms, a Universal Actor Name

(UAN) refers to the actor’s unique name, while a Universal Actor Locator refers

to its current location. The UAN and UAL formats follow the Uniform Resource

Identifier (URI) syntax. Hence, they are very similar to a Uniform Resource

Locator (URL) used by the WWW as the examples in Table 2.3 illustrate.

• Migration. SALSA’s runtime environment provides the necessary support to

perform migration of an actor. This feature provides actors with mobility; a

necessary ingredient for reconfigurability in distributed systems.

• Coordination primitives. The language supports several mechanisms that

coordinate the behavior of actors. More specifically, SALSA provides primitives

for ordering messages, and delegating computations to third-parties.

Figure 2.5 shows a skeleton of a SALSA program with simple examples for actor

creation, migration, message sending, and coordination. The equivalent of Java’s

36

packages, objects, classes, and methods in SALSA are modules, behaviors, actors,

and messages (see Table 2.4).

2.6.3 Theaters and Run-Time Components

Actors in the WWC framework rely on the Universal Actor Naming Protocol

(UANP) and Remote Message Sending Protocol (RMSP) for communication. RMSP

enables message sending and actor migration. UANP enables communication with

naming authorities that map actor locations to human readable names. The UANP

and RMSP protocols provide transport mechanisms for actor in a portable manner

in similar fashion to the HTTP transport protocol in the World-Wide Web.

Theaters are nodes of the WWC that provide execution environments for actors.

Each theater consists of an RMSP server, a mapping between relative actor locations

and executing actor references, and a runtime environment. The theater might also

contain stationary environmental actors that provide access to stationary resources

such as standard output.

The WWC provides a naming service which enables messages to be sent to an

actor as its location changes from one theater to another. The universal actor naming

protocol consists of a small number of message types and is very extensible.

CHAPTER 3
A Middleware Framework for Adaptive

Distributed Computing

We discuss in this chapter a modular framework for achieving adaptation based on

dynamically reconfigurable grid-aware applications. An application is said to be grid-

aware if it can sense the characteristics of the underlying grid environment and dy-

namically reconfigures its resources allocation or its structure to maintain a desired

level of performance 3. Dynamic reconfiguration implies the ability of the application

to dynamically change the mappings of its entities to physical resources or the degree

of parallelism it exposes in response to grid environment changes. The framework

does not necessarily assume an initial knowledge of the performance model of the

application. The latter can be learned through automatic profiling strategies.

The chapter starts by discussing in Section 3.1 key design issues at both the

middleware-level and the application-level that need to be addressed to achieve suc-

cessful reconfiguration for applications in dynamic environments. Section 3.2 de-

scribes a model for grid-aware reconfigurable applications. The architecture of the

Internet Operating System middleware is explained in Section 3.3. Then a description

of the profiling and reconfiguration interfaces of IOS are presented in Section 3.4.

3The term grid-aware was introduced first in the GrADS project [40].

37

38

3.1 Design Goals

Managing reconfiguration issues over large-scale dynamic environments is be-

yond the scope of application developers. It is therefore imperative to adopt a

middleware-driven approach to achieve efficient deployment of distributed applica-

tions in a dynamic setting in a portable and transparent manner. One way of achieving

this vision is embodying various middleware strategies and services within a virtual

network of autonomous agents that coordinate applications and resources.

Several design issues need to be addressed to achieve middleware-trigged appli-

cation reconfiguration. We discuss these goals at both the middleware-level and the

application-level.

3.1.1 Middleware-level Issues

Architectural Modularity Middleware agents should provide mechanisms that

allow profiling meta-level information about applications’ behavior and resource us-

age characteristics, propagating this meta-level information, and deciding when and

how to reconfigure applications. It is hard, if not impossible, to adopt one single

strategy that is applicable to different types of execution environments and a large

spectrum of applications. For example, it should be possible for the middleware to

enable tuning the amount of profiling done depending on the load of the underlying

resources. The more accurate the profiling is, the more informed the reconfigura-

tion decisions are. A modular architecture is therefore critical to have extensible and

pluggable reconfiguration mechanisms. Different profiling, coordination, and recon-

figuration decisions strategies can be used depending on the class of applications and

the characteristics of the underlying execution environment.

Generic Interfaces To allow middleware to manage applications written using

various programming models and technologies, common and generic interfaces need

to be designed. The functional details of how to accomplish reconfigurability such

as migration, replication, or re-distribution of computation are different among var-

ious programming models. However, the strategies embodied in the middleware to

39

achieve application’s adaptation such as deciding how to disseminate resource char-

acteristics and how to use meta-level information about applications and resources to

effectively reconfigure applications are similar and therefore reusable across various

programming paradigms. Generalizing and standardizing the interactions between

applications and middleware lead to a more generic and portable approach capable

of using new programming models and easily upgrading legacy applications that use

existing models to enable dynamic reconfiguration.

Decentralized and Scalable Strategies Grids consist of thousands—potentially

millions—of globally distributed computational nodes. To address the demands of

such large-scale environments with higher degrees of node failures and latency vari-

ability, decentralized management becomes a necessity. The sheer size of these compu-

tational environments renders the use of decisions based on global knowledge infeasible

and impractical since the overhead of obtaining global information may overwhelm

the benefits of using it. This forces any middleware to rely on making decisions based

on local, partial, and often inaccurate information. There is an inherent trade-off be-

tween the overhead of information dissemination and the maintenance of high quality

of information.

Dynamic Resource Availability Large-scale execution environments are ex-

pected to be more dynamic. Resource availability is constantly changing. Resources

can join anytime during the lifetime of an application, for example, when users vol-

untarily engage their machines as part of a distributed computation over the Web,

or when an over-loaded machine becomes suddenly available upon the completion of

some tasks. Resources can also leave at anytime, for example, when a user withdraws

her/his machine from a web-based computation or because of a node failure. To im-

prove efficiency, middleware-driven reconfiguration can help applications adjust their

resource allocation as the availability of the underlying physical resources changes.

3.1.2 Application-level Issues

The middleware’s ability to reconfigure an application dynamically is ultimately

bound by the application’s reconfiguration capabilities. Different levels of reconfigura-

40

bility include application stop and restart mechanisms, application entity migration

and replication, and dynamic granularity of application entities. The latter techniques

require more complex support from application programming models and tend to be

less transparent to application developers. However, they provide the most flexibility

to middleware and the best opportunities for adaptability and scalability.

Functional issues of reconfiguration such as how to migrate application entities

or how to change the granularity of entities are highly dependent on the program-

ming model and language used to develop a given application. It is imperative to

have tools that augment applications with these capabilities. When such tools are

available, the middleware can readily use them to automate the process of application

adaptation in dynamic environments. The middleware can shield application devel-

opers from dealing with complex reconfiguration issues such as when and where to

migrate application’s entities and which entities need to be reconfigured.

In programming models such as actors [7, 54], application entity migration is ob-

tained virtually for free since memory is completely encapsulated and distributed and

communication is performed purely by asynchronous message passing. In program-

ming models such as message passing (e.g., MPI [77]), additional libraries and applica-

tion programming interfaces (API) are required to enable process migration. In both

the actor and process programming models, dynamic entity granularity requires help

from the application developers since data repartitioning and process interconnec-

tivity changes are usually highly application-dependent. Nonetheless, well-designed

APIs can make the process of extending applications to support dynamic reconfigu-

ration more manageable. This is particularly true for massively parallel applications

composed of relatively independent subtasks.

3.2 A Model for Reconfigurable Grid-Aware Applications

3.2.1 Characteristics of Grid Environments

Reconfigurable grid-aware applications should be able to adapt themselves dy-

namically to the following grid characteristics:

• Heterogeneous resources. Resources have highly heterogeneous configura-

tions: different architectural platforms, different CPU speeds, memory hierarchy

41

layouts and capacities, disk space, and software configurations.

• Dynamic resource availability. The absence of tight control on volunteer

computing-based grid environments can cause a resource to withdraw from the

computation at any time based on the will of the owner. Resources might non-

deterministically join or leave the available set of resources. This renders the

grid a best-effort computation medium by analogy to the Internet’s best-effort

communication medium.

• Dynamic resource load. Applications run in a shared environment, where

external jobs compete for the same resources. Therefore the fluctuations of the

machine loads are expected to be high. A machine might be lightly loaded now

and heavily loaded in the next minute.

• Increased failure rates. The large number of resources makes the probability

of hardware or software failure very high.

Grid applications need to have a flexible structure that synergizes easily with

the dynamic nature of grids. They should exhibit a large degree of processing and/or

data parallelism that allows for efficient usage of the grid and for scalability to a large

number of resources. Two important issues need to be addressed to design and de-

velop reconfigurable grid-aware applications: programming abstractions and efficient

middleware mechanisms for reconfiguration. Programming models provide high-level

abstractions that can be used to structure the application as distributed or parallel

entities that cooperate to perform specific tasks. Middleware mechanisms encap-

sulate all the intrinsic details of run-time resource management and reconfiguration

policies. The programming model should cooperate with the middleware environment

and should enable the application to respond properly to middleware-triggered recon-

figuration decisions. In Section 2.4, we discussed several programming models that

meet some requirements of grid applications. Figure 3.1 shows the flow of information

between the reconfigurable application and the middleware.

42

Figure 3.1: Interactions between reconfigurable applications, the middle-
ware services, and the grid resources.

3.2.2 A Grid Application Model

A grid-aware reconfigurable application should consist of a set of autonomous

entities that encapsulate enough information about their internal state and their

connectivity with the rest of the entities to allow the middleware to reason about

their state. Such information may include the current resources the entity is currently

bound to, the performance requirements, the performance profile over a period of

time, the predicted performance for a given period in the future, and its connectivity

graph with the rest of the application.

In this section, we describe in formal terms the elements that constitute a re-

configurable application. The aim of the model is to provide high-level abstractions

of the structure and behavior of the application to ease reconfiguration in a dynamic

grid.

43

Figure 3.2: A state machine showing the configuration states of an appli-
cation at reconfiguration points.

Definitions and Notations. The lifetime of the application may consist of a se-

quence of one or more execution stages, sj. During each stage, the number of ap-

plication entities, their mappings to physical resources, and their data distributions

are constant. The transition from a stage sj to another stage sj+1 happens only

in the presence of a reconfiguration event. One or a combination of the following

transformations may happen:

• A change in the mapping from the application entities to the physical resources

through migration.

• A change in the number of entities: spawning, garbage-collecting, splitting, or

merging entities.

• A change in the data distribution among the entities.

We call the state of an application during an execution state s, the application’s

configuration, denoted by Ks. We refer to the boundaries between the stages as

Reconfiguration Points, RP ’s. The state of the application can be changed only at

an RP . The result of an RP may lead to the same or a different configuration (see

Figure 3.2).

In more formal terms, the application model consists of the following elements.

• A. The application to be reconfigured.

44

• S. The sequence of execution states.

S = {s0, . . . , sf}

• Cs. The group of n concurrent entities ci’s of application A at stage s.

Cs = {c0, ..., cn−1}

• Rs. The current pool of m resources rj’s used by the application at stage s.

Rs = {r0, ..., rm−1}

• Bs. The bindings between the physical resources rj’s and the entities ci’s during

stage s.

Bs = {(ci, rj), 0 ≤ i ≤ n− 1 ∧ 0 ≤ j ≤ m− 1}

• GA,s. The communication graph of the application A at a given stage s, GA,s =

(C,EA). GA,s is a directed and weighted graph, where the nodes represent

the entities ci’s and the edges represent the communication links between the

entities. An edge e(ci → cj) is associated with a weight wi,j that measures the

communication rates between the the designated entities (e.g. bytes/s).

An entity maintains both static and dynamic information regarding its perfor-

mance. A performance profile denotes dynamic data that records the performance

progress of an entity during an execution stage. Performance profiles store informa-

tion about the processing and communication progress of the entity, i.e, the processing

and data rate experienced by the entity. A performance specification refers to the per-

formance requirements of the entities, such as, i) how much data needs to be sent

and received to make a unit of progress, ii) memory requirements, iii) CPU speed

requirements, and iv) storage requirements. We assume for the time being that per-

formance specifications are static data that do not change over the life-time of the

entity. However, this assumption will no longer be valid if the application is evolu-

tionary and has dynamic requirements. Formally, we model performance profiles and

45

performance specifications as follows:

• Gprofile
c,s . The communication graph of entity c at a given stage s. This graph

models the dynamic communication performance of entity c. It is a weighted

graph of nodes, where the nodes represent the entities ci that communicate

with c during s and the edges represent the communication links between c and

the other entities. Every edge e(c → cj) is associated with a weight wj that

measures the average sending and receiving communication rates with entity cj

during s (e.g. bytes/s).

• P profile
c,s . The performance profile of an entity c at stage s. Let Gprofile

c,s be the

communication graph of entity c, pc,s be the average processing rate of c, mc,s

be the average used memory, and dc,s be the average used disk storage. All

measurements are done during stage s.

P profile
c,s =< Gprofile

c,s ,mc,s, pc,s, dc,s >

• Gspec
c . The communication specification graph of an entity c models its com-

munication requirements. Gc is a weighted graph of nodes, where the nodes

represent the entities ci’s that communicate with c and the edges represent the

communication demands between c and the other entities. Every edge e(c→ cj)

is associated with a weight wj that specifies how much data needs to be sent or

received for c to be able to make a unit of progress.

• P spec
c . The performance specification of an entity c. Let Gspec

c be the commu-

nication specification graph of c, Pc be the minimum processing requirement of

c, Mc be the minimum memory requirement of c, and Dc be the minimum disk

requirement of c.

P spec
c =< Gspec

c ,Mc, Pc, Dc >

Grid Resource Model We consider the grid to be a set of resources with certain

capabilities and policies. The grid can be modeled as a weighted resource graph where

the nodes represent computational resources and the edges represent the network con-

nectivity between the resources. Similar to application entities, grid resources have

46

Figure 3.3: Model for a grid-aware application.

dynamic performance profiles and static performance profiles. The dynamic profiles

represent the current utilization of resources, such as processing rate, communica-

tion latency and bandwidth, amount of available memory, and amount of available

disk storage. The static profiles represent the static resource characteristics such as

hardware platforms, CPU speed, number of processors, memory capacity, network

latency, and network bandwidth.

Both grid resources and application entities need to monitor their performance

progress. At the level of the application, entity-level profiling is used to monitor peri-

odically the performance of processing, communication, and data access. This is what

generates entity performance profiles. We call the stages where profiling is triggered

while the entity is running, profiling points. The functional core refers to the useful

work the entity is doing such as processing and communication. Figure 3.3 illustrates

the overall model of a grid-aware application and the structure of its entities.

Reconfigurable Entity States Application entities can be in one of these states:

47

• Running: Either computing, communicating, or profiling its performance.

• Attempting reconfiguration: This state happens only at a reconfiguration

point. The middleware tries to reason about the current state of the entity

and the state of the available grid resources. A reconfiguration happens if it is

expected that the application will be transformed into a better configuration.

• Checkpointing: If the system decides to reconfigure a specific entity, the state

of the entity is saved to prepare for migration.

• Splitting: The entity is splitting into more entities.

• Merging: The entity is joining other entities to form one entity of larger gran-

ularity.

• Migrating: Migration to another grid resource. This step involves migrating

the checkpointed state of the entities and any binaries or data files it needs.

• Restarting: Once the entity is received by the target resource, it is resumed

by reading its checkpoints and reconstructing its state.

Figure 3.4 shows a flowchart of the possible states of a reconfigurable entity and the

decisions involved in this process.

3.3 IOS Middleware Architecture

An IOS-enabled environment is a set of agents that forms a virtual network.

An IOS agent is implemented as a SALSA actor and therefore inherits all the au-

tonomous features of actors. Additionally the use of SALSA and Java makes IOS

a portable framework. Although IOS has been implemented in SALSA and Java,

it is not limited to reconfiguring only SALSA programs. Indeed, we demonstrate in

Chapter 5 how iterative MPI applications have been successfully reconfigured using

the IOS middleware.

Every IOS agent consists of three pluggable modules that enable evaluation of

different types of autonomous reconfiguration, and also allow users to develop their

48

Start
Available

Resources?

NoPerformance
degradation detected

Reconfigure?

Yes

Acquired
resources?

Yes
Process of
attempting to bind to
grid resources

Refine
granularity?

CheckpointingMigrating

Restarting

Splitting/Merging

Running/Profiling

Stop

Attempting
Reconfiguration (RP)

Yes
Check if this is a split/merge
reconfiguration

Yes

No

No

No

Available resources
detected

Insignificant state
change

Figure 3.4: The possible states of a reconfigurable entity.

own fine-tuned modules for particular applications. These are the profiling module,

the decision module, and the protocol module (see Figure 3.5).

3.3.1 The Profiling Module

Resource-level and application-level profiling are used to gather dynamic per-

formance profiles about physical resources and application entities (such as processes,

objects, actors, or agents). Application entities communicate processing, communi-

cation, data access and memory usage profiles to the middleware via a profiling API.

Profiling monitors periodically measure and collect information about resources such

as CPU power, memory, disk storage, and network bandwidth. The IOS architecture

defines interfaces for profiling monitors to allow the use of various profiling technolo-

gies. Examples include the Network Weather Service (NWS) [118] and Globus Meta

49

Virtual Network Layer (IOS Agent)

Decision Module

Split/Merge
Strategies

Migration
Strategies

Profiling Module

Entity

Monitor

CPU
Monitor

Network
Monitor

Physical Layer

Application Layer

Entity

Entity

Application

Profiling API

CPU

Network

Diagnostics

FLOPS

Diagnostics

Latency / Bandwidth

Entity

Entity

Entity

Reconfiguration
Requests

Local Profiling
Information

Remote Profiling
Information and

Leave Requests

Inter-IOS Agent
Communication

Protocol Module

Communication
Protocol

Join/Leave

Protocol

Figure 3.5: IOS Agents consist of three modules: a profiling module, a
protocol module and a decision module. The profiling module
gathers performance profiles about the entities executing lo-
cally, as well as the underlying hardware. The protocol module
gathers information from other agents. The decision module
takes local and remote information and uses it to decide how
the application entities should be reconfigured.

Discovery Service [36]. The profiling API is described in more details in Section 3.4.1.

Figure 3.6 shows the architecture of the profiling module and how it interfaces with

high-level applications and local resource monitors. The module generate dynamic

performance profiles pertaining to application entities and local resources. These per-

formance profiles are fed to the decision module to make informed decisions about a

potential reconfiguration.

To illustrate an example of interfacing with an existing monitoring tool. We

have used the NWS monitoring system to periodically gather machine performance

profiles. NWS [118] has been designed to monitor dynamic system information. It

50

Profiling Module

ApplicationApplication

Application
Performance

Profile

Machine
Performance

Profile

CPU
Monitor

Network
Monitor

Disk
Monitor

Memory
Monitor

Figure 3.6: Architecture of the profiling module: this module interfaces
with high-level applications and with local resources and gen-
erates application performance profiles and machine perfor-
mance profiles.

provides real-time estimation of system performance as well as a forecasting of re-

source availability in the next 10 seconds. NWS also conducts end-to-end network

probes to measure the avalability of network-related performance. NWS supports

online monitoring of the following system attributes:

• available CPU: the fraction of the available CPU,

• current CPU: the fraction of the CPU already used,

• free memory: the amount of free memory,

• free disk: the amount of free disk,

• connectTimeTcp: the time required to establish a TCP connection to a re-

mote host,

• bandwidthTcp: the speed of sending data to a remote host, and

• latencyTcp: the time it takes to send an empty TCP message to a remote

host.

51

IOS Profiling

Module

NWS Proxy

NWS Memory

GetAvailableCPU()

GetCurrentCPU()

GetFreeMemory()

GetFreeDisk()

...

CPU

Sensor

Memory

Sensor

Network

Sensor

Disk

Sensor

Stores Measurements

NWS Java API

Figure 3.7: Interactions between the profiling module and the Network
Weather Service (NWS) components.

An NWS system consists typically of 1) a name server that is responsible for

maintaining the list of hosts that are being monitored and the time-series that are

being gathered for them, 2) a memory component responsible for remotely storing

measurements, 3) sensors, which have to be started on every host that needs to be

monitored. Sensors take measurements and report them to the memory component,

5) a forecaster, which analyzes a series of measurements and predicts using statistical

techniques the availability of the resources in the near future and, 4) a proxy, which

aggregates multiple measurements and reports the last forecast values. Figure 3.6

shows the interactions of the profiling module with the NWS components. We have

used the Java API of the NWS to interface with the proxy and get the last forecast

values of CPU, memory, network, and disk availabilities.

3.3.2 The Decision Module

Using locally and remotely profiled information, the decision module determines

how reconfiguration should be accomplished. Different reconfiguration strategies such

as random work-stealing, application topology sensitive work-stealing and network

topology sensitive work-stealing have been implemented (refer to Chapter 4 for a

detailed explanation of these strategies).

52

IOS API

CPU

monitor

Memory

monitor

Network

monitor

Profiling Module

Performance profiles

Decision Module

Evaluates the gain of

a potential

reconfiguration

Protocol Module

Communication

profiles

Available

processing

Latency/

bandwidth info

Reconfigure?

Decision

Sends and receives

work steal requests

Initiate a work steal request when there are enough local resources

Interfaces to resources profilers

Work

Steal

requests

IOS Agent

Reconfiguration request

(migrate/split/merge/replicate)
Original

Application
Original

Application

Reconfigurable

Capabilities

Migration

Reconfigurable
Application

Reconfigurable
Application

Application profiling

Checkpointing

Split & Merge

Figure 3.8: Interactions between a reconfigurable application and the local
IOS agent.

