
AUTONOMIC GRID COMPUTING USING
MALLEABILITY AND MIGRATION: AN

ACTOR-ORIENTED SOFTWARE FRAMEWORK

By

Travis Desell

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Approved:

Carlos A. Varela
Thesis Adviser

Rensselaer Polytechnic Institute
Troy, New York

April 2007
(For Graduation May 2007)

CONTENTS

LIST OF TABLES . iv

LIST OF FIGURES . v

ABSTRACT . viii

1. Introduction . 1

1.1 Large-Scale Computing Environments 2

1.2 Large-Scale Computing Challenges 4

1.3 Migration and Malleability . 6

1.4 Contributions . 9

1.5 Overview . 10

2. The Internet Operating System (IOS) . 11

2.1 Migration and Malleability Implementations in SALSA 13

2.1.1 Autonomous Actors . 14

2.1.2 Malleable Actors . 15

2.1.3 Example Applications . 17

2.1.3.1 Astronomical Data Modeling 18

2.1.3.2 Simulation of Heat Diffusion 20

2.1.3.3 Programming Complexity 25

2.2 Reconfiguration Policies . 25

2.2.1 The Random Actor Stealing (RAS) Protocol 25

2.2.1.1 Simple Random Actor Stealing (S-RAS) 27

2.2.1.2 Application Topology Sensitive RAS (ATS-RAS) . . 27

2.2.1.3 Fuzzy Logic Controlled RAS (FLC-RAS) 28

2.2.2 Hierarchical Grid-Aware Malleability 32

2.2.2.1 A Hierarchical Malleability Policy 32

2.2.2.2 Determining Data Redistribution 36

2.2.2.3 Restrictions on Malleability 37

3. Results . 39

3.1 Test Environments . 39

3.2 Overhead . 40

ii

3.3 Migration . 42

3.4 Malleability . 47

3.5 Migration vs Malleability . 53

4. Related Work . 56

4.1 Large-Scale Distributed Computing 57

4.2 Dynamic Reconfiguration . 59

4.3 Scheduling . 61

5. Discussion . 62

5.1 Conclusions . 62

5.2 Future Work . 63

LITERATURE CITED . 66

APPENDICES

A. Malleable Heat Code . 71

iii

LIST OF TABLES

2.1 MalleableActor API . 15

2.2 Gain Measurement Equations . 29

2.3 Good and Bad Membership Function Definitions 30

2.4 An example of using the malleability data distribution functions. For
10GB data, assuming no start-up cost (b = 0) and a linear scaling
coefficient of 2 (a = 2), this table provides the amount of data per
processor and per actor for the given three machines. 37

3.1 Reconfiguration time compared to application iteration time and run-
time. The applications were run on the all three clusters described in
Section 1.1 with 300MB data, and reconfiguration time was measured.
The applications were also run on each cluster individually with 10MB
data, and reconfiguration time was measured. The values given show
typical iteration and runtime for these environments given various input
parameters. 49

iv

LIST OF FIGURES

1.1 Geographic distribution of PlanetLab participants. 2

1.2 Geographic distribution of iVDGL participants. 3

1.3 Geographic distribution of LCG@CERN participants. 4

1.4 Different possibilities for data distribution on a dynamic environment
with N entities and P processors. With N = 5, data imbalances oc-
cur, degrading performance. N = 60 allows even data distribution, but
suffers from increased context switching. N = 5 and N = 60 can be
accomplished using fine-grained migration, while N = P requires mal-
leability. 7

1.5 A heat diffusion application (see Section 2.1.3.2), run with different data
sizes and granularities on 20 processors. Decreasing granularity allows
the entities to execute entirely within a 64KB L1 cache, greatly in-
creasing performance. This figure also illustrates how overly decreasing
granularity can degrade performance by incurring additional overhead. . 8

2.1 Actors are reactive entities. In response to a message, an actor can
(1) change its internal state, (2) create new actors, and/or (3) send
messages to peer actors (image from [45]). 13

2.2 Lines of code in the unmodified (non-malleable) code, and malleable
code with and without the lines of code of the split and merge directors.
Director code can be reused by the same type of applications. 24

2.3 Graphical representations of the good and bad membership functions,
with the bad cutoff at −2.5 and the good cutoff at 2.5. 30

3.1 Overhead of using autonomous middleware and the MalleableActor

interface for the heat and astronomy applications. The application was
tested with the same configurations with different amounts of paral-
lelism, with and without the middleware and MalleableActor interface. 40

3.2 Overhead of using autonomous middleware and the MalleableActor

interface for the heat and astronomy applications. The application was
tested with the same configurations with different amounts of paral-
lelism, with and without the middleware and MalleableActor interface. 41

v

3.3 MalleableActor overhead for the heat application on the Sun, AIX,
4x1 Opteron and 4x2 Opteron cluster environments, with one actor per
processor for 8, 16, 32 and 48 malleable actors respectively. The heat
application was run with 500KB and 10MB data, demonstrating the
effect of communication and computation speed on overhead. For the
Astronomy application and larger data sizes, overhead was negligible. . 42

3.4 S-RAS and ATS-RAS compared to a round robin distribution of ac-
tors for the unconnected benchmark. S-RAS performs the best due to
the low profiling overhead as the unconnected topology does not suffer
performance degradations from communication overhead. 43

3.5 S-RAS and ATS-RAS compared to a round robin distribution of actors
for the sparse benchmark. ATS-RAS performs the best due to profiling
communication patterns and reconfiguring to minimize communication
overhead. 44

3.6 S-RAS and ATS-RAS compared to a round robin distribution of actors
for the tree benchmark. ATS-RAS was able to improve performance,
while S-RAS was not. Neither were able to obtain a stable configuration. 45

3.7 S-RAS and ATS-RAS compared to a round robin distribution of actors
for the hypercube benchmark. ATS-RAS was able to improve perfor-
mance while S-RAS was not. ATS-RAS was able to obtain a stable
configuration while S-RAS was not. 46

3.8 FLC-RAS and ATS-RAS compared to the optimal configuration. The
application was loaded onto a single processor and then the middleware
performed reconfiguration until a stable point was reached. 47

3.9 FLC-RAS and ATS-RAS compared to the optimal configuration. The
application’s actors were loaded onto random, then the middleware per-
formed reconfiguration until a stable point was reached. The perfor-
mance of the initial random configuration is also shown. 48

3.10 Performance of grid-level reconfiguration using the heat and astronomy
applications with different data sizes over local and wide area networks.
For reconfiguration over a WAN, the AIX cluster was added and re-
moved from 4x1 opteron cluster, while the 4x2 opteron was added and
removed for reconfiguration over a LAN. Stop-restart+ shows recon-
figuration using stop restart when a cluster was made available, and
stop-restart- measures the reconfiguration time for removing the clus-
ter. Split shows the time to reconfigure the application using split when
a cluster was added, and merge shows the time taken to when a cluster
was removed. 50

vi

3.11 Performance of grid-level reconfiguration using the heat and astronomy
applications with different data sizes over local and wide area networks.
For reconfiguration over a WAN, the AIX cluster was added and re-
moved from 4x1 opteron cluster, while the 4x2 opteron was added and
removed for reconfiguration over a LAN. Stop-restart+ shows recon-
figuration using stop restart when a cluster was made available, and
stop-restart- measures the reconfiguration time for removing the clus-
ter. Split shows the time to reconfigure the application using split when
a cluster was added, and merge shows the time taken to when a cluster
was removed. 51

3.12 Autonomous reconfiguration using malleability and migration compared
to autonomous reconfiguration only using migration. Every 6 iterations,
the environment changed, from 8 to 12 to 16 to 15 to 10 to 8 processors.
The last 8 processors removed were the initial 8 processors. A non-
reconfigurable application would not scale beyond 8 processors, nor be
able to move to the new processors when the initial ones were removed. 52

3.13 Performance of the heat application on dynamic environments using
malleability and migration was tested. Initally, for migration, 200 or
400 equal sized actors were loaded on both Opteron clusters and the IOS
middleware redistributed the actors. For malleability, 80 actors were
loaded and the data was redistributed. The Opteron column shows the
average iteration time for these configurations. Following this, clusters
were added to the computation. Opteron+AIX, Opteron+Sun, and
Opteron+Sun+AIX show the performance after IOS migrated actors
or performed malleability, when the AIX, SUN or both the AIX and
Sun clusters were added, respectively. 54

vii

ABSTRACT

As distributed computing environments increase in size by adding more participants,

their computing architectures become more heterogeneous and dynamically avail-

able, while the chance of hardware failure increases. In order to efficiently develop

applications for these environments, new programming methods and services must

be made accessible which enable dynamic reconfiguration and fault tolerance.

As part of an effort to provide these services and methods, this thesis exam-

ines two reconfiguration methods that allow applications to dynamically respond to

changes in their environment. Migration allows for the computational components

of an application to move between processors, while malleability enables a more

general reshaping of an application by adding or removing computational compo-

nents and redistributing data. Migration and malleability have been implemented

in the SALSA programming language. Migration is provided transparently without

any effort required from a developer, while malleability is accomplished through a

simple API. The Internet Operating System (IOS), a modular middleware, is used

to autonomously reconfigure applications which implement these reconfiguration

methods.

Three different autonomous reconfiguration strategies using migration were

implemented in IOS, each with different levels of profiling which can provide more

informed reconfiguration. A minimum amount of profiling and a simple reconfigu-

ration strategy is shown to be best suited for simple massively parallel applications,

while more complex profiling provides significant advantages for applications with

different communication topologies. Additionally, a strategy using fuzzy logic is

shown to be able to optimally reconfigure applications with a more complex commu-

nication topology, without any centralized knowledge. Malleability is also examined

using a hierarchical reconfiguration strategy. Malleability is shown to be an order

of magnitude faster than an already existing reconfiguration strategy, application

stop-restart, and for iterative applications it can provide improved performance over

migration alone.

viii

The results from this thesis provide strong evidence that applications can

be dynamically reconfigured efficiently for significant improvement in performance

on dynamic environments. Additionally that it may be possible for certain types

of applications to be optimally reconfigured using strategies that do not require

centralized knowledge. This work is part of an effort to enable applications to run

on an upcoming campus-wide RPI grid.

ix

CHAPTER 1

Introduction

The increasing size and complexity of large scale execution environments and dis-

tributed applications is driving a need for middleware which can alleviate the chal-

lenges of developing such systems. These systems offer many distributed resources,

such as computational power, communication links, memory and storage. As they

increase in size, they are becoming increasingly dynamic, in terms of processor avail-

ablility, and heterogeneous, in terms of communication and architecture, while at

the same time demanding better performance.

This thesis presents a distributed middleware, IOS – the Internet Operating

System, for large scale computing, which enables autonomous reconfiguration of

distributed applications. The middleware uses a modular architecture with plug-in

services that can profile applications and their environment to make informed de-

cisions about how to perform reconfiguration. The SALSA programming language

has been extended to transparently use the IOS middleware to perform autonomous

reconfiguration via migration of computational components, and with an API for

autonomous reconfiguration via malleability to dynamically change an application’s

data distribution and computational component granularity. This provides a sig-

nificant reduction in the amount of work required by an application developer by

removing the need to develop approaches to deal with the dynamic nature of large

scale environments and dynamic performance tuning.

This chapter first discusses some current large scale computing environments in

Section 1.1, then uses these as examples to highlight current large scale computing

challenges in Section 1.2. The methods used for autonomous reconfiguration in

response to some of these challenges, migration and malleability, are presented in

Section 1.3. The contributions of this thesis are summarized in Section 1.4. The

chapter concludes with an overview of the thesis in Section 1.5.

1

2

Figure 1.1: Geographic distribution of PlanetLab participants.

1.1 Large-Scale Computing Environments

Large scale computing environments are becoming increasingly popular. There

are open collaborative environments in which participants can share computational

resources for research into services and middleware for these environments, such as

PlanetLab [14]. Others additionally allow home computing resources for massively

parallel distribution of applications, as in BOINC [8]. Many scientific grids [1, 2],

are globally distributed with different research institutions participating with large

clusters. Even institution wide computing systems are reaching increasingly larger

scales, such as the Rensselaer Grid, which is in development. The remainder of this

section describes these large scale computing environments in detail to present the

complexity and scale of these systems.

PlanetLab is a large scale computing infrastructure for developing distributed

technologies on a world-wide scale (see Figure 1.11). Participants install a dis-

tributed operating system on machines which participate in PlanetLab and run

various distributed services being tested on PlanetLab. By volunteering machines

to participate in PlanetLab, users gain access to developing their own services which

they can test on the PlanetLab network. As of January 2007, PlanetLab consists of

735 machines hosted at over 360 sites in 25 different countries.

BOINC is an open-source infrastructure for large scale volunteer computing.

1Image from http://www.planet-lab.org/

3

Figure 1.2: Geographic distribution of iVDGL participants.

Applications such as SETI@Home [7] and Folding@Home [35] are implemented us-

ing the BOINC APIs and the BOINC computing infrastructure allows users to

volunteer their personal computers, as well as researchers to volunteer clusters of

processors to participate in massively parallel computation. BOINC provides ser-

vices for fault tolerance and distributed clients which allow users to specifiy usage

rules. Applications using BOINC can scale into the millions of processors, which

have highly hetereogeneous architectures, computational ability, available memory

and communication speeds.

The International Virtual Data Grid Laboratory (iVDGL), is used for de-

veloping and executing Petabye-scale virtual data applications in disciplines such

as high-energy and nuclear physics, gravitational wave research, astronomy, astro-

physics, earth observations, and bioinformatics. Participating sites are globally

distributed, in Australia, Europe, Japan and the United States 1.2, and connected

by high bandwidth communication links (see Figure 1.22).

The LHC Computing Project (LCG) is being developed as a data storage

and analaysis infrastructure for the Large Hadron Collider (LHC) being built at

2Image from http://www.ivdgl.org/projinfo/index.html

4

Figure 1.3: Geographic distribution of LCG@CERN participants.

Cern. It currently consists of over 32,000 processors at 177 sites in Europe and the

United States, with over 13,000 Petabytes of storage (see Figure 1.33). It operates

hierarchically, with the most powerful sites being in the first tier, which are first to

recieve new data, which then gets propagated down to the lowest tiers.

This work is in part motivated to provide services to enable use of the cam-

pus wide grid in development at Rensselaer Polytechnic Institute. On campus col-

laboration includes over 1,000 processors in clusters from the Computer Science,

Nanotechnology, Bioscience departments, as well as other multipurpose clusters. In

addition, an in development off campus super computing facility with 32,000 IBM

Blue Gene processors will add a highly significant contribution.

