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ABSTRACT

The role of distributed system in our daily life is getting more and more important.

The resources of the cyber world are consumed by peers independent from their

physical locations, mobile codes interact with each other and their environment on

behalf of people. Grid computing provides potential benefits to applications, but

as the responsibilities and the intelligence of such systems increase, security threats

that they pose to the applications increases, too.

In order to prevent these distributed systems from attacks, they have to be

adjusted with secure components. In such systems, openness and dynamic recon-

figuration is also inevitable for scalability. Furthermore, transparent information

flow between the peers can help increase the efficacy for its participants and reduce

user’s cognitive load.

In this thesis, we describe a reputation based trust model including a language

and its operational semantics, in order to reason about security problems of open

and distributed systems, as well as to prove its main security properties. We fur-

thermore, give some examples based on two common application fields of distributed

computing: e-commerce and distributed file sharing.
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1. Introduction

1.1 Motivation

Mobile code technologies provide potential benefits to internet based dis-

tributed applications, but as the responsibilities and the intelligence of mobile code

increase, security threats that it poses to a system increases, too. In complex open

environments, such as multiagent system environments, it is often necessary to make

the goals explicit for the agent itself. This means that the agents need to be able

to identify and measure the threats it faces, and make risk based decisions. One of

the mechanisms in order to measure the threats is to obtain information about the

earlier cooperative behavior of certain partners.

In our previous work [19] we have compared the most common security in-

struments that can be applied to an online market place, where actors, which are

computational agents distributed over time and space, represent sellers and buyers

of the real world. Complementary to that, in this work we are going to concentrate

on one of the security instruments that both fulfill as much security requirements

as possible, commonly used in social networks, and is potentially applicable to the

mobile actor systems.

If we take a look at the most common online market places, like eBay or Ama-

zon we are going to notice that they use a reputation based trust system in order to

achieve a transparent overview of the parties that interact. However, building a trust

based reputation system poses difficulties in retrieving reputation and calculating

a trustful reputation value. In the last five years many researchers have analyzed

this topic from different perspectives and proposed various instruments, like trust

propagation, results of interaction, popularity, number of interactions, etc., to over-

come problems related to reputation based trust. However, most of them were too

complicated and only theoretical approaches, if not inconvenient. Furthermore such

approaches fall short to describe the exact behavior of the system, since they lack

a notion of protocol, which is a fundamental property when security concerns are

present.
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From this point of view, this work will first give a broad overview of these

research, furthermore, as the contribution, define AcTrust, an actor based trust

system for solving the major trust problems. Moreover, we have introduced the

Trusted Actor Language for trusted actor communication and given its operational

semantics, which are both expressive and simple to apply and, as well as proven the

basic trust properties of the language. We furthermore give two examples, in order

to point out the major application fields, where AcTrust can be used. We conclude

this thesis with some future directions that involve potential improvements of the

AcTrust model and expand the application fields of the model.

1.2 Terms and Definition

In electronic commerce settings, peer-to-peer (P2P) communities are often

established dynamically by peers that are unrelated and unknown to each other.

When a peer interacts with another, it usually assumes that the communication

partner is not going to perform any unauthorized operations or that it is going to

provide a level of quality of service during an interaction. The ideal solution is to

have an environment that is fully trusted by all its entities. However, this ideology

cannot be achieved in an open dynamic environment, where simultaneously new

peers are created.

In existing literature, trust and reputation are defined and analyzed from many

different perspectives. Trust is a common criteria in human life activities. In an

informal way, trust is defined in Merriam-Websters Collegiate Dictionary as ”assured

reliance on the character, ability, strength, or truth of someone or something”.

Deutsch [9] makes one of the widely accepted definition of trust and points especially

out that trust is a subjective, or agent-centered notion, one in which most of the

choices are based on subjective views of the world. Gambeta defines trust in [13]

from the view of the probability theory as follows ”... trust is a particular level of

the subjective probability with which an agent assesses that another agent or group

of agents will perform a particular action...”. Mui et al. make a definition in [20]

that expresses the importance of expectations: ”Trust: subjective expectation an

agent has about another future behavior based on the history of their encounters”.
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According to these definitions trust can be roughly defined as the belief that a peer

fulfills it security expectations, trustworthiness on the other hand is the confirmation

that something earns trust.

Wang and Vassileva suggest in [29] two types of trust for P2P systems. First

trust in the quality of the service that a host provides, in other words trust in the

competence of a host, and second trust in the quality of recommendation delivered

after a transaction. Josang and Pope [15] call these two types of trust as functional

trust and referral trust. As Wang et al., Tajeddine et al. distinguish in [24] between

two types of trust and describe quality of recommendation as a trust that is affected

by four parameters: activity, similarity, popularity and cooperation.

Reputation in general is defined in Merriam-Websters Collegiate Dictionary

as overall quality character as seen or judged by people in general. Wilson makes

an operational definition of reputation as a characteristic or attribute ascribed to

one person, industry, etc. by another. Operationally, this is usually represented

as a prediction about likely future behavior. It is, however, primarily an empirical

statement. Its predictive power depends on the supposition that past behavior is

indicative of future behavior.

As in trust there are also different types of reputations. Mui et al. suggests

a comprehensive differentiation in [20] and studies them in a set of evolutionary

games. According to this approach, reputation can be either achieved from an

individual peer or a group of peers. They furthermore differ between direct or

indirect individual reputation. Direct reputation can be driven form an interaction

or be achieved through observations. Indirect reputation on the other hand can be

achieved through prior derived reputation, group derived reputation and propagated

reputation.

Turapani et al. [26] suggests increasing the robustness of an agent system by

using reputation. Here the authors have simulated two types of reputation. One in

which the reputations of all agents are maintained centrally and second in which they

are distributed. They furthermore simulated and compared two ways of achieving

distributed simulation management: post-processing and preprocessing. In the post-

processing they suggest voting in order to judge the correctness of the output and
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in preprocessing they use a probabilistic function in order to select a set of agents

based on reinforcement values, which are obtained based on the correctness of the

results the agent produces in performing a task that is given to him.

Kinateder et al. defines reputation in [17] as the average trust of all other

entities towards a single entity and bridges trust and reputation. They also note

that reputation has a global aspect, whereas trust is viewed from both a local and

subjective point.

1.3 Structure of the Work

This thesis describes in Chapter 2, the actor model, the secure actor model and

the transactors model, which extend the actor model with security and consistency

features. Later on in this chapter, we give a broad overview of the most recent and

relevant trust management models for P2P communication systems and agent based

communication systems. Chapter 2 concludes with the state of the art of reputation

based trust systems.

In Chapter 3 we first introduce the main properties of AcTrust, a reputation

based trust model for secure actor communication, and later on we give the math-

ematical model we suggest for the calculation of trust, as well as the trust policy

of the model. We conclude Chapter 3 with Trusted Actor Language, which is a

layer above an actor language, give its operational semantics, which expresses how

trust is represented and propagated in distributed computing, and prove the major

properties of AcTrust using the rules of the actor language.

In Chapter 4 we first briefly define the Marketplace Scenario that we have

suggested in [19] and BitTorrent, and later on give examples using these models to

clarify how AcTrust can be implied to E-commerce and P2P applications.

The thesis is concluded with future directions and possible extensions of the

AcTrust Model.



2. Background

2.1 Actors

In this section we are going to describe actors, as Agha et al. described in [1].

We will first give the most specific properties of actors that differ them from passive

objects and furthermore we will describe the Secure Mobile Actor Language (SMAL)

and it’s computational semantics, which is evaluated by Varela [27]. Later on we

are going to describe some Properties of Transactors [12], which are actors that

fulfill some ineluctable properties like fault-tolerance or global consistency for secure

communication in distributed environments.

Actors are computational agents that are distributed over time and space.

They encapsulate a state and a thread of control. The communication between the

agents is realized with point-to-point messages that are buffered in an input queue.

The messages that are received by the interface of an actor are interpreted with

public methods, which operate on the state of the actor. Furthermore, the actors

are associated with a conceptual location and a unique name, which can be used

as a reference by other actors. The actors communicate with other actors or their

surrounding in order to fulfill their duties. The local computation of an actor in

response to the message received can be modeled by the usual sequential constructs.

While processing a message there are four basic actions that an actor may perform

(see figure 2.1):

1. changing the local state and becoming ready to process the next message in

its mail queue,

2. migrating to a new location,

3. creating a finite set of actors with some initialized behaviors, and

4. sending messages to peer actors.

Individual actors are the smallest coordination unit in the middleware model.

The basic actor language proposed by Agha, Mason, Smith and Talcott [2] provides

5
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Figure 2.1: Architecture of an actor, and the actions it performs.

a mechanism for specifying the creation and manipulation of actors. Each actor is

a unit of computation encapsulating data and behavior. The behavior defines how

the actor reacts on receipt of a message [25].

2.2 Secure Mobile Actors

In order to achieve mobility and security towards robust distributed computing

systems, Toll and Varela [25] have extended the basic actor language with primi-

tives for mobility and security and then developed an operational semantics for

these extensions. Secure Actor Language describes an actor’s behavior by a lambda

abstraction, which embodies the code to be executed when a message is received.

2.2.1 Model Properties

Actors are inherently independent, concurrent and autonomous which enables

efficiency in parallel execution and facilitates mobility. Each actor is a unit of

computation encapsulating data and behavior. Communication between actors is
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purely asynchronous and guaranteed. That means, when a message is sent, the

model guarantees that the destination actor will receive the message; however, it

does not guarantee the order of message arrival or the order of processing.

The universal actors extend actors with locations, mobility, and the concept

of universal names and universal locations. Locators represent references that en-

able communication with universal actors at a specific location. An actor’s location

abstracts over its position relative to other actors. Each location represents, like an

actor’s configuration, an actor’s run-time environment and serves like an encapsu-

lating unit for local resources. Ubiquitous resources have a generic representation.

Resource-to-actor translations are stored in resource maps, which are maps between

global names and the names of local actors, who fill a resource’s role. Actors keep

references, which get updated upon migration to resources at new locations. They

can also keep references to non-ubiquitous resources by using resource attachment

and detachment operations. Actors do not only interact with other actors, but also

with their environments.

Actors in secure mobile actor model restrict communication and migration

behaviors to other actors within specific Access Control Lists (ACL). Using this

method, no unprivileged actor can gain access to a resource. Every actor or location

has an ACL, which contains a list of actors allowed to migrate into the location or

send/receive messages. ACLs can only be changed by locations that the actor is in

consideration, or by a resident actor in case of passive locations.