3.3.3 The Protocol Module

The protocol module is responsible for inter-agent communication. It is used

to distribute profiled information among the different middleware agents. The agents

can connect themselves into various virtual agent topologies forming a virtual net-

work. Examples include peer-to-peer and hierarchical interconnections. All protocols

implemented as part of the protocol module should follow the work-stealing model

and its variations (see Section 4.2). In this model, idle nodes request work from peer

nodes. This module takes care of initiating work steal requests from the local node

and handling the reception of work steal requests from remote nodes.

Figure 3.8 shows the interactions between the IOS modules, and the interactions

between the IOS agents and the application’s entities. As mentioned before, the

profiling module periodically gathers performance profiles about the application’s

entities and the underlying resources hosted locally. The profiling module maintains

a list of performance profiles and resource profiles and communicates them to the

decision module. When a work-steal request is received by the protocol module, it

contacts the decision module, which determines based on both the characteristics

53

of the remote node and the gathered performance profiles whether an application

reconfiguration should happen or not. Any reconfiguration is then communicated to

the application via the protocol module through the IOS API.

3.4 The Reconfiguration and Profiling Interfaces

The application profiling and reconfiguration request APIs in IOS are generic.

To illustrate their generic nature, these APIs have been implemented for two dif-

ferent programming models: actors, using the SALSA programming language, and

communicating processes, using MPI. Our choice of these two programming models

has been influenced by the fact that SALSA is a programming language with several

embedded features for reconfiguration such as migration and asynchronous message

passing while MPI is a standard model that has gained a widespread usage among

the parallel processing community.

The following sections discuss IOS generic APIs and give a sample implementa-

tion using SALSA. The MPI implementation is discussed in more detail in Chapter 5.

3.4.1 The Profiling API

Figure 3.9 shows the methods of the profiling API with their arguments. The

profiling API provides a set of methods for recording the communication patterns

of the application entities. The methods addProfile(), removeProfile(), and

migrateProfile() are used to track the entry and exit of entities in and out of

the local node. They are used to create or delete performance profiles for the locally

hosted entities. The methods msgSend() and msgReceive() are used to profile the

communication between any couple of entities. Finally the beginProcessing() and

endProcessing() methods are used to record the time spent processing a received

message.

Note that all entities are regarded by the IOS middleware as actors. Therefore

the terminology used in the API pertains to actors. Every application entity should

be assigned a unique name that conforms to the UAN naming scheme [113]. Entities

also have a UAL that identifies their current location. Some of the API methods take

the entity’s UAN and UAL as arguments.

54

�

public interface Pro f i l i ngAgent {

//The f o l l ow i n g methods n o t i f y the p r o f i l i n g agent o f e n t i t i e s
// en t e r ing and e x i t i n g the l o c a l run−t ime system due
// to migrat ion or i n i t i a l e n t i t y s t a r t up .

public void addPro f i l e (UAN uan) ;
public void r emovePro f i l e (UAN uan) ;
public void mig r a t eP ro f i l e (UAN uan , UAL t a r g e t) ;

//The p r o f i l i n g agent updates i t s e n t i t y p r o f i l e s based
//on message sending wi th t h e s e methods

public void msgSend (UAN uan ,
UAL target uan ,
UAL source ua l ,
int msg s i ze) ;

//The p r o f i l i n g agent updates i t s e n t i t y p r o f i l e s based
//on message r e c ep t i on wi th t h i s method

public void msgReceive (UAN uan ,
UAL t a r g e t ua l ,
UAL source ua l ,
int msg s i ze) ;

//The f o l l ow i n g methods n o t i f y the p r o f i l i n g agent o f the s t a r t
// o f a message be ing processed and the end o f a message
// be ing processed

public void beg inProce s s ing (UAN uan ,
UAL t a r g e t ua l ,
UAL source ua l ,
int msg s i ze) ;

public void endProcess ing (UAN uan ,
UAL t a r g e t ua l ,
UAL source ua l ,
int msg s i ze) ;

}

� �

Figure 3.9: IOS Profiling API

55

3.4.2 The Reconfiguration Decision API

Figure 3.10 shows the API used to decide the candidate entities for a reconfig-

uration and also when a reconfiguration should happen.

When a remote node attempts to steal work, it sends its performance profile and

the collection of performance profiles of the local nodes it is hosting to one of its peer

nodes. This information, together with the information gathered about the local pro-

files, is used to evaluate if a reconfiguration though migration, split, or merge should

happen to the target machine. The decisionFunction() method returns a real value

that indicates the expected gain that could be achieved from reconfiguring the entity

with performance profile candidate. The parameters that the decisionFunction()

API call takes are: 1) candidate, which denotes the performance profile of an en-

tity, 2) target, the UAL or location of the remote machine that is the target for a

potential migration, split, or merge operation, 3) targetMachine, the performance

profile of the remote machine, and 4) actorsAtTarget, which denotes a vector of the

performance profiles of the entities hosted at the remote machine.

The getBestCandidate() API call returns the best candidate for a potential

reconfiguration. The candidates are ranked based on the expected gain value re-

turned by the decisionFunction(). The method takes as parameters: 1) target,

the location of the remote machine, 2) targetMachine, the performance profile

of the remote machine, and 3) actorsAtTarget, the performance profiles of the

group of actors hosted at the remote machine. getBestCandidates() is similar

to getBestCandidate(). The only difference is that it returns a group of the best

candidate actors with size group size.

The getLoadDistribution() API call returns a vector of two numbers that

indicates the new distribution of the applications entities running in the local and

remote machine. The first number in the vector denotes the number of candidates to

be transferred to the remote machine, while the second number indicates the num-

ber of entities to remain in the local machine. The method takes as parameters: 1)

localMachine, the performance profile of the local machine, 2) targetMachine, the

performance profile of the remote machine, 3) actorsAtLocal, a vector of the per-

formances profiles of the actors hosted locally, and 4) actorsAtTarget, a vector of

56

the performance profiles of the actors hosted remotely. Let Nold be the total number

of entities running in the local machine before reconfiguration, let nlocal and nremote

denote the resulting number of entities in the local machine and remote machines

respectively after reconfiguration. Merging is a purely local decision that is not trig-

gered by a remote request for reconfiguration. The getLoadDistribution() API

call only applies to migrate and split reconfigurations. Therefore, the inequality 3.1

should always hold after the invocation of getLoadDistribution() method.

Nold ≤ nlocal + nremote (3.1)

When Nold = nlocal + nremote, the resulting reconfiguration is a migration oper-

ation. When Nold < nlocal + nremote, the resulting reconfiguration involves both split

and migration operations.

3.5 Case Study: Reconfigurable SALSA Actors

Figure 3.11 shows the UML diagram of some the key classes that implement a

SALSA actor and the extensions that were made to make SALSA actors reconfigurable

through IOS. Every SALSA actor has a state and a reference. The state encapsulates

the actor’s internal message handlers and variables. The actor also has a mailbox

that maintains all the messages received. The Message class is an abstraction over a

message being sent to an actor. It includes a field of type java.lang.reflect.Method

and a set of arguments. This method will eventually be invoked with the given

arguments when the enclosing message is received and processed at the target actor.

The UniversalActor class provides the main functionalities for universal naming

though UAN and UAL mapping, and mobility through migration.

To make SALSA actors reconfigurable, the AutonomousActor behavior extends

UniversalActor with transparent profiling of its behavior and integration with IOS

middleware. Any SALSA actor that extends the AutonomousActor behavior be-

comes capable of autonomous migration through IOS. The AutonomousActor behav-

ior overrides most of the UniversalActor methods that pertain to communication,

and message processing, and sends related events to the IOS profiling agent. To pro-

vide extensions for malleability, or split and merge capabilities, the MalleableActor

57

behavior extends further the AutonomousActor behavior and provides a reference

implementation for handling malleability messages. The MalleableActor is an ab-

stract behavior. It provides the API specification for split and merge messages. Actor

malleability is application dependent and the proper implementation of the split and

merge functionalities must be provided by the application programmer. Both split

and merge message handlers take as arguments a vector of actors to be involved in the

split or merge operations and the size of the new vector of actors after malleability

takes place, in other words, it indirectly specifies how many more actors we need to

split, or how many actors we need to merge.

3.6 Chapter Summary

We presented in this chapter the software framework of the Internet Operating

System middleware and its architecture. We started by discussing several design deci-

sions that were taken into consideration while designing and implementing IOS. IOS

middleware agents: 1) profile application communication patterns, 2) evaluate the

dynamics of the underlying physical resources, and 3) reconfigure application entities

by changing their mappings to physical resources through migration and/or chang-

ing their granularity through split and merge operations. IOS exposes generic APIs

for profiling and reconfiguration that can easily hook up various profiling and recon-

figuration implementations to the middleware. This makes it programming model-

independent: we have implemented an actor programming model interface for SALSA

programs and also a process programming model interface for MPI programs. The

chapter concludes with a case study showing the extensions that were made to the

SALSA actor library to add reconfigurability features.

58

�

// The f o l l ow i n g method re turns a r e a l va lue
// t ha t e v a l u a t e s the expec ted gain o f r e c on f i g u r i n g
// the ac tor cand ida te to the machine t a r g e t .

double dec i s i onFunct i on (ActorProfile candidate ,
UAL target ,
MachineProfile targetMachine ,
Vector actorsAtTarget) ;

// The f o l l ow i n g method re turns a r e f e r ence to the b e s t cand ida te
// f o r r e c on f i g u r a t i on

ActorReference getBestCandidate (UAL target ,
MachineProfile targetMachine ,
Vector actorsAtTarget) ;

// The f o l l ow i n g method re turns a group o f r e f e r enc e s
// f o r r e c on f i g u r a t i on

Vector getBestCandidates (UAL target ,
MachineProfile targetMachine ,
Vector actorsAtTarget ,
int g r oup s i z e) ;

// The f o l l ow i n g method re turns the s i z e o f the ac to r s
// to be t r an s f e r r e d to the t a r g e t machine to ach i eve
// load ba lance between the l o c a l and t a r g e t machines

Vector getLoadDis t r ibut ion (MachineProfile localMachine ,
MachineProfile targetMachine ,
Vector actorsAtTarget ,
Vector actorsAtLoca l) ;

� �

Figure 3.10: IOS Reconfiguration API

59

ActorReferencei

getUAN()
getUAL()
setUAN(UAN)
setUAL(UAL)
send(Message)

Actori

process(Message)
putMessageInMailbox(Message)
updateSelf(ActorReference)

UniversalActor

State

c

uan
ual

CreateRemotely(UAN, UAL,String)
getUAN()
getUAL()
setUAN(UAN)
setUAL(UAL)
getReferenceByName(UAN)
getReferenceByLocation(UAL)

ual
uan
mailbox
migrate(UAL)

c

Message

source
target
method
arguments
continuation

c

AutonomousActor

State

c

profilingAgent

putMessageInMailbox(Message)
pre_process()
post_process()

migrate(UAL)

c

MalleableActorc

handleMalleability(Message)
abstract split(Vector, int)
abstract merge(Vector, int)

ios.language

salsa.language

A

Figure 3.11: A UML class diagram of the main SALSA/IOS Actor classes
and behaviors. The diagram shows the relationships be-
tween the Actor, UniversalActor, AutonomousActor, and
MalleableActor classes.

CHAPTER 4
Reconfiguration Protocols and Policies

In the previous chapter, we gave an overview about the IOS framework and its main

components. This chapter discusses the resource discovery mechanisms and recon-

figuration protocols that have been adopted as part of IOS. Resource discovery and

dissemination in IOS are based on peer-to-peer (P2P) protocols. IOS agents interact

based on their virtual interconnection topology. Section 4.1 presents how IOS agents

interconnect with each other and exchange information. To balance computational

loads in an IOS virtual network, we introduce in Section 4.2 variations of the classical

work-stealing algorithm: random work-stealing (RS), application-topology sensitive

work-stealing (ATS) and network-topology sensitive work-stealing (NTS). We discuss

in this section the load balancing policies used: the information exchange policy, the

transfer policy, and the peer location policy. In Section 4.3 we present the selection

policy used. Split and merge policies are discussed in Section 4.4. Related work is

presented in Section 4.5. The chapter concludes with a summary in Section 4.6.

4.1 Network-Sensitive Virtual Topologies

The IOS architecture has a decentralized architecture to ensure robustness, scal-

ability, and efficiency. Each IOS-ready node is equipped with a middleware agent.

Agents organize themselves in various virtual network topologies to sense the underly-

ing physical environment and trigger applications’ reconfiguration accordingly. Every

IOS agent also has a decision component that evaluates the surrounding environment

60

61

Figure 4.1: The peer-to-peer virtual network topology. Middleware agents
represent heterogeneous nodes, and communicate with groups
or peer agents. Information is propagated through the virtual
network via these communication links.

and decides how to balance the resource consumption of application’s entities in the

physical layer.

We call a network sensitive virtual topology, any topology that adjusts itself

according to the underlying network topologies and conditions. Two types of topolo-

gies are used in IOS: a peer-to-peer (P2P) topology and a cluster-to-cluster (C2C)

topology. The P2P topology consists of several heterogeneous nodes inter-connected

in a peer-to-peer fashion while the c2c topology imposes more structure on the vir-

tual network by grouping homogeneous nodes with low inter-network latencies into

clusters.

4.1.1 The Peer-to-Peer Topology

When an agent connects to the network-sensitive peer-to-peer (NSp2p) virtual

network, it can discover new peers as information gets passed across peers. Agents can

also dynamically leave the virtual network. Every peer maintains a list of neighbors.

This list can grow or shrink as information is propagated across the virtual network.

62

Figure 4.2: The cluster-to-cluster virtual network topology. Homogeneous
agents elect a cluster manager to perform intra and inter clus-
ter load balancing. Clusters are dynamically created and read-
justed as agents join and leave the virtual network.

Section 4.2 describes how resource information gets passed between the peers.

4.1.2 The Cluster-to-Cluster Topology

In the network-sensitive cluster-to-cluster topology (NSc2c), agents are orga-

nized into groups of virtual clusters (VCs), as shown in Figure 4.2. Each VC elects

one agent to act as the cluster manager. Cluster managers view each other as peers

and organize themselves as a NSp2p virtual network topology.

4.1.3 Presence Management

To participate in the IOS virtual network, a peer must first know an already

existing IOS agent. Specialized servers exist for this purpose, called peer servers.

Upon contacting a peer server, an agent registers itself and gets a list of well-known

peers as a bootstrapping mechanism. Each peer maintains a list of neighboring peers.

Peer servers act as registries for agent discovery. They simply aid in discovering peers

in a virtual network and are not a single point of failure. They operate similarly to

63

gnutella-hosts in Gnutella peer-to-peer networks [33]. A node can bypass the peer

server by contacting directly an existing IOS agent, if it knows of such a host. The

resulting network is an overlay of peer agents. Figure 4.3 illustrates the mechanism of

joining the IOS virtual network. The procedure used for joining the virtual network

through a peer server is further illustrated in Figure 4.4.

Upon reception of a request from a peer, the receiving agent adds this peer to

its neighborhood if it does not exist. This strategy leads to discovering more peers.

The reconfiguration strategies used avoid using broadcasts to minimize the overhead

associated with maintaining the virtual network and exchanging reconfiguration in-

formation.

When a node decides to leave the virtual network, it sends a leave request to

the peer server it initially registered with, if any (see Figure 4.3). It also broadcasts

a leave request to all its neighbors. The leaving node is then deleted from the peer

server registry and also from the list of neighbors in all of its peers. Any computing

entities that are hosted by this node will be migrated immediately to its peers in a

round-robin fashion.

4.2 Autonomous Load Balancing Strategies

IOS load balancing strategies are extensions of the classical work-stealing ap-

proach. Work-stealing [21] has traditionally been used as a scheduling technique

for multi-threaded computations. Work sharing and work-stealing are two scheduling

paradigms that have arisen to address the problem of scheduling multi-threaded com-

putations. In work sharing, the scheduler attempts to move threads from processors

that generate more threads to idle processors with the goal of distributing the work

evenly between processors. In work-stealing, idle processors attempt to steal threads

from overloaded processors. The idea of work-stealing is not new. It was used in

early research of parallel execution on functional programs [24] and in an implemen-

tation of Multilisp [52]. Rudolph et al. [89] analyzed a randomized work-stealing load

balancing strategy for independent jobs on a parallel computer. These works and oth-

ers have established the benefits of the work-stealing strategy with regards to space

and communication. This strategy has been proved to be stable since it minimizes

64

IOS AgentIOS Agent

IOS Agent
IOS Agent

IOS AgentIOS Agent

Peer
Server

Peer
Server

New Agent

IOS Agent

(a)

New Agent

Join
Request

Join
 Request

List of Peers

List of
Peer
Neighbors

(b)

Leave
Request

Leave
Request

(c)

Figure 4.3: Scenarios of joining and leaving the IOS virtual network: (a)
A node joins the virtual network through a peer server, (b) A
node joins the virtual network through an existing peer, (c) A
node leaves the virtual network.

Algorithm 1: Peers Discovery
1: Contact the Peer Server and get a set of peers, PSet
2: For all peers pj ∈ PSet, calculate d(pi, pj)

/*Distance in terms of network latency*/
3: Select the peer, pmin with minimum distance to pi

4: Contact pmin to request its list of peers
5: S(i)← S(pmin)

/*pmin sends its list of peers to pi*/
6: S(pmin)← S(pmin) ∪ {pi}

/∗pmin includes pi in its list of peers*/

Figure 4.4: Algorithm for joining an existing virtual network and finding
peer nodes.

65

xxxxxxxxxxxxxxxx

x
x
x
x
x
x
x
x

Work Steal Request
TTL = 5

Work Steal Request
TTL = 4

Work Steal
Request
TTL = 3

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxEntity(ies) Migration

Under loded node Normally loaded node Overloaded node

Figure 4.5: An example that shows the propagation of work-stealing pack-
ets across the peers until an overloaded node is reached. The
example shows the request starting with a time-to-live (TTL)
of 5. The TTL is decremented by each forwarding node until it
reaches the value of 0, then the packet is no longer propagated.

communication overhead at the expense of idle time [21].

We discuss four basic components of IOS load balancing strategies: an infor-

mation policy, that determines how the state of the peer agents gets collected and ex-

changed, a transfer policy, that determines when a node should participate in transfer

of work, a peer location policy that determines which peer agent needs to be selected

to perform a reconfiguration, and a selection policy that decides which entities need

to be selected and migrated. We present in what follows the information, transfer,

and location policies. The selection policy is based on the resource sensitive model

and is presented in Section 4.3. We also show how these policies have been used in

the p2p and c2c virtual topologies.

4.2.1 Information Policy

IOS agents exchange performance-related information through work-stealing re-

quest messages (WRM). Whenever an agent becomes lightly loaded (has more re-

sources available than are currently being utilized), it will periodically send a WRM

66

containing locally profiled information to one of its peers (see Figure 4.5 for an exam-

ple). Let TTLmax be the upper value for the time-to-live assigned to a given WRM

message. WRM messages get forwarded from one peer to another until they reach an

agent that has load to be migrated to the requesting agent or the TTL value becomes

zero.

Let MPi denote the machine performance profile of agent ai. Let APSeti denote

the set of performance profiles of the application’s entities running at node i. Let

PSeti be the set of peers of agent ai. Let TSi be the time stamp of the measurements

in MPi and APSeti for agent ai. Let APWi denote the available processing power

of agent ai. An agent is considered lightly loaded if its APWi is above a predefined

threshold value τ .

Every agent ai maintains state information about machine performance profiles

of itself and its peers in an object called performance vector, PV . The PV object

allows the agent to have an estimate of the state of its neighborhood, how light or

overloaded is its surrounding environment, and how frequent is the change in its

surrounding environment. For every agent ai, the PV object maintains two elements:

• PV (ai).MP : the machine profile of agent ai

• PV (ai).TS: the time stamp (local time to agent ai) when the measurements in

PV (ai).MP were taken. We assume that the local clocks in peers are synchro-

nized.

To avoid overloading the network with messages exchanged between peers to get

peer state information, state information is piggybacked in the WRM messages. At

the beginning, when the agents start, the PV vector has only one element that

corresponds to the local agent. Once an agent receives WRM messages, it increases

its local vector by inserting state information about the sender. This strategy allows

WRM messages to carry state information about its original sender and also about

all peers that the WRM message visits. Any time some state information is received

through a WRM message, the receiving machine updates its locally stored information

in case the information carried in the WRM message is more up-to-date. This is done

by comparing the timestamps of the measurements. Figure 4.6 shows the algorithm

67

used for information exchange between peer IOS agents and how state information

get propagated across the peers.

4.2.2 Transfer Policy

The purpose of the transfer policy is to determine when to transfer load from

one agent to another and how much load needs to be transfered, whenever a WRM

message is sent from an agent ai to an agent aj. We identify the load of a given

agent simply by the number of running application’ entities hosted by this agent.