1.2 Large-Scale Computing Challenges

Large scale environments, like those discussed, introduce many challenges to

developing efficient distributed computing systems. Challenges mainly fall into three

3Image from http://goc02.grid-support.ac.uk/googlemaps/sam.html

5

different categories: scalability, heterogeneity and uncertainty. Due to the large size

of such environments, applications and middleware must be able to scale to hundreds

or even thousands of processors, which may be geographically distributed. This need

for scalability requires research into new distributed methods of computation, such

as peer-to-peer or hierarchical strategies. Heterogeneity becomes an issue because

not only can participating processors have different architectures, which can require

different executable binary files, network connections between processors can have

drastically different latencies and bandwidth.

Uncertainty factors into many areas of large scale computing. These systems

often use scheduling mechanisms which schedule the actual execution of an appli-

cation for some point in the future, in this case the execution environment may be

unknown at load time, which may prevent specialized tuning for the applications

target execution environment. In many cases, architecture specific tuning can pro-

vide significant performance improvements. The resource utilization of application

components can also change over the course of its execution. Additionally, during

the course of an applications execution, the resources available to the application

may change or become unavailable, due to competition with other applications or

system users removing certain resources. In these cases, the application may need to

be stopped or reconfigured, or otherwise suffer failure or large performance degrada-

tion. It is also not possible to determine when failures will occur over communication

links or at processing nodes.

These factors are compounded when applications are iterative, requiring some

or all computational components to synchronize after performing some computation.

In these cases, a single computational component performing poorly can severely

degrade the performance of the entire application. Additionally, a single failure of

a computational component can cause the failure of the entire application.

In light of these challenges, applications for these large scale systems must be

scalable, fault tolerant, and dynamically reconfigurable. Reconfiguration strategies

and middleware must be scalable and fault tolerant as well, while performing ef-

ficiently with low overhead. Advances in these areas will allow future large scale

systems to be easily programmable while still allowing applications to harness the

6

full potential that large scale computing environments provide.

1.3 Migration and Malleability

Previous approaches for dynamic reconfiguration have involved fine grained

migration, which moves application entities such as actors, agents or processes to

utilize unused cycles [29, 31] or coarse grained migration which uses checkpointing

to restart applications with a different set of resources to utilize newly available

resources or to stop using badly performing resources [11, 44]. Coarse grained mi-

gration can prove highly expensive when resources change availability frequently, as

in the case of web computing [7, 35] or shared clusters with multiple users. Addition-

ally, coarse grained migration can prove inefficient for grid and cluster environments,

because data typically has to be saved at a single point, then redistributed from

this single point, which can cause a performance bottleneck. Fine grained migra-

tion enables different entities within applications to be reconfigured concurrently in

response to less drastic changes in their environment. Additionally, concurrent fine-

grained reconfiguration is less intrusive, as the rest of the application can continue

to execute while individual entities are reconfigured. However various checkpointing

and consistency methods are required to allow such reconfiguration.

Approaches using fine-grained migration allow reconfiguration by moving

around entities of fixed size and data. However, such fine grained reconfigura-

tion is limited by the granularity of the applications entities, and cannot provide

reconfiguration in regards to heterogeneity of memory hierarchies and data distribu-

tion. Different load balancing approaches [13, 28] allow for dynamic redistribution

of data, however they cannot change task granularity or do not allow inter-task

communication.

Because fine-grained migration strategies only allow for migration of entities

of fixed size, data imbalances can occur if the granularity is too coarse. An iter-

ative application is used to illustrate this limitation, a distributed maximum like-

lihood computation used for astronomical model validation (for more details see

Section 2.1.3.1). This application is run on a dynamic cluster consisting of five

processors. Figure 1.4 shows the performance of different approaches to dynamic

7

Figure 1.4: Different possibilities for data distribution on a dynamic en-
vironment with N entities and P processors. With N = 5,
data imbalances occur, degrading performance. N = 60 al-
lows even data distribution, but suffers from increased con-
text switching. N = 5 and N = 60 can be accomplished using
fine-grained migration, while N = P requires malleability.

distribution. Three options are shown, where N is the number of entities and P

is the number of processors. Each entity has an equal amount of data. N = 5

maximizes granularity, reducing the overhead of context switching. However this

approach cannot evenly distribute data over each processor, for example, with 4

processors, one processor must have two entities. N = 60 uses a smaller granularity

which can evenly distribute data in any configuration of processors, however it suf-

fers from additional overhead from context switching. It is also not scalable as the

number of components required for this scheme increases exponentially as processors

are added. Additionally, in many cases, the availability of resources is unknown at

the applications startup so an effective number of components cannot be statically

determined. For optimal performance in this example, N should be equal to the

number of processors P , however this cannot be accomplished by migration alone.

Using the correct granularity can provide significant benefits to applications

8

Figure 1.5: A heat diffusion application (see Section 2.1.3.2), run with
different data sizes and granularities on 20 processors. De-
creasing granularity allows the entities to execute entirely
within a 64KB L1 cache, greatly increasing performance.
This figure also illustrates how overly decreasing granularity
can degrade performance by incurring additional overhead.

by enabling entity computation and data usage to execute in lower levels of memory

hierarchy. For example, in Figure 1.5, the runtime for a scientific application mod-

eling heat diffusion over a solid (for a more detailed description see Section 2.1.3.2)

is plotted as entity granularity changes. The application was run with 10 million

and 20 million data points over a wide range of granularities. All sampled runs

performed 50 iterations and the same amount of work per data point. Experiments

were run on five quad 2.27GHz Opteron processors with 64KB L1 cache. As the

data per entity decreases, computation can be done within L1 cache, instead of

within L2 cache, with over a 10x performance increase for 20 million data points

and 320 entities, and an over 5x performance increase for 10 million data points and

160 entities, compared to a typical distribution of one or two entities per processor.

In order to effectively utilize these large scale, dynamic and heterogeneous

environments, applications need to be able to dynamically change their granularity

9

and data distribution. Dynamic data redistribution and granularity modification,

or malleability, presents significant design challenges over fine-grained migration.

Distributed applications have a wide range of behaviors, data structures and com-

munication topologies. In order to change the granularity of entities in a distributed

application, entities must be added or removed, which requires redistribution of data

to new entities, or away from entities being removed. Data redistribution must also

be aware of the available resources where data is being moved to or from, and must

also be done to keep the load balanced with respect to processing power. Com-

munication topologies must be modified when entities are added or removed, and

entity behavior may change. Addressing these issues becomes even more important

when applications are iterative, or require all entities to synchronize after finish-

ing some work before the application can continue. With an iterative application,

each iteration runs as slow as the slowest entity, so proper data distribution effi-

cient communication topologies are required for good performance. Additionally,

language constructs and libraries need to be provided to allow malleability to be

accessible to developers, because data redistribution and communication topology

modification cannot be entirely automated.

1.4 Contributions

This thesis describes how the Internet Operating System (IOS) [32], was ex-

tended to provide autonomous reconfiguration for applications developed in the

SALSA programming language [46]. IOS was extended with policies for two dif-

ferent types of reconfiguration, migration and malleability. For many applications,

migration is sufficient to enable improved performance on large scale environments.

Additionally, profiling, decision making and migration can be done in a completely

transparent manner in SALSA, minimizing the work required to use such environ-

ments. However, for some applications, such as iterative applications, malleability

can provide additional benefit due to reduced context switching overhead and im-

proved load balancing. Malleability, unlike migration, requires the developer to

implement a simple API to facilitate the malleability process.

This thesis presents and evaluates the different autonomous reconfiguration

10

policies implemented in the IOS middleware framework. Three different decentral-

ized strategies for autonomous migration have been studied, each with different

levels of transparency and required profiling information: (i), Simple Random Ac-

tor Stealing (SRAS), (ii) Application Topology Sensitive Random Actor Stealing

(ATS-RAS), and (iii), Fuzzy Logic Controlled Random Actor Stealing (FLC-RAS).

Results show that with minimal profiling information, SRAS is sufficient to recon-

figure massively parallel applications. At the cost of more profiling overhead, for

applications with more complex communication topologies, ATS-RAS outperforms

SRAS due to taken into account the communication topology of the application.

Lastly, it is shown that if a user wishes to take the time to tune a fuzzy logic con-

troller, FLC-RAS can optimally reconfigure an application in a peer-to-peer manner

without any centralized or global knowledge. A hierarchical policy for autonomous

malleability is presented, as well as different algorithms for performing malleability

on actors that implement a simple API. The algorithms shown enable malleability

for two representative application types with different communication topologies and

data distributions. Autonomous reconfiguration using malleability is shown to be

significantly more efficient than application stop-restart, and can provide improved

performance for iterative applications over migration alone.

1.5 Overview

The remainder of this thesis proceeds as follows. The approach taken in de-

veloping the IOS middleware, as well as its modular framework and implementation

details are discussed in Chapter 2. The details of enabling migration and malleabil-

ity in the SALSA programming language are discussed in Section 2.1. Different

peer-to-peer policies used by IOS for autonomous reconfiguration using migration

and malleability are discussed in Section 2.2. The performance of reconfiguration

and the overhead and benefits of the autonomous reconfiguration polices are evalu-

ated in Chapter 3. This work is compared to other related work in Chapter 4. This

thesis concludes with a final discussion of this research and proposed future work is

given in Chapter 5.

CHAPTER 2

The Internet Operating System (IOS)

The Internet Operating System (IOS) [32] is a modular middleware that enables au-

tonomous reconfiguration of distributed applications. IOS is responsible for the pro-

filing and reconfiguration of applications, allowing an application’s computational

entities to be transparently reconfigured at runtime. IOS interacts with applica-

tions through a generic profiling and reconfiguration interface, and can therefore be

used with different applications and programming paradigms, such as SALSA [19]

and MPI [30]. Applications implement an interface through which IOS can dy-

namically reconfigure the application and gather profiling information. IOS uses

a peer-to-peer network of agents with pluggable communication, profiling and de-

cision making modules, allowing it to scale to large environments and providing a

mechanism to evaluate different methods for reconfiguration.

An IOS agent is present on every node in the distributed environment. Each

agent is modular, consisting of three plug-in modules: i) a profiling module that

gathers information about applications’ communication topologies and resource uti-

lization, as well as the resources locally available, ii) a protocol module to allow for

inter-agent communication, allowing the IOS agents to arrange themselves with dif-

ferent virtual network topologies, such as hierarchical or purely peer-to-peer topolo-

gies [32], and iii) a decision module which determines when to perform reconfigura-

tion and how reconfiguration can be done.

The modules interact with each other and applications through well-defined

interfaces, making it possible to easily develop new modules, and to combine them

in different ways to test different types of application reconfiguration. The decision

module interacts with applications through asynchronous message passing. For this

work, the decision module autonomously creates directors for malleability and sends

migrate messages to entities based on its decision making strategy.

IOS has been designed to address the needs of the large scale, dynamic and

heterogeneous nature of emerging environments, as well as the various needs of the

11

12

applications which run on those environments. To effectively utilize these environ-

ments, the middleware must be able to run on heterogeneous compuational nodes

and utilize heterogeneous profiling information. Due the the large scale and dynamic

nature of these environments, the middleware cannot have centralized coordination

because this approach is not scalable, and leads to a single point of failure.

The issue of heterogeneity was resolved by implementing IOS in Java and

the SALSA Programming Language[46], which pre-compiles into Java and can run

on Java Virtual Machines. This allows IOS to run on heterogeneous architectures

with Java installed. IOS is made interactable with applications and third party

profiling services via a socket based communication protocol. It is possible to provide

built-in support for transparent or semi-transparent use of this interface with IOS

with different programming models, such as has been done with SALSA [19] and

MPI [31]. Otherwise, this socket based interface can be implemented by applications

themselves. It is also possible for IOS to interact with third party profiling tools such

as the Network Weather Service [48] and the Globus Meta Discovery Service [17],

by implementing simple wrappers that interface with the profiling module.

Different protocol modules can connect the IOS agents with different commu-

nication topologies. This allows for centralized, hierarchical or pure peer-to-peer

(p2p) strategies for information dispersal. Different peer-to-peer communication

and reconfiguration strategies allow IOS to scale to a very large number of execu-

tion nodes. Additionally, they can be used to arrange IOS agents in a network-aware

manner for additional improvement[32].

Additionally, different applications require different reconfiguration strategies,

which may require different profiling information. Since increasing the amount of

profiling done decreases performance by incurring additional overhead, it is not effi-

cient to profile all possible information. Plug-in profiling modules allow the decision

and protocol components to use only what profiling services are needed, improving

performance.

Section 2.1 discusses the implementation of autonomous actors which enable

transparent migration, and malleable actors which enable malleability. The process

of making two representative applications malleable is discussed in detail. Follow-

13

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

Actor

Thread

(1)

(3)

(2)

Mailbox

Internal variables

Methods

State

Message

���
���
���
���

Actor

Thread

(1)

(3)

(2)

Mailbox

Internal variables

Methods

State

Message

���
���
���
���

Actor

Thread

(1)

(3)

(2)

Mailbox

Internal variables

Methods

State

Message

 standardOutput<−print("World");

 standardOutput<−print("Hello ") @

behavior HelloWorld {

 void act(){

 }

}

Figure 2.1: Actors are reactive entities. In response to a message, an
actor can (1) change its internal state, (2) create new actors,
and/or (3) send messages to peer actors (image from [45]).

ing this, implementations of different protocol, decision and profiling modules for

autonomous reconfiguration of applications using IOS is detailed in Section 2.2.

2.1 Migration and Malleability Implementations in SALSA

Both migration and malleability have been implemented in the SALSA pro-

gramming language [46]. SALSA is a distributed programming language based on

the actor [4] model of computation. Actors, see Figure 2.1, encapsulate state and

process into a single entity. Each actor has a unique name, which can be used as

a reference by other possibly distributed actors. Communication between actors is

purely asynchronous. The actor model assumes guaranteed message delivery and fair

scheduling of computation. Actors only process information in reaction to messages.

While processing a message, an actor can carry out any of three basic operations:

alter its state, create new actors, or send messages to peer actors. Actors are there-

fore inherently independent, concurrent and autonomous which enables efficiency in

parallel execution [26] and facilitates mobility [5].

SALSA programs may be executed in heterogeneous distributed environments.