2.2.2 Secure Mobile Actor Language

Secure Mobile Actor Language (SMAL) is a language that has been expanded

in layers. In the the first layer there is the call-by-value λ-calculus, which is extended

with primitives for actor communication to actor language, with mobility primitives

to mobile actor language and with security primitives to SMAL. In this thesis we

are only going to describe SMAL, but the Interested readers are referred to [25] for

the operational semantics of actor language or mobile actor language.

The primitives of actor communication are:

• new(b) creates a new actor and returns its address. It is also possible to create
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multiple actors with this schema. The parent actor knows the name of the

newly created actors, therefore it can send messages to each of them with each

others names.

• send(v0,v1) creates a new message and puts it in the message delivery system,

where v1 is the content and v0 the destination actor.

• ready(b’) ends the current execution and makes the actor ready to receive a

new message using behavior b’.

The primitives for mobility are:

• newloc(Y) indicates the appearance or creation of a new location, with an

initial resource map denoted by Y.

• migrate(l’) moves an actor from its current location to one denoted by l’.

• attach(v) saves a resource denoted by v into the actor’s resource map.

• detach(v) removes a resource denoted by v from the actor’s resource map.

• register(v0,v1,l) adds the mapping of a resource name v1 to an actor v0 in

a location l.

• deregister(v0,v1,l) removes the mapping of a resource name v1 from an

actor v0 in a location l.

The primitives for security are:

• allow(v) changes the actor’s ACL to include actor v.

• allowloc(v) changes the actor location’s ACL to include actor v.

• disallow(v) changes the actor’s ACL to exclude actor v.

• disallowloc(v) changes the actor location’s ACL to exclude actor v.

If there are no restrictions on messaging or migration of an actor, then as an

argument allow or allowloc primitives receive a null ACL, which is represented by

⊥.
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2.2.3 Actor Configuration

Assuming that two sets AT (atoms) and X (variables) are given and V, E and

M are defined as follows:

Definition 1: V E M

The set of values V, the set expressions E and the set of messages M are

defined inductively as follows:

V = At ∪ X ∪ λX.E ∪ pr(V,V)

E = V ∪ app(E,E)∪ Fn(E
n) where Fn(E

n) is all arity-n primitives.

M = 〈V ⇐ V〉X
Actor names are denoted with variables. At any given point an actor can be

either ready to receive a message, ready(e), or currently busy with execution of

some expression e. And < v0 ⇐ v1 > denotes a message v0 sent to an actor v1.

The set X of variables represent both actors and locations, where the set

L, with L⊆ X, is the set of locations, and the set R, with R⊆ X, is the set of

resource identities. The structure of M allows selection of valid senders via ACLs,

where list of ACLs is defined as: ACL ∈ Pω[Dom(α) ∪ {⊥}]. α is defined as:

α ∈ X
f−→ (E × L × (R

f−→ X) ×ACL). According to that α(a) = e × l × r × c

implies that actor a has behavior e and is currently executed at location l with

resource map r and ACL c.

A universal actor configuration is a global snapshot of a group of actors. It

consists of an actor map, α, multi-set of messages in transit, µ, a set of mappings

from locations to resource maps, π (π ∈ L
f−→ (R

f−→ X)), a set of receptionists, ρ,

and a set of external actors, χ, and written as: 〈α | µ | π〉ρχ, where ρ, χ ∈ Pω[X],

α ∈ X
f−→ (E×L×(R

f−→ X)×ACL, µ ∈ Mω[M], π ∈ L
f−→ ((R

f−→ X)×ACL), and

let A = Dom(α). Let Pω[X] be the set of finite subsets of X, Mω[M] be the set of

multi-sets with elements in M, X0f
f−→ X1 be the set of finite maps from X0 to X1,

Dom(f ) be the domain of f, and FV(e) be the set of free variables in e. Furthermore,

↓i indicates that the projection of a cross product onto its ith coordinate. This rule

denotes that actor names and locations are disjoint. According to these, the actor

configurations in SMAL are:
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1. ρ ⊆ A, and A ∩ χ = ∅.

2. if a ∈ A, then FV (α(a)) ⊆ A∪χ, and if < v0 ⇐ v1 >∈ µ then FV (vi) ⊆ A∪χ

for i < 2,

3. Range(α) ↓i ∩A = ∅.

2.2.4 Operational Semantics

In this subsection we are going to give the operational semantics that Toll and

Varela [25] have developed for SMAL. The notation R[e] represents a redex e in a

reduction context R.

fun a

e λ−→Dom(α)∪{a}e
′ ⇒ 〈α{[e, l, r, c]a} | µ | π〉ρχ 7→ 〈α{[e′, l, r, c]a} | µ |π〉ρχ

new a, a′ (a′ means fresh a)

〈α{[R[new(e)], l, r, c]a} | µ | π〉ρχ 7→ 〈α{[R[a′], l, r, c]a, [e, l, r, {a, a′}]a′} | µ | π〉ρχ

send a, v0, v1

〈α{[R[send(v0, v1)], l, r, c]a}| µ | π〉ρχ 7→
〈α{[R[nil], l, r, c]a} | µ ] < v2 ⇐ v1 >a | π〉ρχ
if r(v0) = v2

〈α{[R[nil], l, r, c]a} | µ] < v3 ⇐ v1 >a | π〉ρχ
if π(l)(v0) = v3

〈α{[R[nil], l, r, c]a} | µ] < v0 ⇐ v1 >a | π〉ρχ
if v0 /∈ Dom(()r) and v0 /∈ Dom(()π)

receive v0, v1

〈 α{[R[ready(v)], l, r, c]v0} | < v0 ⇐ v1 >a ] µ | π〉ρχ 7→
〈 α{[R[app(v, v1)], l, r, c]v0} | µ | l〉ρχ
if a ∈ c or c = ⊥

out v0, v1

〈 α | µ ] < a ⇐ v0 >a | π〉ρχ 7→ 〈 α | µ | π〉ρ′χ
if a ∈ χ, and ρ′ = ρ ∪ (FV (v0) ∩Dom(α))
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in v0, v1

〈 α | µ | π〉ρχ 7→ 〈 α | µ] < a ⇐ v0 >a′ | π〉ρχ∪(FV (v0)−Dom(α))

if a ∈ ρ, then FV (v0) ∩Dom(α) ⊆ ρ

migrate l′

〈α{[R[migrate(l′)], l, r, c]a} | µ | π ] [c′, r′]l〉ρχ 7→
〈α{[R[nil], l′, r, c]a | µ | π ] [c′, r′]l′〉ρχ
if a ∈ c′ or c′ = ⊥

newloc Y (a′ means fresh a)

〈α{[R[newloc(Y )], l, r, c]a} | µ | π〉ρχ 7→
〈α{[R[l′], l, r, c]a | µ | π ] [{a}, Y ]l′〉ρχ

attach a′

〈α{[R[attach(a′)], l, r, c]a} | µ | π〉ρχ 7→
〈α{[R[nil], l, r ∪ (a′ → a′′), c]a | µ | π ] [c′, r′ ∪ (a′ → a′′)]l′〉ρχ

detach a′

〈α{[R[detach(a′)], l, r ∪ (a′ → a′′), c]a} | µ | π〉ρχ 7→
〈α{[R[nil], l, r, c]a | µ | π 〉ρχ

register a′, a′′, l′

〈α{[R[register(a′, a′′, l′)], l, r]a} | µ | π ] [c′, r′]l′〉ρχ 7→
〈α{[R[nil], l, r ∪ (a′ → a′′)]a} | µ | π ] [c′, r′ ∪ (a′ → a′′)]l′〉ρχ
if (a′ → a′′) ∈ r

unregister a′, a′′, l′

〈α{[R[unregister(a′, a′′, l′)], l, r]a} | µ | π ] [c′, r′ ∪ (a′ → a′′)]l′〉ρχ 7→
〈α{[R[nil], l, r]a} | µ| π 〉ρχ
if (a′ → a′′) ∈ r

allow a′

〈α{[R[allow(a′)], l, r, c]a} | µ | π〉ρχ 7→
〈α{[R[nil], l, r, c ∪ {a′}]a | µ| π 〉ρχ
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allow ⊥
〈α{[R[allow(nil)], l, r, c]a} | µ | π〉ρχ 7→
〈α{[R[nil], l, r,⊥]a} | µ| π 〉ρχ

allowloc a′

〈α{[R[allowloc(a′)], l, r, c]a} | µ | π ] [c′, r′]l〉ρχ 7→
〈α{[R[nil], l, r, c]a} | µ| π ] [c′ ∪ {a′}, r′]l 〉ρχ

allowloc ⊥
〈α{[R[allowloc(nil)], l, r, c]a} | µ | π ] [c′, r′]l〉ρχ 7→
〈α{[R[nil], l, r, c]a | µ| π ] [⊥, r′]l 〉ρχ

disallow a′

〈α{[R[disallow(a′)], l, r, c ∪ {a′}]a} | µ | π〉ρχ 7→
〈α{[R[nil], l, r, c]a} | µ| π 〉ρχ

disallow ⊥
〈α{[R[disallow(nil)], l, r, c]a} | µ | π〉ρχ 7→
〈α{[R[nil], l, r, ∅]a} | µ| π 〉ρχ

disallowloc a′

〈α{[R[disallowloc(a′)], l, r, c]a} | µ | π ] [c′ ∪ {a′}, r′]l〉ρχ 7→
〈α{[R[nil], l, r, c]a} | µ| π ] [c′, r′]l 〉ρχ

disallowloc⊥
〈α{[R[disallowloc(nil)], l, r, c]a} | µ | π ] [c′, r′]l〉ρχ 7→
〈α{[R[nil], l, r, c]a} | µ| π ] [∅, r′]l 〉ρχ

2.3 Transactors

Another model that concerns actors, as loosely-coupled distributed compo-

nents running in an unreliable environment such as internet into systems that re-

liably maintain globally consistent distributed state, particularly concentrated on

fault-tolerance problem is the Transactors Model evaluated by Field and Varela [12].
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This model allows the elements of traditional transaction processing to be com-

posed modularly. Transactors Model extends the lambda-calculus based on the

actor model and formalizes it with the τ -calculus.

2.3.1 Model Properties

Distributed state denotes that the states of distributed components in a network-

connected system are interdependent on one another. The transactor-model main-

tains these interrelated states in a wide-area network in a consistent way by exposing

key semantic concepts related to distributed state in a common language.