We denote by Nbi the number of application’s entities running on agent ai before a

given reconfiguration step, and by Nai the number of application’s entities running

on agent ai after a given reconfiguration step. Let Nai and Naj refer to the number

of applications entities running on agents ai and aj respectively. Let APWi be the

percentage of the available CPU processing power of agent ai and UPWj be the

percentage of the used CPU processing power of agent aj. Let PWi and PWj be the

current processing powers of agents ai and aj respectively. The transfer policy tries to

adjust the load between two peer agents based on their relative machine performances

as shown in the equations below:

Ntotal = Nbi + Nbj (4.1)

Nai

APWi ∗ PWi

=
Naj

UPWj ∗ PWj

(4.2)

Nai =
APWi ∗ PWi

APWi ∗ PWi + UPWj ∗ PWj

∗Ntotal (4.3)

Naj =
UPWj ∗ PWj

APWi ∗ PWi + UPWj ∗ PWj

∗Ntotal (4.4)

Ntransfer = Naj −Nbj (4.5)

This equation allows us to calculate the number of entities that need to be trans-

fered to remote agent ai to achieve load balance between ai and aj (see Equation 4.5).

All the entities in host aj are ranked according to a heuristic decision function that

calculates their expected gain from moving from agent ai to agent aj. The details

about how the gain value is calculated are given in Section 4.3. Only the entities

68

Algorithm 2: Information Exchange Policy
At the initiating agent ai

1: if APWi > τ then
2: aj ← SelectPeer(PSeti, locationPolicy)
3: TTL← TTLmax

4: PV (ai).TS ← TSi

5: PV (ai).MP ←MPi

6: Append (PV (ai).TS, PV (ai).MP , APSeti, TTL) to the work-stealing mes-
sage request, WRM

7: Send message WRM to agent aj

8: end if

At a receiving agent aj

1: if ai /∈ PSetj then
2: PSetj ← PSetj ∪ {ai}
3: end if

/*X is the set of all agents whose information is carried in the WRM message*/
4: for all ax ∈ X do
5: if (ax ∈ PSetj) and (PV (ax).TS > PVj(ax).TS) then
6: PVj(ax).MP ← PV (ax).MP /*Update the sate of the neighbor using the

information carried in the WRM message*/
7: end if
8: end for
9: if (There are no entities to be transfered according to the transfer policy) then

10: TTL ← TTL − 1 /*Decrement the value of TTL and update it in the WRM
message*/

11: if (TTL > 0) then
12: PV (aj).TS ← TSj

13: PV (aj).MP ←MPj

14: Append (PV (aj).TS, PV (aj).MP) to the work-stealing message request
WRM. /*Append the machine performance profile of this agent to WRM*/

15: ak ← SelectPeer(PSetj, locationPolicy)
16: Forward message WRM to agent ak

17: else
18: Notify the source agent ai that its WRM message is no longer forwarded
19: end if
20: else
21: select the set of entities ESet to be transfered according to the transfer policy
22: send ESet to aj

23: end if

Figure 4.6: Information exchange between peer agents using work-stealing
request messages.

69

Group Classification Range of Latencies

Local 0 to 10 ms
Regional 11 to 100 ms
National 101 to 250 ms
Global 251 ms and higher

Table 4.1: The range of communication latencies to group the list of peer
hosts (From [67]).

that have a gain value greater than a threshold value θ are allowed to migrate to the

remote agent. So the number of entities that will migrate can be less than Ntransfer.

The goal of the gain value is to select the candidate entities that benefit the most

from migration to the remote host.

4.2.3 Peer Location Policy

The first policy is random work-stealing (RS) policy. RS is based on a simple

protocol: any time a processor senses that it is idle, it attempts to steal some jobs

from randomly selected peers. However in grid environments, using RS tends to incur

a lot of WAN latencies since the peers are treated equally. We use variations of the

RS approach to account for WAN latencies and for grid characteristics.

The second policy tries to account for the wide range latencies that are predomi-

nant in grid environments. Peers are sorted according to their latency. The algorithm

picks the closest peer first, then the next closer and so on. Every agent arranges its

peers into four groups based on communication latency [67]: local, regional, national,

and global. Table 4.2.3 shows the categorization of peers according to their latencies.

WRMs are sent first locally. When no migration happens, the source of the

WRM will send another WRM to a regional peer, and if no migration occurs again, a

WRM is sent nationally, then globally. As reconfiguration is only triggered by lightly

loaded nodes, no overhead is incurred when the network is fully loaded, and thus this

approach remains stable.

70

4.2.4 Load Balancing and the Virtual Topology

All the strategies discussed before refer to load balancing in the case of the

peer-to-peer virtual topology. Load balancing in the NSc2c topology differs from the

NSp2p topology mainly in the granularity of the peer agent. A peer in the NSc2c

case is a cluster. So the peer in this case has a larger granularity. When a cluster

becomes idle, then it starts prompting its peer clusters for work. The same policies

apply in the NSc2c case.

The cluster-to-cluster strategy attempts to utilize central coordination within

VCs in order to obtain an overall picture of the applications’ communication pat-

terns and resource consumption as well as the physical network of the VC. A cluster

manager acts as the central coordinator for a VC and utilizes this relatively global

information to provide both intra- and inter-VC reconfiguration.

Every cluster manager sends periodic profiling requests to the agents in its

respective VC. Every agent responds with information from its profiling component

about the local entities and their resource consumption. The cluster manager uses

this information to determine which entities should be migrated from the node with

the least available resources to the node with the most available resources.

Let n1 and n2 be the number of entities running on two nodes, and ri,j be

the availability of resource i on node j with a resource weight wi. The intra-cluster

load balancing continuously attempts to achieve the relative equality of application’s

entities on nodes according to their relative resource availability (Equation 4.6):

n1

n2

=

∑

wiri,1
∑

wiri,2

(4.6)

For inter-cluster load balancing, NSc2c uses the same strategy as peer-to-peer

load balancing, except that each cluster manager is seen as a peer in the network.

The cluster managers decision component compares the heaviest loaded node to the

lightest loaded node at the source of the WRM to determine which entities to migrate.

71

4.3 The Selection Policy

4.3.1 The Resource Sensitive Model

The reconfiguration policies use the application’s characteristics and the un-

derlying resources’ characteristics to evaluate whether there will be any performance

gain through migration. Resources such as storage, CPU processing power, network

bandwidth, and network latencies are ranked according to their importance to the

running application. For instance, if the application is computationally intensive,

more weight is given to the CPU processing power. If the application is communica-

tion intensive and the messages exchanged have large sizes, more weight is given to

the network latency and bandwidth. Whereas, if it is communication intensive with

small exchanged message sizes, the network latency is given more weight.

Let P be the set of m processes running on a local node n.

P = {p0, p1, ..., pm}

Let R be the set of resources available in the local node n.

R = {r0, r1, ..., rl}

Let ω be the weight assigned to a given resource ri based on its importance to the

performance of the set P .

0 ≤ ω(ri, P) ≤ 1 and
l

∑

i=0

ω(ri, P) = 1

Let a(r, f) be the amount of resource r available at foreign node f , u(r, l, A) be

the amount of resource r used by the processes P at local node l, M(P, l, f) be the

estimated cost of migration of the set P from l to f , and L(P) be the expected

remaining life expectancy of the set of processes P . Let m be the average number

of times the set of processes have migrated in the past. Equation 4.7 measures the

normalized benefit, the set of processes P will incur from migration to the remote

node l, given ideal conditions.

We introduce the notion of process energy, E(P). This values measures how

72

much energy the process(es) has to be able to migrate. The larger the energy of

a process, the more willing it is to migrate. The energy of the process is inversely

proportional to how many times the process has migrated in the past. Equation 4.8

shows the relationship between the energy of a set of processes P and their average

number of migrations in the past. The value of E(P) gives an indirect measure of the

stability of the surrounding environments. The smaller the value of E(P), the less

stable the environment is because the group of entities have migrated frequently in

the past. The larger the energy value the more stable the environment is.

The expected gain value Γ, which heuristically measures the increase in overall

performance gained by migrating P from l to f , where Γ ≤ 1 is shown in Equation 4.9.

It is important to factor in this equation the remaining life expectancy of the group

of processes P . The intuition behind this is that processes who are expected to

have a short remaining life are not migrated because the cost of the reconfiguration

might exceed the benefit over their remaining life expectancy. The energy value is

dominated by the remaining life expectancy when the value of this latter is large. The

rationale is that long lived processes should still be migrated whenever there is benefit

even if they do not have a lot of energy. Because their long expected remaining life

amortizes the cost of migration. However for short-lived processes, the energy value

will dominate and will decrease the overall benefit of migration.

Figure 4.7 illustrates the behavior of the expected gain function (Equation 4.9).

The graph shows plots of the expected gain function for one process with a benefit

value of 0.6 (∆r,l,f,P = 0.6) and different values of m, the number of times the process

has has migrated in the past. The remaining lifetime of a process is assumed to

have a half-life expectancy. In other words, if a process has lived for a period of

t, its expected remaining lifetime is L(t) = t. For the purpose of illustration, we

assume that the cost of migration is constant and it is assumed here to be 1s. The

plots show that when the process is short lived, the energy function affects the gain

function, however when the process is long lived, the remaining life expectancy is

what dominates the second term of the equation and the gain function has a larger

value.

73

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

E
xp

ec
te

d
G

ai
n

(s
)

Expected remaining lifetime (s)

m = 0
m = 2
m = 4
m = 8

m = 16

Figure 4.7: Plots of the expected gain decision function versus the pro-
cess remaining lifetime with different values of the number of
migrations in the past. The remaining lifetime is assumed to
have a half-life time expectancy.

∆r,l,f,P =
a(r, f)− u(r, l, P)

a(r, f) + u(r, l, P)
(4.7)

E(P) =
1

log2(m + 1) + 1
(4.8)

Γ = (
∑

r

ω(r, P) ∗∆r,l,f,P)× (L(P) ∗ E(P))−M(P, l, f)) (4.9)

When a node l receives a work-stealing request from a node f , a process or a

group of processes will be migrated if the evaluation of the gain Γ is greater than

a positive threshold value. The larger the gain value is, the more beneficial the

migration is.

The purpose of this model is to balance the resource consumption among ex-

ecuting entities. The model has a decentralized approach whereby reconfiguration

decisions are done at the level of each grid node. Each entity is profiled to gather

74

its message sending history with peer entities. This information is used to guide the

reconfiguration decision to keep highly communicating entities as closely collocated

as possible. The model provides a normalized measure of the improvement in the re-

source availability an entity or a group or entities would receive by migrating between

nodes.

Estimating the expected remaining life of an entity is not usually possible. For

the case of iterative applications, we estimate the life expectancy by looking at the

number of remaining iterations multiplied by the average time each iteration takes

in the current node. When such prediction is not possible like in the case of actor-

oriented applications, we use the half-life expected remaining time. That is, if a

process has lived for a duration of T seconds, it is expected to have lived half of its

lifetime. Therefore, the value of T gives a good estimate of its remaining lifetime.

Harchol-Balter and Downey [53] conducted a study to characterize the distribution

of lifetimes of UNIX processes. They concluded that UNIX processes have a UBNE

(used-better-than-new-in-expectation) type of distribution that is heavy-tailed. In

other words, the longer the CPU usage of a process, the longer its expected remaining

CPU lifetime. Their results also confirmed the finding of Leland and Ott [71], who also

proposed a functional form for the process lifetime distribution. They concluded that

for T > 3s, such that T is the process duration, the probability of a process’s lifetime

exceeding T seconds is rT k, where −1.25 < k < −1.05 and r is used to normalize

the distribution. Based on these investigations, we conclude that the process half-life

measure gives a good estimate about the expected remaining lifetime of a process.

4.3.2 Migration Granularity

The resource model supports both single migration and group migration of

application’s entities. In single migration, the model is applied to determine an

estimation of the gain that would be achieved from migrating an entity from one

node to another. If the gain will be achieved by migrating a group of entities, single

migration attempts to migrate one entity at a time while group migration strategy

will migrate a group of entities simultaneously. One advantage of group migration is

that it helps to speed up load balancing. However it might cause thrashing behavior

75

n− l + r = 0 (4.10)

APWr ∗ PWr

APWr ∗ PWr + UPWl ∗ PWl

∗ n− r = 0 (4.11)

UPWl ∗ PWl

APWr ∗ PWr + UPWl ∗ PWl

∗ n− l = 0 (4.12)

n ≥ Ntotal (4.13)

n ∈ IN+ (4.14)

r ∈ IN+ (4.15)

l ∈ IN+ (4.16)

if the load of the nodes fluctuates very frequently.

4.4 Split and Merge Policies

4.4.1 The Split Policy

The transfer policy discussed in Section 4.2.2 shows how the load in two agents

needs to be broken up to reach pair-wise load balance. However, this model will fail

when there are not enough entities to make such load adjustments. For example,

assume that a local node al has only one entity running. Assume also that ar, a node

that is three times faster than al, requests some work from al. Ideally, we want node

ar to have three time more entities or load than node al. However the lack of enough

entities prevents such adjustment. To overcome this situation, the entity running in

node al needs to split into enough entities to send a proportional number remotely.

Let Ntotal be the total number of entities running in both al and ar. Let n

be the desired total number of entities, l be the desired number of entities at local

node al, and r be the desired number of entities at node ar. APWr and PWr denote

the percentage of the available processing power and the current processing power of

node ar respectively. UPWl and PWl denote the percentage of the used processing

power and current processing power of node al. The goal is to minimize n subject to

constraints shown in the set of equations 4.10 to 4.16 and to solve for n, l, and r in

the set of positive natural numbers IN+.

A split operation happens when n > Ntotal and the entity can be split into one

76

avgi =
1

k
∗

k
∑

t=0

APWi,t (4.17)

σi =

√

√

√

√

1

k
∗

k
∑

t=0

(APWi,t − avgi)2 (4.18)

or more entities. In this case the number of entities in local node will be split refining

the granularity of the application’s entities running in the local node al.

4.4.2 The Merge Policy

The merge operation is a local operation. It is triggered when a node has a large

number of running entities and the operating system’s context switching is large. To

avoid a thrashing situation that causes entities to be merged and then split again upon

receiving a WRM message, merging happens only when the surrounding environment

has been stable for a while. Every peer in the virtual network tries to measure how

stable it is and how stable its surrounding environment is.

Let Si = (APUi,0, APWi,1, . . . , APWi,k) be a time series of the available CPU

processing power of an agent ai during different consecutive k measurement intervals.

Let avgi denote the average available CPU processing power of series Si. We measure

the stability value σi of agent ai by calculating the standard deviation of the series

Si.

A small value of σi indicates that there has not been much change in the CPU

utilization over previous periods of measurements. This value is used to predict

how the utilization of the node is expected to be in the near future. However, the

stability measure of the local node is not enough since any changes in the neighboring

peers might trigger a reconfiguration. Therefore the node also senses how stable its

surrounding environment is. The stability value is also carried in the WRM messages

within the machine performance profiles. Therefore, every node records the stability

values σj of its peers. The nodes periodically calculate σ, the standard deviation of

the σj’s of its peers.

A merging operation is triggered only when σi and σ are small, σi < ǫ1, and

σ < ǫ2. In other words, the local node attempts to perform a merge operation

77

avg =
1

p
∗

p
∑

i=0

σi (4.19)

σ =

√

√

√

√

1

p
∗

p
∑

i=0

(σi − avg)2 (4.20)

when possible if its surrounding environment is expected to be stable and the context

switching rate of the hosting operating system is higher than a given threshold value.

The OS context switching rates can be measured using tools such as the Unix vmstat

command.

4.5 Related Work

Several research efforts have addressed the issue of load balancing in distributed

heterogeneous environments at various system levels. Network-level load balancing

tries to optimize the utilization of existing network resources by controlling traffic

flow and minimizing the number of over-utilized links and under-utilized links [90].

Middleware-based load balancing provides the most flexibility in terms of balancing

the load to different types of applications [82]. It is not constrained to the OS or

network level but it spans different system levels.

Different load balancing strategies exist that range from static to dynamic, cen-

tralized to distributed, and sender-initiated to receiver-initiated strategies. Static

approaches assume having a priori knowledge about the characteristics of the ap-

plications, the network, and the computing nodes. Static load balancing decisions

are made at compile time. The static approach is simple and incurs no run-time

overhead, however it is based on assumptions that are no longer valid in grid envi-

ronments. First, it has to predict a priori the characteristics of applications. Second,

grid environments are highly dynamic and their resource usage is constantly changing.

Therefore, it is hard if not impossible to predict the characteristics of the execution

environment statically. In contrast, dynamic load balancing strategies rely on collect-

ing runtime resource usage information to make more informed decisions about how

to balance the load across the nodes. Despite the complexity and overhead associated

78

with this approach, it has been widely argued that dynamic load balancing strate-

gies outperform static approaches especially in dynamic environments. Dynamic load

balancing strategies can be further categorized as centralized or decentralized. In

the centralized scheme, resource information is collected and managed centrally by a

single node. This node is responsible for collecting information about all the other

nodes and properly redistributing the work. An obvious shortcoming of this strategy

is scalability as the central node becomes a bottleneck as the system size increases

and is highly vulnerable to failures. In a decentralized approach, every node attempts

to make decisions by using local information or information collected from its neigh-

bors. Most of the decentralized strategies use only partial information because of the

high cost involved in obtaining global knowledge. Most of the existing approaches

assume a homogeneous environment and/or ignore the underlying network topology

of the nodes. The main goal of the proposed strategies is to design algorithms that

account for the unique characteristics of grid environments, mainly the sheer size,

heterogeneous resources, and wide range of latencies. We also propose strategies that

are application communication topology sensitive and aware of the virtual intercon-

nection of the underlying resources.

This work focuses on middleware-triggered decentralized load balancing strate-

gies across large scale, highly dynamic peer-to-peer networks. Several load balancing

strategies have been studied for structured and unstructured P2P systems. Some of

them distribute objects across structured P2P systems [85, 96, 55]. They are all based

on the concept of distributed hash tables. However they assume that all objects are

homogeneous and have the same size. Rao et al. [62] have accounted for heterogeneity

by using the concept of virtual servers that move from heavy nodes to light nodes

which is similar in concept to migration of actors. However they assume that the

load on virtual servers is stable. They also assume that there is only one bottleneck

resource that needs to be optimized at a time.

Triantafillou et al. [107] have suggested load balancing algorithms to distribute

contents over unstructured P2P systems. They aggregate global meta-data over a

two-level hierarchy and they use it to re-assign objects. Our load balancing decision

functions are not restricted to optimizing a specific bottleneck resource. Our mid-

79

dleware is not restricted to one load balancing strategy. It has been designed and

implemented with the intention of plugging in different load balancing strategies de-

pending on the nature of the running applications. This allows us to create concepts

and decision functions that are application-specific, where placement and granularity

of the application’s entities can be modified dynamically.

4.6 Chapter Summary

We have described IOS reconfiguration mechanisms. The presented load bal-

ancing algorithms are based on decentralized work-stealing peer-to-peer protocols.

Another key feature of the load balancing algorithms is their sensitivity to the net-

work topology and the application’s characteristics and their support for environments

where resources join and leave dynamically. The virtual topology of IOS agents de-

termines how resource information is exchanged between the peers and hence where

reconfiguration is triggered. We also present the resource-sensitive model that de-

termines the selection criteria of entities to be reconfigured. This model takes into

account the application’s characteristics, the remaining life expectancy of the appli-

cation’s entities, and how many times they have migrated in the past, to make more

informed decisions about which entities to select for reconfiguration. The goal of this

model is to co-locate tightly-coupled entities within the same node. The split policy

complements the load balancing policies by providing the appropriate entities’ gran-

ularity to achieve the desired load adjustment. On the other hand, the merge policy

is a local policy that attempts to improve the node-level performance by reducing the

context-switching overhead associated with having a large number of entities in the

same node.

CHAPTER 5
Reconfiguring MPI Applications

To allow MPI applications to benefit from the reconfiguration policies embodied by

the IOS middleware, we have developed a user-level library on top of MPI that al-

lows process migration and malleability. Our strategy achieves portability across

different implementations of the MPI standard. MPI/IOS is a system that inte-

grates IOS middleware strategies with existing MPI applications. MPI/IOS adopts a

semi-transparent checkpointing mechanism, where the user guides the reconfiguration

mechanism by specifying the data structures that must be saved and restored to al-

low process migration. This approach does not require extensive code modifications.

Legacy MPI applications can benefit from load balancing features by inserting just a

small number of calls to a simple application programming interface.

This chapter starts by motivating the need for reconfigurable MPI in Section 5.1.

Next we present the adopted approach to reconfigurable MPI applications in Sec-

tion 5.2. The Process Checkpointing, Migration, and Malleability (PCM) library is

discussed in Section 5.3. MPI/IOS runtime architecture is explained in Section 5.4.

We then discuss the protocol used to interface between the PCM library and IOS in

Section 5.5. Section 5.6 presents related work. The chapter concludes with discussion

and summary in Section 5.7.

80

81

5.1 Motivation

While grid environments present multiple resource management challenges, they

also provide an abundant pool of resources that is appealing to large scale and compu-

tationally demanding distributed applications. Examples are parallel computational

science and engineering applications that arise in diverse disciplines such as astro-

physics, fluid dynamics, materials science, biomechanics, or nuclear physics. These

applications involve solving or simulating multi-scale problems with dynamic behav-

ior. Solution procedures use sophisticated adaptive methods underlying data struc-

tures (e.g., meshes) and numerical methods to achieve specified levels of solution

accuracy [32]. This adaptivity, when used for parallel solution procedures, introduces

load imbalance which can be corrected using application-level dynamic load balancing

techniques [102]. These applications generally deal with huge amounts of data and

require extensive computational resources, but they usually assume a fixed number

of cooperating processes running in a dedicated and mostly homogeneous computing

environment or they address heterogeneity but not dynamic environments [103]. Run-

ning such applications on computational grids, with their dynamic, heterogeneous,

and non-dedicated resources, makes it difficult for application-level load balancing

alone to take full advantage of available resources and to maintain high performance.