14

SALSA code is compiled into Java source and then byte-code. This allows SALSA

programs to employ components of the Java class library. It also enables SALSA

developers to view a heterogeneous network of physical machines as a homogeneous

network of virtual machines. For this work, each actor is seen as a reconfigurable

component running on a theater which represents its local runtime environment.

SALSA actors can migrate transparently without any modification of code, en-

abling easy autonomous reconfiguration through migration. Section2.1.1 describe

how actors in SALSA have been modified to transparently provide profiling infor-

mation for the IOS profiling module. Following this, Section 2.1.2 describes how

actors have been extended to allow middleware driven autonomous malleability and

Section 2.1.3 provides details about implementing these extensions in two sample

applications.

2.1.1 Autonomous Actors

SALSA Actors can extend the AutonomousActor behavior, which tranparently

provides profiling and interaction with the IOS middleware. Autonomous actors can

profile their cpu usage, data usage, number of messages processed, where messages

are sent to, and where messages are received from. All SALSA actors implement a

migrate method, which allows them to be relocated arbitrarily at runtime. Migra-

tion is accomplished with the following protocol:

• Every theater has a SystemActor which handles local services and aids in

migration.

• When an actor receives a migrate message, it sends a message to the

SystemActor at its migration destination that causes the SystemActor to

create a new actor locally. This new actor has the same unique name as the

actor to be simulated, and upon creation it updates all references from the

actor to be migrated to this new actor. While reference updating is taking

place, both the old and new actor continue to receive messages in transit, but

do not process them.

• When all references are updated, the old actor will refuse to receive any new

15

Return Method Parameters
Type Name

long getDataSize ()
Object getData (long size, Options options)
void receiveData (Object data, Options options)
void redirectReference (String refName, Reference newTarget)
void handleMalleabilityMessage (Message message)

Table 2.1: MalleableActor API

messages, instead redirecting them to the new actor. It then transfers its state

and all messages in it’s mailbox to the new actor. After the transfer, the old

actor is removed.

• After receiving the state and messages from the old actor, the new actor

will update its state, add these messages to its mailbox and being to process

messages.

• All messages that were in transit to the old actor, upon not finding it at its

former location, will do a new name to location lookup and then be sent to

the new actor.

Because message passing is asynchronous, changing the order in which mes-

sages are received and processed will not effect the applications. This protocol also

prevents the loss or duplication of messages, thus allowing actors to be migrated

during runtime without effecting semantics of the application. When the IOS mid-

dleware decides to reconfigure a SALSA application via migration, it simply sends

a migrate message to the actors to be migrated, which then use the above protocol.

2.1.2 Malleable Actors

Malleability has been implemented in SALSA [46] by providing extensible

directors that control malleability on actors that implement the MalleableActor

behavior (see Table 2.1). A user must implement methods which allow the direc-

tors to redirect references to accommodate newly created and removed actors, and

redistribute data between malleable actors participating in reconfiguration. The

16

provided directors use a generic protocol to perform malleability operations. The

method is language independent and can be applied to other distributed program-

ming methods such as MPI [33] or agents. The reconfiguration method consists of

three basic parts:

1. locking all participants in the reconfiguration.

2. redistributing data to newly created participants or from removed participants.

3. redirecting the references between them.

Locking malleable actors is required to prevent data inconsistencies that could

arise during the redistribution of data and references. If the malleable actors can

continue to process other messages while performing a reconfiguration, responses

to messages and data could be sent to the wrong actors, resulting in incorrect

computation. All implementations of malleability presented in this paper use the

same locking strategy. Actors specify when they are at a stable state and can

be locked by the library through invoking the setMalleable and setUnmalleable

methods. Malleable actors are locked by the directors using the following protocol:

1. The director broadcasts an initiate malleability message to all malleable actors

involved in the reconfiguration.

2. If any malleable actors broadcast to are involved in another reconfiguration,

or have set to be unmalleable through setUnmalleable, they respond to the

director with a isUnmalleable message. Otherwise, the actor responds to the

director with a isMalleable message. After this, the actors responding with a

isMalleable message will enqueue all messages received that are not related to

the initiated reconfiguration, and only process them after the reconfiguration

has completed.

3. If any malleable actor responds with a isUnmalleable message or a timeout

elapses without all malleable actors responding with a isMalleable message,

the director broadcasts a cancelMalleability message to all participating

actors, who will process all messages they enqueued and continue to process

messages as normal.

17

4. If all malleable actors respond with a isMalleable message, the director will

then redirect messages and redistribute data between the participating actors.

Section 2.1.3 describes implementations of data redistribution and reference

redirection for sample applications.

5. After all redirection and redistribution is finished, the director will broadcast

a malleabilityFinished message to all participating actors.

6. When an actor receives a malleabilityFinished message, it will pro-

cess all messages that it queued while doing the reconfiguration via

handleMalleabilityMessage(Message m), then continue to process mes-

sages as normal.

The remainder of this section provides example implementations of directors

and malleable actors for different applications, with an emphasis on algorithms

that can efficiently redistribute data and redirect references. It concludes with a

discussion of the complexity of modifying the applications to use the malleability

libraries.

2.1.3 Example Applications

Directors have been created for two sample SALSA applications which have

been modified to utilize the malleable actor API. Both applications are iterative.

During each iteration they perform some computation and then exchange data. The

solution is returned when the problem converges or a certain number of iterations

have elapsed. The first application is an astronomical application [38] based on data

derived from the SLOAN digital sky survey [40]. It uses linear regression techniques

to fit models to the observed shape of the galaxy. This application can be categorized

as a loosely coupled farmer/worker application. The second application is a fluid-

dynamics application that models heat transfer in a solid. It is iterative and tightly

coupled, having a relatively high communication to computation ratio.

Two types of data are defined for the purpose of this work: spatially dependent

data that is dependent on the behavior of its containing entity and spatially inde-

pendent data that can be distributed irrespective of entity behavior. For example,

18

the astronomy code has spatially independent data. It performs the summation of

an integral over all the stars in its data set, so the data can be distributed over any

number of workers in any way. This significantly simplifies data redistribution. On

the other hand, each worker in the heat application has spatially dependent data

because each data point corresponds to the heat of a point inside the solid that

is being modeled. This means that worker actors are arranged as a doubly linked

list, and each worker has a representative data slice with its neighbor having the

adjacent data slices. This makes data redistribution more difficult than in sptially-

independent data, because the data needs to be redistributed such that it preserves

the adjacency of data points.

2.1.3.1 Astronomical Data Modeling

The astronomy code follows the typical farmer-worker style of computation.

For each iteration, the farmer generates a model and the workers determine the

accuracy of this model, calculated by using the model on each workers’ individual set

of star positions. The farmer then combines these results to determine the overall

accuracy, determines modifications for the model and the process repeats. Each

iteration involves testing multiple models to determine which model parameters to

change, using large data sets (hundreds of thousands or millions of stars), resulting

in a low communication to computation ratio, allowing for massive distribution.

In the malleability algorithm for data redistribution, getDataSize returns the

total number of data points at a worker, getData removes and returns the number

of data points specified, and receiveData appends the data points passed as an

argument to the worker. Algorithm 1 is used to redistribute data in the astronomy

application or any application with spatially-independent data. The middleware de-

termines the workers that will participate in the malleability, workers, creating new

workers if needed, and the desiredWorkerData for each of these workers (for more

details, see Section 2.2). The algorithm divides workers into workersToShrink,

specifying workers that will be sending data, and workersToExpand, specifying

workers that will receive data. It then sends data from workersToShrink to

workersToMerge. Message passing, denoted by the ← operator, can be done asyn-

19

Algorithm 1: Spatially Independant Data Redistribution

Data: MalleableActor[] workers, long[] desiredWorkerData
Result: workers will have an amount of data specified by

desiredWorkerData
long[] workerData = new long[workers.length]
for i = 1 ... workers.length do

workerData[i] = workers[i]←getDataSize()

MalleableActor[] wte = {}, wts = {}
long[] edd = {}, ecd = {}, sdd = {}, scd = {}
/* split workers into the workers to shrink (wts) and the

workers to expand (wts) and create arrays with their

current (ecd, scd) and desired (edd, sdd) data size */

for i = 1 ... workers.length do
if workerData[i] < desiredWorkerData[i] then

wte.append(workers[i])
edd.append(desiredWorkerData[i])
ecd.append(workerData[i])

else if workerData[i] < desiredWorkerData[i] then
wts.append(workers[i])
sdd.append(desiredWorkerData[i])
scd.append(workerData[i])

/* send data from workers to shrink to workers to expand */

while currentShrink ≤ wts.length and currentExpand ≤ wte.length do
dts = scd[currentShrink] - sdd[currentShrink]
dtr = edd[currentExpand] - ecd[currentExpand]
toSend = min(dts, dtr)
wte←receiveData(wts←getData(toSend))
scd[currentShrink] -= toSend
dts -= toSend
dtr -= toSend
if dts == 0 then

currentShrink++

if dtr == 0 then
currentExpand++

20

chronously and messages can be processed in parallel.

In the case of a split, new actors will be created by the director and appended

to workers, and the middleware will specify the desired data for each and append

this to desiredWorkerData. In the case of a merge, the actors that will be removed

have their desired data set to 0, and after reference redirection, data distribution

and processing all messages with handleMalleabilityMessage, they are garbage

collected. The middleware ensures that the data sizes are correct and enough data

is available for the algorithm.

If n is the number of workersToShrink, and m is the number of

workersToExpand, this algorithm will produce O(n+m) getData and receiveData

messages, because after each transfer of data, either the next workerToShrink will be

sending data, or the next workerToExpand will be receiving data, and the algorithm

ends when the last workerToShrink sends the last amount of data to the last work-

erToMerge. This algorithm requires at most ⌈m
n
⌉ sequential getData messages and

⌈ n
m
⌉ sequential receiveData messages to be processed by each worker. Each worker

can perform it’s sequential getData and receiveData messages in parallel with the

other workers and all data can be transferred asynchronously and in parallel, as the

order of message reception and processing will not change the result.

Reference redirection in the astronomy application is trivial. The farmer only

needs to be informed of the new workers on a split, and of the removed workers on

a merge.

Malleability provides a significant improvement over application stop-restart

for reconfiguration of the astronomy application. To stop and restart the application,

the star data needs to be read from a file and redistributed to each node from the

farmer. Apart from the relative slow speed of file I/O, the single point of data

distribution acts as a bottleneck to the performance of this approach, as opposed to

split and merge which concurrently redistribute that is already in memory.

2.1.3.2 Simulation of Heat Diffusion

The heat application’s components communicate as a doubly linked list of

workers. Workers wait for incoming messages from both their neighbors and use this

21

data to perform the computation and modify their own data, then send the results

back to the neighbors. The communication to computation ratio is significantly

higher than the astronomy code, and the data is spatially dependent making data

redistribution more complicated.

To redistribute data in the heat application, the data must be redistributed

without violating the semantics of the application. Each worker has a set of columns

containing temperatures for a slice of the object the calculation is being done on.

Redistributing data must involve shifting columns of data between neighboring work-

ers, to preserve the adjacency of data points. For this application, because data can

only be shifted to the left or right neighbors of a worker, malleability operations are

done with groups of adjacent workers. Section 2.2.2.3 describes how the middleware

obtains groups of adjacent workers.

Algorithm 2: Spatially Dependant Data Redistribution

Data: MalleableActor[] workers, long[] desiredWorkerData
Result: workers will have an amount of data specified by

desiredWorkerData
/* obtain the amount of data at each worker */

long[] workerData = new long[workers.length]
for i = 1 ... workers.length do

workerData[i] = workers[i]←getDataSize()

current = 1
while current ≤ workers.length do

if workerData[current] < desiredWorkerData[current] then
Shift-Left(current, workers, desiredWorkerData, workerData)
/* see algorithm 3 */

else if woorkerData[current] > desiredWorkerData[current] then
Shift-Right(current, workers, desiredWorkerData, workerData)
/* see algorithm 4 */

else
current++

The getData, receiveData and getDataSize methods are implemented dif-

ferently for the heat application. The getDataSize method returns the number of

data columns that a worker has, getData removes and returns data columns from

the workers data, while receiveData adds the columns to the workers data. Options

22

Algorithm 3: Shift-Left

Data: int current, MalleableActor[] workers, long[] desiredWorkerData,
long[] workerData

Result: data is shifted left to the current worker until it has the desired
amount of data

/* the current worker needs more data so shift data left to

this worker */

dataToSend = desiredWorkerData[current]-workerData[current]
target = current+1
while dataToSend > 0 do

while workerData[target] = 0 do
target++

toSend = min(dataToSend, workerData[currentTarget])
data = workers[target]←getData(toSend, left);
workers[current]←receiveData(data, right); dataToSend -= toSend
workerData[target] -= toSend
workerData[current] += toSend

to these messages can be set to left or right, which determines if the columns are

placed or removed from: the front of the columns, left, or at the end of the columns,

right. These methods allow the director to shift data left and right over the group

of actors.

Algorithm 2 is used by the director to redistribute data in the heat application.

The arguments to the algorithm are the same as in the astronomy split algorithm and

message passing is denoted by the ← operator. The algorithm iterates through the

workers, shifting data left and right as required to achieve the desiredWorkerData.

The middleware will create new workers and/or specify workers to be removed (by

setting their desired data to 0) and determines the data that each worker should

have. It then creates a director which uses this method to redistribute data. To

preserve data consistency, unlike in the astronomy algorithms, the getData and

receiveData messages sent to each actor must be processed in the order they were

sent to that actor, however, these messages and the data transfer can still be done

concurrently.