Transactors extend the actor model by explicitly modeling node failures, net-

work failures, persistent storage, and state immutability. Just like actors, a transac-

tor encapsulates state and communicates with other transactors via asynchronous

message passing. Besides these, in response to a message they may create new

transactors, send messages to other transactors, migrate to a new location or mod-

ify their internal state. In addition to these inherited actor operations, a transactor

may stabilize, checkpoint, or rollback.

Stabilization is a transactors commitment not to modify its internal state un-

til a subsequent checkpoint is performed or until another peer actor causes it to

rollback due to semantic inconsistencies. After a transactor enters a stable state it

can still process messages, it simply cannot change its own state. Different from

stabilization, a checkpoint is a consistency guarantee. It creates a copy of the trans-

actor’s current state, which can be recovered in the event of temporary failures. In

order to checkpoint only the globally consistent states, dependence information is

carried along with messages. Checkpoint can be thought of as the second phase of

a two-phase commitment protocol, where stabilization is the first phase. A rollback

brings a transactor back to its previously check-pointed state or makes it disappear,

if there is not any such state. Node failures are modeled as rollbacks.

The operational semantics for the τ -calculus helps to prove important sound-

ness and liveness properties by showing that globally consistent checkpoints have

equivalent execution traces without any node failures or application-level failures. It

furthermore shows the possibility to reach globally consistent checkpoints provided
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there is some bounded failure-free interval during which check pointing can occur.

Under certain reasonable preconditions, check pointing in the transactor model

is possible. Soundness under these conditions refers that a trace containing node

failures and inconsistencies is equivalent to a normal trace (i.e., one containing no

node failure) but with possible message losses. In order to show this, Field and

Varela prove that arbitrary τ -calculus traces can be simulated by traces containing

only the node failure free subset of the τ -calculus. This shows also how global

reasoning about state inconsistencies can be reduced to local reasoning about the

possibility of message loss.

Liveness, as the other τ -calculus property, refers for example to the fact that

using the transactor model operational semantics global checkpoints can be reached.

But not all transactor programs can reach global checkpoints. Therefore Field and

Varela introduce a Universal Check Pointing Protocol, which assumes a set of precon-

ditions that will entail global check pointing for a set of transactors, and under those

preconditions if the protocol terminates then a global check pointing is reached.

2.3.2 Operational Semantics

Field an Varela define the notational preliminaries of transactors that are not

standard as follows: Sets are defined using context-free grammars, and the set of

all terms derived from that non-terminal are represented by a non-terminal of the

grammar. Given a set of S, [S] denotes the set of lists defined over S, where []

denotes an empty set, s :: ls a list cell, len(l) the length of l and lastn(n,l) the list

consisting of he last n elements of l. Given a set S1 and S2, S1
f−→ S2 denotes the

set of finite partial maps from S1 to S2, where dom(m) denotes the domain of m

and and ran(m) the range of m, ∅ the empty map, m(x) element to which m maps,

m[x 7→ e] the map that is the same as m except that x is maped to e.If S is a set

then S denotes the set of multisets and
⊎

symbolizes the multiset union.

Each transition rule of operational semantics refer to a particular redex term

within the lambda term encoding a transactor’s behavior. To distinguish the redex

on which the transition rule will operate the notion of reduction contexts of

the form R(2) is used. Each reduction context is a special term with a single
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”hole” element 2, which is defined such that a transactor behavior can be uniquely

decomposed into exactly one redex and one reduction context.

2.3.2.1 Tau-Calculus

The extensional constructs of the τ -calculus can be divided into two categories:

those that encode the traditional actor semantics with explicit state management

and those that support distributed state maintenance.

Traditional actor constructs:

• trans e1 init e2 snart creates a new transactor with behavior e1, and ini-

tiate state e2

• send v to t sends a message with content v to the transactor t

• ready a transactor waiting to process the next incoming message

• self yield the transactor’s own name

• setstate(v) updates a transactor’s state to the value v

• getstate retrieves the value of the state

Distributed state maintenance constructs:

• stabilize current transactor becomes stable/immobile

• checkpoint creates checkpoint if stable and consistent

• dependent? checks whether the transactor is dependent on other transactors

• rollback reverts the transactor to its previous checkpoint

2.3.2.2 Transactor Configuration

The semantic domains that the τ -calculus operational semantics manipulate

are:



16

W ::= V(N )|S(N ) Volatility value

H ::= 〈W , [N ]〉 Transactor history
a

= T f−→ H Dependence Map

S ::= 〈V ,V ; E ,V ;4,4,4〉 Transactor

M ::= T ⇐ 〈V ,4〉 Message

Θ = T f−→ S Name services

K ::= {{M}}|Θ Transactor configuration

Volatility value encodes that a transactor is either volatile (w = V(n), n ≥
0) or stable (w = S(n), n ≥ 0). In the event of τ ’s failure the value that it caries

gets lost. The value of n will be referred to as an incarnation.

History encodes the checkpoint history of a transactor. A history h = 〈w, lh〉
shows that the transactor h has volatility value w, and has check pointed len(lh)

times since it’s creation. The history operations that the τ -calculus semantics define

are:

• When a transactor is created it’s history is set to 〈V(0), []〉.

• When a transactor with history 〈V(n), lh〉 rolls back, its history becomes

〈V(n + 1), lh〉.

• If a transactor with history 〈V(n), lh〉 stabilizes, its history becomes 〈S(n), lh〉.

• If a transactor with history 〈S(n), lh〉 checkpoints, its history becomes 〈V(0), n ::

lh〉.

Dependence maps map each transactor name t to a history value h. Depen-

dency maps are associated with three explicit semantic components of a transactor:

• Creation dependency map: Transactors on which t is dependent for it’s

existence

• State dependency map: Transactors on which t’s current state depends

• Behavior dependency map: Transactors on which the value of the current

redex depends
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A transactor is a 7-tuple (τ ∈ S = 〈b, s√; e, s; δs, δc, δb〉) containing the fol-

lowing components:

• Behavior component (b) encodes the response to the incoming messages.

• Persistent state component (s√) encodes the last value of s stored by a

checkpoint.

• Evaluation state (e) encodes the expression representing the current state

of the evaluation of a transactor’s behavior.

• Volatility value component (s) encodes the volatile value and contains τ ’s

current state.

• State dependence map component (δs) encodes the fact that the state

of τ depends on the state of the transactors in dom(δs), whose histories are

encoded in the map.

• Creation dependence map component (δc) encodes the fact that the state

of τ depends on the state of the parent transactor that has created it.

• Behavior dependence map component (δb) encodes the behavior depen-

dencies of the transactor τ .

Message (m ∈ M) contains the name of the target transactor, which is it’s

destination, the payload, and the dependancy map, which encodes the transitive

closure of transactors on which the payload depends.

Name Services maps each transactor name t to a transactor s.

Transactor configuration (k ∈ K) encodes a network, which is a multiset

of messages, and the mapping of the transactor name to transactors.

2.3.2.3 History Operations

In this subsection we are going to describe the basic history operations and

the relations on histories with more detail.
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Let h = 〈w, lh〉 be a history. If w = S(n) a history h is stable and is denoted

as �(h), otherwise h is volatile. If lh is nonempty, then h is furthermore persistent

(
√

(h)), otherwise it is ephemeral.

The transitions that a history associated with a single transactor are:

# : encodes that a transactor has rolled back

→� : encodes that a transactor has stabilized

→√ : encodes that a transactor has checkpointed

;∗ : encodes a partial order of history

n : encodes that a transactor is superseded by on other transactor

The above conditions satisfy the following simple and complex relations:

〈V(n), lh〉 # 〈V(n + 1), lh〉
〈S(n), lh〉 # 〈V(n + 1), lh〉
〈V(n), lh〉 →� 〈S(n), lh〉
〈S(n), lh〉 →√ 〈V(0), n :: lh〉
; , (# ∪ →� ∪ →√)

n , # · ;∗

Two histories h1 and h2 are comparable if they are valid histories for the

same transactor and if one of the following relations exist between them: h1 ;∗ h2

or h2 ;∗ h1. Furthermore, two histories are consistent if neither supersede the

other. The state represented by h2 supersedes the absolute state represented by h1

(h1 n h2), if h2 is a transactor history that rolled back from the state represented

by history h1. Given consistent histories h1 and h2, the sharpening operation is

defined as follows:

h1 ] h2 =

h′, if there exists h′ such that h1 →� h′ ;∗ h2

h1, otherwise.
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2.3.2.4 Dependency Map Operations

Let δ1 and δ2 be dependency maps, then δ1 nδ2 denotes that δ1 is invalidated

by δ2 ↔ ∃ t|t ∈ dom(δ1)∩dom(δ2) and δ1(t)nδ2(t). The union of δ1 and δ2 (δ1

⊕
δ2)

is defined as follows:

(δ1

⊕
δ2)(t) =



max ;∗ (δ1(t), δ2(t)), when t ∈ dom(δ1) ∩ dom(δ2) and

δ1(t) and δ2(t) are compairable,

δ1(t), when t ∈ dom(δ1), t /∈ dom(δ1),

δ2(t), when t /∈ dom(δ1), t ∈ dom(δ1),

undefined, otherwise.

The expended version of the sharpening operation of the histories with con-

sistent dependence maps is as follows:

(δ1 ] δ2)(t) =

δ1(t) ] δ2(t), when t ∈ dom(δ1) ∩ dom(δ2)

δ1(t), otherwise.

A dependency map δ is independent (�δ), if ∀ t ∈ dom(δ), �(δ(t)).

2.3.2.5 Transactor Configuration Transition Rules

In this subsection we are going to give some of the transactor configuration

transition rules defined by Field and Varela, which are going to be adopted to

AcTrust model.