Application-level load-balancing approaches have a limited view of the external world

where the application is competing for resources with several other applications. Mid-

dleware is a more appropriate location where to place resource management and load

balancing capabilities since it has a more global view of the execution environment,

and can benefit a large number of applications.

A large number of scientific and engineering applications have been implemented

using the Message Passing Interface (MPI) [77] to achieve parallelism. MPI [77] has

been widely adopted as the de-facto standard to implement single-program multiple-

data (SPMD) parallel applications. Extensive development effort has produced many

large software systems that use MPI for parallelization. Its wide availability has

enabled portability of applications among a variety of parallel computing environ-

ments. However, the issues of scalability, adaptability and load balancing still remain

a challenge. Most existing MPI implementations assume a static network environ-

82

ment. MPI implementations that support the MPI-2 standard [50, 78] provide partial

support for dynamic process management, but still require complex application de-

velopment from end-users: process management needs to be handled explicitly at

the application level, which requires the developer to deal with issues such as re-

source discovery and allocation, profiling, scheduling, load balancing, etc. Additional

middleware-support for application reconfiguration is therefore needed to relieve ap-

plication developers from such concerns. Augmenting MPI applications with auto-

mated process migration capabilities is a necessary step to enable dynamic reconfig-

uration through load balancing of MPI processes among geographically distributed

nodes.

Feitelson and Rudolph [42] classify parallel applications into four categories from

a scheduling perspective: rigid, moldable, evolving, and malleable. Rigid applications

require a fixed allocation of processors. Once the number of processors is determined,

the application cannot run on a smaller or larger number of processors. Moldable

applications can run on various numbers of processors. However, the allocation of

processors remains fixed during the runtime of the application. In contrast, both

evolving and malleable applications can change the number of processors during ex-

ecution. In case of evolving applications, the change is triggered by the application

itself. While in malleable applications, it is triggered by an external resource manage-

ment system. We further extend the definition of malleability by allowing the parallel

application not only to change the number of processors in which it runs but also to

change the granularity of its processes.

5.2 Approach to Reconfigurable MPI Applications

5.2.1 The Computational Model

We use the SPMD model where each task executes the same program but op-

erates on different data sets. We assume that applications are iterative and consist

of one or more phases, which are sections of code comprised of computation followed

by communication. Our model assumes that applications use a variable block distri-

bution, where a contiguous set of data items are assigned to each node.

We target in this work the broad class of iterative applications. A large number

83

of scientific and engineering applications exhibit an iterative nature. The solution of

such problems requires dividing up the physical domain into small elements or volumes

to form what is referred to as a mesh. Such problems arise in various fields such as

fluid dynamics, particle physics, and material science. Such problems are usually

computationally intensive and cannot be solved by a single machine in a reasonable

time. Parallelization techniques are then used to allow these problems to be solved in

a distributed memory environment, where several processors are used simultaneously

to achieve the desired solution. Parallelization consists primarily of partitioning the

mesh into a number of subdomains. Each subdomain forms a separate process and

is assigned to a single processor. We have chosen to experiment with the class of

iterative applications for two reasons: 1) this class is important in the scientific and

engineering communities, and 2) it exhibits predictable profiling and reconfiguration

points that could easily be automated through static software analysis or code-level

annotations.

Iterative applications are characterized by having a sequence of instructions that

are repeated several times during the course of execution. The iterations continue

until the problem converges or the error estimation is below a specified threshold.

For example in a typical fluid dynamics solver, the iterations are used to solve the

flow equations. Every iteration uses the existing pressure field to calculate a velocity

field that satisfies momentum conservation. Then it tries to correct the pressures

and velocities to satisfy continuity. The application keeps iterating until the solution

converges. In this specific case the data domain is represented as a triangular or

tetrahedral mesh.

Iterative mesh-based applications usually involve communication between their

subdomains. In every iteration, the subdomains may need to synchronize by exchang-

ing data. Applications could range from loosely synchronous to highly synchronous

depending on how much synchronization is needed by the different subdomains. This

feature forces the solution performance for the highly synchronized subdomains to

depend on the performance of the slowest or most overloaded processor in the com-

putation environment.

84

5.2.2 Process Migration

In MPI, any communication between processes needs to be done as part of a

communicator. An MPI communicator is an opaque object with a number of at-

tributes, together with simple functions that govern its creation, use and destruction.

An intracommunicator delineates a communication domain which can be used for

point-to-point communications as well as collective communication among the mem-

bers of the domain. On the other hand, an intercommunicator allows communication

between processes belonging to disjoint intracommunicators.

MPI processes periodically get notified by the middleware of migration or re-

configuration requests. When a process receives a migration notification, it initiates

checkpointing of its local data in the next synchronization point. Checkpointing is

achieved through library calls that are inserted by the programmer in specific places

in the application code. The class of iterative applications exhibits natural locations

(at the beginning of each iteration) to place polling, checkpointing and resumption

calls. When the process is first started, it checks whether it is a fresh process or it has

been migrated. In the second case, it proceeds to data and process interconnectivity

restoration.

We achieve MPI process migration by rearranging MPI communicators. Migra-

tion is performed by a collaboration of all the participating MPI processes. It has to

be done at a point where there are no pending communications. Process migration

requires careful update of any communicator that involves the migrating process. A

migration request forces all running MPI processes to enter a reconfiguration phase

where they all cooperate to update their shared communicators. The migrating pro-

cess spawns a new process in the target location and sends it its locally checkpointed

data. Figure 5.1 describes the steps involved in managing the MPI communicators

for a sample process migration. In the original communicator, Communicator 1, Pro-

cess 7 has received a migration request. Process 7 cooperates with the processes of

Communicator 1 to spawn the new process, Process 0 in Communicator 2, which

will eventually replace it. The intercommunicator that results from this spawning

is merged into one global communicator. Later, the migrating process is removed

from the old communicator and the new process is assigned rank 7. The new process

85

 by removing the spawning process and

 assigning its rank to the newly created

 process.

3) Reconfiguring the created communicator

1) Intercommunicator between the spawning

 application and the spawned process.

0

0

8 9 10 11

1 2 3

4 5 6 7

0

0

Merging the intercommunicator

8 9 10 11

1 2 3

4 5 6 7

0

7

2) Merging the intercommunicator into

 one communicator

8 9 10 11

Communicator 2

Spawning a new
process

1 2 3

4 5 6 7

0

0

Communicator 1

10

Figure 5.1: Steps involved in communicator handling to achieve MPI process
migration.

restores the checkpointed data from its local daemon and regains the same state of

the migrating process. All processes then get a handle to the new communicator and

the application resumes its normal execution.

5.2.3 Process Malleability

We discussed in the previous section how we have implemented process mi-

gration in iterative MPI applications. However, load balancing using only process

migration is limited by the application’s process granularity over shared and dynamic

environments [37]. In such environments, it is impossible to accurately predict the

availability of resources at application’s startup and hence determine the right gran-

ularity of the application. Hence, an effective alternative is to allow applications’

processes to expand and shrink opportunistically as the availability of the resources

changes dynamically. Over-estimating by starting with a very small granularity might

86

degrade the performance in case of a shortage of resources. At the same time, under-

estimating by starting with a large granularity might limit the application from po-

tentially utilizing more resources. A better approach is therefore to enable dynamic

process granularity changes through malleability.

There are operational and meta-level issues that need to be addressed when

deciding how to reconfigure applications though malleability and/or migration. Op-

erational issues involve determining how to split and merge the application’s processes

in ways that preserve the semantics and correctness of the application. The opera-

tional issues are heavily dependent on the application’s programming model. On

the other hand, meta-level issues involve deciding when should a process split or

merge, how many processes to split or merge, and what is the proper mapping of

the processes to the physical resources. These issues render programming for mal-

leability and migration a complex task. To facilitate an application’s reconfiguration

from a developer’s perspective, middleware technologies need to address meta-level

reconfiguration issues. Similarly, libraries need to be developed to address the var-

ious operational issues at the application-level. This separation of concerns allows

the meta-level reconfiguration policies built into middleware to be widely adopted by

various applications.

Several design parameters come to play when deciding how to split and merge

an application’s parallel processes. Usually there is more than one process involved

in the split or merge operations. The simplest scenario is performing binary split

and merge, which allows a process to split into two processes or two processes to

merge into one. Binary malleable operations are more intuitive since they mimic the

biological phenomena of cell division. They are also highly concurrent since they could

be implemented with a minimal involvement of the rest of the application. Another

approach is to allow a process to split into N processes or N processes to merge

into 1. This approach, in the case of communication intensive applications, could

increase the communication overhead significantly and could limit the scalability of

the application. It could also easily cause data imbalances. This approach would be

useful when there are large fluctuations in resources. The most versatile approach is to

allow for collective split and merge operations. In this case, the semantics of the split

87

Figure 5.2: Example M to N split operations.

Figure 5.3: Example M to N merge operations.

or merge operations allow any number of M processes to split or merge into any other

number of N processes. Figures 5.2 and 5.3 illustrate example behaviors of split and

merge operations. In the case of the M to N approach, data is redistributed evenly

among the resulting processes when splitting or merging. What type of operation is

more useful depends on the nature of applications, the degree of heterogeneity of the

resources, and how frequently the load fluctuates.

While process migration changes mapping of an application’s processes to phys-

ical resources, split and merge operations go beyond that by changing the communica-

tion topology of the application, the data distribution, and the data locality. Splitting

and merging causes the communication topology of the processes to be modified be-

88

Figure 5.4: Examples of domain decomposition strategies showing block,
column, and diagonal decompositions for a 3D data-parallel
problem.

cause of the addition of new or removal of old processes, and the data redistribution

among them. This reconfiguration needs to be done atomically to preserve application

semantics and data consistency.

We provide high-level operations for malleability based on the MPI paradigm for

SPMD data parallel programs with regular communication patterns. The proposed

approach is high level in that the programmer is not required to specify when to

perform split and merge operations and some of the intrinsic details involved in re-

arranging the communication structures explicitly: these are provided by the PCM

library. The programmer needs, however, to specify the data structures that will be

involved in the malleability operations. Since there are different ways of subdividing

data among processes, programmers also need to guide the split and merge operations

for data-redistribution.

5.3 The Process Checkpointing Migration and Malleability

Library

To support migration and malleability in iterative MPI programs, we have de-

signed and implemented an application-level checkpointing API called Process Check-

pointing, Migration, and Malleability (PCM) and a runtime system called Process

Checkpointing, Migration, and Malleability Daemon (PCMD). Few PCM calls need

to be inserted in MPI programs to specify the data that need to be checkpointed, to

89

restore the process to its previous state in case of migration or malleability, to update

the data distribution structure and the MPI communicator handles, and to probe the

runtime system for reconfiguration requests. This library is semi-transparent because

the user does not have to worry about when or how checkpointing and restoration

is done. The underlying PCMD infrastructure takes care of all the checkpointing,

migration, and malleability details.

PCM is implemented entirely in the user-space for portability of the checkpoint-

ing, migration, and malleability schemes across different platforms. PCM has been

implemented on top of MPICH2 [61], a freely available implementation of the MPI-2

standard.

5.3.1 The PCM API

PCM provides four classes of services: environmental inquiry services, check-

pointing services, global initialization and finalization services, and collective re-

configuration services. Table 5.1 shows the classification of the PCM API calls.

PCM MPI Init is a wrapper for MPI Init. The user calls this function at the be-

ginning of the program. PCM MPI Init is a collective operation that takes care of

initializing several internal data structures. It also reads a configuration file that

has information about the port number and location of the PCM daemon, a runtime

system that provides checkpointing and global synchronization between all running

processes.

Migration and malleability operations require the ability to save and restore the

current state of the process(es) to be reconfigured. PCM Store and PCM Load provide

storage and restoration services of the local data. Checkpointing is handled by the

PCMD runtime system that ensures that data is stored in locations with reasonable

proximity to their destination.

Upon startup, an MPI process can have three different states:

1. PCM STARTED: a process that has been initially started in the system (for exam-

ple, using mpiexec),

2. PCM MIGRATED: a process that has been spawned because of a migration, and

90

Service Type Function Name

Initialization PCM MPI Init
Finalization PCM Exit, PCM Finalize
Environmental Inquiry PCM Process Status

PCM Comm rank
PCM Status
PCM Merge datacnts

Reconfiguration PCM Reconfigure
PCM Migrate
PCM Split, PCM Merge
PCM Split Collective
PCM Merge Collective

Checkpointing PCM Load, PCM Store

Table 5.1: The PCM API.

3. PCM SPLITTED: a process that has been spawned because of a split operation.

A process that has been created as a result of a reconfiguration (migration or split)

proceeds to restoring its state by calling PCM Load. This function takes as parameters

information about the keys, pointers, and data types of the data structures to be

restored. An example includes the size of the data, the data buffer and the current

iteration number. Process ranks may also be subject to changes in case of malleability

operations. PCM Comm rank reports to the calling process its current rank. Conditional

statements are used in the MPI program to check for its startup status. An illustration

is given in Figure 5.6, which shows the instrumentation in the initialization phase and

Figure 5.7, which shows the instrumentation in the iteration phase.

The running application probes the PCMD system to check if a process or a

group of processes need to be reconfigured. Middleware notifications set global flags

in the PCMD system. To prevent every process from probing the runtime system, the

root process (usually process with rank 0) probes the runtime system and broadcasts

any reconfiguration notifications to the other processes. This provides a callback

mechanism that makes probing non-intrusive for the application. PCM Status returns

the state of the reconfiguration to the calling process. It returns different values to

different processes. In the case of a migration, PCM MIGRATE value is returned to

the process that needs to be migrated, while PCM RECONFIGURE is returned to the

91

other processes. PCM Reconfigure is a collective function that needs to be called by

both the migrating and non-migrating processes. Similarly PCM SPLIT or PCM MERGE

are returned by the PCM Status function call in case of a split or merge operation.

All processes collectively call the PCM Split or PCM Merge functions to perform a

malleable reconfiguration.

We have implemented the 1 to N and M to N split and merge operations.

PCM Split and PCM Merge provide the 1 to N behavior, while PCM Split Collective

and PCM Merge Collective provide the M to N behavior. The middleware is notified

about which form of malleability operation to use implicitly. The values of M and

N are transparent to the programmer. They are provided by the middleware which

decides the granularity of the split operation.

Split and merge functions change the ranking of the processes, the total num-

ber of processes, and the MPI communicators. All occurrences of MPI COMM WORLD,

the global communicator with all the running processes, should be replaced with

PCM COMM WORLD4. This latter is a malleable communicator since it expands and

shrinks as processes get added or removed. All reconfiguration operations happen

at synchronization barrier points. The current implementation requires no communi-

cation messages to be outstanding while a reconfiguration function is called. Hence,

all calls to the reconfiguration PCM calls need to happen either at the beginning or

end of the loop.

When a process or group of processes engage in a split operation, they determine

the new data redistribution and checkpoint the data to be sent to the new processes.

When the new processes are created, they inquire about their new ranks and load

their data chunks from the PCMD. The checkpointing system maintains an up-to-

date database of data checkpoints per process rank. Then all of an application’s

processes synchronize to update their ranks and their communicators. The malleable

calls return handles to the new ranks and the updated communicator. Unlike a split

operation, a merge operation entails removing processes from the MPI communicator.

Merging operations for data redistribution are implemented using MPI scatter and

gather operations.

4The PCM library (v. 0.2) does not handle user-defined communicators. All processes must
communicate using the MPI COMM WORLD global communicator.

92

5.3.2 Instrumenting an MPI Program with PCM

Figure 5.5 shows a sample skeleton of an MPI-based application with a very

common structure in iterative applications. The code starts by performing various

initializations of some data structures. Data is distributed by the root process to

all other processes in a block distribution. The xDim and yDim variables denote

the dimensions of the data buffer. The program then enters the iterative phase

where processes perform computations locally and then exchange border information

with their neighbors. Figures 5.6 and 5.7 show the same application instrumented

with PCM calls to allow for migration and malleability. In case of split and merge

operations, the dimensions of the data buffer for each process might change. The PCM

split and merge take as parameters references to the data buffer and dimensions and

update them appropriately. In case of a merge operation, the size of the buffer needs

to be known so enough memory can be allocated. The PCM Merge datacnts function

is used to retrieve the new buffer size. This call is significant only at processes that

are involved in a merge operation. Therefore a conditional statement is used to check

whether the calling process is merging or not. The variable merge rank will have

a valid process rank in the case the calling process is merging, otherwise it has the

value −1.

The example shows how to instrument MPI iterative applications with PCM

calls. The programmer is required only to know the right data structures that are

needed for malleability. A PCM-instrumented MPI application becomes malleable

and ready to be reconfigured by IOS middleware.

5.4 The Runtime Architecture

MPI/IOS is implemented as a set of middleware services that interact with

running applications through an MPI wrapper.

The MPI/IOS runtime architecture consists of the following components (see

Figure 5.8):

1. the PCM-enabled MPI applications,

2. the wrapped MPI that includes the PCM API, the PCM library, and wrappers

93

�

#include <mpi . h>
. . .

int main (int argc , char ∗∗ argv) {
// Dec la ra t i ons
. . . .

MPI Init (&argc , &argv) ;

MPI Comm rank(MPICOMM WORLD, &rank) ;
MPI Comm size (MPI COMM WORLD, &to t a lP r o c e s s o r s) ;

c u r r e n t i t e r a t i o n = 0 ;

//Determine the number o f columns f o r each proces sor .
xDim = (yDim−2) / t o t a lP r o c e s s o r s ;

// I n i t i a l i z e and D i s t r i b u t e data among proce s so r s
. . .

for (i t e r a t i o n s=c u r r e n t i t e r a t i o n ; i t e r a t i o n s <TOTAL ITERATIONS;
i t e r a t i o n s++){

// Data Computation .
. . .

//Exchange o f computed data wi th ne i ghbor ing proce s s e s .
// MPI Send () | | MPI Recv ()
. . .

}

// Data Co l l e c t i o n
. . .
MPI Barrier (MPICOMMWORLD) ;

MPI Final ize () ;
return 0 ;

}

� �

Figure 5.5: Skeleton of the original MPI code of an MPI application.

94

�

#include "mpi.h"

#include "pcm_api.h"

. . .

MPI Comm PCMCOMMWORLD;
int main (int argc , char ∗∗ argv) {

// Dec la ra t i ons
. . . .
int c u r r e n t i t e r a t i o n , p r o c e s s s t a t u s ;
PCM Status pcm status ;

// d e c l a r a t i o n s f o r m a l l e a b i l i t y
double ∗ new buf f e r ;
int merge rank , mergecnts ;

PCM MPI Init(&argc , &argv) ;
PCMCOMMWORLD = MPICOMMWORLD;
PCM Init (PCMCOMMWORLD) ;
MPI Comm rank(PCMCOMMWORLD, &rank) ;
MPI Comm size (PCMCOMMWORLD, &to t a lP r o c e s s o r s) ;
p r o c e s s s t a t u s = PCM Process Status () ;

i f (p r o c e s s s t a t u s == PCM STARTED){
c u r r e n t i t e r a t i o n = 0 ;

//Determine the number o f columns f o r each proces sor .
xDim = (yDim−2) / t o t a lP r o c e s s o r s ;

// I n i t i a l i z e and D i s t r i b u t e data among proce s so r s
. . .

}
else {

PCM Comm rank(PCMCOMMWORLD, &rank) ;
PCM Load(rank , "iterator" ,& c u r r e n t i t e r a t i o n) ;
PCM Load(rank , "datawidth" , &xDim) ;
prevData = (double ∗) c a l l o c ((xDim+2)∗yDim , s izeof (double)) ;
PCM Load(rank , "myArray" , prevData) ;

}
. . .
. . .

}

� �

Figure 5.6: Skeleton of the malleable MPI code with PCM calls: initial-
ization phase.

95

�

. . .
for (i t e r a t i o n s=c u r r e n t i t e r a t i o n ; i t e r a t i o n s <TOTAL ITERATIONS;

i t e r a t i o n s++){
pcm status = PCM Status (PCMCOMMWORLD) ;
i f (pcm status == PCM MIGRATE){

PCM Store (rank , "iterator" ,& i t e r a t i o n s ,PCM INT, 1) ;
PCM Store (rank , "datawidth" ,&xDim ,PCM INT, 1) ;
PCM Store (rank , "myArray" , prevData ,PCM DOUBLE, (xDim+2)∗yDim) ;
PCMCOMMWORLD = PCM Reconfigure (PCMCOMMWORLD, argv [0]) ;

}
else i f (pcm status == PCM RECONFIGURE){

PCM Reconfigure(&PCMCOMMWORLD, argv [0]) ;
MPI Comm rank(PCMCOMMWORLD, &rank) ;

}
else i f (pcm status == PCM SPLIT){

PCM Split (prevData ,PCM DOUBLE,
&i t e r a t i o n s ,&xDim,&yDim,&rank ,
&to t a lP ro c e s s o r s ,&PCMCOMMWORLD, argv [0]) ;

} else i f (pcm status == PCMMERGE){
PCM Merge datacnts (xDim , yDim,&mergecnts ,&merge rank ,

PCMCOMMWORLD) ;
i f (rank == merge rank)

/∗Rea l l o ca t e memory f o r the data b u f f e r ∗/
new buf f e r = (double∗) c a l l o c (mergecnts , s izeof (double)) ;

PCM Merge(prevData ,MPI DOUBLE,&xDim,&yDim , new buf fer ,
mergecnts ,&rank ,& to t a lP ro c e s s o r s ,&PCMCOMMWORLD) ;

i f (rank == merge rank)
prevData = new buf f e r ;

}
// Data Computation .