At most O(n) getData and receiveData messages will be sent by this algo-

rithm, where n is the number of workers. This is because shifting data rightward or

23

Algorithm 4: Shift-Right

Data: int current, MalleableActor[] workers, long[] desiredWorkerData,
long[] workerData

Result: data is shifted right from the current worker, until it has the
desired amount of data

/* the current worker has too much data so shift data right

from this worker */

dataToSend = workerData[current]-desiredWorkerData[current]
/* find the rightmost worker that data needs to be shifted to

*/

target = current
totalDesired = desiredWorkerData[target]
totalCurrent = workerData[target]
while totalDesired < totalCurrent do

target++
totalDesired += desiredWorkerData[currentTarget]
totalCurrent += workerData[currentTarget]

/* find the initial amount of data to send to the target */

if totalCurrent > totalDesired then
dataToSend = (totalDesired-desiredWorkerData[target])-
(totalCurrent-workerData[target])

else
dataToSend = (desiredWorkerData[target]-workerData[target])

/* shift data right, towards the target */

source = target-1
while target > current do

while dataToSend > 0 do
toSend = min(workerData[source], dataToSend)
data = workers[source]←getData(toSend, right)
workers[target]←receiveData(data, left)
dataToSend -= toSend
workerData[target] += toSend
workerData[source] -= toSend
if workerData[source] == 0 then

source–

target–; if source = target then
source–;

dataToSend = desiredWorkerData[target]-workerData[target];

24

Heat Astronomy

Unmodified 1462 1163
Malleable 1588 1363
Malleable including Director 1874 1520

Figure 2.2: Lines of code in the unmodified (non-malleable) code, and
malleable code with and without the lines of code of the split
and merge directors. Director code can be reused by the
same type of applications.

leftward as in the algorithm involves at most 2m getData and receiveData mes-

sages, where m is the subset the data is being shifted over and data is only shifted

over a subset once. At most ⌈
max∀i, s.t. di−dsi>0(di−dsi)

min∀i, s.t. dsi−di>0(dsi−di)
⌉ receiveData messages and at

most ⌈
max∀i, s.t. dsi−di>0(dsi−di)

min∀i, s.t. di−dsi>0(di−dsi)
⌉ getData messages must be processed by each actor,

where di is the amount of data at worker i and dsi is the desired data for worker i.

Reference redirection in the heat application works the same as adding and

removing nodes using a doubly linked list. After data redistribution, workers that

have no remaining data are removed from the list of workers. After this, the director

updates the left and right references of each worker with the redirectReference

method and the removed workers can be garbage collected. All these messages can

be sent concurrently and processed in parallel.

Using malleability with the heat application provides another benefit over

application stop-restart than with the astronomy application. In astronomy appli-

cation the data points (which are star coordinates) do not change over the execution

of the application, however each iteration modifies the data points in the heat appli-

cation during the simulation of heat diffusion. Because this is the case, each worker

needs to report its data back to the farmer which has to combine the data of all the

workers and store the data to a file, and then redistribute it to the newly restarted

application. The provided algorithm allows the data to be redistributed concur-

rently using data already in memory for a large improvement in reconfiguration

time.

25

2.1.3.3 Programming Complexity

The programming complexity of extending an application to implement the

MalleableActor API, in terms of lines of code is shown in Figure 2.2. Appendix A

shows the implementation of the Malleable Actor API for the heat application.

Code added to implement the API is in bold. The astronomy application took more

lines of code to implement malleability, due to a more complex data representation.

The getData and receiveData methods make up the majority of the additional lines of

code, due to the complexity of manipulating the data structures. Director code can

be reused by the same type of applications, significantly simplifying the malleability

programming process.

2.2 Reconfiguration Policies

IOS has been used to implement different reconfiguration policies, due to the

fact that as applications become more complex, they require more complicated pro-

filing and reconfiguration to achieve performance gains from autonomous reconfigu-

ration. This section discusses the use of IOS to implement three different strategies

for autonomous migration, each with different benefits and drawbacks. The general

protocol module used by all the autonomous reconfiguration strategies is described

in Section 2.2.1. Different implementations of profiling and decision modules of

varying complexity are described. The least complex, simple random actor stealing,

is described in Section 2.2.1.1. Two more involved strategies, a heuristic based strat-

egy in Section 2.2.1.2 and a fuzzy logic based strategy in Section 2.2.1.3. Following

this, the implementation of a hierarchical strategy for autonomous malleability in

IOS is discussed in Section 2.2.2.

2.2.1 The Random Actor Stealing (RAS) Protocol

All the autonomous migration strategies presented in this section use the same

Random Actor Stealing (RAS) protocol module for IOS, which drives the recon-

figuration process and arranges the IOS nodes into a virtual network. RAS is a

autonomous reconfiguration protocol loosely based on MIT’s Cilk [13], and peer to

peer systems such as Gnutella [16]. Each protocol module contains a list of neigh-

26

bors, other IOS nodes that are running on machines participating to execute the

application. An IOS node can connect to other IOS nodes via peer servers, decen-

tralized bootstrapping servers which contain lists of other IOS nodes, or by directly

adding known IOS nodes to their neighbor list (through a command line argument

on startup). Given a protocol module with a list of neighbors, the following protocol

is used to perform autonomous reconfiguration:

• The RAS protocol module will attempt to perform reconfiguration when the

local CPU usage drops below a certain threshold percentage and there is more

than one autonomous actor present locally. When this happens, the protocol

module will grab a snapshot of the local profiling information from the profiling

module, and create a random steal request message with a time to live value.

A neighbor is chosen at random and this steal request message will be sent

to the protocol module at that IOS node. The RAS protocol module will not

send another steal request message until it has recieved a response that the

time ot live of the currently active message has been reached without finding

a successful candidate for reconfiguration, or another RAS protocol module

responds that it wishes to perform reconfiguration.

• Upon receiving a steal request message, the RAS protocol module will send

the profiling information from the steal request to the decision module and use

it to determine if reconfiguration should occur with the initiator of the steal

request message. If the decision module specifies reconfiguration should occur,

then the decision module will send reconfiguration messages to the application

that will perform the desired reconfiguration. In this case the protocol module

responds to the initiator of the steal request message that reconfiguration will

be performed. If the decision module specifies that no reconfiguration should

be done, if the time to live value is zero, the protocol module responds to the

initiator that it’s steal request was unsuccessful, otherwise the time to live

value is decremented and the steal request is forwarded to a neighbor of the

current protocol module.

27

This protocol provides allows the IOS network to form a decentralized net-

work that can efficiently provide autonomous reconfiguration with low overhead

(see Chapter 3). This protocol is also stable, in that it doesn’t incur additional

overhead when the network is heavily loaded, as no steal requests are sent out.

2.2.1.1 Simple Random Actor Stealing (S-RAS)

Simple random actor stealing (SRAS) requires a minimal amount of profiling

information, and a minimal amount of computational power to determine how au-

tonomous reconfiguration should be done. The profiling module at each IOS node

only calculates the available computational power at that node. The available com-

putational power is used by the protocol module to determine when steal requests

are generated and by the decision module to determine when autonomous reconfigu-

ration should be done. When a steal request packet is recieved, if there are multiple

actors present locally, and all the computational resources are in use (the available

computational power is approximately 0%), one of local the actors is chosen at

random and migrated to source of the steal request.

2.2.1.2 Application Topology Sensitive RAS (ATS-RAS)

Application topology aware random stealing (ATS-RAS) provides a layer of

complexity on top of SRAS. The profiling module keeps track of what theaters actors

are sending messages to. This allows the decision module to determine reconfigura-

tion that will co-locate tightly coupled actors, actors which communicate frequently,

within the same theater and locate loosely coupled actors, actors which communicate

infrequently or not at all, in separate theaters. This attempts to provide a mapping

of the application topology to physical network in a decentralized fashion without

global knowledge. The decision module computes an estimation of the number of

messages an actor would process per second in the remote theater, and compares

it to the number of messages the actor processes per second in the local theater.

The decision module chooses the actor with the best estimated increase in processed

messages per second (if one exists), and will migrate this actor to the source of the

random steal packet.

Formally, the ATS-RAS decision function can be defined as follows. Given an

28

actor A, local theater L and remote theater R, the gain of moving actor A from

theater L to theater R, denoted as G(L, R, A) is:

G(L, R, A) = M(L, A)−M(R, A) (2.1)

where M(t, a) is an estimation of the number of messages actor a will process per

second at theater t. M(L, A) can be calculated as follows:

M(L, A) =
P (A)

T (A)
(2.2)

where P (A) is the number of messages the actor has processed since the last time its

profiling information was reset, and T (A) was the time since this last reset. The IOS

profiling module periodically resets profiling information it is up to date with the

current conditions of the application and its environment. M(R, A), an estimation

of the number of messages the actor would process at R, can be calculated by:

M(R, A) =
F (A)

P (A)
+

T (A)

F (A) ∗ (S(A, L)− S(A, R))
(2.3)

where F (A) is the average number of FLOPS actor A takes to process a message

and S(A, t) is the number of messages actor A has sent to theater t since the last

time its profiling information was reset.

The ARS decision function provides a measure of how fast an actor will process

messages in theater that is the source of the steal packet. If the actor will process

messages faster remote, it is migrated to the source of the steal packet. The results

section 3 shows that ARS results in slightly more overhead than RS, but is much

more accurate in load balancing applications that involve inter-actor communication,

providing significant performance increases.

2.2.1.3 Fuzzy Logic Controlled RAS (FLC-RAS)

Fuzzy logic controlled random actor stealing (FLC-RAS) uses a decision mod-

ule which generates for each actor a measure of the gain in communication and a

measure of the gain in computation which would result from moving that local actor

29

Notation Explanation

pl(A) Percentage of the CPU used by actor A at the local theater l
pf(A) Percentage of the CPU available at the remote theater f
cl(A) Communication (in bytes) done by actor A to all other actors

at the local theater l
cf(A) Communication (in bytes) done to all actors at remote theater f
gp(A, l, f) The benefit in computation gained by migrating actor A from

local theater l to remote theater f.
gp(A, l, f) = pf(A)− pl(A)

gc(A, l, f) The benefit in communication gained by migrating actor A from
local theater l to remote theater f.
gc(A, l, f) = cl(A)− cf(A)

Table 2.2: Gain Measurement Equations

to the source of the reconfiguration request message. A fuzzy membership function

is then applied to both these values, and used within a set of rules to generate

an approximate value of how desirable that reconfiguration is. The decision mod-

ule will then inform the protocol agent of the most desirable reconfiguration over

a certain threshold (if one exists), or otherwise inform the protocol agent that no

reconfiguration should be done.

The measures of the gain from actor migration are defined in Table 2.2. Both

the communication and computation gain are centered at 0 for no difference, with

a negative value being a loss, and a positive value being a gain. However, these

values are not normalized and will have different scales for different applications,

depending on the amount of communication and computation being done.

Membership functions are then applied to each of these measures, one mem-

bership function for the measure being good, and another for the measure being

bad. These membership functions are similar to trapezoidal membership functions,

except each is open ended. Figure 2.3 gives a graphical representation of the good

and bad membership functions, and Table 2.3 provides their mathematical repre-

sentation. Both membership functions rely on two cutoff values, one determining

when the measure is definitely bad, and another determining when the measure is

definitely good. Currently, these values are tuned by the application designer.

The fuzzy values generated from the membership functions above are:

30

Notation Explanation

gr The gain measurement for resource r. For the scope of this work,
r can be either communication or computation.

tr,bad The cutoff for the measurement of resource r being definitely bad.
tr,good The cutoff for the measurement of resource r being definitely good.
good(gr) The fuzzy value designating the ”goodness” of this measurement of

resource r.
if gr < tr,bad then good(gr) = 0

if tr,bad < gr < tr,good then good(gr) =
gr−tr,bad

tr,good−tr ,bad

if tr,good < gr then good(gr) = 1
bad(gr) The fuzzy value designating the badness of resource r.

badgr = 1− good(gr)

Table 2.3: Good and Bad Membership Function Definitions

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
good
bad

Figure 2.3: Graphical representations of the good and bad membership
functions, with the bad cutoff at −2.5 and the good cutoff at
2.5.

31

1. communication will improve (cgood)

2. communication will be impaired (cbad)

3. computation will improve (pgood)

4. computation will be impaired (pbad)

These use a Sugeno style method of combination, with the following rule set, using

the and (or minimum) fuzzy operator:

• if cbad and pbad then 0

• if cgood and pbad then
cgood+pgood

2

• if cbad and pgood then
cgood+pgood

2

• if cgood and pgood then 1

Whichever rule satisfies the conditional the most is used to determine the mea-

sure of desirability to move this actor to the source of the reconfiguration message.

It should be noted that applying these rules returns a value between 0 and 1, where 0

is definitely do not move, and 1 is definitely move. The threshold used to determine

the minimum desirability required for migration is 0.5. It is possible to weight the

return values for the middle two rules, however this is done by modifying the cutoff

values used in the membership functions, instead of introducing two new values to

be tuned.

Tuning the cutoff values of the membership function described is essential to

obtaining good reconfiguration results. Increasing the cutoff values would weight

the value of that resource (computation or communication), because better gain

measures would still be considered bad. Appropriate cutoffs for communication and

computation gains needed to be found, because if communication is weighted too

heavily, all the actors will converge to a single processor, minimizing all remote

communication. Likewise, if computation was weighted too heavily, the actors will

disperse evenly amongst all the processors, but there would be little attention paid

to co-locating communicating actors, so a large of overhead will be incurred from the

32

large amount of remote communication. Additionally, the distance between the good

and bad cutoffs needs to be modified, because the communication and computation

values needed to be weighted correctly to achieve a stable result. If the cutoffs

are incorrect, near optimal configuration solutions are reached, but actors would

still migrate between similar theaters, resulting in an unstable configuration. Actor

migration can be an expensive operation, so it is possible for unstable configurations

to lead to performance degradation.

2.2.2 Hierarchical Grid-Aware Malleability

The IOS middleware was used to implement a decision module that au-

tonomously creates directors to reconfigure applications using malleability, in re-

sponse to changes in the environment. Developers specify how to make entities mal-

leable through the MalleableActor API and can use previously defined directors or

create new ones which specify how to redistribute data and redirect references. This

allows the middleware to determine when to perform malleability and with what

actors. When the availability of resources in an execution environment changes,

the application needs to be reconfigured to ensure good performance. However,

reconfiguration cannot be oversensitive to resource availability, which can result in

the application constantly being reconfigured, degrading performance. In general,

resource availability can change when processors become available or unavailable,

or due to applications competing for resources on the same processors.

This section continues with a description of the policy used to determine what

and when to reconfigure in Sections 2.2.2.1 and 2.2.2.2. Finally, restrictions the

middleware places on malleability to prevent performance degradation, as well as

the role application behavior can play in determining which entities can participate

as a group in malleability and how the middleware can autonomously overcome this

are discussed in Section 2.2.2.3.