The pure reduction rules for lambda terms encoding transactor behaviors are

as follows:

[pur1] ((λx, e) v) →λ e[v/x]

[pur2] fst(〈v1, −〉) →λ v1

[pur3] snd(〈−, v2〉) →λ v2

[pur4] if true then e1 else − fi →λ e1

[pur5] if false then − else e2 fi →λ e2

[pur6] letrec x = v in e ni →λ e[(v[(letrec x = v in e ni)/x])/x]

[pur7] f(v1, ..., vn) →λ (f ∈ F, v = JfK(v1, ..., vn))
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In the transition rules for basic transactor semantics the relation
t

GGGGA

l
is a

single step transition relation, which will be annotated with both the name l the

applicable rule and a distinguished transactor name t to which the relation will be

said to apply. The rules that are listed below augment the basic actor transitions -

pure, new, send, receive, get, set, self - with additional rules for managing distributed

state. Here we are going to give the transition rules and avoid a detailed description

of these rules, interested readers may refer to [12].

pure Evaluation pure redex.
e→λ e′ e∈Erdx

P

µ | θ[t7→〈b,s√; R[e],s; δs,δc,δb〉]
t

GGGGGA

[pure]
µ | θ[t7→〈b,s√; R[e′],s; δs,δc,δb〉]

new Creation of a new transactor. (t′ /∈ dom(θ) ∪ {t} and δ′ = [t′ 7→ H0])

µ | θ[t 7→ 〈b, s√; R[trans b′ init s′ snart], s; δs[t 7→ h], δc, δb〉]
t

GGGGA

[new]
µ | θ[t 7→ 〈b, s√; R[t′], s; δs[t 7→ h], δc, δb ⊕δ′〉][t′ 7→ 〈b′, nil; ready, s′; δ′, δc ⊕ δb⊕ [t 7→

h], ∅〉]

send Send message.

µ | θ[t 7→ 〈b, s√; R[send vm to t′], s; δs[t 7→ h], δc, δb〉]
t

GGGGGA

[send]
(µ ] {t′ ⇐ 〈vm, δc ⊕ δb ⊕ [t 7→ h]〉})| θ[t 7→ 〈b, s√; R[nil], s; δs[t 7→ h], δc, δb〉]

rcv1 Message dependencies not invalidated by transactor and transactor depen-

dencies not invalidated by message, so the message will be normally processed.

(δsc = δs ⊕ δc)
�(δscnδm) �(δmnδsc)

(µ]{t′⇐〈vm,δm〉})| θ[t7→〈b,s√; R[ready],s; δs,δc,−〉]
t

GGGGA

[rcv1]
µ | θ[t7→〈b,s√;(b vm),s; δs#δm,δc#δm,δm

get Retrieve state.

µ | θ[t 7→ 〈b, s√; R[getstate], s; δs, δc, δb〉]
t

GGGGA

[get]
µ | θ[t 7→ 〈b, s√; R[s], s; δs, δc, δb ⊕ δs〉]
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self Yields references to own name.

µ | θ[t 7→ 〈b, s√; R[self], s; δs, δc, δb〉]
t

GGGGA

[self]
µ | θ[t 7→ 〈b, s√; R[t], s; δs, δc, δb〉]

set1 Transactor is volatile, so that sating state succeeds.
��(h)

µ | θ[t7→〈b,s√; R[setstate(s)],−; δs[t 7→ h],δc,δb〉]
t

GGGGA

[set1]
µ | θ[t7→〈b,s√; R[true],s; δs[t 7→ h]⊕δb,δc,δb〉]

set2 Transactor is stable, so that attempt to set state fails.
�(h)

µ | θ[t7→〈b,s√; R[setstate(-)],s; δs[t 7→ h],δc,δb〉]
t

GGGGA

[set2]
µ | θ[t7→〈b,s√; R[false],s; δs[t 7→ h],δc,δb〉]

sta1 Transactor is volatile, so that stabilization causes it to become stable.
h →� (h′)

µ | θ[t7→〈b,s√; R[stabilize],s; δs[t 7→ h],δc,δb〉]
t

GGGGA

[sta1]
µ | θ[t7→〈b,s√; R[nil],s; δs[t 7→ h′],δc,δb〉]

sta2 Transactor is currently stable, so that stabilization is a no-op.
�(h)

µ | θ[t7→〈b,s√; R[stabilize],s; δs[t 7→ h],δc,δb〉]
t

GGGGA

[sta2]
µ | θ[t7→〈b,s√; R[nil],s; δs[t 7→ h],δc,δb〉]

chk1 Transactor is stable and independent, so that checkpoint succeeds.
�(δs[t mapsto h]⊕δch) h →√ h′

µ | θ[t7→〈b,−; R[checkpoint],s; δs[t 7→ h],δc,−〉]
t

GGGGGA

[chk1]
µ | θ[t7→〈b,s; ready,s; [t 7→ h′],∅,∅〉]

chk2 Transactor is dependent or volatile, so that checkpoint behaves simply like

ready.
��(δs⊕δch)

µ | θ[t7→〈b,s√; R[checkpoint],s; δs,δc,−〉]
t

GGGGGA

[chk2]
µ | θ[t7→〈b,s√; ready,s;δs,δc,∅〉]

rol1 Transactor is stable, so that rollback behaves simply like ready.
�(h)

µ | θ[t7→〈b,s√; R[rollback],s; δs[t 7→ h],δc,−〉]
t

GGGGA

[rol1]
µ | θ[t7→〈b,s√; ready,s; δs[t 7→ h],δc,∅〉]
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dep1 Transactor is independent, so that it yields false.
�((δs⊕δc) \t)

µ | θ[t7→〈b,s√; R[dependent?],s; δs,δc,δb〉]
t

GGGGGA

[dep1]
µ | θ[t7→〈b,s√; R[false],s;δs,δc,δb〉]

dep2 Transactor is dependent, so that it yields true.
��((δs⊕δc) \t)

µ | θ[t7→〈b,s√; R[dependent?],s; δs,δc,δb〉]
t

GGGGGA

[dep2]
µ | θ[t7→〈b,s√; R[true],s;δs,δc,δb〉]

lose Message loss.

(µ ] {m}) | θ
t

GGGGA

[lose]
µ| θ

2.4 Related Work

Besides the semantics of the actor and transactors models that are related with

the semantic goal of this thesis, there are some researchers working on reputation

based trust, which concerns the technical and mathematical goal of the thesis. The

main reason for the high activity of research in this field is it’s similarity to the social

relations of the real world and applicability to the cyber world. In this section we

are going to present the major work done on retrieving feedbacks, calculating trust

values and other auxiliary metrics.

The first simple reputation mechanism proposed in the literature is developed

by Zacharias et al. and is called Sporas [33]. Sporas can be implemented irre-

spectively of the number of rated interactions. The reputation service that Sporas

provides is based on the following principles:

• New users start with a minimum reputation value, which is increased with

their activity on the system.

• The reputation value of a user never falls below the reputation of a new user.

• After each transaction, based on the feedback provided from the transaction

partner, the reputation value of the user is updated.
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• Two users can rate each other only once. If they have interacted more than

once, then the most recent feedback is used.

• As the number of ratings a user has increases, the effect of each rating de-

creases.

Histos [33] is a more complex reputation mechanism, which is also developed

by Zacharias et al.. Histos assumes that the system has been somehow bootstrapped

so that there is a large quantity of rated interactions to create a dense web of pair

wise ratings. This model is applicable to p2p E-commerce communities where peers

are equal in their roles and are independent entities, thus no peers can serve as

trusted third parties or intermediaries [30].

Besides this research that focused on building trust through trusted third

parties or intermediaries Xiong et al. develop PeerTrust [31], which is a coherent

adaptive trust model for quantifying and comparing the trustworthiness of peers,

based on the evaluation of peer in terms of level of reputation it receives in providing

service to other peers in the past. For PeerTrust, Xiong et al. introduce transition

context factor and community context factor as adaptive factors, as well as three

basic trust parameters in computing trustworthiness of peers:

• Feedback a peer receives from other peers

• Total number of transactions a peer performs

• Credibility of the feedback source

Derbas et al. make a comparison of numerous trust models and using this

comparison develop TRUMMAR [24] as a truly comprehensive trust model that

concerns all of the trust metrics used in different models for mobile agent systems

based on reputation. The trust system of TRUMMAR takes the following in to

account:

• Hierarchy of trust is used to classify the peers in a system in different groups

depending on the possibility of trustworthiness. Derbas [8] for example de-

scribes hierarchy of trust in four levels: self; other hosts on its own network
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that are under the same administrative control (neighbors); hosts from dif-

ferent networks that are under different, but trusted administrative control

(friends); and hosts that are willing to volunteer information (strangers). Dif-

ferent hierarchical levels refer to different levels of trust in the information

supplied from peers in different levels.

• Position of members in community refers to rating for example a feedback

from a trust center more then a feedback from a normal peer.

• Prior-driven reputation is a method for a posterior identification of mali-

cious hosts to build a trust policy. Here reputation can for example be driven

looking at the position of members in a community before having any trans-

action with that peer previously.

• Trust propagation allows diffusion of trust according to whom the trusted

peers trust. For example if a peer X trusts another peer Y, and if this peer Y

trusts a third peer Z, then peer X trusts peer Z according to trust propagation.

• First impression is used when a new peer wants to join the system and

none of the peers have had a transaction with it before. Some first impression

methods that can be used in such situations are using an initial test period

and using a predefined random trust value.

• Result of interaction is the feedback sent to a peer after an interaction

referring to the level of satisfaction during the interaction.

• Fixed decay factor allows the submitted feedbacks to loose their effect lin-

early with the time.

• Dynamic decay factor allows the submitted feedbacks to loose their effect

with time depending on some dynamic factors.

• Trusting vs. suspicious is described in [6] as defining either the list of hosts

that has to be visited or the list of hosts that the agent does not want to

communicate with again.
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• Similarity between two hosts depends on the similarity of their reputation

values. The closer their reputation the closer their evaluation and the more

recommendations will be credible to the other.

• Activity depends on the total number of interactions with other hosts, which

is highly affected by the size of a community. Yu describes this fact in [32] as

the difference between the number of reputations an agent is going to get in

a society with 3000 agents and 300,000 agents. According to his suggestion,

depending on the activity level of an host, it is possible to define how much

it’s information is reliable and up-to-date.

• Popularity is a metric that looks at the number of transactions the peer took

part in a given time period. The higher this value is, more popular the peer

becomes and gets better accepted among other hosts.

• Cooperation is described in [11] as the metric that depends on the number

of times this host interacted compared to the number of times it has asked

for an interaction. Through cooperation the willingness of a host to provide

service to others can be defined.

• Number of interactions is a metric that looks at the number of transactions

the peer took part in during his life time.