. . .
//Exchange o f computed data wi th ne i ghbor ing proce s s e s .
// MPI Send () | | MPI Recv ()

. . .
}
// Data Co l l e c t i o n
. . .
MPI Barrier (PCMCOMMWORLD) ;
PCM Finalize (PCMCOMMWORLD) ;
MPI Final ize () ;
return 0 ;

}

� �

Figure 5.7: Skeleton of the malleable MPI code with PCM calls: iteration
phase.

96

Figure 5.8: The layered design of MPI/IOS which includes the MPI wrapper,
the PCM runtime layer, and the IOS runtime layer.

for all MPI native calls,

3. the MPI library, and

4. the IOS runtime components.

5.4.1 The PCMD Runtime System

Figure 5.9 shows an MPI/IOS computational node running MPI processes. A

PCM daemon (PCMD) interacts with the IOS middleware and MPI applications. A

PCMD is started in every node that actively participates in an application. A PCM

dispatcher is used to start PCMDs in various nodes and used to discover existing

ones. The application initially registers all MPI processes with their local daemons.

The port number of a daemon is read from a configuration file that resides in the

same host.

Every PCMD has a corresponding IOS agent. There can be more than one MPI

97

Figure 5.9: Architecture of a node running MPI/IOS enabled applications.

process in each node. The daemon consists of various services used to achieve pro-

cess communication profiling, checkpointing, migration, and malleability. The MPI

wrapper calls record information pertaining to how many messages have been sent

and received and their source and target process ranks. The profiled communication

information is passed to the IOS profiling component. IOS agents keep monitoring

their underlying resources and exchanging information about their respective loads.

When a node’s available resources fall below a predefined threshold or a new

idle node joins the computation, a Work-Stealing Request Message (WRM) message

is propagated among the actively running nodes. The IOS agent of a node responds

98

PCM code

instrumentation

PMPI library

PCM library

T
C

P
 S

o
ck

ets

Compiler/Linker

Instrumented

program

MPI user

program

Executable

IOS Reconfiguration Middleware

PCM Daemon

MPI libraryPCM code

instrumentation

PMPI library

PCM library

T
C

P
 S

o
ck

ets

Compiler/Linker

Instrumented

program

MPI user

program

Executable

IOS Reconfiguration Middleware

PCM Daemon

MPI library

Figure 5.10: Library and executable structure of an MPI/IOS application.

to work-stealing requests if it becomes overloaded and its decision component decides

according to the resource sensitive model which process(es) need(s) to be migrated.

Otherwise, it forwards the request to an IOS agent in its set of peers. The decision

component then notifies the reconfiguration service in the PCMD, which then sends

a migration, split, or merge request to the desired process(es). At this point, all

active PCMDs in the system are notified about the event of a reconfiguration. This

causes all processes to cooperate in the next iteration until migration is completed

and application communicators have been properly updated. Although this mech-

anism imposes some synchronization delay, it ensures that no messages are being

exchanged while process migration is taking place and avoids incorrect behaviors of

MPI communicators.

5.4.2 The Profiling Architecture

MPI processes need to send periodically their communication patterns to their

corresponding IOS profiling agents. To achieve this, we have built a profiling library

that is based on the MPI profiling interface (PMPI). The MPI specification provides

a general mechanism for intercepting calls to MPI functions using name shifting. This

99

allows the development of portable performance analyzers and other tools without

access to the MPI implementation source code. The only requirement is that ev-

ery MPI function be callable by an alternate name (PMPI_Xxxx instead of the usual

MPI_Xxxx.). The built profiling library intercepts all communication methods of MPI

and sends any communication event to the profiling agent.

All profiled MPI routines call their corresponding PMPI_Xxxx and, if necessary,

PCM routines. Figure 5.10 shows the library structure of the MPI/IOS programs.

The instrumented code is linked with the profiling library PMPI, the PCM library, and

a vendor MPI implementation’s library. The generated executable passes all profiled

information to the IOS run-time system and also communicates with the local PCMD.

This latter is responsible for storing local checkpoints and passing reconfiguration

decisions across a socket API from the IOS agent to the MPI processes. Section 5.5

describes in details the interaction protocol used between the PCM library and IOS

runtime system.

5.4.3 A Simple Scenario for Adaptation

MPI applications interact with each other, with the checkpointing and migra-

tion services provided by the PCM library, and with the profiling and reconfiguration

services provided by IOS agents. Walking through the simple scenario of an applica-

tion adaptation that is shown in Figure 5.11 further explains these interactions. The

example illustrates the execution of a parallel MPI application that is composed of n

processes running on n different processors.

1. An available processor joins the IOS virtual network.

2. The new processor starts requesting work from its peers.

3. Processor 1 receives the work-stealing request. The decision component in its

local IOS agent predicts that there will be a future performance gain migrating

process 1 to the remote processor f .

4. MPI process 1 gets notified of a migration event.

5. At the beginning of the next iteration, the migrating process broadcasts a mes-

sage to the rest of the processors so that they enter a reconfiguration phase.

100

P
ro

ce
ss

o
r

1

M
P

I
P

ro
ce

ss

ra
n

k
 1

IO
S

 A
g

en
t

P
ro

ce
ss

o
r

f

M
P

I
P

ro
ce

ss

ra
n

k
 1

IO
S

 A
g

en
t

1
A

 n
ew

 m
ac

h
in

e
jo

in
s

th
e

IO
S

 v
ir

tu
al

 n
et

w
o

rk
.

2
P

ro
ce

ss
o

r
f

se
n

d
s

a
w

o
rk

 s
te

al
in

g

re
q

u
es

t
 t

o
 a

3
T

h
e

IO
S

 d
ec

is
io

n

co
m

p
o

n
en

t
ev

al
u

at
es

th
e

ex
p

ec
te

d
 g

ai
n

 o
f

a
m

ig
ra

ti
o

n
.

4
T

h
e

M
P

I
p

ro
ce

ss

g
et

s
n

o
ti

fi
ed

 t
o

 m
ig

ra
te

.

5
T

h
e

m
ig

ra
ti

n
g

 p
ro

ce
ss

 n
o

ti
fi

es

th
e

re
st

 o
f

th
e

p
ro

ce
ss

o
rs

 a
b

o
u

t
it

s
m

ig
ra

ti
o

n
.

T
h

ey
 a

ll
 b

lo
ck

 u
n

ti
l

m
ig

ra
ti

o
n

 i
s

co
m

p
le

te
.

6
P

ro
ce

ss
 1

 s
p

aw
n

s

a
n

ew
 p

ro
ce

ss

an
d

 s
en

d
s

it

it
s

ch
ec

k
p

o
in

te
d

 s
ta

te
.

7
A

ll
 M

P
I

co
m

m
u

n
ic

at
o

rs
 a

re

re
ar

ra
n

g
ed

 t
o

 h
av

e
th

e

sp
aw

n
ed

 p
ro

ce
ss

 i
n

st
ea

d
 o

f
th

e

o
ld

 p
ro

ce
ss

.
T

h
e

o
ld

 p
ro

ce
ss

 i
s

th
en

re
m

o
v

ed
.

P
ro

ce
ss

o
r

0

M
P

I
P

ro
ce

ss

ra
n

k
 0

IO
S

 A
g

en
t

P
C

M
D

P
ro

ce
ss

o
r

n

M
P

I
P

ro
ce

ss

ra
n

k
 n

IO
S

 A
g

en
t

P
C

M
D

P
C

M
D

P
C

M
D

P
ro

ce
ss

o
r

1

M
P

I
P

ro
ce

ss

ra
n

k
 1

IO
S

 A
g

en
t

..
.

P
ro

ce
ss

o
r

f

M
P

I
P

ro
ce

ss

ra
n

k
 1

IO
S

 A
g

en
t

1
A

 n
ew

 m
ac

h
in

e
jo

in
s

th
e

IO
S

 v
ir

tu
al

 n
et

w
o

rk

2
P

ro
ce

ss
o

r
f

se
n

d
s

a
w

o
rk

 s
te

al
in

g

re
q

u
es

t
 t

o
 a

 p
ee

r.

3
T

h
e

IO
S

 d
ec

is
io

n

co
m

p
o

n
en

t
ev

al
u

at
es

th
e

ex
p

ec
te

d
 g

ai
n

 o
f

a
m

ig
ra

ti
o

n
.

4
T

h
e

M
P

I
p

ro
ce

ss

g
et

s
n

o
ti

fi
ed

 t
o

 m
ig

ra
te

.
4

T
h

e
M

P
I

p
ro

ce
ss

g
et

s
n

o
ti

fi
ed

 t
o

 m
ig

ra
te

.

5
T

h
e

m
ig

ra
ti

n
g

 p
ro

ce
ss

 n
o

ti
fi

es

th
e

re
st

 o
f

th
e

p
ro

ce
ss

o
rs

 a
b

o
u

t
it

s
m

ig
ra

ti
o

n
.

T
h

ey
 a

ll
 b

lo
ck

 u
n

ti
l

m
ig

ra
ti

o
n

 i
s

co
m

p
le

te
.

6
P

ro
ce

ss
 1

 s
p

aw
n

s

a
n

ew
 p

ro
ce

ss

an
d

 s
en

d
s

it

it
s

ch
ec

k
p

o
in

te
d

 s
ta

te

7
A

ll
 M

P
I

co
m

m
u

n
ic

at
o

rs
 a

re

o
ld

 p
ro

ce
ss

.
T

h
e

o
ld

 p
ro

ce
ss

 i
s

th
en

re
m

o
v

ed
.

P
ro

ce
ss

o
r

0

M
P

I
P

ro
ce

ss

ra
n

k
 0

IO
S

 A
g

en
t

P
C

M
D

P
C

M
D

P
ro

ce
ss

o
r

n

M
P

I
P

ro
ce

ss

ra
n

k
 n

IO
S

 A
g

en
t

P
C

M
D

P
ro

ce
ss

o
r

n

M
P

I
P

ro
ce

ss

ra
n

k
 n

IO
S

 A
g

en
t

P
C

M
D

P
C

M
D

P
C

M
D

P
C

M
D

P
C

M
D

Figure 5.11: A reconfiguration scenario of an MPI/IOS application.

101

6. The migrating process checkpoints its local state, and spawns an image of itself

in the remote processor f . The local PCMD takes care of transferring the

checkpointed state to the newly created process and notifying the rest of the

processes.

7. As a part of completing the migration process, the PCM library takes care of

rearranging the MPI_COM_WORLD communicator by removing the old process and

including the new one. The newly created process gets assigned rank 1.

5.5 The Middleware Interaction Protocol

The IOS/MPI proxy is a software server that runs on all nodes wishing to

interact with the IOS middleware. The purpose of the proxy is to enable the com-

munication between reconfigurable MPI processes and IOS agents. The proxy also

implements an actor emulation mechanism whereby MPI processes are viewed by the

IOS middleware as universal actors. This allows MPI processes to take advantage

of the autonomous nature of actors such as universal naming, asynchronous message

passing, and migration capabilities. This approach also allows the IOS middleware

to be independent from the high-level programming model and not to require any

specific changes to reconfigure MPI applications.

5.5.1 Actor Emulation

When a process is initialized, it must be registered with the proxy. Process

registration involves creating an ActorEmulator object at the level of the proxy to

represent the running process. The process is assigned a UAN/UAL pair following

SALSA’s universal naming mechanisms (see Table 5.5.1 for an example of the naming

scheme adopted). The process also registers with the naming server, which keeps track

of process IDs and their current locations. The same procedure happens anytime a

new process get created as a result of a split operation or an existing process migrates

to another host. It registers with the local proxy, which updates the naming server

with the new UAN/UAL mapping. The actor emulation mechanism allows MPI

processes to leverage SALSA’s migration and naming protocols. These protocols

102

UAN uan://<name server: port>/<process name>/<process rank>
UAL rmsp://<local host:port>/<process name>/<process rank>
Example uan://io.wcl.cs.rpi.edu:3030/heat/1

rmsp://europa.wcl.cs.rpi.edu:4040/heat/1

Table 5.2: The structure of the assigned UAN/UAL pair for MPI pro-
cesses at the MPI/IOS proxy.

ensure that the name server has an up-to-date mapping between process IDs and

their locations.

5.5.2 The Proxy Architecture

The proxy consists of two channel servers: an MPI channel server and an IOS

channel server. The MPI channel server is responsible for getting the profiling mes-

sages from an MPI process and forwarding them to the IOS profiling module. This

server is also responsible for translating MPI-specific profiling messages into IOS-

specific profiling messages. The MPI channel server interfaces with the profiling

module through the IOS profiling interface. The IOS channel server acts as a theater

that hosts the ActorEmulator objects. It maintains the list of all processes running

in the local host and intercepts any reconfiguration requests targeted to them. The

IOS channel server sends any intercepted reconfiguration messages (migrate, split, or

merge) to the targeted MPI process through the PCM daemon.

Figure 5.12 shows the flow of information between a reconfigurable MPI process,

the proxy, and the IOS agent. MPI processes send profiling messages to the IOS

profiling module through the MPI channel server using a text-oriented TCP socket-

based protocol. The protocol module sends reconfiguration requests to the MPI

processes through the IOS channel server. The low level communication between the

IOS channel server and the protocol actor is done using the RMSP protocol.

5.5.3 Protocol Messages

Two types of messages are exchanged between MPI processes and the proxy.

Control messages carry control-related information that pertains to reconfiguration

requests and process registration. Table 5.5.3 shows the supported types of control

103

Profiling API

MPI Channel

Server

IOS Channel

Server

Proxy Client

PCM/ PMPI API

Reconfigurable MPI Process

Profiling/Control

Packets
PCM Daemon

IOS Agent

Profiling

Module

Decision

Module

Protocol

Module

Reconfiguration

Message

Reconfiguration

Request

Reconfiguratioon

Request

Profiling

Invocations

T
C

P
 S

o
ck

et
s

R
M

S
P

Proxy

Figure 5.12: IOS/MPI proxy software architecture.

messages and their codes. Profiling messages carry profiled information about process

communication events and some application-specific metrics such as iteration-time.

Table 5.5.3 shows the supported types of profiling messages. The proxy protocol can

easily be extended to support more types.

Figure 5.13 shows the structure of the protocol messages. Both messages have

the same header structure which carries the version of the protocol, the size of the

message in bytes, and the type of the message (control or profiling). The SRCID and

DESTID fields in the profiling message indicate the IDs of the source and destination

processes for the event that is profiled. For example if an MPI Send message is profiled,

these IDs will correspond to the source and destination ranks. The COMM TYPE field

104

Control Message Type Code in Hexadecimal

CONNECT 0x0000
PROFILE 0x0001
MIGRATE 0x0002
DISCONNECT 0x0003
ENDPROCESSED 0x0004
ENDMIGRATE 0x0005

Table 5.3: Proxy control packets types.

Profiling Message Type Code in Hexadecimal

SEND 0x00
RECV 0x01
BCAST 0x02
GATHER 0x03
SCATTER 0x04

Table 5.4: Proxy profiling message types.

refers to the type of the communication event being profiled (send, receive, scatter,

gather, etc). The SIZE field is the size of the message being sent in the profiled

event. In the control message, the SRCID refers to the rank of the process to whom

the control message is targeted. The interpretation of the IP address depends on the

type of the message. If this is a migrate message, the IP refers to the remote host

where the process needs to migrate. Otherwise it refers to the local IP. The split and

merge control messages have different formats. Split and merge messages are another

type of control messages. The MAL field carries the degree of the malleable operation.

In other words, it is the number that the processes need to split to or the number

they need to merge to. The SIZE field is the number of processes that will engage in

the split or merge operation. Then SIZE number of IDs follow in the message that

indicate the ranks of the processes that need to be engage in the malleable operation.

105

TYPE

SRCID DESTID
COMM

TYPE
SIZE

4 bytes

4 bytes 4 bytes 1 byte 1 byte

Profiling Message

SRCID IP Address

4 bytes 6 bytes

Control Message

HEADER

HEADER

VERSION Payload Size

4 bytes 4 bytes

Message Header

SIZE

1 bytes

Control Split/Merge Message

HEADER SRCID1

4 bytes

SRCID2MAL ...

1 bytes

Figure 5.13: The packet format of MPI/IOS proxy control and profiling
messages.

5.6 Related Work

5.6.1 MPI Reconfiguration

There are a number of conditions that can introduce computational load imbal-

ances during the lifetime of an application:

1. the application may have irregular or unpredictable workloads from, e.g., adap-

tive refinement,

2. the execution environment may be shared among multiple users and applica-

tions,

106

3. the execution environment may be heterogeneous, providing a wide range of pro-

cessor speeds, network bandwidth and latencies, and memory capacity, and/or

4. the execution environment may be dynamic where nodes join and leave.

Dynamic load balancing (DLB) is necessary to achieve a good parallel performance

when such imbalances occur. Most DLB research has targeted the application level

(e.g., [38, 44]), where the application itself continuously measures and detects load

imbalances and tries to correct them by redistributing the data, or changing the gran-

ularity of the problem through domain repartitioning. Although such approaches have

proved beneficial, they suffer from several limitations. First, they are not transpar-

ent to application programmers. They require complex programming and are domain

specific. Second, when these applications are run on a dynamic grid, application-level

techniques which have been applied successfully to heterogeneous clusters [38, 103]

may fall short in coping with the high fluctuations in resource availability and usage.

Our research targets middleware-level DLB which allows a separation of concerns:

load balancing and resource management are transparently dealt with by the middle-

ware, while application programmers deal with higher level domain specific issues.

Several recent efforts have focused on enhancing MPI run-time systems to adapt

applications to dynamic environments. Adaptive MPI (AMPI) [19, 57] is an imple-

mentation of MPI on top of light-weight threads that balances the load transpar-

ently based on a parallel object-oriented language with object migration support.

AMPI leverages Charm++ dynamic load balancing. Load balancing in AMPI is

done through migrating user-level threads that MPI processes are executed on. This

approach limits the portability of process migration across different architectures since

it relies on thread migration. Process swapping [93] is an enhancement to MPI that

uses over-allocation of resources and improves performance of MPI applications by

allowing them to execute on the best performing nodes. MPI process swapping has

been also used for the class of iterative applications. Our approach is different in the

sense that we do not need to over-allocate resources initially. Such a strategy, though

potentially very useful, may be impractical in large-scale dynamic environments such

as grids where resources join and leave and where an initial over-allocation may not

be possible. We allow new nodes that become available to join the computational

107

grid to improve the performance of running applications during their execution.

Other efforts have focused on process checkpointing and restart as a mecha-

nism to allow applications to adapt to changing environments. Examples include

CoCheck [95], starFish [6], MPICH-V [22], and the SRS library [110]. CoCheck,

starFish, and MPICH-V support checkpointing for fault-tolerance, while we provide

this feature to allow process migration and hence load balancing. Our framework

could be integrated with the sophisticated checkpointing techniques used in these

projects to be able to support also non-iterative applications. SRS supports check-

pointing to allow application stop and restart. Our work differs in the sense that we

support migration at a finer granularity. Application-transparent process checkpoint-

ing is not a trivial task, could be very expensive, and is architecture-dependent as it

requires saving the entire application state. Semi-transparent checkpointing provides

a simpler solution and a more portable approach. It has been proved useful for the

important class of iterative applications [93, 110]. API calls are inserted in the MPI

program that informs the middleware of the important data structures to save. This

is an attractive solution that can benefit a wide range of applications and does not

incur significant overhead since only relevant state is saved. The instrumentation of

applications could be easily automated since iterative applications have a common

structure.

5.6.2 Malleability

Existing approaches to application malleability have focused on processor vir-

tualization (e.g [58]) by allowing the number of processes in a parallel application to

be much larger than the number of available processors. This strategy allows flexible

and efficient load balancing through process migration. Processor virtualization can

be beneficial as more and more resources join the system. However, when resources

slow down or become unavailable, certain nodes can end up with a large number

of processes. The node-level performance is then impacted by the large number of

processes it hosts because the small granularity of each process causes unnecessary

context-switching overhead and increases inter-process communication. On the other

hand, having a large process granularity does not always yield the best performance

108

because of the memory-hierarchy. In such cases, it is more efficient to have processes

with data that can fit in the lower level of memory caches’ hierarchy.

Malleability for MPI applications has been mainly addressed through processor

virtualization, dynamic load balancing strategies, and application stop and restart.

Malleability is achieved in AMPI [58] by starting the applications with a very

fine process granularity and relying on dynamic load balancing to change the mapping

of processes to physical resources through object migration. The PCM/IOS library

and middleware support provide both migration and process granularity control for

MPI applications. Phoenix [101] is another programming model which allows virtu-

alization for a dynamic environment by creating extra initial processes and using a

virtual name space and process migration to balance load and scale applications.

In [108], the authors propose virtual malleability for message passing parallel

jobs. They apply a processor allocation strategy called the Folding by JobType (FJT)

that allows MPI jobs to adapt to load changes. The folding technique reduces the

partition size in half, duplicating the number of processes per processor. In contrast

to our work, the MPI jobs are only simulated to be malleable by using moldability

and the folding technique.

Dyn-MPI [116] is another system that extends iterative MPI programs with

adaptive execution features in non-dedicated environments through data redistribu-

tion and the possibility of removing badly performing nodes. In contrast to our

scheme, Dyn-MPI does not support the dynamic addition of new processes. In addi-

tion Dyn-MPI relies on a centralized approach to determine load imbalances, while

we utilize decentralized load balancing policies to trigger malleable adaptation.