2.2.2.1 A Hierarchical Malleability Policy

Malleability, as implemented, can be performed by any number of actors. The

severity of change in resource availability can be reflected by the change in granular-

ity. Just as the grid is arranged hierarchically with groups of processors in different

33

computing nodes making clusters, and groups of clusters forming grids, malleability

can be done hierarchically - at the node level to accomplish memory hierarchy and

processor optimization, at the cluster level for intra-cluster changes in processor

availability, and at the grid level for changes in cluster availability. Grid-level re-

configuration can be done at different scales as well, on different subsets of clusters

or the entire grid depending on what is feasible for the application. In all cases of

reconfiguration, the same mechanics are used, just at different scales, which allows

for a simple but effective strategy for application reconfiguration. This section de-

scribes the general problem to determine actor granularity for an application, then

describes how a hierarchical strategy can be used to solve this problem efficiently

on a dynamic environment.

IOS agents manage data redistribution for processors at their local node. The

protocol module arranges IOS agents hierarchically [32]. Groups of IOS agents elect

a cluster manager to perform data redistribution among themselves and groups of

cluster managers will elect grid managers to perform data redistribution among the

clusters represented by the cluster managers. If required, multiple grid managers

can elect a super-grid manager, and so on. A manager views its subordinate IOS

agents as collective individuals, and redistributes data between them if the average

iteration time of the slowest agent is some threshold slower than the IOS agent with

the fastest average iteration time. A manager will also perform reconfiguration if one

of it’s subordinates and the group of agents managed by that subordinate become

unavailable, such as in the case of a cluster becoming unavailable. If a manager needs

to become unavailable, but not the group of agents it manages, that group of agents

will select another manager which will perform reconfiguration among that group

in response to the old manager becoming unavailable. If the manager determines

it will perform reconfiguration, it first polls its subordinate agents to calculate the

total amount of data it is responsible for, dt, and the available processing power,

pai
of each of it’s subordinate agents ai. pai

is determined by the sum over all ai’s

managed processors, mpai
, of the available percentage of cpu, mpai,a, multiplied by

that processors clock rate, mpai,ghz:

34

pai
=

∑

∀mpai

mpai,ghz ∗mpai,a (2.4)

A user defined iteration operations estimation function, f(d), estimates the

number of operations performed by an iteration given an amount of data d. This

can reflect the fact that the application scales linearly, polynomially or exponentially

with respect to data size. To determine the amount of data that should be at each

of its subordinate agents, dai
, given the normalized collective processing power of

an agent p′ai
, the manager solves the following system of equations:

p′ai
=

pai
∑n

i=1 pai

(2.5)

f(da1
)

p′a1

=
f(da2

)

p′a2

= ... =
f(dan

)

p′an

(2.6)

Subject to restrictions:

n
∑

i=1

dai
= dt (2.7)

da1
, da2

, ..., dan
> 0 (2.8)

The manager will then request the desired actor size for each actor managed

by its subordinate agents given the amount of data that the manager will have after

the reconfiguration, dai
. If the subordinate agent is also a manager, it solves the

above system of equations for its subordinates and requests the desired actor size

for the actors at each of its subordinate agents. At the lowest level of the hierarchy,

the size of individual actors at each processor is determined. With dpi
, the data

that should be at processor pi known, the desired granularity for entities on that

processor, gpi
, can be calculated. M is a user-defined variable that specifies how

efficiently the application can utilize the memory hierarchy. M can be set to 1 for

applications that have highly complex data patterns which do not gain any benefit

from memory caching mechanisms. For applications which can gain some benefit

from caching mechanisms, M can be set to reflect how many times larger than the

cache actor data can be and still effectively use that cache. For applications that

35

have optimized data access that always uses the fastest level of memory hierarchy,

M can be set to infinity. Given cj,pi
, the memory available in the level j cache of

processor pi:

gpi
=

{min∀cj,pi
cj,pi
∗M, s.t.

dpi

cj,pi
∗M

< maxe

dpi

maxe
, otherwise

}

(2.9)

This determines the granularity an actor will need to run in the fastest level

of memory hierarchy, without creating a number of entities that would surpass a

user specified limit on entities per processor maxe. Given dpi
and gpi

, the number

of entities at that processor, epi
, can be determined as follows:

epi
= max(

dpi

gpi

, 1) (2.10)

Solving for the data size of actors propagates down the hierarchy, and then

they gather the desired actor data size for all actors involved in the reconfiguration,

and respond back up the hierarchy to the initiator of the reconfiguration. The

manager that initiated the reconfiguration then creates a director to perform the

reconfiguration between all involved actors. If required due to a large number of

actors being involved in the reconfiguration, multiple directors with different subsets

of the group can be used.

This strategy allows the lowest level of the hierarchy to handle the most com-

mon changes in resource availability. Fluctuations in performance at individual

processors are handled locally by that node’s IOS Agent if it is a multi-processor

node, or by that processors cluster manager otherwise. This allows reconfiguration

to be done more efficiently than if it was done on an application wide scale. Ad-

ditionally, these small scale fluctuations can be identified and responded to faster

because they are done locally. Larger fluctuations in performance, such as an entire

cluster or large number of processors at a cluster becoming available or unavailable

can be handled by large scale reconfiguration, done at the grid level. Section 3.4

discusses the performance of node, cluster and grid level reconfiguration.

36

2.2.2.2 Determining Data Redistribution

For most iteration operations estimation functions, a solution to the system of

equations described by Equations 2.6, 2.7 and 2.8 can be solved algebraically. This

allows the data size for each subordinate agent (or processor) to be determined in

linear time. When the number of operations scales linearly with respect to data

size, such as in the applications discussed in this paper, the linear iteration time

estimator can be defined by an estimation of iteration start up operations, b ≥ 0,

and a scaling factor, a ≥ 0:

f(d) = a ∗ d + b (2.11)

Then all dai
can be solved for by setting all

f(dai
)

p′ai

equal to some variable y,

which can then be determined.

a ∗ da1
+ b

p′a1

=
a ∗ da2

+ b

p′a2

= ... =
a ∗ dan

+ b

p′an

= y, dai
=

y − b
p′ai

a
p′ai

(2.12)

dt =
n

∑

i=1

dai
=

n
∑

i=1

y − b
p′ai

a
p′ai

(2.13)

y =
a ∗ dt + n ∗ b

∑n

i=1 p′ai

,

n
∑

i=1

p′ai
= 1, y = a ∗ dt + n ∗ b (2.14)

Thus the data for each agent ai can be determined:

dai
= p′ai

∗ (dt +
n ∗ b

a
)−

b

a
(2.15)

Table 2.4 gives a simple example of using these functions on four different

processors. Assuming no start-up cost (b = 0), and a linear scaling coefficient of 2

(a = 2), this table demonstrates the amount of data that each processor would be

assigned (assuming a total amount of 10GB data).

37

Sun (0.8GHz) AIX (1.7GHz) Opteron (2.2GHz)

Number of Actors 3 5 8
pai

′ 0.17 0.36 0.47
Data Assignment (dai

) 1.7GB 3.6GB 4.7GB
Data per Actor 0.57GB 0.72GB 0.59GB

Table 2.4: An example of using the malleability data distribution func-
tions. For 10GB data, assuming no start-up cost (b = 0) and
a linear scaling coefficient of 2 (a = 2), this table provides the
amount of data per processor and per actor for the given three
machines.

2.2.2.3 Restrictions on Malleability

In certain situations, application performance may degrade by performing mal-

leability. A split may degrade application performance if granularity becomes too

small, causing the additional communication and context switching overhead from

entities to become more expensive than the computational advantage of using ad-

ditional resources. Another user-specified variable, minimum actor data, specifies

the minimum amount of data an actor should have. If malleability will reduce the

amount of data at actors below that threshold (assuming that actor is not being

removed), the malleability will not occur. Another instance where a split can de-

grade application performance, in the case of an iterative application, is when a new

cluster with a smaller memory hierarchy joins the computation. The application

can split and the data size of the actors at the new cluster will fit into a slower

cache than on the other clusters. This will degrade the performance of the entire

application, because each iteration has to wait for the slow cluster to finish com-

putation. To determine if this is the case, in applications where memory hierarchy

plays a role in determining performance, after determining the size of the data to

be sent to the new cluster, that cluster manager determines if the entities will use

a comparable level of memory hierarchy to the other clusters. If not, splitting to

that cluster is disabled. Similarly, a merge could increase the data at the remaining

actors, resulting in increased use of slower memory. However, in this case the merge

is still performed, because the resources need to be freed, but processor-level mal-

leability will re-split at processors that would suffer from performance degradation,

if possible.

38

For some applications, such as the heat application, the groups of actors that

can perform malleability depend on the behavior of the application. For example,

in the heat application, malleability can only be done with groups of adjacent en-

tities, to ensure that the data in the new set of entities is made of adjacent slices.

Application-topology sensitive migration [19], which co-locates communicating and

tightly coupled entities, is leveraged to autonomously collocate adjacent entities on

clusters and processors. Before malleability is performed, the director determines

if the reconfiguration is possible. If the group is malleable (in the case of the Heat

application, all entities are adjacent), the reconfiguration proceeds. If the group

is not malleable, the middleware waits for a period of time for migration to occur

to collocate the entities, then tries again. For other applications with behavioral

restrictions on malleability, the process is the same: an IOS decision agent is used

that autonomously co-locates entities with migration so malleability can occur.

CHAPTER 3

Results

This chapter evaluates the different autonomous reconfiguration strategies presented

in the thesis. IOS was evaluated using different sample applications and benchmarks

on various environments. Section 3.1 describes the different environments used in

the evaluations. The overhead incurred by the different profiling and reconfiguration

strategies is examined in Section 3.2. The benefits of using the autonomous recon-

figuration strategies presented for migration with different types of applications are

examined in Section 3.3. Reconfiguration using application stop-restart is compared

to malleability in Section 3.4. Lastly, this chapter concludes with Section 3.5 pro-

viding a comparison of autonomous migration to autonomous malleability for the

iterative heat and astronomy applications discussed in Section 2.1.

3.1 Test Environments

Four different clusters were used to evaluate the performance and overhead

of migration and malleability. The first, the AIX cluster, consists of four quad-

processor single-core Power-PC processors running at 1.7GHz, with 64KB L1 cache,

6MB L2 cache and 128MB L3 cache. Each machine has 8GB RAM, for a total

of 32GB ram in the entire cluster. The second cluster, the single-core Opteron

cluster, consists of twelve quad-processor, single-core Opterons running at 2.2GHz,

with 64KB L1 cache and 1MB L2 cache. Each machine has 16GB RAM, for a total

of 192GB RAM. The third cluster, the dual-core Opteron cluster, consists of four

quad-processor, dual-core opterons running at 2.2GHz, with 64KB L1 cache and

1MB L2 cache. Each machine has 32GB RAM, for a total of 128GB RAM. The last

cluster, the SUN Solaris cluster, consists of four dual-processor, single-core SUN

Solaris processors running at 800MHz, with 64KB L1 cache and 8MB L2 cache.

Each machine has 2GB RAM, for a total of 8GB RAM.

The single- and dual-core Opteron clusters are connected by 10GB/sec band-

width, 7usec latency Infiniband, and 1GB/sec bandwidth, 100µsec latency Ethernet.

39

40

Figure 3.1: Overhead of using autonomous middleware and the
MalleableActor interface for the heat and astronomy appli-
cations. The application was tested with the same configura-
tions with different amounts of parallelism, with and without
the middleware and MalleableActor interface.

Intra-cluster communication on the AIX and Sunclusters is with 1GB/sec band-

width, 100µsec latency Ethernet, and they are connected to the each other and the

Opteron clusters over the RPI campus wide area network.

3.2 Overhead

To evaluate the overhead of using the IOS middleware, the heat and astron-

omy applications were run with and without middleware and profiling services. The

applications were run on the same environment (the AIX cluster) with the same con-

figurations, however autonomous reconfiguration by the middleware was disabled.

Figures 3.1 and 3.2 shows the overhead of the middleware services. The average

overhead over all tests for the applications was between 1-2% (i.e., the application

was only 1-2% slower using the middleware).

Figure 3.3 demonstrates the low overhead of implementing the MalleableActor

41

Figure 3.2: Overhead of using autonomous middleware and the
MalleableActor interface for the heat and astronomy appli-
cations. The application was tested with the same configura-
tions with different amounts of parallelism, with and without
the middleware and MalleableActor interface.

API. The heat application was run on the four clusters with and without implemet-

ing the MalleableActor API, with 500KB and 10MB of data. For larger data sizes

and the astronomy application, overhead was negligible. For each environment, the

heat application was run with one malleable actor per processor, so 8 actors on

the SUN cluster, 16 on the AIX cluster, 32 on the 4x2 Opteron cluster, and 48 on

the 4x1 Opteron cluster. For 500KB the overhead ranged from 2% to 7.5%, while

for 10MB the overhead was below 1%. For 500KB of data, the 4x2 Opteron cluster

had the highest overhead because it performed the computation and communication

the fastest as the application could not scale to the 4x1 Opteron cluster with that

amount of data. These results show that for typical grid applications, which have

much larger data sizes than those evaluated, the overhead of using malleability is

negligible.

42

Figure 3.3: MalleableActor overhead for the heat application on the Sun,
AIX, 4x1 Opteron and 4x2 Opteron cluster environments,
with one actor per processor for 8, 16, 32 and 48 malleable
actors respectively. The heat application was run with 500KB
and 10MB data, demonstrating the effect of communication
and computation speed on overhead. For the Astronomy ap-
plication and larger data sizes, overhead was negligible.

3.3 Migration

Autonomous migration using S-RAS and ATS-RAS was evaluated using bech-

marks with representative communication topologies. Each benchmark consists of

actors communicating in different topologies, after an actor receives communica-

tion from its neighbors it performs computation before sending messages back to

its neighbors. Three communicating benchmarks were tested, with actors arranged

in sparse (communicating neighbors form a randomly generated graph), tree, and

hypercube topologies. A fourth benchmark, an unconnected topology, was also

used to simulate massively parallel applications. These four benchmarks were eval-

uated on the Solaris cluster and compared to a typical static round robin distri-

bution. Throughput, or number of messages processed with respect to time, was

measured to compare performance. Each message processed performed the same

43

Figure 3.4: S-RAS and ATS-RAS compared to a round robin distribution
of actors for the unconnected benchmark. S-RAS performs
the best due to the low profiling overhead as the unconnected
topology does not suffer performance degradations from com-
munication overhead.

amount of computation, so improved throughput is improved application perfor-

mance. Throughput was calculated every five seconds to minimize overhead from

data collection.