Guha et al. made a comprehensive research on propagation of trust and dis-

trust in [14]. They suggest four possibilities of atomic propagation for trust and

distrust. Atomic propagation means that a conclusion is reached based on a single

argument. For example if it is given that a peer a trust another peer b, and the goal

is to apply the knowledge that peer b trusts c. Atomic trust allows in one propa-

gation step to guess that a trusts c. The atomic propagations Guha et al. describe

are:

• Direct propagation: Suppose peer a trusts peer b, and peer b trusts peer c,

then this implies that peer a trusts peer c.

• Co-citation: Suppose peer a1 trusts peers b1 and b2 and peer a2 trusts b2.

Under co-citation, they consider that a2 should also trust b1.
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• Transpose trust: If peer a trusts peer b then trusting b implies trusting a.

• Trust coupling: Peers a and b trust peer c, so trusting a implies trusting b.

2.5 State of the Art

As mentioned in section 2.4 there is an extensive amount of research focused

not only on building trust for electronic markets through trusted third parties or

intermediaries on p2p E-commerce communities, but also where peers are equal in

their roles and are independent entities. In this section we are going to present the

problems of such trust systems and suggest methods to overcome these problems.

2.5.1 Quality of feedback

Basic reputation mechanisms like the one suggested by Chen et al. [4] computes

a reputation for a rater peer based on quantity of the ratings it gives. However, the

method is based on the assumption that the ratings are of good quality if they are

consistent to the majority opinions of the rating. Which allows peers that submit

fake or misleading feedbacks still to gain a good reputation simply by submitting a

large number of feedbacks and becoming the majority opinion.

Dellarocas et al. [7] suggest using the credibility of the feedback source as one

of the basic trust parameters when evaluating the trustworthiness of a peer. They

furthermore suggest using cluster-filtering techniques to detect and filter out the

dissenter feedbacks.

Venkatraman [28], Tajeddine et al. [24] and Lin [18] suggests instead of elimi-

nating the exceptional feedbacks completely out, to use the social clusters in order

to leaver the effects of the feedbacks from different clusters. The credibility of the

feedback source is defined according to it’s contacts to the peers inside the same

cluster and outside the cluster. Venkatraman et al.’s suggestion, is based on the

assumption that a peer, whose social contacts are in the same cluster is worse than

some other peer, who has social contacts in different clusters. Tajeddine on the other

hand describes social clusters in four levels: self, neighbors, friends, and strangers;

and suggest to trust itself the most, neighbors more than friends and friends more

than peers it does not know. Lin et al. present a distributed reputation and trust
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management framework for web applications and the performance of the system by

simulations. Parallel to Tajeddine et al. they define a hierarchy of trust that has

direct and institutional trust clusters.

Similar to Tajeddine et al., Pujol [21] calculates the value of the ratings by

the topological information, instead of using the feedbacks after interaction between

agents. A communitys social network has been used as a measure of each members

reputation within a community.

2.5.2 Lack of temporal adaptivity

With time, the quality of service a peer accomplishes may change in a positive

or a negative way, but the recent trust management systems usually do not con-

sider this change. Or the ratings from a untrustworthy peer may probably be less

honest then the feedback from a trustworthy peer. Therefore a trust system that

either to consider only the recent reputations or all of the reputation in the history

equally or maybe even with changing affectivity would give more realistic results.

Xiong [30] works on this problem and evaluates PeerTrust with a metric that allows

giving higher weight to feedbacks from users with better reputations. They also use

the transaction value as a metric that affects the trust value in sense of temporal

adaptivity.

2.5.3 Lack of rating incentive

Reputation based systems are dependent on feedbacks. However, since the

feedback is not a real component of the transaction, but related more with social

responsibility, peers either do not want to waste time with something that does not

bring a direct benefit or forget sending feedbacks. Another aspect is that the peers

that are satisfied with the transaction usually forget submitting feedback, as the

ones who had problems do not. As a result, the feedbacks in the system may end up

being from the same group of peers or mostly from those who had bad experiences.

Xiong et al. [30] suggests adding a reward as a community context for peers, who

submit feedbacks.
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2.5.4 Storage of feedback

The most common e-marketplaces, like Amazon and eBay, use centralized

reputation. Such systems have two main deficits. On one hand they are easier to

attack, since vulnerable data is stored in one location. On the other hand they are

inflexible, because centralized authority may be subject to the scalability problem.

Distributed trust, which allows storing trust information separately for each peer

may be a solution to this problem.

However, distributed trust mechanism also has its challenges, like the propaga-

tion of reputation, or the evaluation of the trustworthiness of a party with informa-

tion gathered from potentially untrustworthy parties. As a solution the problem of

eliciting honest feedbacks Jurca et al. suggested in [16] some incentive mechanisms

through some side payment mechanisms.

2.5.5 Calculating the trust value of new peers

In distributed mobile systems, such as digital agent systems, peers usually

do not live very long and besides that frequently new peers are generated. The

trust value of a peer in most of the trust systems is based on the feedbacks a peer

receives from the interactions in his history, which is not possible for new peers.

Therefore in many such systems the starting reputation is set low, but this method

causes a barrier for taking part in interactions. Tajeddine et al. suggest in [24]

sending nonessential test data with known results during a test period, which differs

according to the peer in order to figure out how the new peer is behaving. Another

alternative is suggetsed by Falcone et al. in [10], which concerns defining a fixed

trust value for each peer according to the its hierarchical cluster.



3. Reputation Based Trust for Secure Actors

The main focus of this thesis is the design and development of AcTrust - a model for

calculation of reputation values and the determination of trust decisions. AcTrust

extends AMST [2] with using trust value information as a criteria for communica-

tion. Trust information is similar to dependence maps in transactors [12], which is

described in Subsection 2.3.

Trust maps have a list of the actors, which the actor is allowed to and not

allowed to communicate with. After each transaction the trust value of the actors

that take part in the interaction is calculated and the trust map is updated with

this new information. For this calculation actors use the the feedback about the

interaction and some other metrics that overcome different problems of reputation-

based trust.

In this chapter, we are furthermore going to introduce a trust policy in order

to indicate, constrain and identify the type of trust that is going to be achieved.

Moreover, we are going to introduce the Trusted Actor Language and expand the

operational semantics of the actor model in order to express how AcTrust behaves

under different conditions.

3.1 Model Properties

In this section, we are first going to present the general properties of Ac-

Trust, which allows trustworthy communication in various applications, such as

E-Commerce or Grid Computing. Afterwards we are going to define the trust pa-

rameters that AcTrust implies in order to achieve a higher level of trustworthiness

and we will conclude the section with the general trust policy of AcTrust.

3.1.1 General Properties

In this subsection we are going to describe the feedback collection and storage

as well as trust propagation mechanism and how trusted communication is realized.

In AcTrust every actor is associated with a unique name, a trust map and a

29
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trust thresh-hold. They furthermore encapsulate a state and a thread of control.

The state of an actor can be ready or busy processing a message. The actors

communicate with other actors or their surrounding in order to fulfill their duties.

The communication between the actors is realized with point-to-point messages that

are buffered in an input queue.

Every message is a triple of sender’s name, receiver’s name and content. The

messages that are received by the interface of an actor are interpreted with public

methods, which operate on the state of the actor. Before a message is interpreted

the trustworthiness of the sender is tested. To do this trust maps are used.

Every entry in the trust map is annotated with an actor’s unique name and its

trust value. Only the actors that are in the trust map and have a higher trust value

then the thresh-hold of that actor are trusted. An actors thresh-hold is defined at

its creation, just like its name, and is given by the parent. When an actor X creates

another actor Y, the trust map of X is extended with Y and the trust map of Y is

inherited from X.

In reaction to a message an actor in AcTrust can change its present state and

becoming ready to process the next message in its mail queue, creating a finite set

of actors with some initialized behaviors as well as a threshold, send messages to

peer actors, and perform one of the three following trust operations:

• Enter a new peer to its trust map,

• Updating the trust value of a peer in its trust map, or

• Query the trustworthiness of a peer in it’s trust map

3.1.1.1 Collecting the Reputation Information

As described in Section 1.2 there are two different types of trust in the litera-

ture: functional trust and referral trust . Functional trust is the trust in the quality

of service an actor accomplishes. Referral trust, on the other hand, is the trust in

the actor’s competence and credibility to give trusted feedback.

In AcTrust functional trust depends on the behavior of an actor during an

interactions and in order to fulfill predefined duties. Functional trustworthiness is
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realized by fulfilling a specific task up to the expectations of the initiating peer.

Every peer reviews the behavior of the peers that have taken part in interactions

with him.

Referral trust is questioned only then when a peer X wants to interact with

peer Y and X is unknown to Y. In that case Y asks his trusted parties for reputation

information of X. Trusted parties are those peers that Y trusts based on his previous

interactions. So, peer Y trusts those peers that have interacted trustworthy both in

giving reputation and have performed some specific tasks up to the expectations of

peer Y. This property of AcTrust motivates the peers to submit reputations when

desired. If the peer is not known to any peer in a network, then it’s interaction

request is rejected.

3.1.1.2 Storing the Trust Information

In reputation based trust models there are two possibilities to find out whether

a peer is trustworthy or not: using a central authority or storing the information in

a distributed way. In distributed reputation each actor stores the trust information

separately. The alternative to that is to have a central trust authority, which calcu-

lates the trust values and stores these in a central database. If we consider the fact

that peers do not only interact with those peers that they know but also with those

peers that they confront for the first time, we will see that it is hard to protect the

trust information that they carry with themselves. On the other hand storing all of

the vulnerable information in a single place makes that place a center of malicious

attacks and a single point of failure. Besides that in a central reputation system the

actors will be querying the trust center all the time, which will increase the message

overload in the system.

In AcTrust we used a combination of these two possibilities, and achieved a

more robust system against certain manipulations of malicious actors. Every peer

stores the trust information separately and refers to that information source in the

first position. Furthermore, if the information in that source is not sufficient, then

it asks the other peers and only considers the feedback from those peers which are

trusted. Every actor has its own list of trusted actors, which is updated after each
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succeeded or failed transaction.

In AcTrust, if a malicious peer manages to manipulate the trust information

in one of the peers, since the trust information of an actor is usually not saved only

in one information source, the trust system will not be completely manipulated.

3.1.1.3 Trust Propagation

TheAcTrust model allows propagating trust between peers. Guha et al. sug-

gests in [14] four possibilities of horizontal atomic propagation for trust and distrust.