Checkpointing and application stop and restart strategies have been investigated

as malleability tools in dynamic environments (e.g, CoCheck [95], starFish [6], and

SRS [110]). Stop and restart is expensive especially for applications operating on

large data sets. The SRS library [110] provides tools to allow an MPI program to

stop and restart where it left off with a different process granularity. Our approach

is different in the sense that we do not need to stop the entire application to allow

for change of granularity.

109

5.7 Summary and Discussion

We described in this chapter the PCM library framework for enabling iterative

MPI applications to be dynamically reconfigurable through migrate, split, and merge

operations. The implementation of malleability operations is described and illustrated

through an example of a communication-intensive iterative application. Different

techniques for split and merge are presented and discussed. We also presented the

PCM API and how it is used to instrument existing MPI programs. We have also

shown how the PCM library has been integrated with the IOS middleware to allow

for automatic reconfiguration capabilities. The integration relies on a simple socket-

based protocol that is not restricted to MPI applications. In fact, any programming

model or language that can speak the same protocol can communicate with the IOS

middleware to send profiled information and get notifications about reconfiguration

requests. The proxy architecture provides a bridging and translation mechanism

between application-specific formats and IOS-specific formats. The actor emulation

mechanism is also powerful in that it provides a virtualization mechanism that hides

many of the IOS details from applications. The integration protocols emphasize a

separation of concerns between high-level application programming models and IOS

middleware.

We have investigated programming methodologies that promote a separation

of the concerns in the implementation of computationally-intensive scientific applica-

tions on a large network of computers. High-level programming abstractions provide

a natural interface to scientists so that they can concentrate on their domain of exper-

tise. Programming tools map these high-level abstractions into executable units that

support efficient communication, dynamic partitioning, and load balancing. Run-time

middleware infrastructure supports adaptability of executing systems to an evolving

underlying network. The presented programming paradigm, languages, and tools are

a first step in the unification of parallel and distributed computing by enabling parallel

systems to adapt to different and evolving distributed execution environments.

It is impractical to expect scientists to rewrite or even make significant modifica-

tions to extensive libraries of Fortran, C, and C++ software that currently use MPI.

The MPI/IOS architecture allows application programs to run using native C/C++

110

code, continuing to use MPI for interprocess communication. Iterative applications

can immediately take advantage of MPI/IOS functionality for dynamic resource al-

location, process migration, and malleability.

CHAPTER 6
Performance Evaluation

This chapter discusses some key experimental results pertaining to the IOS middle-

ware. We show the effect of using knowledge about the application’s topology in the

reconfiguration decisions and the effect of certain virtual topologies on the quality of

reconfiguration. We also evaluate the effect of reconfiguration using both SALSA and

MPI applications.

6.1 Experimental Testbed

For the experimental testbed we used a heterogeneous environments consist-

ing of different clusters with various platforms, processing capabilities, and different

network latencies and bandwidths:

• Cluster A consists of 4 dual-processor SUN Blade 1000 machines with a pro-

cessing speed of 750MHz and 2 GB of memory. The SUN machines are inter-

connected with high-speed Gigabit Ethernet.

• Cluster B consists of 18 single-processor SUN Ultra 10 machines with a pro-

cessing speed of 360MHz and 256 MB of memory. The machines are connected

with 100 MB Ethernet.

• Cluster C consists of four quad-processor AIX single-core Power-PC processors

running at 1.7GHz, with 64KB L1 cache, 6MB L2 cache and 128MB L3 cache.

Each machine has 8GB RAM, for a total of 32GB RAM in the entire clus-

111

112

Figure 6.1: The two-dimensional heat diffusion problem.

ter. Intra-cluster communication is with 1GB/sec bandwidth, 100sec latency

Ethernet.

• Cluster D is single-core Opteron cluster that consists of twelve quad-processor,

single-core Opterons running at 2.2GHz, with 64KB L1 cache and 1MB L2

cache. Each machine has 16GB RAM, for a total of 192GB RAM. The machines

are connected by 10GB/sec bandwidth, 7usec latency Infiniband.

• Cluster E is a dual-core Opteron cluster that consists of four quad-processor,

dual-core Opterons running at 2.2GHz, with 64KB L1 cache and 1MB L2 cache.

Each machine has 32GB RAM, for a total of 128GB RAM. The machines are

connected with 1GB/sec bandwidth, 100sec latency Ethernet.

The AIX cluster (cluster C) is connected to the Opteron clusters (clusters D

and E) over the RPI campus area network.

We also used various machines from the RPI computer science public labs: the

SPARC laborarory which contains 20 Dell Optiplex GX300s running FreeBSD and

the SunRay which contains 33 Sun Microsystems SunRay1 terminals.

6.2 Applications Case Studies

6.2.1 Heat Diffusion Problem

We have used a fluid dynamics application that solves heat diffusion in a solid

for testing and validation purposes (see Figure 6.1). This application is representative

of highly synchronized iterative mesh-based applications. We have implemented this

113

Figure 6.2: Parallel decomposition of the 2D heat diffusion problem.

application using C and MPI. The application’s code has been instrumented with

profiling points and reconfiguration points to allow gathering dynamic information

about its performance progress and performing reconfiguration through migration.

Heat diffusion is a popular application that models the heat transfer in a solid.

We have used a simplified version of this problem to evaluate our reconfiguration

strategies. A two-dimensional mesh of cells is used to represent the problem data

space. The mesh initially contains the initial values of the mesh with the boundary

values. The cells are uniformly distributed among the parallel processors. At the

beginning, a master process takes care of distributing the data among processors.

For each iteration, the value of each cell is calculated with the values of its neighbor

cells. Each cell needs to maintain a current version of the values of its neighboring

cells. To achieve this, processors exchange values of the neighboring cells, also referred

to as ghost cells. To sum up, every iteration consists of doing some computation

and exchange of ghost cells from the neighboring processors. Figure 6.2 shows the

structure of the parallel decomposition of the heat diffusion problem.

114

6.2.2 Search for the Galactic Structure

The search for the galactic structure application is part of the Sloan Digital Sky

Survey (SDSS) project [4]. SDSS is a digital imaging and spectroscopic data bank of

the celestial sphere. It covers most of the sky above galactic latitude of 30 degrees.

All the images are taken from a big telescope located in New Mexico. SDSS data is

being used to map out where the stars are in the Milky Way galaxy and to determine

the structure of the galaxy. This will help in improving our understanding of how the

galaxy formed in the first place. One of the most challenging tasks of mapping the

stars of the galaxy is figuring out their distance from earth. The color of the stars

is used to determine their brightness. The intrinsic brightness of the stars is used to

estimate how far they are and hence to build a 3-dimensional shape of the galaxy.

The search of galactic structure application performs a maximum likelihood fit.

Given some data and a model, it tries to find the probabilities that the model fits the

data. This application is both data and computation intensive. This application can

be categorized as a loosely coupled farmer/worker application. For each iteration,

the farmer generates a model and the workers determine the accuracy of this model,

calculated by using the model on each worker’s individual set of star positions. The

farmer then combines these results to determine the overall accuracy, determines

modifications for the model and the process repeats. Each iteration involves testing

multiple models to determine which model parameters to change, using large data

sets (hundreds of thousands or millions of stars), resulting in a low communication

to computation ratio, allowing for massive distribution.

6.2.3 SALSA Benchmarks

SALSA benchmarks were developed to model various communication topolo-

gies with an emphasis on the communication-to-computation ratio of the applica-

tions. The applications have been designed with one unit of computation per one

unit of communication. Therefore, the more neighbors an actor has the higher the

communication-to-computation ratio. Four different application topologies are rep-

resented, each pertaining to a level of inter-actor communication and representing

different connectivity levels:

115

• The unconnected topology. A representative for massively parallel applica-

tions where actors continuously perform computations without exchanging any

messages.

• The sparse topology. A model of applications that have a moderate level of

communication.

• The tree topology. Actors are inter-connected in a tree structure to model a

much higher degree of inter-actor communication than the sparse topology.

• The hypercube topology. This benchmark provides the highest amount of

inter-actor communication modeling a very high communication to computation

ratio.

6.3 Middleware Evaluation

6.3.1 Application-sensitive Reconfiguration Results

We ran the four SALSA benchmarks each pertaining to level of inter-actor

communication on cluster A. The unconnected actor graph had actors simply process

messages over and over, with no inter-actor communication. The sparse actor graph

linked actors randomly, providing a moderate amount of inter-actor communication.

The tree topology linked actors in a tree structure, for a higher amount of inter-actor

communication. Lastly, the hypercube topology provided a very high amount of inter-

actor communication. (see Figures 6.3, 6.4, 6.5 and 6.6). We compared throughput

of RS and ARS to manual load balancing to measure the overhead that the IOS

middleware incurred on the computation. All actors were placed in a round robin

fashion across the eight theaters, then were allowed to compute until their throughput

leveled off. Throughput is the number of messages processed by all actors in a given

amount of time – the higher the throughput, the faster a computation is running.

Figure 6.3 shows that both ARS and RS imposed a minimal amount of over-

head, as a round robin placement of actors is the optimal load balancing solution

for an unconnected graph of actors in a homogeneous network, and the round robin

placement imposed no middleware overhead. ARS and RS performed comparatively

to RR in this test. On the more communication-bound topologies (see Figures 6.4, 6.5

116

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 20 40 60 80 100 120 140 160

T
hr

ou
gh

pu
t (

M
es

sa
ge

s
pr

oc
es

se
d/

s)

Time (s)

ARS Throughput
RS Throughput

Round Robin

Figure 6.3: Performance of the massively parallel unconnected bench-
mark.

and 6.6), ARS outperformed both the manual load balancing and RS. On a sparsely

connected graph, ARS performed superbly, bringing throughput to nearly the level of

an unconnected graph. In all benchmarks involving inter-actor communication, ARS

highly outperformed RR and RS, showing that the co-location of actors significantly

improves message throughput. RS was shown to be too unstable and performed

poorly compared to the RS and ARS strategies. This was mainly due to the fact

that a random strategy failed to collocate actors correctly and resulted in a lot of

thrashing behavior. Therefore actors spent most of their time migrating instead of

doing useful work, which impacted negatively the overall application’s throughput.

6.3.2 Experiments with Dynamic Networks

To show how IOS can handle a dynamically changing network, the same bench-

marks were run on a dynamic network with joining and leaving nodes. The actors

were placed initially on one node, then every 30 seconds an additional peer node was

added to the computation. After having eight nodes join the computation, the ap-

plications were run for two minutes to balance the load, then one node was removed

gradually every 30 seconds.

117

 0

 10000

 20000

 30000

 40000

 50000

 0 20 40 60 80 100 120 140 160

T
hr

ou
gh

pu
t (

M
es

sa
ge

s
pr

oc
es

se
d/

s)

Time (s)

ARS Throughput
RS Throughput

Round Robin

Figure 6.4: Performance of the massively parallel sparse benchmark.

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100 120 140 160

T
h

ro
u

g
h

p
u

t
(M

es
sa

g
es

 p
ro

ce
ss

ed
/s

)

Time (s)

ARS Throughput
RS Throughput

Round Robin

Figure 6.5: Performance of the highly synchronized tree benchmark.

118

 0

 1000

 2000

 3000

 4000

 5000

 0 20 40 60 80 100 120 140 160

T
hr

ou
gh

pu
t (

M
es

sa
ge

s
pr

oc
es

se
d/

s)

Time (s)

ARS Throughput
RS Throughput

Round Robin

Figure 6.6: Performance of the highly synchronized hypercube bench-
mark.

With the unconnected graph join/leave topology (see Figure 6.8), both RS and

ARS performed well in distributing the load across the peer nodes (see Figure 6.8),

and increased the throughput by a factor of about six when all eight nodes had

joined the computation. The addition and removal of peer theaters shows that IOS

can rebalance load with removal and addition of nodes without much overhead.

In the tree join/leave scenario (see Figure 6.7) ARS performed well, increasing

throughput by a factor of about 3.5 when all eight nodes were joined. RS however

performed worse than simply placing the application entirely onto one node. The

graphs of actor placement (see Figure 6.7) show that while both ARS and RS managed

to distribute the actors evenly across the network of theaters, ARS co-located actors

more appropriately according to their connectivity, significantly improving overall

throughput.

These results show that the IOS system with ARS performs well in most sit-

uations for load balancing of an actor system. While the more traditional strategy

of random stealing does not fare so well in an autonomous system of actors, a more

intelligent strategy can exploit the properties of the actor model to provide autonomic

solutions for load balancing across a dynamic network. The results also show that

119

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 100 200 300 400 500 600

T
hr

ou
gh

pu
t (

M
es

sa
ge

s
pr

oc
es

se
d/

s)

Time (s)

ARS Throughput
RS Throughput

Figure 6.7: The tree topology on a dynamic environment using ARS and
RS.

IOS can handle the addition and removal of nodes from a computation without any

central coordination, a necessity for large dynamic heterogeneous networks.

6.3.3 Experiments with Virtual Topologies

We describe in this section the tests used in the evaluation of the cluster-to-

cluster (NSc2c) and the peer-to-peer (NSp2p) virtual networks for load balancing,

and the results of this evaluation.

Two different physical environments to model Internet-like networks and Grid-

like networks were used to evaluate the effect of the virtual network topology on the

load balancing decisions. The first physical network consists of 20 machines running

Solaris and Windows operating systems with different processing power and different

latencies to model the heterogeneity of Internet computing environments. The second

physical network consists of 5 clusters with different inter-cluster network latencies.

Each cluster consists of 5 homogeneous SUN Solaris machines. Machines in different

clusters have different processing power.

For most application topologies, NSc2c performed better than NSp2p on grid-

like environments (see Figures 6.10, 6.12, and 6.14). The results show the central

coordination and knowledge of NSc2c allows more accurate reconfiguration with less

120

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 100 200 300 400 500 600

T
hr

ou
gh

pu
t (

M
es

sa
ge

s
pr

oc
es

se
d/

s)

Time (s)

ARS Throughput
RS Throughput

Figure 6.8: The unconnected topology on a dynamic environment using
ARS and RS.

overhead due to the homogeneous nature of the clusters in the physical layer. NSp2p

lacks this central coordination which explains the decreased performance.

In Internet-like environments, NSp2p outperformed NSc2c (see Figures 6.9, 6.11,

and 6.15). Due to the lack of homogeneous resources which could be centrally coor-

dinated, NSc2c required additional overhead and performed less accurate reconfigu-

ration. NSp2p did not require the extra overhead of central management and thus

proved to be a better strategy on this type of physical network.

However, in both cases NSp2p outperformed NSc2c in the unconnected appli-

cation topology, as NSc2c outperformed NSp2p in the sparse application topology.

This is due to the way the strategies interact with the application topologies. For the

unconnected application topology, simply dispersing the actors as much as possible

across the network achieves the best load balancing; however with the sparse appli-

cation topology, more tightly coupled actors should be kept closer together. NSp2p

more quickly disperses actors across the physical network, while NSc2c tries to keep

actors within the same cluster only migrating actors out when necessary.

These experiments show that decentralized middleware management can accom-

plish intelligent application reconfiguration, but also that the virtual network used

plays a role in the effectiveness of the reconfiguration. The p2p topology performs

121

Figure 6.9: The hypercube application topology on Internet-like environ-
ments.

Figure 6.10: The hypercube application topology on Grid-like environ-
ments.

122

Figure 6.11: The tree application topology on Internet-like environments.

Figure 6.12: The tree application topology on Grid-like environments.

123

Figure 6.13: The sparse application topology on Internet-like environ-
ments.

Figure 6.14: The sparse application topology on Grid-like environments.

124

Figure 6.15: The unconnected application topology on Internet-like envi-
ronments.

Figure 6.16: The unconnected application topology on Grid-like environ-
ments.

125

Figure 6.17: Single vs. group migration for the unconnected application
topology.

better in Internet-like environments that lack structure for highly synchronized par-

allel and distributed applications, while the c2c topology is more suitable for grid-like

environments that have a rather hierarchical structure.

6.3.4 Single vs. Group Migration

In the NSc2c strategy, intra-cluster load balancing can possibly migrate multiple

actors at the same time given the centralized knowledge at the cluster manager. We

have evaluated these two strategies over a testbed with two clusters. Each cluster

consists of 4 machines. Results show that for the 4 application topologies, group

migration performs better than individual migration (see Figures 6.17, 6.18, 6.19

and 6.20). While individual migration is more conservative and results in a more

stable behavior of the application throughput as the experiments show, migrating

multiple actors simultaneously can balance the load much more quickly.

6.3.5 Overhead Evaluation

The overhead of using IOS with SALSA in a static environment was evalu-

ated using two applications, a massively parallel astronomic application and a tightly

126

Figure 6.18: Single vs. group migration for the sparse application topol-
ogy.

Figure 6.19: Single vs. group migration for the tree application topology.

127

Figure 6.20: Single vs. group migration for the hypercube application
topology.

Astronomic application�
�
�
�

�
�
�
�

Astronomic application with IOS

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

 10

 15

 20

 25

 30

 35

 40

 45

161284

E
xe

cu
tio

n
T

im
e(

s)

Number of Processors

 5

 0

Figure 6.21: Overhead of using SALSA/IOS on a massively parallel as-
tronomic data-modeling application with various degrees of
parallelism on a static environment.

128

Heat application�
�
�
�

�
�
�
�

Heat application with IOS

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

 10

 15

 20

 25

 30

 35

161284

E
xe

cu
tio

n
T

im
e(

s)

Number of Processors

 5

 0

Figure 6.22: Overhead of using SALSA/IOS on a tightly synchronized two-
dimensional heat diffusion application with various degrees of
parallelism on a static environment.

coupled two-dimensional heat diffusion application. Both applications are iterative.

Therefore the average time spent of executing every iteration is a good measure of how

well the application is performing. Figures 6.21 and 6.22 show the the time spent

by each iteration using SALSA and SALSA/IOS. In both cases the overhead was

minimal, around 0.5% for the astronomic application and 2% for the two-dimensional

heat diffusion application.

6.4 Adaptation Experiments with Iterative MPI Applica-

tions

For the experiments described in this section, we used cluster A and cluster B,

which provide a heterogeneous environment of SUN machines with various processing

powers and various network capabilities. We also used MPICH2 [1] for comparative

purposes, a freely available implementation of the MPI-2 standard.

129

Figure 6.23: Overhead of the PCM library.

6.4.1 Profiling Overhead

To evaluate the overhead of the PCM profiling and status probing, we have

run the heat diffusion application with the base MPICH2 implementation and with

the PCM instrumentation. We run the simulation with 40 processes on a different

numbers of processors. Figure 6.23 shows that the overhead of the PCM library does

not exceed 11% of the application’s running time. The measured overhead includes

profiling, status probing, and synchronization. The library supports tunable profiling,

whereby the degree of profiling can be decreased by the user to reduce its intrusiveness.

6.4.2 Reconfiguration Overhead

To evaluate the cost of reconfiguration of the PCM library, we varied the prob-

lem data size of the heat diffusion application and measured the overhead of reconfig-

uration in each case. In the conducted experiments, we started the application on a

130

Non−reconfigurable Execution Time�
�
�
�

�
�
�
�

Reconfigurable Execution Time

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

 400

 600

 800

 1,000

 1,200

 1,400

3.812.441.370.95

T
im

e(
s)

Data Size (Megabytes)

 200

 0

Figure 6.24: Total running time of reconfigurable and non-reconfigurable
execution scenarios for different problem data sizes for the
heat diffusion application.

Synchronization�
�
�
�

�
�
�
�

��Checkpointing
Loading Checkpoints

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

����
����
����
���� ���

���
���

���
���
���

���
���
���
���

���
���
���
���

 0.6

 0.8

 1

 1.2

 1.4

 1.6

3.812.441.370.95

O
ve

rh
ea

d
(s

)

Data Size (Megabytes)

 0.4

 0.2

 0

Figure 6.25: Breakdown of the reconfiguration overhead for the experi-
ment of Figure 6.24.

131

local cluster. We then introduced artificial load in one of the participating machines.

One execution was allowed to reconfigure by migrating the suffering process to an

available node that belongs to a different cluster, while the second execution was not

allowed to reconfigure itself. The experiments in Figures 6.24 and 6.25 show that in

the studied cases, reconfiguration overhead was negligible. In all cases, it accounted

for less than 1% of the total execution time. The application studied is not data-

intensive. We also used an experimental testbed that consisted of 2 clusters that

belong to the same institution. So the network latencies were not significant. The

reconfiguration overhead is expected to increase with larger latencies and larger data

sizes. However, reconfiguration will still be beneficial in the case of large-scale long-

running applications. Figure 6.25 shows the breakdown of the reconfiguration cost.

The overhead measured consisted mainly of the costs of checkpointing, migration,

and the synchronizations involved in re-arranging the MPI communicators. Due to

the highly synchronous nature of this application, communication profiling was not

used because a simple decision function that takes into account the profiling of the

CPU usage was enough to yield good reconfiguration decisions.

6.4.3 Performance Evaluation of MPI/IOS Reconfiguration

6.4.3.1 Migration Experiments

We conducted two experiments using the heat application using the MPI/IOS

framework and MPICH2 under similar load conditions. For both experiments, we

started running the application, then we emulated a shared and dynamic environment

with varying load conditions by introducing artificial load in some of the cluster nodes

and varying it periodically.

The first experiment was conducted with MPI/IOS. Figure 6.26 shows the per-

formance of the application. We started running the application with 8 processes on

4 processors. The remaining 4 processors joined the virtual IOS network gradually.