Figure 3.4 shows the improvement in throughput as the application is recon-

figured by the IOS middleware using S-RAS and ATS-RAS. For the S-RAS and

ATS-RAS experiments, the application was loaded onto a single initial processor

and the middleware was allowed to reconfigure it. Reconfiguration with both RAS

and ATS-RAS was quick, distributing actors over nodes and reaching a stable result

where no migration occured within 20 seconds (fluctuations in throughput were due

to other executing system processes and communication time irregularity). S-RAS

reconfigured the application to perform within 4% of the throughput of round robin

(which is optimal for this benchmark) and ATS-RAS within 7%. This test shows

that the additional profiling overhead of ATS-RAS is makes S-RAS a better choice

44

Figure 3.5: S-RAS and ATS-RAS compared to a round robin distribu-
tion of actors for the sparse benchmark. ATS-RAS performs
the best due to profiling communication patterns and recon-
figuring to minimize communication overhead.

for reconfiguration of massively parallel applications.

The sparse topology benchmark was tested in the same fashion as the uncon-

nected benchmark. All actors were loaded onto the same initial processor and the

IOS middleware reconfigured the application with S-RAS or ATS-RAS. Figure 3.5

gives a comparison of these results a round robin distribution of actors. Stabiliza-

tion occured quickly, within 40 seconds. While S-RAS was unable to account for

the communication topology of the application and actually degraded performance,

ATS-RAS was able to provide a significant performance increase by colocating actors

which communicated frequently.

The tree and hypercube benchmarks were also tested against round robin dis-

tribution (see Figures 3.6 and 3.7). As with the sparse benchmark, S-RAS was

unable to account for the communication topology of these applications and de-

creased performance by reconfiguring the application based on computational load

alone, which resulted in excessive communication because S-RAS did not stabilize.

45

Figure 3.6: S-RAS and ATS-RAS compared to a round robin distribu-
tion of actors for the tree benchmark. ATS-RAS was able to
improve performance, while S-RAS was not. Neither were
able to obtain a stable configuration.

ATS-RAS was able to improve performance in both the hybercube and tree bench-

marks compared to round robin, however it was unable to attain a stable result for

the tree benchmark due to the complexity of the communication topology. Even

though the result for the tree benchmark was unstable, it still performed better

than round robin. These results demonstrate the ability of ATS-RAS to account for

communication topology and determine configurations that perform well for the ap-

plication without using distributed knowledge. S-RAS provides a good alternative

for applications that are not communication bound, with minimal overhead from

profiling and decision making.

FLC-RAS was tested against ATS-RAS on the AIX cluster using the heat

application. Two different tests were run (see Figures 3.8 and 3.9). In the first,

the heat application was loaded entirely onto a single processor, then using either

ATS-RAS or FLC-RAS, IOS migrated the actors of the heat application to improve

performance. The heat application was also run with the known optimal configura-

46

Figure 3.7: S-RAS and ATS-RAS compared to a round robin distribution
of actors for the hypercube benchmark. ATS-RAS was able
to improve performance while S-RAS was not. ATS-RAS was
able to obtain a stable configuration while S-RAS was not.

tion. While ATS-RAS stabilized more quickly (performing no additional migration),

after only 35 iterations, the configuration was 1.4 times slower than the optimal con-

figuration. FLC-RAS stablized after 75 iterations, however the configuration was

less than 1.02 times slower than the optimal configuration, performing well within

the overhead measured in Section 3.2.

In the second test, the actors in the heat application were distributed ran-

domly across all the processors in the AIX cluster. Again, IOS using ATS-RAS or

FLC-RAS was used to autonomously reconfigure the application. These were both

compared against the initial random configuration, and the known optimal configu-

ration. Again, ATS-RAS stabilized more quickly, after 20 iterations, however it was

1.87 times slower than the optimal configuration. Compared to the initial random

configuration which was 2.11 times slower than optimal, this was not a great im-

provement in performance. FLC-RAS stablized slower, after 45 iterations, however

it was less than 1.01 times sloewr than optimal, again performing well within the

47

Figure 3.8: FLC-RAS and ATS-RAS compared to the optimal configura-
tion. The application was loaded onto a single processor and
then the middleware performed reconfiguration until a stable
point was reached.

measured overhead.

In both tested cases, FLC-RAS was able to attain the optimal configuration

with minimal overhead. Stablization was slower than ATS-RAS, because ATS-RAS

tries to monotonically improve performance, so it reaches local optimums. FLC-

RAS is able to reconfigure itself in a fashion that does not have local minima,

always reaching the optimal configuration.

3.4 Malleability

Because malleability is performed hierarchically, reconfiguration time was eval-

uated for cluster and grid-level malleability. Malleability reconfiguration time is

compared to application stop-restart. In all the evaluations, the reconfiguration re-

sults in the same number of actors and the same data distribution. Cluster-level

reconfiguration was done with the applications loading 10MB data and grid-level

reconfiguration with 100MB, 200MB and 300MB of data. It is important to note

48

Figure 3.9: FLC-RAS and ATS-RAS compared to the optimal configu-
ration. The application’s actors were loaded onto random,
then the middleware performed reconfiguration until a sta-
ble point was reached. The performance of the initial random
configuration is also shown.

that stop-restart must be done over the entire application, so while malleability can

reconfigure an individual node or cluster, stop-restart must stop and restart the

entire application to accomplish the same reconfiguration. For an application dis-

tributed over a grid, processor-level and cluster-level reconfiguration is not possible

for stop-restart without incurring grid-level reconfiguration times.

Figure 3.1 compares the reconfiguration time using stop-restart and malleabil-

ity to the runtime and iteration times of the astronomy and heat applications. The

values given show the range of reconfiguration times using the clusters in the de-

scribed test environment. Typical runtime and iteration time show the optimal

values for the application if the given environment is static with all resources avail-

able. Both applications were run for a typical amount of iterations. The astronomy

application was run 200 iterations, and the heat application was run for 1000 iter-

ations. Iteration time for the astronomy application can vary drastically based on

49

Heat Astronomy

300MB 10MB 300MB 10MB

Avg. Runtime 50-200m 1.5-50m 40+h 2-40h

Avg. Iteration 3-10s 0.1-3s 10+m 30s-10m

Grid-Level

Stop-Restart 1.5-3m n/a 30-50m n/a

Malleability 2-15s n/a 20-50s n/a

Cluster-Level

Stop-Restart n/a 4-35s n/a 15-30s

Malleability .5-5s .2-2s 5-20s 1-4s

Node-Level

Malleability 0.01-0.2s 0.01-0.2s 0.05-0.3s 0.05-0.3s

Table 3.1: Reconfiguration time compared to application iteration time
and runtime. The applications were run on the all three clus-
ters described in Section 1.1 with 300MB data, and reconfigu-
ration time was measured. The applications were also run on
each cluster individually with 10MB data, and reconfiguration
time was measured. The values given show typical iteration
and runtime for these environments given various input pa-
rameters.

input parameters which effect the complexity of the computation, as shown in Fig-

ure 3.1. Both astronomy and heat were run on all three clusters with 300MB data,

and grid-level, cluster-level and processor-level reconfiguration times were measured.

Reconfiguration time was also measured for running the applications with 10MB

data on the different clusters in the test environment. Differences in reconfiguration

time reflect the different network and processing speeds in the test environment. The

results show that malleability is significantly faster than stop-restart in all cases, and

can also do finer grained reconfiguration very efficiently, in much less than the time

of an iteration.

Grid-level reconfiguration time was measured by making clusters available and

unavailable to the heat and astronomy applications (see Figures 3.11 and 3.10). The

heat and astronomy applications were executed on the initial cluster with different

amounts of data, then another cluster was added. The time to reconfigure using

stop-restart and split was measured. Then a cluster was removed, and the time to

reconfigure using stop-restart and merge was measured. The AIX cluster was added

50

Figure 3.10: Performance of grid-level reconfiguration using the heat and
astronomy applications with different data sizes over local
and wide area networks. For reconfiguration over a WAN,
the AIX cluster was added and removed from 4x1 opteron
cluster, while the 4x2 opteron was added and removed for
reconfiguration over a LAN. Stop-restart+ shows reconfigu-
ration using stop restart when a cluster was made available,
and stop-restart- measures the reconfiguration time for re-
moving the cluster. Split shows the time to reconfigure the
application using split when a cluster was added, and merge
shows the time taken to when a cluster was removed.

and removed from the 4x1 Opteron cluster to measure reconfiguration time over a

WAN, and the 4x2 Opteron cluster was added and removed for the other set to

measure reconfiguration time over a LAN.

For the astronomy application, reconfiguration time was comparable over both

the LAN and WAN, due to the fact that very little synchronization needed to be

done by the reconfiguration algorithms and the middleware sent less data to the AIX

cluster than the 4x2 Opteron cluster. Due to the differences in speed of the clusters,

the middleware transferred 20% of the total data to the AIX cluster, and 40% of

the total data to the 4x2 Opteron cluster. Malleability is shown to be more scalable

51

Figure 3.11: Performance of grid-level reconfiguration using the heat and
astronomy applications with different data sizes over local
and wide area networks. For reconfiguration over a WAN,
the AIX cluster was added and removed from 4x1 opteron
cluster, while the 4x2 opteron was added and removed for
reconfiguration over a LAN. Stop-restart+ shows reconfigu-
ration using stop restart when a cluster was made available,
and stop-restart- measures the reconfiguration time for re-
moving the cluster. Split shows the time to reconfigure the
application using split when a cluster was added, and merge
shows the time taken to when a cluster was removed.

than application stop-restart as data size increased. Over the LAN, splitting went

from being 46x to 73x faster as data size increased from 100MB to 300MB, while

merging improved 38x to 57x. Malleability is shown to be even more scalable over a

WAN, as split improved reconfiguration time 34x to 103x and merge improved 23x

to 67x as data size increased from 100MB to 300MB.

The heat application also gained significant reconfiguration time improvements

using split and merge. Over a LAN, split improved from 30x to 45x faster, and

merge improved from 34x to 61x faster than stop-restart as data size increased from

100MB to 300MB. Due to the additional synchronization required by the spatially-

52

Figure 3.12: Autonomous reconfiguration using malleability and migra-
tion compared to autonomous reconfiguration only using
migration. Every 6 iterations, the environment changed,
from 8 to 12 to 16 to 15 to 10 to 8 processors. The last
8 processors removed were the initial 8 processors. A non-
reconfigurable application would not scale beyond 8 proces-
sors, nor be able to move to the new processors when the
initial ones were removed.

dependant data reconfiguration algorithms, split and merge did not improve as

significantly over the WAN. Reconfiguration time using split increased 9x to 13x

and increased 7x to 9x using merge, as data increased from 100MB to 300MB.

The astronomy application was able to gain more from split and merge because

of the difficulty of accessing and reconfiguring its more complex data representation.

The concurrency provided by split and merge allowed this to be divided over multi-

ple processors, resulting in the much greater improvement in reconfiguration time.

However, for both the heat and astronomy applications, these results show that

using malleability is a highly scalable and efficient reconfiguration method.

53

3.5 Migration vs Malleability

The benefit of malleability compared to migration alone is demonstrated by ex-

ecuting the astronomy application on a dynamic environment. This test was run on

the AIX cluster. In one trial only migration is used, while the other used malleability.

Figure 3.12 shows the iteration times for the application as the environment changes

dynamically. After 5 iterations, the environment changes. Typically, the application

reconfigures itself in one or two iterations, and then the environment stays stable for

another 5 iterations. For both tests, the dynamic environment changed from 8 to

12 to 16 to 15 to 10 and then back to 8 processors. The 8 processors removed were

the initial 8 processors. Iteration times include the time spent on reconfiguration,

resulting in slower performance for iterations when the application was reconfigured

due to a change in the environment. Autonomous reconfiguration using malleability

was able to find the most efficient granularity and data distribution, resulting in

improved performance when the application was running on 12, 15 and 10 proces-

sors. Performance was the same for 8 and 16 processors for both migration and

malleability, as migration was able to evenly distribute the workers in both environ-

ments. However, for the 12 processor configuration the malleable components were

6% faster, and for the 15 and 10 processor configurations, malleable components

were 15% and 13% faster respectively. Overall, the astronomy application using

autonomous malleability and migration was 5% faster than only using autonomous

migration. Given the fact that for half of the experiment the environment allowed

autonomous migration to evenly distribute workers, this increase in performance is

considerable. For more dynamic environments with a less easily distributed initial

granularity, malleability can provide even greater performance improvements.

The configurations available to a fixed number of migrating entities was com-

pared to using malleability for the heat application. Figure 3.13 compares the per-

formance obtained by using malleability to migration using 200 and 400 fixed equal

size entities using 200MB data, malleability used a granularity of one entity per pro-

cesor. Different numbers of actors were used for migration to illustrate the tradeoff

of more entities allowing better load distribution, but increasing overhead. Mal-

leability resulted in a 40% to 80% performance increase over 200 migrating entities,

54

Figure 3.13: Performance of the heat application on dynamic environ-
ments using malleability and migration was tested. Initally,
for migration, 200 or 400 equal sized actors were loaded on
both Opteron clusters and the IOS middleware redistributed
the actors. For malleability, 80 actors were loaded and the
data was redistributed. The Opteron column shows the av-
erage iteration time for these configurations. Following this,
clusters were added to the computation. Opteron+AIX,
Opteron+Sun, and Opteron+Sun+AIX show the perfor-
mance after IOS migrated actors or performed malleability,
when the AIX, SUN or both the AIX and Sun clusters were
added, respectively.

and a 180% to 400% increase over 400 migrating entities. Additionally, malleability

was able to improve performance when the slower Sun and AIX clusters were added

to the computation, while migration was not. This was because actors on those

processors were assigned significantly less data than the even distribution used by

migration strategies because of the additional overhead of WAN communication and

their slower processing speed, and malleability only required one actor per proces-

sor resulting in less overhead. These results show that malleability can be much

more effective than migration in performing load balancing for dynamic and highly

55

hetereogeneous networks.

CHAPTER 4

Related Work

A large body of research addresses the problem of enabling efficient utilization of

large scale computing systems. Different middleware technologies provide scheduling

for multiple applications or dynamic reconfiguration to balance the load of individ-

ual applications. Also, different grid architectures and toolkits are providing new

platforms to enable development of grid computing systems. In many cases, the re-

search in these areas overlaps, as certain schedulers also provide load balancing for

their applications and different dynamic reconfiguration strategies can be applied

over multiple running applications.