From these four we have applied only the direct propagation to AcTrust, because

the other three propagations suppose that if peer X trusts peer Y then Y trusts X,

too. Accepting a trust propagation like this can strongly harm the level of security

in actor based environments. According to these rules, if an untrustworthy peer

adds all trustworthy peers in his trusted peers list, which can easily be done by

setting his trust threshold to the lowest trust value, then all peers in the system

have to trust this untrustworthy peer.

Figure 3.1: Calculation of the trust value of new peer W, for the trust
map of X, using the feedback retrieved from peers Y and Z.

Direct propagation extends the set of trusted actors according to the following

commutability property: If peer X trust peer Y and if peer Y trust peer Z, then

according to direct propagation peer X trusts peer Z, too. If two trusted peers X
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and Y have conflicting trust information on peer Z, then we computes a weighted

average of the feedbacks, based on trust placed on each peer. An example to this

calculation is given in the Table3.1.

Through direct propagation of trust in AcTrust, the actors can build social

network between other members of the marketplace without raising the message

traffic much.

3.1.1.4 Trusted Communication

In this subsection, we are going to show how a peer responds under different

conditions to a message from another peer.

Figure 3.2: Determination of the trust value of a peer n that is willing
to communicate with another peer m.
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As shown in Figure 3.2, if a peer X receives a message from peer Y, peer X

looks first whether Y is in his trust peers list, which is also called trust map of X. If

Y is in the trust map of X and has a lower trust value then the threshold of X, then

Y is untrustworthy, and X ignores the message. If Y is in the trust map of X and has

a higher trust value then the threshold of X, then Y is trustworthy and, X processes

the message. If Y is not in the trust map of X, then he multicasts to the trustworthy

peers in his trust map asking for reputation information of Y. X calculates a trust

value using the replies from his trusted parties and adds the mapping of this trust

value and Y to his trust map. If this trust value is higher then the threshold of X,

then X processes the message. If none of the trusted peers have Y in their trust

maps, then the message is from an actor that is new to the system. In that case X

ignores the message.

3.1.2 Calculation of Trust

In this subsection, we are going to define the trust parameters of AcTrust that

are used in order to calculate the trust value of a peer.

The trust parameters that AcTrust implies in order to calculate a trust value

are as follows:

• Reputation an actor receives from other actors

• Total number of transactions an actor performs

• Temporal adaptivity of a reputation

The basic trust metric on AcTrust is as follows.

T (a) =

I(a)∑
i=1

R(a, i) (3.1)

In this metric T (a) represent the trust value for actor a, and the rest of the

parameters are denoted as follows:

• I(a) the total number of transaction the actor a has joined,

• R(a, i) the reputations that the actor a receives for the transaction i.
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According to this metric, reputations are simply added to each other and, trust

can change between -1 and 1.

3.1.2.1 Reputation an Actor Receives

The reputation received from other actors is the main trust parameter. Rep-

utation in this context is the reflection of an actor’s satisfaction related to a trans-

action with another actor. This parameter is represented in the basic trust metric

of AcTrust with R(a) and is equal to ”1
2
” if the actor is satisfied and ”−1

4
” other

wise. By giving unequal reputation values we allow the trust metric to grow slower

in case of failure and faster in case of success.

3.1.2.2 Total Number of Transactions

Most of the P2P E-commerce systems of these days like E-bay or Yahoo collects

the feedbacks from peers that take part in interactions and add these to each other

in order to achieve a trust value. Reputation values calculated with these feedback-

only binary systems can only give correct results if each peer has equal number of

transactions, and otherwise the resulting outcome is unfair.

In reputation systems that calculate the trust value of an actor just by adding

up the submitted reputations, malicious actors can hide their frequent bad behav-

ior by increasing the number of reputations. For example, if an actor had 2 bad

reputations and 5 good then his trust value would be equal to 3 as the trust value

of another actor who only has 2 interactions both of which are graded as good has

the trust value 2. In order to disable an actor of hiding it’s bad reputations, and

betraying other actors, AcTrust includes the total number of transactions as a scope

factor for comparing the feedback in terms of degree of satisfaction among different

peers.

The total number of transactions allow to calculate an average amount of

satisfaction actor a receives for each transaction. So the basic trust metric changes

as follows, and shows the ratio of the total amount of satisfaction an actor receives

over the total number of transactions it has.
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T (a) =

∑I(a)
i=1 R(a, i)

I(a)
(3.2)

3.1.2.3 Temporal Adaptivity of a Reputation

Every reputation that is sent to the Reputation Manager affects the eventual

trust record of the related actor. Since an actor can change its behavior during the

time in a positive or negative way, a temporal adaptation of the trust score to the

more recent reputation would give more precise results.

Xiong suggest for this problem a solution in [30] called temporal adaptivity,

which works by multiplying the feedbacks in the history and the last feedback with

weight factors. This solution has several shortcomings. For example all of the past

reputations have to be stored in a database, which increases the memory consump-

tion.

AcTrust realizes the temporal adaptivity of the feedbacks by using the follow-

ing trust equation.

T (a) =

I(a)∑
i=1

(
R(a, i)

2(I(a)−i)

)
(3.3)

According to this equation, the relevance of each reputation sinks exponen-

tially. Every time a new reputation is received, a fresh trust value is calculated and

the old trust value in the database is over written by the new value. This way both

of the above-mentioned shortcoming of PeerTrust are solved. Besides that AcTrust

minimizes the memory consumption, since the reputations of the old transactions

must not be stored any more. Simply by using the following formula a new trust

value can be calculated.

Let T ′ symbolize the new trust value and R(a, last) the last reputation the

peer receives about peer a.

T (a)′ =
T (a)

2
+ R(a, last) (3.4)
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3.1.3 Trust Policy of AcTrust

In this section, we are going to describe the trust policy of AcTrust in order to

define, which actors are allowed to communicate with each other at any given time.

In AcTrust, actors are allowed to communicate only with those actors in their

trust maps and at the same time having a higher trust value than the threshold of

their communication partners. An actor can either develop trust in a direct way, by

registering a trust value for the actors it has communicated with and updating it on

subsequent transactions, or in an indirect way, by referring to the trust information

it gets from other trusted actors. The indirect way of developing trust refers to the

transitivity property of trust, which is explained in Subsection 3.1.1.3.

In AcTrust, we modeled a trust hierarchy. Here we concerned about two

hierarchical trust levels: network level, and level of neighbors. Neighbors are the

set of all peers that are in the trust map of a peer and are tagged as trustworthy.

If peer X is questioning the trust level of another peer Y, it first refers to the trust

value of Y in his trust map. If Y is in the trust map then he accepts the interaction

request. In Y is not in the trust map then he asks the trusted peers in the network.

If the majority of the trusted peers say that this peer is trustworthy then X carries

Y to his trust map as trustworthy, other wise as untrustworthy.

3.2 Trusted Actor Language

In this section, we are going to describe the Trusted Actor Language (TAL).

TAL extends the levels in AMST, which itself extends the λ-calculus.

Trusted Actor Language describes an actor’s behavior by a lambda abstraction,

which embodies the code to be executed when a message is received. The state of

an actor can be ready or busy processing a message. The messages that are received

by an actor are interpreted by applying the actors behavior to the content of the

message.

In AcTrust every actor is associated with a unique name, a trust map, and

a threshold. Actors restrict communication to other actors within specific trust

maps. Before an actor interprets a message it checks the trustworthiness of the

sender by using trust map. If the sender actor does not appear in the receiver’s
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trust map, other trusted actors are contacted to provide feedback on the sender’s

trustworthiness. Using this method, no unprivileged actor can gain access to a

resource. Every actor has a trust map and each entry in the trust map is annotated

with an actor’s unique name and trust information. Only the messages from those

actors that are in the trust map of an actor and that have a higher trust value than

the threshold are interpreted.

Actors communicate with other actors or their surrounding in order to fulfill

their duties. Communication between actors is realized with asynchronous, guaran-

teed, and point-to-point messaging. Messages are buffered in an input queue. Every

message is a triple of sender’s name, receiver’s name and content.

An actor in AcTrust can perform the following actions in reaction to a message:

1. Change its local state and become ready to process the next message in its

mail queue,

2. Send messages to peer actors,

3. Create a finite set of actors with some initial behaviors and thresholds,

4. Update its trust map by including a new actor or changing the trust value of

an actor that is already in its trust map, and/or

5. Find out if an actor is trustworthy.

In order to fulfill their duties concurrently, actors may create other actors.

In that case the children inherit the trust map from their parent, and include their

parent as a trusted peer in their trust map. Furthermore the trust map of the parent

is also extended with the child, as a trusted peer.

3.2.1 Language Constructs

The λ-calculus is used to model sequential computation inside an actor. TAL

extends it by adding primitives for trusted actor communication as follows:

• new(b,t) creates a new actor with behavior b and initial threshold t

• send(a,c) sends a message with content c to actor a
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• ready(b) makes an actor ready to receive a new message using behavior b

• register(a,t) saves the mapping of actor a to trust value t into the trust

map

• trustworthy?(a) looks up in the trust map of an actor to see if an actor a is

trustworthy or not

• success(a) updates the actor’s trust map after a successful transaction with

actor a

• failure(a) updates the actor’s trust map after an unsuccessful transaction

with actor a

3.2.2 Actor Configurations

Let T = {t|t ∈ R, −1 6 t 6 1} be the set of trust values, and assume that sets

atoms (AT) and variables (X) are given, then the set of values (V), expressions

(E) and messages (M) are defined inductively as follows:

V = AT ∪ X ∪ λX.E ∪ pr(V,V) ∪ T

E = V ∪ app(E,E)∪ Fn(E
n), where Fn(E

n) is all arity-n primitives.

M = 〈V ⇐ V〉V
The set X of variables represents actor names. At any given point an actor can

be either ready to receive a message, ready(e), or currently busy with execution of

some expression e. And < a ⇐ c >a′ denotes a message with content c sent to an

actor a by an actor a′.

Let Mω[M] be the set of multi-sets with elements in M, X0
f−→ X1 be the set

of finite maps from X0 to X1, Dom(f ) be the domain of f , and FV(e) be the set of

free variables in e. α{[e]a} defines an extended mapping, which maps a into e, and

all other actor names a′ into α(a′), and α{[e]a, [e′]a′} as α{{[e]a}{[e′]a′}} for a 6= a′.

For a set S, we use |S| to denote its size.

Definition 3.2.1. An actor configuration is a global snapshot of a group of actors.