We started increasing gradually the load on one of the cluster nodes (two processors)

participating in the computation. One node joined the virtual IOS network around

iteration 1000 and started sending work-stealing requests. This caused one process

to migrate to the new machine and to reduce the load on its original hosting node.

132

We notice an increase in the application throughput. The load in the slow machine

increased even further around iteration 2500. Around iteration 3000, a fourth node

joined the virtual network and started sending work-stealing request messages. At

this point, two processes migrated to this machine. This caused the slow processors

to be eliminated from the computation. The application ended up using a total of the

6 best available processors, which caused a substantial increase in its performance.

The total execution time of the application was 645.67s.

Figure 6.26 also shows the performance of the application using MPICH2. We

emulated the same load conditions as in the first experiment. With no ability to

adapt, the application run over the same hardware configuration and experienced

a constant slowdown in its performance. The highly synchronized nature of this

application causes it to run as fast as the slowest processor. The application took

1173.79s to finish, about an 81.8% decrease in performance compared to the adaptive

execution.

IOS allows the evaluated test application to adapt by trying to migrate all

work from slow processors anytime an expected increase in performance is predicted

through migration. This evaluation occurs when the work-stealing mechanism gets

triggered by a processor becoming lightly-loaded or a new processor becoming avail-

able.

6.4.3.2 Split and Merge Experiments

Split/Merge Features. An experiment was setup to evaluate the split and merge

capabilities of the PCM malleability library. The heat diffusion application was

started initially on 8 processors with a configuration of one process per processor.

Then, 8 additional processors at iteration 860 were made available. 8 additional pro-

cesses were split and migrated to harness the newly available processors. Figure 6.27

shows the immediate performance improvement that the application experienced af-

ter this expansion. The sudden drop in the application’s throughput at iteration 860

is due to the overhead incurred by the split operation. The collective split opera-

tion was used in this experiment because of the large number of resources that have

become available. The small fluctuations in the throughput are due to the shared

133

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 500 1000 1500 2000 2500 3000 3500 4000

It
er

at
io

n
s/

s

Iteration Number

MPICH2
MPICH2/IOS

Figure 6.26: Performance of the heat diffusion application using MPICH2
and MPICH2 with IOS.

nature of the cluster used for experiments.

Gradual Adaptation with Malleability and Migration. The following exper-

iment shown in Figure 6.28 illustrates the usefulness of having the 1 to N split and

merge operations. When the execution environment experiences small load fluctua-

tions, a gradual adaptation strategy is needed. The heat application was launched on

a dual-processor machine with 2 processes. Two binary split operations occurred at

events 1 and 2. The throughput of the application decreased a bit because of the de-

crease of the granularity of the processes on the hosting machine. At event 3, another

dual-processor node was made available to the application. Two processes migrated

to the new node. The application experienced an increase in throughput as a result

of this reconfiguration. A similar situation happened at events 5 and 6, which trig-

gered two split operations, and then two migrations to another dual-processor node at

event 7. An increase in throughput was noticed after the migration at event 7 due to

a better distribution of work. A node left at event 8 which caused two processes to be

migrated to one of the participating machines. A merge operation happened at event

134

Figure 6.27: The expansion and shrinkage capability of the PCM library.

9 in the node with excess processes, which improved the application’s throughput.

Malleability versus Migration The advantage of using both malleability and mi-

gration is illustrated through a reconfigurable execution of the astronomy application

on a dynamic environment. In one experiment, only migration is used as a reconfig-

uration strategy, while in another experiment, both malleability and migration are

used to adapt the application. The experiments were both run under controlled en-

vironments that provide the same runtime behavior for comparative purposes. The

time spent per iteration gives a good measure about the relative performance of the

application in both scenarios. Figure 6.29 shows the iteration times for the applica-

tion as the environment changes dynamically. Every 5 iterations, the environment

changed by having some processors join or leave the virtual network of IOS agents.

Typically, the application is allowed to adapt in one or two iterations, and then the

environment remains stable for another 5 iterations. For both tests, the dynamic

environment changed from 8 to 12 to 16 to 15 to 10 and then back to 8 processors.

135

Figure 6.28: Adaptation using malleability and migration as resources
leave and join

Malleability allowed a more flexible granularity and hence data distribution, resulting

in improved performance when the application was running on 12, 15 and 10 proces-

sors. Performance was the same for 8 and 16 processors as migration was able to

evenly distribute the entities in both environments. However, for the 12 processor

configuration the malleable entities were 6% faster, and for the 15 and 10 processor

configurations, malleable entities were 15% and 13% faster respectively. Overall, the

astronomy application using both malleability and migration was 5% faster than only

using migration.

6.5 Summary and Discussion

The experimental evaluation of IOS has shown that progressively more informed

load balancing schemes improve the performance of distributed applications on dy-

136

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 5 10 15 20 25 30 35 40

It
er

at
io

n
 T

im
e

(m
s)

Iteration

Split, Merge and Migration
Migration

Figure 6.29: Dynamic reconfiguration using malleability and migration
compared to dynamic reconfiguration using migration alone
in a dynamic virtual network of IOS agents. The virtual net-
work was varied from 8 to 12 to 16 to 15 to 10 to 8 processors.
Malleable entities outperformed solely migratable entities on
average by 5%.

namic networks. It has also empirically enabled us to evaluate different decentralized

coordination strategies on diverse application and physical network topologies. The

implemented strategies have focused mainly on (1) profiling CPU processing power

in distributed physical machines, (2) being sensitive to application’s topologies to

attempt co-location of its entities with high frequencies of communication, and (3)

being sensitive to the physical network topologies to attempt minimization of com-

munications over links with high latency and low bandwidth. Since applications have

different resource requirements, the ideal level of profiling is highly dependent on

the nature of computation that is being performed. For this reason, a modular ar-

chitecture that enables plugging-in components for different decision, profiling, and

coordination strategies has been developed.

Applications with diverse communication patterns were evaluated on two rep-

137

resentative physical networks: first, an Internet/Web computing environment with

highly diverse computation and communication capabilities across its nodes; and sec-

ond, a Grid computing environment with more structured topology: a set of tightly-

coupled and homogeneous clusters. Our results show that with applications exhibit-

ing high communication to computation ratios (e.g., hypercube and tree application

topologies), the p2p agent topology performs better on Internet-like environments

while the c2c agent topology performs better on Grid-like environments. On sparse

application communication topologies, c2c outperforms p2p on both Internet- and

Grid-like environments, while on unconnected application topologies (representing

massively parallel applications), p2p outperforms c2c in both Internet- and Grid-

like environments. Using group migration to balance the distribution of load across

several nodes performed empirically better than using single migration of actors.

The experimental evaluation of the MPI implementation of the iterative heat

diffusion problem has demonstrated the importance of augmenting long-running MPI

application with reconfiguration capabilities to achieve high performance. We have

measured the middleware overhead in static environments demonstrating that it is

less that 7% on average, yet reconfiguration on dynamic environments can lead to

significant improvement in application execution time. Our performance evaluation

has also demonstrated the usefulness of malleable operations in improving the per-

formance of iterative applications in dynamic environments where resources join and

leave. Collective malleable operations are more appropriate in dynamic environments

with large load fluctuations, while individual split and merge operations are more

appropriate in environments with small load fluctuations.

CHAPTER 7
Conclusions and Future Work

We have proposed, designed, and implemented a framework for dynamic middleware-

triggered application reconfiguration. The Internet Operating System middleware

provides a virtual execution environment that hides complex resource management

and reconfiguration issues from high-level applications. IOS has been designed with

the following key characteristics: 1) Architecture Modularity to allow for exten-

sible and pluggable reconfiguration mechanisms to accommodate various execution

environments and different applications, 2) Generic Interfaces to allow various pro-

gramming models and technologies to leverage IOS dynamic reconfiguration mecha-

nisms, 3) Decentralized Strategies to achieve scalable decisions, and 4) Adapt-

ability to Dynamic Environments to allow applications to adjust their resource

allocations following the availability of resources. IOS allows fine-grained reconfigura-

tion, whereby processes migrate to harness better resources or adjust their granularity

to scale up or shrink down the applications as necessary.

This dissertation also explored several mechanisms for addressing some of the

functional issues at the application-level to transform applications into reconfigurable

ones. Such issues include migration and malleability. We have focused mainly on

message passing applications, following the Message Passing Interface (MPI) stan-

dard, due to its importance and wide adoption by the scientific and engineering

communities. We presented several extensions to MPI to allow applications to be-

come reconfigurable. The Process Checkpointing, Migration, and Malleability (PCM)

library is a user-level library that provides checkpointing, profiling, migration, and

138

139

malleability capabilities for a large class of iterative applications. PCM implements

IOS generic profiling and reconfiguration interfaces, and therefore enables MPI appli-

cations to benefit from IOS reconfiguration policies. With minimal code modification,

a PCM-instrumented MPI application becomes malleable and ready to be reconfig-

ured transparently by the IOS middleware. In addition, legacy MPI applications can

benefit tremendously from the reconfiguration features of IOS by simply inserting a

few calls to the PCM API. The practical implementation of the PCM library has

been validated using a realistic fluid dynamics application that models heat diffusion

over a solid and other representative iterative MPI applications.

IOS is currently being used as an experimental testbed for two multi-disciplinary

scientific applications. The first application is in the area of astrophysics with the

goal of analyzing data from the Sloan Digital Sky Survey to find structure in the

outer layers of the Milky Way. The second one is an application in nuclear physics

that performs partial wave analysis to discover missing baryons, sub-atomic particles

predicted by theory that have not been experimentally observed.

This dissertation represents a step in ongoing research efforts to realize the

vision of efficient, seamless, and easy deployment of applications in dynamic grid

environments. There are still several issues worthy of future investigations. The

remaining sections discuss possible future directions.

7.1 Other Application Models

The PCM library has been designed to work with iterative applications. In

addition, the split and merge library components have been designed to work with

applications that have regular distribution of data. This work can be extended to

handle other application and data distribution models. For the case of non-iterative

applications, notifying applications about a specific reconfiguration request and get-

ting all the processes to synchronize is a challenging task. Another challenge is be-

ing able to notify MPI processes asynchronously. The current architecture relies on

polling the underlying middleware. Callback mechanisms provide an alternative to

allow for asynchronous notifications.

The current PCM extensions do not consider multi-threaded MPI environments.

140

Multi-threading has several advantages even on a single machine, namely greater

concurrency and the ability to mask memory latencies and achieve greater CPU uti-

lization. Multi-threading has become even more important with the emergence of

multi-core architecture and the need for fine-grained concurrency control. Future

work includes exploring the challenges involved in reconfiguring multi-threaded and

non-regular applications and integrating them with our reconfiguration framework.

There is currently a great interest within the grid community toward service-

oriented computing (SOC). A service defines a behavior that is provided by a particu-

lar software component and that adheres to a set of standards to allow for its discovery,

query and use by other components. A service-oriented architecture emphasizes inter-

operability and dynamic discovery. The SOC model is attractive to grid users because

it provides high-level abstractions that facilitate access to computational resources,

storage resources, and network resources in a unified way. Applications can be de-

veloped by selecting and composing different services. Adopting the SOC model in

grid environments requires adaptation because of the dynamic behavior of grids and

the rapidly evolving nature of services. In addition to monitoring resource usage and

service performance, metadata of services should be monitored to be able to reason

about when it is appropriate to collocate certain services, compose them, or decom-

pose them. Business applications have also different characteristics from scientific

and engineering applications. They have a highly transactional nature and are not

usually computationally intensive. The key optimization goal of such applications is

response time. IOS policies do not address the features of business applications. Fu-

ture work includes investigating new reconfiguration policies that target specifically

the needs and nature of SOC.

7.2 Large-scale Deployment and Security

The performance experiments that were conducted to evaluate the reconfigura-

tion protocols of IOS have been done using clusters at RPI within the same adminis-

trative domain. The scale of these clusters ranges from small to medium. Future work

should focus on stress-testing IOS capabilities on much larger and more dynamic en-

vironments such as PlanetLab [31] and TeraGrid [86]. PlanetLab provides a testbed

141

for Internet-scale applications. It consists of inter-networked machines located at sites

around the world.

Security becomes a major challenge in open distributed systems. Security issues

have not been addressed in the current implementation of IOS. One possible solution

is to leverage existing research in grid security, such as Globus security infrastruc-

ture [47]. Future work may extend IOS to IOS-G which combines IOS dynamic recon-

figuration mechanisms with Globus protocols for security, and inter-domain resource

discovery, access, and management.

7.3 Replication as Another Reconfiguration Strategy

Computational grids are mainly characterized by having computationally inten-

sive applications that usually operate on small data sets. However, in data grids [84],

data is considered a first class citizen and applications are both highly computational

and data intensive. In such cases, optimizing data access is key to ensure efficient

deployment in large grid environments. Replication is considered one of the major

optimization techniques for providing fast data access [15, 68].

We investigated process migration, split and merge as possible ways of reconfig-

uring applications in dynamic grid environments. Another natural direction is to use

process or data replication as another reconfiguration strategy. Replication strategies

can improve the performance, availability, and fault-tolerance of applications. New

replication reconfiguration strategies need to be designed, developed and integrated

with the IOS middleware. Middleware can dynamically profile data access patterns

and decide when and where to replicate data.

7.4 Scalable Profiling and Measurements

Application-level and resource-level profiling are key to determining how to

adapt applications dynamically to the constantly changing resources of dynamic grids.

However, profiling imposes a performance penalty on applications. Also communi-

cating large amounts of profiled data to the middleware can consume a large amount

of computational and communication resources. Statistical and data mining methods

142

can be used to extract useful patterns from the gathered profiled information and ap-

proximate global knowledge for less intrusive and more scalable profiling techniques.

7.5 Clustering Techniques for Resource Optimization

When new resources join or existing resources leave, middleware services need

to collaborate with the application to reconfigure it appropriately to utilize the new

available resources or migrate away from the slow or leaving resources. In many

instances, it makes more sense to perform collective reconfiguration of a group of

application’s entities. Clustering the application communication graph can help de-

termine potential groups for reconfiguration. One direction is to explore applying

graph clustering techniques to the application graph. In a largely distributed envi-

ronment that relies on decentralized coordination techniques, having access to the

full graph of the application is not feasible. Clustering techniques have mainly been

studied on full graphs. Future work includes developing new algorithms for partial

graph clustering and studying their composability.

7.6 Automatic Programming

Automatic programming is a future direction for developing grid applications.

Existing or new code analysis techniques and automatic code generation techniques

can be used to transparently modify existing applications into reconfigurable ones.

Another interesting research direction is to come up with high-level specifications or

scripting languages that allow developers to outline the functionality needed in high-

level terms. Then, automatic programming tools can translate such descriptions into

specialized grid-aware and reconfigurable code. This will ease the development and

deployment of applications in grid environments.

7.7 Self-reconfigurable Middleware

Empirical results have shown that different middleware profiling, decision and

communication strategies perform better for different applications and physical net-

work types. In addition to reconfiguring applications due to changes in application re-

source consumption and communication patterns and the dynamic physical network,

143

the IOS middleware should reconfigure itself—autonomously selecting different pro-

filing and decision strategies depending on its environment. Likewise, the middleware

agent topology should adapt to minimize the overhead of inter agent communication

and improve the application reconfiguration decision process.

References

[1] Argone National Laboratory, MPICH2,
http://www-unix.mcs.anl.gov/mpi/mpich2.

[2] The KaZaA home page, http://www.kazaa.com/us/index.htm.
[3] The Napster home page, http://www.napster.com/.
[4] Sloan Digital Sky Survey, http://www.sdss.org/.
[5] D. Abramson, R. Sosic, J. Giddy, and B. Hall. Nimrod: a tool for performing

parametrised simulations using distributed workstations. In HPDC ’95: Proceedings
of the Fourth IEEE International Symposium on High Performance Distributed
Computing - HPDC ’95, pages 520–528, Washington, DC, USA, 1995. IEEE
Computer Society.

[6] A. Agbaria and R. Friedman. Starfish: Fault-tolerant dynamic MPI programs on
clusters of workstations. Cluster Computing, 6(3):227–236, 2003.

[7] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, 1986.

[8] G. Agha, S. Frølund, R. Panwar, and D. Sturman. A linguistic framework for
dynamic composition of dependability protocols. In Dependable Computing for
Critical Applications III, pages 345–363. International Federation of Information
Processing Societies (IFIP), Elsevier Science Publisher, 1993.

[9] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor
computation. Journal of Functional Programming, 7(1):1–72, 1997.

[10] G. Agha and C. Varela. Worldwide computing middleware. In M. Singh, editor,
Practical Handbook on Internet Computing, pages 38.1–21. CRC Press, 2004.

[11] G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu, T. Radke, E. Seidel, and
J. Shalf. The Cactus Worm: Experiments with dynamic resource selection and
allocation in a grid environment. International Journal of High-Performance
Computing Applications, 15(4):345–358, 2001.

[12] G. Allen, T. Dramlitsch, I. Foster, N. T. Karonis, M. Ripeanu, E. Seidel, and
B. Toonen. Supporting efficient execution in heterogeneous distributed computing
environments with Cactus and Globus. In Supercomputing ’01: Proceedings of the
2001 ACM/IEEE conference on Supercomputing (CDROM), page 25pp., New York,
NY, USA, 2001. ACM Press.

144

http://www-unix.mcs.anl.gov/mpi/mpich2
http://www.kazaa.com/us/index.htm
http://www.napster.com/
http://www.sdss.org/

145

[13] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. SETI@home:
an experiment in public-resource computing. Commun. ACM, 45(11):56–61, 2002.

[14] P. Asadzadeh, R. Buyya, C. L. Kei, D. Nayar, and S. Venugopal. High Performance
Computing: Paradigm and Infrastructure, chapter Global Grids and Software
Toolkits: A Study of Four Grid Middleware Technologies, pages 431–455. Wiley
Press, New Jersey, USA, June 2005.

[15] W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar, K. Stockinger, and F. Zini.
Simulation of dynamic grid replication strategies in OptorSim. In GRID ’02:
Proceedings of the Third International Workshop on Grid Computing, pages 46–57,
London, UK, 2002. Springer-Verlag.

[16] F. Berman and R. Wolski. The AppLeS Project: A Status Report. In Proceedings of
the 8th NEC Research Symposium, page 19pp., Berlin, Germany, 1997.

[17] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira,
J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su, and
D. Zagorodnov. Adaptive Computing on the Grid Using AppLeS. IEEE Trans.
Parallel Distrib. Syst., 14(4):369–382, 2003.

[18] F. D. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application-level
scheduling on distributed heterogeneous networks. In Proceedings of
Supercomputing 1996, page 28pp., 1996.

[19] M. A. Bhandarkar, L. V. Kalé, E. de Sturler, and J. Hoeflinger. Adaptive load
balancing for MPI programs. In Proceedings of the International Conference on
Computational Science-Part II, pages 108–117. Springer-Verlag, 2001.

[20] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. volume 2,
pages 39–59, New York, NY, USA, 1984. ACM Press.

[21] R. D. Blumofe and C. E. Leiserson. Scheduling Multithreaded Computations by
Work Stealing. In Proceedings of the 35th Annual Symposium on Foundations of
Computer Science (FOCS ’94), pages 356–368, Santa Fe, New Mexico, November
1994.

[22] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain, T. Herault,
P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri, and A. Selikhov. MPICH-V:
toward a scalable fault tolerant mpi for volatile nodes. In Proceedings of the 2002
ACM/IEEE Conference on Supercomputing, pages 1–18. IEEE Computer Society
Press, 2002.

[23] J.-P. Briot. Actalk: a testbed for classifying and designing actor languages in the
Smalltalk-80 environment. In Proceedings of the European Conference on Object
Oriented Programming (ECOOP’89), pages 109–129. Cambridge University Press,
1989.

[24] F. W. Burton and M. R. Sleep. Executing functional programs on a virtual tree of
processors. In FPCA ’81: Proceedings of the 1981 Conference on Functional
Programming Languages and Computer Architecture, pages 187–194, New York,
NY, USA, 1981. ACM Press.

[25] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An architecture of a resource
management and scheduling system in a global computational grid. High
Performance Computing in the Asia-Pacific Region, 1:283–289, 2000.

[26] M. Cai, M. R. Frank, J. Chen, and P. A. Szekely. Maan: A multi-attribute
addressable network for grid information services. In H. Stockinger, editor, GRID,
pages 184–191. IEEE Computer Society, 2003.

146

[27] H. Casanova and J. Dongarra. NetSolve: A network-enabled server for solving
computational science problems. The International Journal of Supercomputer
Applications and High Performance Computing, 11(3):212–223, Fall 1997.

[28] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The AppLeS parameter
sweep template: User-level middleware for the grid. In Supercomputing ’00:
Proceedings of the 2000 ACM/IEEE Conference on Supercomputing (CDROM),
pages 75–76, Washington, DC, USA, 2000. IEEE Computer Society.

[29] S. J. Chapin, D. Katramatos, J. Karpovich, and A. S. Grimshaw. The Legion
resource management system. In D. G. Feitelson and L. Rudolph, editors, Job
Scheduling Strategies for Parallel Processing, pages 162–178. Springer Verlag, 1999.

[30] A. A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropia: architecture and
performance of an enterprise desktop grid system. J. Parallel Distrib. Comput.,
63(5):597–610, 2003.

[31] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and
M. Bowman. Planetlab: an overlay testbed for broad-coverage services. SIGCOMM
Comput. Commun. Rev., 33(3):3–12, 2003.

[32] K. Clark, J. E. Flaherty, and M. S. Shephard. Applied Numerical Mathematics,
special ed. on Adaptive Methods for Partial Differential Equations, 14, April 1994.