Abu-Ghazaleh and Lewis describe the concept of self-organizing grids [3],

which eliminate the administrative bottlenecks limiting the expansion of current

grids to truly massive scales. The administrative bottlenecks described that would

require automation are:

• automatic discovery of the network structure,

• automatic monitoring of grid resources for scheduling and load balancing,

• automated application deployment and scheduling, and

• fault tolerance strategies to protect against resource failures.

In addition to the four described in that work, as a fifth we suggest security

features to prevent against intentional or unintentional malicious use.

Most research for grid environments involves providing toolkits, middleware

services or other tools which enable grid autonomy [47]. SALSA enables distribu-

tion on heterogeneous environments by leveraging the Java Virtual Machine. By

providing reconfiguration options to application developers, either transparently via

migration or with some user input via malleability, the SALSA programming lan-

guage has been extended to facilitate the easy development of highly reconfigurable

grid-scale applications. The work on IOS utilizes these reconfiguration tools, which

56

57

can be implemented in any language, to allow for autonomous reconfiguration in

response to dynamic changes in the applications environment. This approach effec-

tively seperates the concerns of application development from many of the challenges

of large scale deployment.

4.1 Large-Scale Distributed Computing

The Globus Toolkit [22] provides a set of tools and discovery services for appli-

cations running on grids. These tools enable users to develop and deploy applications

and obtain information about resource availability. While not providing an execu-

tion environment, Globus does allow grid users to schedule and deploy applications

on a heterogeneous environment by providing the required information to determine

what type of binaries to run and when to run them.

In contrast to Globus, which provides a set of tools to enable grid computing,

Legion provides a virtual operating system which operates over a distributed set of

host computing nodes [34, 23]. Legion supports multiple programming languages

and uses a single unified object model and programming-level abstractions to hide

the complexity of the underlying grid from the user and simplify the development

process. Legion also provides a web-based user interface for job scheduling, moni-

toring and visualization.

Other approaches, such as BOINC [8] provide execution environments for ge-

ographically wide-spread volunteer computing hosts. Processors for these environ-

ments are generally slower and more heterogeneous, but still can be effectively har-

nessed for massively parallel and computationally intensive problems. In general,

BOINC allows applications to utilize otherwise unused CPU cycles by running as a

screen saver or by letting users volunteer a percentage of their CPU.

Parashar et al have used the concept of autonomic computing to build a grid

computing framework [37] called Automate. Autonomic computing is based off of

biological systems, in that it sees applications as having viability conditions, and en-

ables them to autonomously respond to environmental changes to keep different pa-

rameters of the application within these viability conditions. Automate has its own

programming model [36], where applications are made up of autonomic elements,

58

which separate function, control and allow for dynamic insertion and management

of rules which come in the form of if-then expressions.

WaveGrid [49] provides for more efficient utilization of volunteer resources

by providing a self-organized timezone-aware overlay network. WaveGrid profiles

host resources and time zone, scheduling jobs on hosts in night time zones, which

in volunteer computing are typically the most available. By scheduling jobs on

hosts in night time zones with the most available resources, WaveGrid can increase

turnaround time.

PlanetLab [14] also provides an execution environment for geographically dis-

tributed volunteer computing hosts, however these nodes are usually used as a

testbed for development of networking and low overhead middleware services for

these types of environments, and users typically have strict limits on the amount of

resource usage they are allowed.

Overcoming firewalls, private networks, and other communication structures

which can limit access to valid users and applications is also a great concern in grid

computing. PlanetLab requires volunteered machines not to be behind a firewall,

and BOINC communication is done over HTTP which is not firewalled. However,

for many grid users firewalls are in place and this restriction needs to be overcome.

Virtual Networks [43, 18] can overcome these limitations by abstracting away lower

level communication or providing services which automatically route or tunnel com-

munication.

SALSA’s run-time system provides a distributed execution environment based

on Java, which allows for execution on and communication between heterogeneous

hosts. Additionally, the actor model [4], transparently provides asynchronous dis-

tributed communication through message passing and migration. Malleability allows

for even greater levels of dynamic reconfiguration by allowing generic reshaping of

applications. This work is novel in that it provides a unified actor-based program-

ming language, middleware for autonomous reconfiguration, and distributed exe-

cution environment. The actor model facilitates concurrent and deadlock resistent

applications, in addition to language- and library-based support for reconfiguration

through transparent migration, and semi-transparent malleability.

59

4.2 Dynamic Reconfiguration

Dynamic reconfiguration in grid environments includes the GrADS project [11]

which includes SRS [44], a library which allows stop and restart of applications in

grid environments using the Globus Toolkit [22] based on dynamic performance

evaluation.

Adaptive MPI (AMPI) [12, 24] is an implementation of MPI on top of light-

weight threads that balances the load transparently based on a parallel object-

oriented language with object migration support. Load balancing in AMPI is done

through migrating user-level threads that MPI processes are executed on. This

approach limits the portability of process migration across different architectures

since it relies on thread migration. Process swapping [39] is an enhancement to MPI

that uses over-allocation of resources and improves performance of MPI applications

by allowing them to execute on the best performing nodes.

Phoenix [41] is a programming model which allows for a dynamic environment

by creating extra initial processes and using a virtual name space and process mi-

gration to load balance and scale applications. Such a strategy, though potentially

very useful, may be impractical in grid environments where resources join and leave

and where an initial over-allocation may not be possible. This approach also does

not scale to large scale environments, and choosing an incorrect number of initial

processes will also limit scalability.

Active harmony [15] provides a different approach to performance tuning by

using repeated offline short but representative runs of applications to drive maximum

likelihood evaluation using the simplex algorithm to determine optimal configuration

parameters. Additionally, it has been shown to be effective by comparing the results

of this performance tuning to systematic sampling of possible configurations.

Another hierarchical optimization framework is proposed by Kandasamy et

al [25], which performs load balancing and also enables applications to perform un-

der QoS constraints such as energy usage. A mathematical model is used to forecast

application resource consumption and performance and is used to reconfigure appli-

cations in response to dynamic resource usage and availability. However, tasks are

assumed to be parallel and non-communicating.

60

Prophesy [27, 42] stores application data over multiple executions in a database

for use in modeling and dynamically load balancing distributed applications. It

distributedly uses global and local load balancing phases for structured adaptive

mesh refinement, which are iterative applications similar to the heat application

discussed in this thesis. The global load balancing phase redistributes data between

groups of homogeneous processors, and the local load balancing phase redistributes

data within these groups. A heuristic approach is used to determine the amount of

data for each processor. However, this also does not allow for dynamically joining

and leaving resources and there is only a single level of hierarchy, which may not be

scalable.

Zoltan [20] is a framework for dynamically load balancing distributed applica-

tions. Users implement functions which enable Zoltan to perform data partitioning

and load balancing. Different types of load balancing and data migration are pro-

vided with different levels of complexity, such as geometric bisection, space-filling

curves and graph partitioning. Similar to split/merge, Zoltan requires applications

to implement a specific API to enable data redistribution. In contrast to this work,

which provides transparent process and data migration, and only requires imple-

menting an API for data redistribution, Zoltan also does not allow for dynamically

joining and leaving resources.

The Dynamic Resource Utilization Model (DRUM) [21], has been developed to

address load balancing and mesh partitioning on heterogeneous and non-dedicated

clusters. It provides a set of tools to discover and gather information about the

execution environment, such as the connection topology and static resource avail-

ability. A system of distributed agents, similar to IOS, is used to determine this

information. DRUM also allows for interaction with Zoltan. DRUM uses a tree

structure to represent a distributed environment , where leaves are single-processor

or shared-memory multiprocessing nodes, and non-leaf nodes represent routers or

switches. Initially, to build this tree structure, a user generated XML file is required.

Following this, the tree structure can be updated with profiled information which is

then used to perform mesh refinement. DRUM does not allow for dynamic addition

or removal of nodes.

61

Additionally, work has been done with the analysis of distributed load bal-

ancing techniques, e.g., [10]. The reconfiguration strategies presented in this thesis

could benefit from such analysis by possibly determining ways to improve both the

time to reach well performing configurations as well as the performance of those

configurations.

4.3 Scheduling

The distinction between scheduling and dynamic reconfiguration is increas-

ingly becoming blurred. Middleware which provides dynamic reconfiguration such

as SRS [44] and GrADS [11] in a sense also schedules applications to grid resources,

however such schedules are more dynamic in that the placement of applications can

change. Research in application scheduling has expanded towards such dynamic

schedules, allowing for replacement and rescheduling of applications for performance

improvement [6, 9]. This section provides a brief overview of some of the research

being done in dynamic scheduling.

A-Steal [6] dynamically schedules non-communicating parallel jobs across het-

erogeneous distributed environments. A-Steal uses an extension to random stealing

to perform the scheduling of jobs across the distributed hosts. Where basic random

stealing will have processors with no jobs stealing work from nearby processors with

jobs, A-Steal first tries to steal unscheduled jobs before stealing jobs from nearby

processors. A-Steal has also been shown to scale linearly with respect to the number

of jobs, and to perform using at most 20% of the distributed systems cycles, even

with adversarial job schedulers.

Beaumont et al [9] evaluates methods for scheduling non-communicating paral-

lel jobs across heterogeneous distributed environments. Various approaches such as

linear programming, first-come first-serve, coarse-grain bandwidth-centric, parallel

bandwidth-centric and data-centric scheduling are evaluated through simulation.

CHAPTER 5

Discussion

This thesis has presented two methods for reconfiguring distributed applications,

migration and malleability. Three different policies for autonomous migration were

discussed and evaluated on different computational environments, as well as a hi-

erarchical policy for autonomous malleability. Four representative benchmarks and

two scientific applications were used to evaluate these methods and policies. Con-

clusions drawn from this evaluation are discussed in Section 5.1. This chapter ends

with avenues for future work in Section 5.2.

5.1 Conclusions

This work has presented and analyzed the performance of three different re-

configuration strategies for autonomous migration: simple random actor stealing (S-

RAS), actor topology sensitive random actor stealing (ATS-RAS) and fuzzy logic

controlled random actor stealing (FLC-RAS). Results using four different bench-

marks applications with different communication topologies – unconnected, sparse,

tree and hypercube – demonstrate that an extremely simple reconfiguration strategy

(S-RAS) is sufficient for reconfiguration of applications similar to the unconnected

benchmark, such as massively parallel applications. These results also show that

when an application’s computational components communicate with each other,

the additional overhead incurred by more complicated strategies is outweighed by

the performance improvements those strategies (ATS-RAS and FLC-RAS) provide.

These results also show that with some parameter tuning by an application devel-

oper, FLC-RAS can determine the optimal configuration of an application without

centralized or global knowledge. ATS-RAS tends to improve application perfor-

mance monotonically and can become stuck at local optima, however it converges

to a stable configuration faster than FLC-RAS. Given this behavior, ATS-RAS may

provide better overall performance than FLC-RAS if resource utilization and avail-

ability fluctuate frequently.

62

63

Malleability has been enabled through an API and built in directors which

manage the malleability process. These directors are extensible and can be devel-

oped as part of a library for enabling malleability for different types of applications.

With minimal programming effort, SALSA applications can be extended with au-

tonomous malleability using these directors in conjunction with IOS, which dynam-

ically changes data distribution and actor granularity to optimize performance. For

iterative applications, malleability is shown to provide a significant advantage over

migration alone, because it allows for optimal data distribution over any number

of actors. Migration, on the other hand, is restricted to a fixed data distribution

and number of actors, which can result in performance degrading data imbalances.

Additionally, malleability is shown to provide large improvements in reconfiguration

time, compared to application stop-restart.

5.2 Future Work

This work provides an initial step towards a fully fledged decentralized middle-

ware for autonomous reconfiguration of applications running on large scale environ-

ments, however much work still needs to be done to reach that goal. Autonomous

reconfiguration was tested on a limited number of benchmarks and applications,

on relatively small, but representative environments. Using larger and globally dis-

tributed environments, as well as more applications running at larger scales, will

allow for additional research into the scalability of IOS, and for testing new dis-

tributed reconfiguration protocols and strategies. Testing different virtual network

arrangements of IOS agents along side reconfiguration strategies will aid in the

development of an autonomous reconfiguration library, in which application devel-

opers can plug-in what reconfiguration strategies and virtual networks work best for

their application. Additionally, it could be possible for middleware to autonomously

choose which strategies to use, in effect reconfiguring itself.

The IOS middleware was only used to reconfigure single applications. For

future work, the reconfiguration strategies presented, as well as newly developed

strategies can be used to reconfigure multiple applications running using the IOS

middleware at the same time. This will allow for advanced application schedul-

64

ing and reconfiguration and would be integral to using IOS on a large scale grid

with multiple users. This would provide multiple applications the ability to share

resources which could optimize resource usage and shorten scheduling time.

Different types of reconfiguration and autonomous reconfiguration methods,

such as malleability, are still in development. By developing malleability strategies

for more types of applications, it may be possible to develop language semantics

and behavior that will allow for generic and transparent malleability. Providing a

library of directors to provide malleability to applications in SALSA is also work in

progress. Additionally, middleware support for fault tolerance will allow for IOS to

enable environment-aware fault tolerance for applications.

The FLC-RAS strategy can provide autonomous reconfiguration via migra-

tion that will always converge to the optimal result, without requiring centralized

or global knowledge. Unfortunately, this strategy requires parameter tuning by the

application developer. Future work for development of the FLC-RAS strategy in-

volves using investigating the stability of these parameters and developing fuzzy

strategies which do not require user input, such as using learning methods to au-

tomate the parameter tuning process, which would make this strategy far more

accessible.

Another area of future research involves using IOS to autonomically replicate

application data and processing components for fault tolerance. Autonomic fault

tolerance could dynamically change the amount of replication depending on the

reliability of applications’ run-time environments, which could improve performance

by only replicating the parts of the applications executing on unreliable computing

nodes.

IOS has also been tested for use in other programming models, such as

MPI [32]. Developing malleability and migration for MPI and other programming

models for use with IOS will allow for IOS to work with multiple applications devel-

oped in different programming languages for more widespread use and accessibility.

This thesis presents initial work towards developing IOS as a middleware for

adaptation of applications running on large-scale environments. Results show that

using middleware for autonomous reconfiguration can provide significant benefits

65

to applications with little or no additional work from the developer. This work

opens many new avenues for research into large scale environments, distributed

applications and middleware.

LITERATURE CITED

[1] The international virtual data grid laboratory. http://www.ivdgl.org.

[2] The large hadron collider computing project. http://www.cern.ch/lcg.