It consists of an actor map, α, which maps each actor name to a behavior; a multi-

set of messages in transit, µ; and a global trust map, τ , which relates actor names to
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trust maps, which themselves map their acquaintances into trust values. Accordingly,

we write:

〈α | µ | τ〉

where α ∈ X
f−→ E, µ ∈ Mω[M], and τ ∈ X

f−→ X
f−→ T, such that A = Dom(α),

then:

1. If a ∈ A, then FV(α(a)) ⊆ A, and if < v0 ⇐ v1 >v2∈ µ then FV(vi) ⊆ A

for i < 3.

2. Dom(τ) = A, ∀ a ∈ A : Dom(τ(a)) ⊆ A.

3. ∀ a ∈ A : a ∈ Dom(τ(a)).

Actor that are defined in a configuration above can only send messages to the

actors that are also defined in the system. Every actor has a trust map and all the

actors in the trust map are put to the configuration. Furthermore, trust map of

every actor involves the trust value of that actor, which is the trust threshold for

that actor.

Let α(a) = ready(b) and let τ(a)(a) = t be the behavior of an actor bound

to the name a and its threshold value in some actor configuration 〈α | µ | τ〉.
The behavior of a, i.e., it’s response to the next incoming message, is represented

by b, and the threshold of a, i.e. the threshold that defines actors below it as

untrustworthy and the rest as trustworthy, is represented by t.

3.2.3 Operational Semantics

To describe the internal transitions between configurations, an expression can

be decomposed into a reduction context filled with a redex. The notation RJeK

represents a redex e in a reduction context R.

We define then a transition relation between actor configurations as the least

relation satisfying the following rules:

[pure a]

e
λ−→Dom(α)∪{a} e′ ⇒ 〈α{[e]a} | µ | τ 〉 7→ 〈α{[e′]a} | µ | τ 〉
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[new b,t’]

〈α{[RJnew(b, t′)K]a} | µ | τ{[τa{[t]a}]a}〉 7→
〈α{RJ[a′]a, [b]a′K} | µ | τ{[τa{[t]a, [1]a′}]a, [τa{[1]a, [t

′]a′}]a′}〉 a′fresh

[send a’,c]

〈α{[RJsend(a′, c)K]a} | µ | τ 〉 7→
〈α{[RJnilK]a} | µ ] < a′ ⇐ c >a | τ 〉

[receive c,a’]

〈 α{[RJready(b)K]a} | < a ⇐ c >a′ ] µ | τ{[τa{[t′]a′ , [t]a}]a}〉 7→
〈 α{[app(b, c)]a} | µ | τ{[τa{[t′]a′ , [t]a}]a}〉 , if t′ > t

[ignore c,a’]

〈α{[RJready(b)K]a} | < a ⇐ c >a′ ] µ | τ{[τa{[t′]a′ , [t]a}]a}〉 7→
〈 α{[ready(b)]a} | µ | τ{[τa{[t′]a′ , [t]a}]a}〉 , if t′ < t

[trustprop a,a’]

〈α{[RJready(b)K]a} | < a ⇐ c >a′ ] µ〉 | τ{[τa{[t]a}]a}〉 7→
〈α{[ready(b)]a} | < a ⇐ c >a′ ] µ〉 | τ{[τa{[t]a, [t′]a′}]a}〉 , a′ /∈ dom(τa)

let A = {b ∈ dom(τa) s.t. τa(b) > t, a′ ∈ dom(τ(b))} ,

then t′ =


P

b∈A(τa(b)∗τ(b)(a′))

|A| , if A 6= ∅

−1, otherwise.

[register a’,t]

〈α{[RJregister(a′, t)K]a} | µ | τ{[τa]a}〉 7→
〈α{[RJnilK]a} | µ | τ{[τa{[t′]a′}]a}〉

[trustworthy?1 a’]

〈α{[RJtrustworthy?(a′)K]a} | µ| τ{[τa{[t]a, [t′]a′}]a}〉 7→
〈α{[RJfalseK]a} | µ| τ{[τa{[t]a, [t′]a′}]a}〉 , if t′ < t

[trustworthy?2 a’]

〈α{[RJtrustworthy?(a′)K]a} | µ| τ{[τa{[t]a, [t′]a′}]a}〉 7→
〈α{[RJtrueK]a} | µ| τ{[τa{[t]a, [t′]a′}]a}〉 , if t′ > t
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[success a’]

〈α{[RJsuccess(a′)K]a} | µ | τ{[τa{[t]a, [t′]a′}]a}〉 7→
〈α{[RJnilK]a} | µ | τ{[τa{[t]a, [t′′]a′}]a}〉 , t′′ = t′

2
+ 1

2

[failure a’]

〈α{[RJsuccess(a′)K]a} | µ | τ{[τa{[t]a, [t′]a′}]a}〉 7→
〈α{[RJnilK]a} | µ | τ{[τa{[t]a, [t′′]a′}]a}〉 , t′′ = t′

2
− 1

4

• [pure a] evaluates pure redex.

• [new b,t’] is used to create a new actor with given behavior b and threshold

t’. The set of trust maps in the system is extended with the trust map of a’,

which is inherited from a and extended with a’. Furthermore, the trust map

of the parent, a, is extended with the child, a’. Since the parent trusts the

child and the child trusts its parent, the trusts value of child in the trust map

of the parent, as well as the trust value of the parent in the trust map of the

child, is set equal to 1.

• [send a’,c] is used to send message to an actor a’ with content c.

• [receive c,a’] and [ignore c,a’] these rules define when for an actor a

receives or ignores a message with content c from another actor a’. If the

sender is in the trust map of the actor a and has a trust value that is equal to

or higher then the threshold of a, than the message is accepted. If the actor

a’ is in the trust map but has a lower trust value then the the threshold of a,

than the message is removed from the message queue and ignored.

• [trustprop a,a’] is used in case the actor a’ send a message to the actor

a, and a’ is not in the trust map of actor a. Then the message remains in

the message queue and the actor a computes a’’s trust value bound on all the

peers in his trust map that have a trust value higher or equal to a’s threshold.

Actor a extends its trust map with this information. If no trusted actors know

about a’, it sets the trust value of the actor a’ to -1 and extends its trust map

with this information.
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• [register a’,t] extends trust map of an actor a with the mapping (a’→ t)

• [trustworthy? a’] is used to look in the trust map in order to see if an

actor a’ is trustworthy or not. If the trust value in the trust map is higher

or equal to the threshold of the actor a, than the rule yields true, otherwise

false.

• [success a’] is used in order to calculates a new trust value for the inter-

action peer a’ after a successful interaction and update its trust value in the

trust map.

• [failure a’] is used in order to calculates a new trust value for the inter-

action peer a’ after an unsuccessful interaction and update its trust value in

the trust map.

3.2.4 Security Properties

In this section we are going to give some basic properties of the Trusted Actor

Language and their proofs.

Lemma 3.2.1. Trust values for peer actors are inherited.

Proof. During the propagation of trust, according to the rule trustprp a,a’, it

is shown that the trust value of new peers are calculated by using the following

formula:

t′ =


P

b∈A(τa(b)∗τ(b)(a′))

|A| , if A 6= ∅

−1, otherwise.

Using this formula, the trust value of every other peer in the trust map of an actor

is multiplied with 1, because according to rule [new b,t’], every child peer trusts

its parent, which is denoted by 1 as the trust value of the parent peer in the trust

map of a child. Therefore, it is said that trust values for peer actors are inherited.

Lemma 3.2.2. A new actor, which is also not created by an actor in the system,

has the lowest trust value in the system.
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Proof. According to Definition 3.2.1, all of the actors in the system are known by at

least one other actor. If a new actor y wants to join the system, and communicate

with other actors, it sends a message to one of the actors, let this actor be x, in the

system. Since y is a new actor, it is not in the trust map of x. Therefore, actor x

collects feedback from it’s trusted peers, using the rule [trustprop]. Since actor y

is new to the system, non of x’s trusted peers will send feedback, and because of

that actor x is going to set the trust value of y to -1, which is the lowest value in

the system.

Theorem 3.2.3. If neither an actor a, nor its trusted peers know about an actor b,

and the threshold of actor a is not equal to -1, then that actor b is untrusted, and

therefore b is unable to communicate with a.

Proof. If a peer a’ send a message to another peer a, according to the rule [receive

c,a’] the peer a’ hast to be in the trust map of a and the trust value of a’ has to

be higher than the threshold of a.

If a peer is not in the trust map, than he can not have a trust value. In that

case the message waits in the message que. until a trust value for the sender peer

is propagated.

For the propagation of a trust value the [trustprp a,a’] rule is used. Accord-

ing to which, the receiver peer asks his trusted parties for trust information and

processes this information as follows:

t′ =


P

b∈A(τa(b)∗τ(b)(a′))

|A| , if A 6= ∅

−1, otherwise.

If non of the trusted parties of receiver peer has trust information on the sender

peer, then A = ∅ and the trust value of the sender peer is set equal to -1. Since the

threshold of the receiver peer is higher then -1, the ignores the message using the

[ignore c’a’] rule. Which point to the fact that they are unable to communicate.

Corollary 3.2.4. If actor a receives a message from actor b, then b is trustworthy

for a; i.e., in its trust map or its peer’s trust maps.

Lemma 3.2.5. Feedback from untrusted peers will not influence communication with

a third party.
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Proof. According to [trustprop a,a’] only the trust information form those peers

are taken in consideration that have a trust value higher then the threshold (τa(b) >

t). According to the rule [trustworthy? a’] trust value of untrusted peers are

lower than the threshold. Therefore, the feedback of untrusted peers will not be

take to consideration.

3.2.5 Final Remarks

We have developed TAL in an analogous manner to SMAL, described in Sec-

tion 2.2, which has a layered structure. So other properties, like mobility, of SMAL

can easily be imported to TAL.

Furthermore, trust maps work in a similar manner to the dependence maps in

the Transactors Model, described in Section 2.3, which map each transactor name

to a history value. A trust map maps each actor name a, on which it is defined, to

a trust value.

The structure of messages allows selection of trusted senders via trust maps.

In every message the sender is annotated. A message receiver, uses his trust map in

order to find out if the sender is trustworthy or not. This process is similar to the

usage of history values and dependence maps in the transactor model.



4. Examples of Trust Based Communication

In this chapter, we are going to present two examples, which use AcTrust. The first

example shows an E-Commerce application with actors, where the actors look for

some level of trust in order to communicate with other actors. The second example

shows, how trust can be used for secure file sharing in P2P communities.