[33] Clip2.com. The gnutella protocol specification v0.4,
http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf, 2000.

[34] S. Cluet, O. Kapitskaia, and D. Srivastava. Using LDAP directory caches. In PODS
’99: Proceedings of the Eighteenth ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, pages 273–284, New York, NY, USA, 1999.
ACM Press.

[35] N. Coleman, R. Raman, M. Livny, and M. Solomon. Distributed policy
management and comprehension with classified advertisements. Technical Report
UW-CS-TR-1481, University of Wisconsin - Madison Computer Sciences
Department, April 2003.

[36] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information
services for distributed resource sharing. In Proceedings of the 10th IEEE
Symposium On High Performance Distributed Computing, pages 181–194, 2001.

[37] T. Desell, K. E. Maghraoui, and C. Varela. Malleable components for scalable high
performance computing. In Proceedings of HPDC’15 Workshop on HPC Grid
programming Environments and Components (HPC-GECO/CompFrame), pages
37–44, Paris, France, June 2006. IEEE Computer Society.

[38] R. Elsasser, B. Monien, and R. Preis. Diffusive load balancing schemes on
heterogeneous networks. In Proceedings of the Twelfth Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 30–38. ACM Press, 2000.

[39] D. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne. A worldwide flock of
Condors: Load sharing among workstation clusters. Future Generation Computer
Systems, 12:53–65, 1996.

[40] A. C. F. Berman, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johnson,
K. Kennedy, C. Kesselman, J. Mellor-Crummey, D. Reed, L. Torczon, and
R. Wolski. The GrADS project: Software support for high-level grid application
development. International Journal of High-Performance Computing Applications,
15(4):327–344, 2001.

http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf

147

[41] M. Feeley and J. S. Miller. A parallel virtual machine for efficient scheme
compilation. In LFP ’90: Proceedings of the 1990 ACM Conference on LISP and
Functional Programming, pages 119–130, New York, NY, USA, 1990. ACM Press.

[42] D. G. Feitelson and L. Rudolph. Towards convergence in job schedulers for parallel
supercomputers. In D. G. Feitelson and L. Rudolph, editors, JSSPP, volume 1162 of
Lecture Notes in Computer Science, pages 1–26. Springer, 1996.

[43] J. Ferber and J. Briot. Design of a concurrent language for distributed artificial
intelligence. In Proceedings of the International Conference on Fifth Generation
Computer Systems, volume 2, pages 755–762. Institute for New Generation
Computer Technology, 1988.

[44] J. E. Flaherty, R. M. Loy, C. Özturan, M. S. Shephard, B. K. Szymanski, J. D.
Teresco, and L. H. Ziantz. Parallel structures and dynamic load balancing for
adaptive finite element computation. Applied Numerical Mathematics, 26:241–263,
1998.

[45] I. Foster and C. Kesselman. The Globus project: a status report. Future Generation
Computer Systems, 15(5–6):607–621, 1999.

[46] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 1999.

[47] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture for
computational grids. In Proceedings 5th ACM Conference on Computer and
Communications Security Conference, pages 83–92, 1998.

[48] I. T. Foster and A. Iamnitchi. On death, taxes, and the convergence of peer-to-peer
and grid computing. In IPTPS, pages 118–128, 2003.

[49] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke. Condor-G: A
computation management agent for multi-institutional grids. Cluster Computing,
5:237–246, 2002.

[50] W. Gropp and E. Lusk. Dynamic process management in an MPI setting. In
Proceedings of the 7th IEEE Symposium on Parallel and Distributeed Processing,
pages 530–533. IEEE Computer Society, 1995.

[51] A. Gupta, A. Tucker, and L. Stevens. Making effective use of shared-memory
multiprocessors: the process control approach. Technical Report CSL-TR-91-475,
Stanford, CA, USA, 1991.

[52] R. H. Halstead-Jr. Implementation of Multilisp: Lisp on a multiprocessor. In LFP
’84: Proceedings of the 1984 ACM Symposium on LISP and Functional
Programming, pages 9–17, New York, NY, USA, 1984. ACM Press.

[53] M. Harchol-Balter and A. B. Downey. Exploiting process lifetime distributions for
dynamic load balancing. ACM Transactions on Computer Systems, 15(3):253–285,
1997.

[54] C. Hewitt. Viewing control structures as patterns of passing messages. Artif. Intell.,
8(3):323–364, 1977.

[55] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Distributed object location
in a dynamic network. In Proceedings of the Fourteenth ACM Symposium on
Parallel Algorithms and Architectures, pages 41–52, Aug. 2002.

[56] W. Hoschek, F. J. Jaén-Mart́ınez, A. Samar, H. Stockinger, and K. Stockinger.
Data management in an international data grid project. In R. Buyya and M. Baker,
editors, GRID, volume 1971 of Lecture Notes in Computer Science, pages 77–90.
Springer, 2000.

148

[57] C. Huang, O. Lawlor, and L. V. Kalé. Adaptive MPI. In Proceedings of the 16th
International Workshop on Languages and Compilers for Parallel Computing
(LCPC 03), pages 306–322, College Station, Texas, October 2003.

[58] C. Huang, G. Zheng, L. Kalé, and S. Kumar. Performance evaluation of adaptive
MPI. In PPoPP ’06: Proceedings of Eleventh ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 12–21, New York, NY,
USA, 2006. ACM Press.

[59] E. Huedo, R. S. Montero, and I. M. Llorente. A framework for adaptive execution
in grids. Softw. Pract. Exper., 34(7):631–651, 2004.

[60] K. Jun, L. Bni, K. Palacz, and D. C. Marinescu. Agent-based resource discovery. In
HCW ’00: Proceedings of the 9th Heterogeneous Computing Workshop, pages 43–52,
Washington, DC, USA, 2000. IEEE Computer Society.

[61] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A grid-enabled implementation of
the Message Passing Interface. J. Parallel Distrib. Comput., 63(5):551 – 563, 2003.

[62] A. R. Karthik. Load balancing in structured p2p systems. In 2nd International
Workshop on Peer-to-Peer Systems (IPTPS ’03), page 6pp., Berkeley, CA, 2003.

[63] W. Kim and G. Agha. Efficient Support of Location Transparency in Concurrent
Object-Oriented Programming Languages. In Proceedings of Supercomputing’95,
page 39pp., 1995.

[64] F. Kon, R. H. Campbell, M. D. Mickunas, K. Nahrstedt, and F. J. Ballesteros. 2K:
A Distributed Operating System for Dynamic Heterogeneous Environments. In
Proceedings of the 9th IEEE International Symposium on High Performance
Distributed Computing (HPDC’9), pages 201–208, Pittsburgh, August 2000.

[65] F. Kon, J. R. Marques, T. Yamane, R. H. Campbell, and M. D. Mickunas. Design,
implementation, and performance of an automatic configuration service for
distributed component systems. Softw., Pract. Exper., 35(7):667–703, 2005.

[66] K. Krauter, R. Buyya, and M. Maheswaran. A taxonomy and survey of grid
resource management systems for distributed computing. Softw. Pract. Exper.,
32(2):135–164, 2002.

[67] T. T. Kwan and D. A. Reed. Performance evaluation of an infrastructure for
worldwide parallel computing. In IPPS ’99/SPDP ’99: Proceedings of the 13th
International Symposium on Parallel Processing and the 10th Symposium on
Parallel and Distributed Processing, pages 379–386, Washington, DC, USA, 1999.
IEEE Computer Society.

[68] H. Lamehamedi, Z. Shentu, B. Szymanski, and E. Deelman. Simulation of dynamic
data replication strategies in data grids. In Proceedings of the 12th Heterogeneous
Computing Workshop, page 8pp., 2003.

[69] G. Lanfermann, G. Allen, T. Radke, and E. Seidel. Nomadic migration: A new tool
for dynamic grid computing. In 10th IEEE International Symposium on High
Performance Distributed Computing (HPDC-10’01), pages 429–430. IEEE
Computer Society, 2001.

[70] G. Laszewski, I. Foster, J. Gawor, and P. Lane. A Java commodity grid kit.
Concurrency and Computation: Practice and Experience, 13:645–662, 2001.

[71] W. Leland and T. J. Ott. Load-balancing heuristics and process behavior. In
SIGMETRICS ’86/PERFORMANCE ’86: Proceedings of the 1986 ACM
SIGMETRICS Joint International Conference on Computer Performance Modeling,
Measurement and Evaluation, pages 54–69, New York, NY, USA, 1986. ACM Press.

149

[72] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle workstations. In
Proceedings of the 8th International Conference of Distributed Computing Systems,
pages 104–111, June 1988.

[73] K. E. Maghraoui, T. J. Desell, B. K. Szymanski, and C. A. Varela. The Internet
Operating System: Middleware for adaptive distributed computing. International
Journal of High Performance Computing Applications (IJHPCA), Special Issue on
Scheduling Techniques for Large-Scale Distributed Platforms, 20(4):467–480, 2006.

[74] R. Mahajan, M. Castro, and A. Rowstron. Controlling the cost of reliability in
peer-to-peer overlays. In IPTPS’03, pages 21–32, Feb. 2003.

[75] C. Mastroianni, D. Talia, and O. Verta. A super-peer model for resource discovery
services in large-scale grids. Future Gener. Comput. Syst., 21(8):1235–1248, 2005.

[76] C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor allocation policy
for multiprogrammed shared-memory multiprocessors. ACM Trans. Comput. Syst.,
11(2):146–178, 1993.

[77] Message Passing Interface Forum. MPI: A message-passing interface standard. The
International Journal of Supercomputer Applications and High Performance
Computing, 8(3/4):159–416, Fall/Winter 1994.

[78] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing
Interface http://nf.apac.edu.au/training/MPI/MPI_2.0/mpi2-report.html.
Technical report, 1996.

[79] R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications. In ACM SIGCOMM 2001,
San Diego, CA, September 2001.

[80] A. Natrajan, M. Humphrey, and A. Grimshaw. Grids: Harnessing
geographically-separated resources in a multi-organisational context. In Proceedings
of High Performance Computing Systems, pages 319 – 339, 2001.

[81] Open Systems Lab. The Actor Foundry: A Java-based Actor Programming
Environment, 1998. Work in Progress. http://osl.cs.uiuc.edu/foundry/.

[82] O. Othman and D. C. Schmidt. Issues in the Design of Adaptive Middleware Load
Balancing. In Proceedings of the 2001 ACM SIGPLAN Workshop on Optimization
of Middleware and Distributed Systems, pages 205–213, Snow Bird, Utah, USA,
2001.

[83] D. Puppin, S. Moncelli, R. Baraglia, N. Tonellotto, and F. Silvestri. A grid
information service based on peer-to-peer. In 11th Euro-Par conference, volume
3648 of LNCS, pages 454–464. Springer, 2005.

[84] A. Rajasekar, M. Wan, R. Moore, G. Kremenek, and T. Guptil. Data grids,
collections, and grid bricks. In MSS ’03: Proceedings of the 20 th IEEE/11 th NASA
Goddard Conference on Mass Storage Systems and Technologies (MSS’03), pages
2–9, Washington, DC, USA, 2003. IEEE Computer Society.

[85] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content
addressable network. In Proceedings of ACM SIGCOMM 2001, pages 161–172, 2001.

[86] D. A. Reed. Grids, the teragrid, and beyond. Computer, 36(1):62–68, 2003.
[87] S. Ren, G. A. Agha, and M. Saito. A modular approach for programming

distributed real-time systems. Journal of Parallel and Distributed Computing,
36:4–12, 1996.

http://nf.apac.edu.au/training/MPI/MPI_2.0/mpi2-report.html

150

[88] K. A. Robbins and S. Robbins. The Cray X-MP/Model 24, A Case Study in
Pipelined Architecture and Vector Processing, volume 374 of Lecture Notes in
Computer Science. Springer, 1989.

[89] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A simple load balancing scheme for
task allocation in parallel machines. In SPAA ’91: Proceedings of the Third Annual
ACM Symposium on Parallel Algorithms and Architectures, pages 237–245, New
York, NY, USA, 1991. ACM Press.

[90] H. Saito, Y. Miyao, and M. Yoshida. Traffic engineering using multiple
multipoint-to-point LSPs. In INFOCOM (2), pages 894–901, 2000.

[91] M. Sato, H. Nakada, S. Sekiguchi, S. Matsuoka, U. Nagashima, and H. Takagi. Ninf:
A network based information library for global world-wide computing
infrastructure. In HPCN Europe, pages 491–502, 1997.

[92] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee, and H. Casanova.
GridRPC: A remote procedure call API for grid computing. In Grid Computing
Workshop, pages 274–278, Baltimore, MD, 2000.

[93] O. Sievert and H. Casanova. A simple MPI process swapping architecture for
iterative applications. International Journal of High Performance Computing
Applications, 18(3):341–352, 2004.

[94] N. Spring and R. Wolski. Application level scheduling of gene sequence comparison
on metacomputers. In ICS ’98: Proceedings of the 12th international conference on
Supercomputing, pages 141–148, New York, NY, USA, 1998. ACM Press.

[95] G. Stellner. Cocheck: Checkpointing and process migration for MPI. In Proceedings
of the 10th International Parallel Processing Symposium, pages 526–531. IEEE
Computer Society, 1996.

[96] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In Proceedings of the
ACM SIGCOMM ’01 Conference, pages 149–160, San Diego, California, August
2001.

[97] D. Sturman. Modular Specification of Interaction Policies in Distributed
Computing. PhD thesis, University of Illinois at Urbana-Champaign, May 1996. TR
UIUCDCS-R-96-1950.

[98] R. Sylvia, F. Paul, H. Mark, K. Richard, and S. Scott. A scalable
content-addressable network. In SIGCOMM ’01: Proceedings of the 2001 conference
on Applications, technologies, architectures, and protocols for computer
communications, volume 31, pages 161–172. ACM Press, October 2001.

[99] D. Talia and P. Trunfio. Toward a synergy between p2p and grids. IEEE Internet
Computing, 07(4):96, 94–95, 2003.

[100] D. Talia and P. Trunfio. Adapting a pure decentralized peer-to-peer protocol for
grid services invocation. Parallel Processing Letters (PPL), 15(1-2):67–84, 2005.

[101] K. Taura, K. Kaneda, and T. Endo. Phoenix: a Parallel Programming Model for
Accommodating Dynamically Joining/Leaving Resources. In Proceedings of PPoPP,
pages 216–229. ACM, 2003.

[102] J. D. Teresco, K. D. Devine, and J. E. Flaherty. Numerical Solution of Partial
Differential Equations on Parallel Computers, chapter Partitioning and Dynamic
Load Balancing for the Numerical Solution of Partial Differential Equations, pages
55–81. Springer-Verlag, 2005.

151

[103] J. D. Teresco, J. Faik, and J. E. Flaherty. Resource-aware scientific computation on
a heterogeneous cluster. Computing in Science and Engineering, 07(2):40–50, 2005.

[104] D. Thain, T. Tannenbaum, and M. Livny. Condor and the grid. In F. Berman,
G. Fox, and T. Hey, editors, Grid Computing: Making the Global Infrastructure a
Reality. John Wiley & Sons Inc., December 2002.

[105] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the
condor experience: Research articles. Concurr. Comput. : Pract. Exper.,
17(2-4):323–356, 2005.

[106] C. Tomlinson, P. Cannata, G. Meredith, and D. Woelk. The extensible services
switch in Carnot. IEEE Parallel and Distributed Technology, 1(2):16–20, May 1993.

[107] P. Triantafillou, C. Xiruhaki, M. Koubarakis, and N. Ntarmos. Towards high
performance peer-to-peer content and resource sharing systems. In First Biennial
Conference on Innovative Data Systems Research (CIDR 2003), pages 341–355,
Pacific Grove, California, USA, 2003.

[108] G. Utrera, J. Corbalán, and J. Labarta. Implementing malleability on mpi jobs. In
IEEE PACT, pages 215–224. IEEE Computer Society, 2004.

[109] S. Vadhiyar and Dongarra. Self adaptivity in grid computing. Concurrency and
Computation: Practice and Experience, 17(2-4):235–257, 2005.

[110] S. S. Vadhiyar and J. J. Dongarra. SRS - a framework for developing malleable and
migratable parallel applications for distributed systems. In Parallel Processing
Letters, volume 13, pages 291–312, June 2003.

[111] A. Vahdat, T. Anderson, M. Dahlin, D. Culler, E. Belani, P. Eastham, and
C. Yoshikawa. WebOS: Operating System Services For Wide Area Applications. In
Proceedings of the Seventh IEEE Symposium on High Performance Distributed
Computing, pages 52–63, July 1998.

[112] R. V. van Nieuwpoort, T. Kielmann, and H. E. Bal. Efficient load balancing for
wide-area divide-and-conquer applications. In PPoPP ’01: Proceedings of the Eighth
ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming,
pages 34–43, New York, NY, USA, 2001. ACM Press.

[113] C. Varela. Worldwide Computing with Universal Actors: Linguistic Abstractions for
Naming, Migration, and Coordination. PhD thesis, U. of Illinois at
Urbana-Champaign, 2001.

[114] C. Varela and G. Agha. Programming dynamically reconfigurable open systems
with SALSA. ACM SIGPLAN Notices. OOPSLA’2001 Intriguing Technology Track
Proceedings, 36(12):20–34, Dec. 2001.
http://www.cs.rpi.edu/˜cvarela/oopsla2001.pdf.

[115] C. A. Varela, P. Ciancarini, and K. Taura. Worldwide computing: Adaptive
middleware and programming technology for dynamic Grid environments. Scientific
Programming Journal, 13(4):255–263, December 2005. Guest Editorial.

[116] D. B. Weatherly, D. K. Lowenthal, M. Nakazawa, and F. Lowenthal. Dyn-mpi:
Supporting mpi on medium-scale, non-dedicated clusters. J. Parallel Distrib.
Comput., 66(6):822–838, 2006.

[117] R. Wolski. Dynamically forecasting network performance using the network weather
service. Cluster Computing, 1(1):119–132, 1998.

[118] R. Wolski, N. T. Spring, and J. Hayes. The Network Weather Service: A distributed
resource performance forecasting service for metacomputing. Future Generation
Comput. Syst., 15(5-6):757–768, October 1999.

152

[119] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D.
Kubiatowicz. Tapestry: A resilient global-scale overlay for service deployment.
IEEE Journal on Selected Areas in Communications, 22:41–53, Jan. 2004.

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT
	Introduction
	Motivation and Research Challenges
	Mobility and Malleability for Fine-grained Reconfiguration
	Middleware-driven Dynamic Application Reconfiguration

	Problem Statement and Methodology
	Thesis Contributions
	Thesis Roadmap

	Background and Related Work
	Grid Middleware Systems
	Resource Management in Grid Systems
	Resource Management in Globus
	Resource Management in Condor
	Resource Management in Legion
	Other Grid Resource Management Systems

	Adaptive Execution in Grid Systems
	Grid Programming Models
	Peer-to-Peer Systems and the Emerging Grid
	Worldwide Computing
	The Actor Model
	The SALSA Programming Language
	Theaters and Run-Time Components

	A Middleware Framework for Adaptive Distributed Computing
	Design Goals
	Middleware-level Issues
	Application-level Issues

	A Model for Reconfigurable Grid-Aware Applications
	Characteristics of Grid Environments
	A Grid Application Model

	IOS Middleware Architecture
	The Profiling Module
	The Decision Module
	The Protocol Module

	The Reconfiguration and Profiling Interfaces
	The Profiling API
	The Reconfiguration Decision API

	Case Study: Reconfigurable SALSA Actors
	Chapter Summary

	Reconfiguration Protocols and Policies
	Network-Sensitive Virtual Topologies
	The Peer-to-Peer Topology
	The Cluster-to-Cluster Topology
	Presence Management

	Autonomous Load Balancing Strategies
	Information Policy
	Transfer Policy
	Peer Location Policy
	Load Balancing and the Virtual Topology

	The Selection Policy
	The Resource Sensitive Model
	Migration Granularity

	Split and Merge Policies
	The Split Policy
	The Merge Policy

	Related Work
	Chapter Summary

	Reconfiguring MPI Applications
	Motivation
	Approach to Reconfigurable MPI Applications
	The Computational Model
	Process Migration
	Process Malleability

	The Process Checkpointing Migration and Malleability Library
	The PCM API
	Instrumenting an MPI Program with PCM

	The Runtime Architecture
	The PCMD Runtime System
	The Profiling Architecture
	A Simple Scenario for Adaptation

	The Middleware Interaction Protocol
	Actor Emulation
	The Proxy Architecture
	Protocol Messages

	Related Work
	MPI Reconfiguration
	Malleability

	Summary and Discussion

	Performance Evaluation
	Experimental Testbed
	Applications Case Studies
	Heat Diffusion Problem
	Search for the Galactic Structure
	SALSA Benchmarks

	Middleware Evaluation
	Application-sensitive Reconfiguration Results
	Experiments with Dynamic Networks
	Experiments with Virtual Topologies
	Single vs. Group Migration
	Overhead Evaluation

	Adaptation Experiments with Iterative MPI Applications
	Profiling Overhead
	Reconfiguration Overhead
	Performance Evaluation of MPI/IOS Reconfiguration
	Migration Experiments
	Split and Merge Experiments

	Summary and Discussion

	Conclusions and Future Work
	Other Application Models
	Large-scale Deployment and Security
	Replication as Another Reconfiguration Strategy
	Scalable Profiling and Measurements
	Clustering Techniques for Resource Optimization
	Automatic Programming
	Self-reconfigurable Middleware

	References