[3] Nael Abu-Ghazaleh and Michael J. Lewis. Short paper: Toward self
organizing grids. HPDC-15: The 15th IEEE International Symposium on
High Performance Distributed Computing (Hot Topics Session), Paris, France,
June 2006.

[4] G. Agha. Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[5] G. Agha and N. Jamali. Concurrent programming for distributed artificial
intelligence. In G. Weiss, editor, Multiagent Systems: A Modern Approach to
DAI., chapter 12. MIT Press, 1999.

[6] Kunal Agrawal, Yuxiong He, and Charles E. Leiserson. An empirical
evaluation of work stealing with parallelism feedback. In ICDCS ’06:
Proceedings of the 26th IEEE International Conference on Distributed
Computing Systems, page 19, Washington, DC, USA, 2006. IEEE Computer
Society.

[7] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan
Werthimer. SETI@home: an experiment in public-resource computing.
Commun. ACM, 45(11):56–61, 2002.

[8] David P. Anderson, Eric Korpela, and Rom Walton. High-performance task
distribution for volunteer computing. In e-Science, pages 196–203. IEEE
Computer Society, 2005.

[9] Olivier Beaumont, Larry Carter, Jeanne Ferrante, Arnaud Legrand, Loris
Marchal, and Yves Robert. Centralized versus distributed schedulers for
multiple bag-of-task applications. In International Parallel and Distributed
Processing Symposium IPDPS’2006. IEEE Computer Society Press, 2006.

[10] Petra Berenbrink, Tom Friedetzky, and Zengjian Hu. A new analytical
method for parallel, diffusion-type load balancing. In International Parallel
and Distributed PRocessing Symposium (IPDPS), April 2006.

[11] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon,
L. Johnson, K. Kennedy, C. Kesselman, J. Mellor-Crummey, D. Reed,
L. Torczon, and R. Wolski. The GrADS project: Software support for

66

67

high-level grid application development. International Journal of
High-Performance Computing Applications, 15(4):327–344, 2002.

[12] Milind A. Bhandarkar, Laxmikant V. Kale;, Eric de Sturler, and Jay
Hoeflinger. Adaptive load balancing for MPI programs. In Proceedings of the
International Conference on Computational Science-Part II, pages 108–117.
Springer-Verlag, 2001.

[13] R. D. Blumofe and C. E. Leiserson. Scheduling Multithreaded Computations
by Work Stealing. In Proceedings of the 35th Annual Symposium on
Foundations of Computer Science (FOCS ’94), pages 356–368, Santa Fe, New
Mexico, November 1994.

[14] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson,
Mike Wawrzoniak, and Mic Bowman. Planetlab: an overlay testbed for
broad-coverage services. SIGCOMM Comput. Commun. Rev., 33(3):3–12,
2003.

[15] I-Hsin Chung and Jeffrey K. Hollingsworth. A case study using automatic
performance tuning for large-scale scientific programs. In High Performance
Distributed Computing (HPDC), pages 45–56. IEEE Computer Society Press,
June 2006.

[16] Clip2.com. The gnutella protocol specification v0.4, 2000.
http://www9.limewire.com/developer/gnutella protocol 0.4.pdf.

[17] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information
services for distributed resource sharing. In 10th IEEE International
Symposium on High-Performance Distributed Computing (HPDC-10), August
2001.

[18] Alexandre Denis, Olivier Aumage, Rutger Hofman, Kees Verstoep, Thilo
Kielmann, and Henri E. Bal. Wide-area communication for grids: An
integrated solution to connectivity, performance and security problems. In
HPDC ’04: Proceedings of the 13th IEEE International Symposium on High
Performance Distributed Computing (HPDC’04), pages 97–106, Washington,
DC, USA, 2004. IEEE Computer Society.

[19] T. Desell, K. El Maghraoui, and C. Varela. Load balancing of autonomous
actors over dynamic networks. In Proceedings of the Hawaii International
Conference on System Sciences, HICSS-37 Software Technology Track, pages
1–10, January 2004.

[20] Karen Devine, Erik Boman, Robert Heapby, Bruce Hendrickson, and
Courtenay Vaughan. Zoltan data management service for parallel dynamic
applications. Computing in Science and Engg., 4(2):90–97, 2002.

68

[21] Jamal Faik. A Model for Resource-Aware Load Balancing on Heterogeneous
and Non-Dedicated Clusters. PhD thesis, Rensselaer Polytechnic Institute,
Troy, 2005.

[22] I. Foster and C. Kesselman. The Globus Project: A Status Report. In
J. Antonio, editor, Proceedings of the Seventh Heterogeneous Computing
Workshop (HCW ’98), pages 4–18. IEEE Computer Society, March 1998.

[23] A. S. Grimshaw, M. A. Humphrey, and A. Natrajan. A philosophical and
technical comparison of legion and globus. IBM J. Res. Dev., 48(2):233–254,
2004.

[24] Chao Huang, Orion Lawlor, and L. V. Kalé. Adaptive MPI. In Proceedings of
the 16th International Workshop on Languages and Compilers for Parallel
Computing (LCPC 03), pages 306–322, College Station, Texas, October 2003.

[25] Nagarajan Kandasamy, Sherif Abdelwahed, and Mohit Khandekar. A
hierarchical optimization framework for autonomic performance management
of distributed computing systems. In ICDCS ’06: Proceedings of the 26th
IEEE International Conference on Distributed Computing Systems, page 9,
Washington, DC, USA, 2006. IEEE Computer Society.

[26] W. Kim and G. Agha. Efficient Support of Location Transparency in
Concurrent Object-Oriented Programming Languages. In Proceedings of
Supercomputing’95, page 39, 1995.

[27] Zhiling Lan, Valerie E. Taylor, and Greg Bryan. Dynamic load balancing of
samr applications on distributed systems. In Supercomputing ’01: Proceedings
of the 2001 ACM/IEEE conference on Supercomputing (CDROM), pages
979–993, New York, NY, USA, 2001. ACM Press.

[28] Zhiling Lan, Valerie E. Taylor, and Greg Bryan. Dynamic load balancing of
SAMR applications on distributed systems. Scientific Programming,
10(4):319–328, 2002.

[29] Michael Litzkow, Miron Livny, and Matt Mutka. Condor - a hunter of idle
workstations. In Proceedings of the 8th International Conference of
Distributed Computing Systems, pages 104–111, June 1988.

[30] K. El Maghraoui, J. Flaherty, B. Szymanski, J. Teresco, and C. Varela.
Adaptive computation over dynamic and heterogeneous networks. In
R. Wyrzykowski, J. Dongarra, M. Paprzycki, and J. Wasniewski, editors,
Proc. of the Fifth International Conference on Parallel Processing and Applied
Mathematics (PPAM’2003), number 3019 in LNCS, pages 1083–1090,
Czestochowa, Poland, September 2003.

69

[31] Kaoutar El Maghraoui, Travis Desell, Boleslaw K. Szymanski, James D.
Teresco, and Carlos A. Varela. Towards a middleware framework for
dynamically reconfigurable scientific computing. In L. Grandinetti, editor,
Grid Computing and New Frontiers of High Performance Processing, pages
275–301. Elsevier, 2005.

[32] Kaoutar El Maghraoui, Travis J. Desell, Boleslaw K. Szymanski, and
Carlos A. Varela. The internet operating system: Middleware for adaptive
distributed computing. International Journal of High Performance
Computing Applications (IJHPCA), Special Issue on Scheduling Techniques
for Large-Scale Distributed Platforms, 10(4):467–480, 2006.

[33] Message Passing Interface Forum. MPI: A message-passing interface
standard. The International Journal of Supercomputer Applications and High
Performance Computing, 8(3/4):159–416, Fall/Winter 1994.

[34] A. Natrajan, A. Nguyen-Tuong, M. Humphrey, and A. Grimshaw. The legion
grid portal. Grid Computing Environments Special Issue, Concurrency and
Computation: Practice and Experience, 14(13-14):1365–1394, 2002.

[35] Vijay Pande et al. Atomistic protein folding simulations on the submillisecond
timescale using worldwide distributed computing. Biopolymers, 68(1):91–109,
2002. Peter Kollman Memorial Issue.

[36] M. Parashar, H. Liu, Z. Li, V. Matossian, C. Schmidt, G. Zhang, and
S. Hariri. Automate: Enabling autonomic applications on the grid. Cluster
Computing, 9(2):161–174, 2006.

[37] Manish Parashar and Salim Hariri. Autonomic computing: An overview. In
Unconventional Programming Paradigms, pages 257–269, 2004.

[38] Jonathan Purnell, Malik Magdon-Ismail, and Heidi Newberg. A probabilistic
approach to finding geometric objects in spatial datasets of the Milky Way. In
Proceedings of the 15th International Symposium on Methodoligies for
Intelligent Systems (ISMIS 2005), pages 475–484, Saratoga Springs, NY,
USA, May 2005. Springer.

[39] Otto Sievert and Henri Casanova. A simple MPI process swapping
architecture for iterative applications. International Journal of High
Performance Computing Applications, 18(3):341–352, 2004.

[40] A. Szalay and J. Gray. The world-wide telescope. Science, 293:2037, 2001.

[41] Kenjiro Taura, Kenji Kaneda, and Toshio Endo. Phoenix: a Parallel
Programming Model for Accommodating Dynamically Joininig/Leaving
Resources. In Proc. of PPoPP, pages 216–229. ACM, 2003.

70

[42] Valerie Taylor, Xingfu Wu, and Rick Stevens. Prophesy: an infrastructure for
performance analysis and modeling of parallel and grid applications.
SIGMETRICS Perform. Eval. Rev., 30(4):13–18, 2003.

[43] Mauricio Tsugawa and Jose A. B. Fortes. A virtual network (vine)
architecture for grid computing. In International Parallel and Distributed
Processing Symposium (IPDPS), page 10pp, April 2006.

[44] Sathish S. Vadhiyar and Jack Dongarra. Srs: A framework for developing
malleable and migratable parallel applications for distributed systems.
Parallel Processing Letters, 13(2):291–312, 2003.

[45] C. Varela. Worldwide Computing with Universal Actors: Linguistic
Abstractions for Naming, Migration, and Coordination. PhD thesis, U. of
Illinois at Urbana-Champaign, 2001.
http://osl.cs.uiuc.edu/Theses/varela-phd.pdf.

[46] Carlos Varela and Gul Agha. Programming dynamically reconfigurable open
systems with SALSA. ACM SIGPLAN Notices. OOPSLA’2001 Intriguing
Technology Track Proceedings, 36(12):20–34, December 2001.
http://www.cs.rpi.edu/˜cvarela/oopsla2001.pdf.

[47] Carlos A. Varela, Paolo Ciancarini, and Kenjiro Taura. Worldwide
computing: Adaptive middleware and programming technology for dynamic
Grid environments. Scientific Programming Journal, 13(4):255–263, December
2005. Guest Editorial.

[48] R. Wolski, N. T. Spring, and J. Hayes. The Network Weather Service: A
distributed resource performance forecasting service for metacomputing.
Future Generation Comput. Syst., 15(5-6):757–768, October 1999.

[49] Dayi Zhou and Virginia Lo. Wavegrid: A scalable fast-turnaround
heterogeneous peer-based desktop grid system. In International Parallel and
Distributed PRocessing Symposium (IPDPS), page 10pp, April 2006.

APPENDIX A

Malleable Heat Code

The following chapter provides an example of the heat application implemented

in the SALSA programming language. It has been modified to implement the

MalleableActor API, which enables autonomic malleability using the IOS mid-

dleware. Changes required to implement malleability are given in bold.

module heat;

import ios.salsa.language.MalleableActor;

behavior HeatWorker extends MalleableActor {

int iterations;

Data data;

HeatFarmer farmer;

HeatWorker left, right;

public HeatWorker(int iterations, HeatWorker farmer) {

this.iterations = iterations;

this.farmer = farmer;

}

void connectRight(HeatWorker w) { right = w; }

void connectLeft(HeatWorker w) { left = w; }

void startWork() {

if (right != null) right←leftRow(data.getRightRow());

if (left != null) left←rightRow(data.getLeftRow());

}

71

72

boolean leftSet = false, rightSet = false;

double[] queuedLeftRow, queuedRightRow;

void leftRow(double[] row) {

if (leftSet == true) {

queuedLeftRow = row;

} else {

data.setLeftRow(row);

leftSet = true;

if (rightSet || right == null) doWork();

}

}

void rightRow(double[] row) {

if (rightSet == true) {

queuedRightRow = row;

} else {

data.setRightRow(row);

rightSet = true;

if (leftSet || left == null) doWork();

}

}

void doWork() {

if (!finished) {

/* perform work here */

...

if (right != null) right←leftRow(data.getRightRow());

if (left != null) left←rightRow(data.getLeftRow());

rightSet = false;

leftSet = false;

73

iterations--;

if (iterations == 0) {

finished = true;

farmer←reportResults(data);

}

if (queuedRightRow != null) {

data.setRightRow(queuedRightRow);

rightSet = true;

queuedRightRow = null;

}

if (queuedLeftRow != null) {

data.setLeftRow(queuedLeftRow);

leftSet = true;

queuedLeftRow = null;

}

if ((leftSet || left == null) && (rightSet || right == null)) {

doWork();

}

}

}

/* The following methods have been added to enable malleability. */

void redirectReference(String name, ActorReference reference) {

if (name.equals(”left”) left = (HeatWorker)reference;

else right = (HeatWorker)reference;

}

long getDataSize() { return data.size(); }

Object getData(long size, String options) {

74

long rows = size / (data.size()/data.rows());

if (options.equals(”left”)) return data.getLeftRows(rows);

else return data.getRightRows(rows);

}

void receiveData(Object received, String options) {

if (options.equals(”left”)) data = ((Data)received).append(data);

else data = data.append((Data)received);

}

void handleMalleabilityMessage(Message message) {

if (data.size() == 0) {

/* this worker has been removed */

if (message.getName().equals(”leftRow”)) {

right←message;

} else if (message.getName().equals(”rightRow”)) {

left←message;

}

} else {

/* data has been moved around, discard message and get */

/* new left and right rows */

if (message.getName().equals(”leftRow”)) {

left←requestRightRow(self);

} else if (message.getName().equals(”rightRow”)) {

right←requestLeftRow(self);

} else if (message.getName().equals(”doWork”)) {

doWork();

}

}

}

75

void requestRightRow(HeatWorker worker) {

worker←leftRow(data.getRightRow());

}

void requestLeftRow(HeatWorker worker) {

worker←rightRow(data.getLeftRow());

}

}