4.1 E-Commerce

4.1.1 Marketplace Model Overview

One of the main application fields of reputation based trust is E-Commerce. In

this section we are going to imply AcTrust to the Marketplace model that we have

explained in [19] (See Figure 4.1 for the model.) in order to show, how AcTrust can

be used in an E-Commerce application, where the sellers and the buyers of the real

world are represented by online actors and interact in means of auctions in order to

fulfill their duties.

Figure 4.1: The Electronic Marketplace Model.

The Marketplace Model consists of two types of actors; manager actors and

representing actors. Manager actors are Coordination Model Manager (CMM), who

is responsible of choosing the most suitable actor coordination model and sending

the actors that represent buyers of the real world to stores; Seller Manager (SM),
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who is responsible of choosing and sending the seller actors to stores, where they can

meet with the buyer actors; Store Manager (StM), who is responsible for matching

the seller and buyer actors and creation of auctions; and Transaction Manager (TM),

who is responsible of the transactions that take place after each auction. Manager

actors are not mobile in comparison to the representing actors. There are two types

of representing actors in the model: actors that represent the sellers and actors that

represent the buyers.

4.1.2 Marketplace Example

Actors join the marketplace every time by connecting the CMM or SM. When

a new buyer or seller wants to join the marketplace, the system generates a new

actor, which delegates the representing actor in the auctions that take place in the

marketplace. Depending on whether the representing actor is a seller or buyer,

respectively CMM or SM extends its trust map with trust information of the rep-

resenting actor, which is 1. When a new actor is created, it inherits the extended

trust map of its parent, and sets the trust value of the parent to 1. The new actors

are trustworthy, since they are created by a manager actor and the manager actor

which is the parent is trustworthy. Depending on the goal of a representing actor,

CMM or SM may generate only one actor and send it to a series of auctions or

creates siblings and sends them to different auctions.

After an actor migrates to a store it starts interacting with the StM. Since the

actor is new the to the StM, StM does not have the actor in his trust map, but gets

its trust information from CMM or SM. If the actors that join an auction, do not

have each other’s trust information in their trust maps and want to interact with

each other, then they ask the actors they trust according to their trust maps for the

trust information of that new actor.

At the end of every auction, before migrating to a new location, actors recalcu-

late the trust values of their transaction partners and refreshes their trust maps with

the new information. The participating actors furthermore send feedback informa-

tion to the store manager and the StM calculates a trust value for the participating

actors and overwrite the old entries. After that StM sends these trust information
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of representing actors to the SM and CMM.

The goal of having partially centralized information storage is to prevent SM

or CCM sending malicious actors to Stores and in the same time to prevent StM

send these malicious actors to auctions. Since there is not only one trust center, the

system is protected from single point attacks, which may easily end up with denial

of service.

Figure 4.2: Message flow before an auction begins.

The message flow from the moment an actor is sent to a store until the begin-

ning of an auction is shown in Figure 4.2. We assume that StM has in the beginning

of the interaction only the actor v2 in his trust map. We furthermore assume that

actor v3 is tagged as untrustworthy in the trust map of SM and the rest of the actors

are tagged in the trust maps of SM and CMM as trustworthy. In this figure we can
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see how the trust propagation between the actors that does not know each other is

realized in AcTrust.

Figure 4.3: Message flow after an auction finishes.

In Figure 4.3 we show the message flow that takes place after an auction ends

and before the actors migrate to a different Store or join another auction. The actors

in Figure 4.3 are the actors from the Figure 4.2, and we assume that this messaging

takes place following the auction that starts after the trust propagation process in

Figure 4.2.

4.2 P2P Communication

In this section, we are going to describe a P2P communication example us-

ing AcTrust in an environment, where the file transfer is realized using BitTorrent.

Through AcTrust only the trusted peers are allowed to download and upload file

pieces from each other, so that malicious peers will not overload the network re-

sources.
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4.2.1 BitTorrent Overview

BitTorrent is a second generation P2P file distribution application, which

makes it possible to upload pieces of a file from different users, accounted in the

recent years for a large and growing share of P2P Internet traffic [22]. This success

of BitTorrent is established by distributing large files quickly and efficiently without

overwhelming the capacity of single hosting machine [3]. BitTorrent can be used;

if all users are downloading the same file at the same time and it redistributes the

upload costs to all downloaders. As a result, BitTorrent makes hosting of a file with

a potentially unlimited number of downloaders affordable [5].

Figure 4.4: The architecture of BitTorrent.

In Figure 4.4, the architecture of this distributed application is shown, where

solid arrows show the information flow, and dashed arrows denote the file downloads

and uploads. A peer that wants to download a file with using BitTorrent contacts

the BitTorrent tracker. Tracker is a central component that keeps track of the peers
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in the system, in order to help downloaders find each other. Seeds are the peers

that have the complete copy of the file and are willing to serve it to others, which

are called leechers. In BitTorrent network, as a peer is downloading pieces of a

file, other peers download the pieces it already has from him. The nodes that are

connected to each other in order to download a file are neighbors. Nodes inform the

tracker periodically as well as when they join or leave the torrent [3]. Each large file

available for downloading is called torrent. Each node limits the number of current

uploads to a small number, typically 5. The mechanism used to limit the number

of current uploads is called choking and respectively uploading is called unchoking.

In order to publish a content in BitTorrent, a static file with the extension

.torrent is put on a web server. This file contains information about the name,

size, and the hashing information of the file and the URL of the tracker. In order

to verify data integrity, the SHA1 hashes of all pieces are included in the .torrent

file. Peers report that they have a piece of the file to the tracker only after checking

its hash.

Since the peers can hash only after downloading the complete file, it is not

possible to know prior whether the file in download is the desired file or not. Because

of that BitTorrent is open to malicious attacks. We suggest using a reputation

based trust mechanism in order to download files only from those peers that are

trustworthy.

4.2.2 BitTorrent Example

Peers can join a BitTorrent network anytime they want to. After joining the

network each node looks for opportunities to download and upload blocks from and

to its neighbors, and in order to do this, they connect to the tracker.

We suggest here to extend the tracker with a trust map. So that the trustwor-

thiness of each peer is checked before sending the list of peers that have the required

pieces of the file. Furthermore, every node defines a threshold, when the tracker is

checking the trust list in order to send a list of the trusted nodes, he compares the

trust values of the seeds and leechers in the list with the threshold of the demander,

and sends the information of only those nodes that have a higher trust value then
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the supplier. If none of the nodes have a lower trust value, then tracker sends an

empty list.

Furthermore, after each finished download the downloader peer computes the

hash to proof the integrity of the file, if they are the same then he sends ”success”

as a positive feedback to the tracker, otherwise he sends ”failure” as a negative

feedback.



5. Conclusion and Future Work

5.1 Contribution of this Thesis

The goal of this thesis was to generate a comprehensive trust model for dis-

tributed computing and to develop a trust language with its computational seman-

tics. To achieve it’s goal, we have first described different actor models that can

constitute a base for AcTrust, a reputation based trust model for grid computing,

and then gave a brief overview of trust based systems for secure distributed comput-

ing, like Sporas, PeerTrust, and TRUMAR as well as summarized the main problems

and challenges in trusted distributed computing.

In Chapter 3, we have described AcTrust with its general properties, such as

collection and storage of trust information and propagation of trust, and we gave

the mathematical formula for the calculation of trust in AcTrust. Furthermore, we

introduced the Trusted Actor Language, which we have developed for trusted actor

communication and reputation of trust information between the trusted peers in

a distributed actor system, as well as specified the language and it’s operational

semantics. We have defined the Trusted Actor Language as a layer above the basic

actor language, which is itself a layer above the λ-calculus and concentrated on

evaluation and propagation of trust. We have concluded this chapter with the

proofs of the basic properties of AcTrust model.

Giving two examples in Chapter 4 we have discussed, how AcTrust can be

applied to e-commerce and p2p file sharing.

5.2 Future Directions

AcTrust is a very basic but in the meanwhile powerful model, which is sup-

ported by TAL. It is a flexible model that can be improved with different features.

For instance, it is interesting to treat statistic analysis for different metrics of the

trust calculation formulas, e.g. the value of the transaction, or a dynamic commu-

nity context factor and its relationship with that shown in this thesis. Furthermore,

piggybacking trust information into messages constitutes a further direction. Since
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it makes the message traffic more transparent, while a peer is trying to calculate a

trust value for a peer that is new to it.

Another extension of AcTrust is making a general update of the trust infor-

mation periodically. The use of such an extension is to allow a more concurrent

knowledge of trust, throughout the system. According to the AcTrust model, an

actor updates it’s trust map only if it receives a message from a new actor and

after each transaction. Therefore, if a peer y in the trust map of an actor behaves

maliciously with the other peers, after it’s last transaction with a peer x, peer x

notices this only during a new interaction with peer y. If the model has some kind

of a periodic trust map update property, than the peer x can know about the ma-

liciousness of peer y, before interaction with it. For a periodic update, peer x can

use a rule similar to [trustprop], with an additional trust value, which it retrieves

from this trust map.

A trust management system that works with a dynamically changing desired

lowest trust value depending on a risk analysis is another challenging future di-

rection. This property will allow the peers to dynamically change their threshold,

depending on how urgent the situation is. This property can especially support sys-

tems of online supply chain management, like Singh et al. has described in [23]. The

success in his work creating information transparency through effective integration

of information flows by intelligent agents across the multiple electronic marketplaces

that comprise the internet enabled supply chain.

5.3 Conclusion

Communities are getting more and more connected in the digital world. As

the physical distance loses its relevance, consumption of distributed resources gains

more weight. We believe that in the close future communication and interaction

in almost every field will be realized over digital networks. This evaluation will

make many processes in our lives significantly faster, but will also involve various

challenges, like security problems and power consumption in mobile peers. In this

thesis, we have concentrated on the security problems of grid computing.

As the digital world mimics the real world from many different perspectives,
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we have suggested in this thesis a security model that mimics a sociological factor,

”trust”. In the real world, every person that communicates with another, builds a

level of trust by analyzing the previous communications or the feedbacks received

from other people, and depending on the level of trust adjusts his behavior. Fur-

thermore, trust based security is easy to apply to the digital world.

In this thesis, we have tried to combine some properties of different actor

communication models with reputation based trust. Although trust improves the

security of such systems, there are still challenging security properties that can be

applied to distributed computing for achieving secure communication. Further study

on this field is critical to the future of secure distributed computing.
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