

Bachelor Thesis:

„Security Aspects of Digital Actors“

By: Ayse Morali

Technische Universität Darmstadt
Fachbereich Rechts- und Wirtschaftswissenschaften

Institut für Betriebswirtschaftslehre
Fachgebiet Wirtschaftsinformatik I

(Entwicklung von Anwendungssystemen)
Prof. Dr. Erich Ortner

Advisor: Prof. Carlos Varela

Rensselaer Polytechnic Institute
Computer Science Department

29.06.2005, Troy/USA

http://images.google.de/imgres?imgurl=elib.tu-darmstadt.de/image/athene.gif&imgrefurl=http://elib.tu-darmstadt.de/formular/umfrage2002.htm&h=568&w=454&prev=/images%3Fq%3DAthene%2BTU%2BDarmstadt%26svnum%3D10%26hl%3Dde%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8

ABSTRACT

Online computations are getting more and more embedded into the daily life of

people, in particular, they have practical applications in electronic commerce. In

the cyber world, mobile codes interact with each other and their environment on

behalf of sellers and buyers of the real world. Mobile code technologies provide

potential benefits to applications, but as the responsibilities and the complexity

of mobile codes increase, the variety of security threats that imposed the appli-

cations increases as well. In order to protect these inherently distributed systems

from attacks, their components have to consider security aspects, without giving up

flexibility. Transparent information flow between the mobile codes and their envi-

ronment can help increase efficiency for its participants and reduce user’s cognitive

load, yet add points of vulnerability to the system.

In this thesis we describe a middleware framework for online auctions, in or-

der to illustrate security problems in electronic commerce applications and suggest

potential solutions. This middleware framework is a model of a futuristic electronic

marketplace, consisting of various management components and electronic stores. In

the electronic stores, the mobile codes, embedded in software agents, representing

sellers and buyers, come together, in order to fulfill their duties.

Furthermore, we describe a set of security requirements of the electronic mar-

ketplace. We then survey different models of mobile code in distributed computa-

tions, including actors, secure mobile actors, transactors, casts and directors, and

mobile ambients. We then classify and compare these models according to their

applicability to the security of the electronic marketplace scenario. We demonstrate

how additional security instruments, such as proof-carrying code and cryptographic

techniques, can be incorporated to these models in order to fulfill the security re-

quirements of the marketplace electronic commerce applications.

In summary, we investigated the conflicting design goals of openness and se-

curity in electronic commerce applications. This research is a first step in achieving

the goal of building open yet secure electronic commerce systems.

1

ACKNOWLEDGEMENT

I would especially like to thank to Prof. Carlos Varela for motivating and advising

me throughout this thesis. I would like to thank Worldwide Computing group at

RPI for the positive work atmosphere. Furthermore I would gratefully acknowledge

the technical and informative supports and hospitality of Fikret Sivrikaya. Thanks

also to Prof. Erich Ortner for giving me the opportunity to write my this thesis

abroad. Last but not least I would like to thank my brother, Bülent Özgür Morali

and my parents, Nurten and Vedat Morali, for their financial and moral supports.

2

CONTENTS

LIST OF FIGURES . 5

LIST OF TABLES . 6

LIST OF ABBREVIATIONS . 7

1. Introduction . 1

1.1 Motivation . 1

1.2 Structure of Thesis . 3

2. Background and Related Work . 4

2.1 Security Requirements . 4

2.1.1 Authentication . 4

2.1.2 Confidentiality . 5

2.1.3 Integrity . 5

2.1.4 Accountability . 5

2.1.5 Availability . 6

2.1.6 Anonymity and Privacy . 6

2.2 Actors . 7

2.2.1 Actor Language . 8

2.2.2 Actor Configuration . 9

2.2.3 Operational Semantics . 10

2.2.4 Communication Abstractions 11

2.3 Secure Mobile Actors . 12

2.3.1 Model Properties . 12

2.3.2 Secure Mobile Actor Language 13

2.3.3 Operational Semantics . 15

2.4 Transactors . 18

2.4.1 Model Properties . 18

2.4.2 Tau-Calculus . 19

2.4.3 Security and Liveness Properties 20

2.5 Hierarchical Model for Coordination 20

2.5.1 Model Properties . 21

3

4

2.5.2 Operational Semantics . 22

2.6 Mobile Ambients . 25

2.6.1 Model Properties . 25

2.6.2 Operational Semantics . 28

2.7 Vulnerabilities and Security Instruments 31

2.7.1 Types of data that can be manipulated 32

2.7.2 Organizational solutions . 34

2.7.3 Protecting Actors . 35

2.7.3.1 Preventing Attacks on Actors 36

2.7.3.2 Detecting Attacks on Actors 39

2.7.4 Protecting Locations . 46

2.7.4.1 Security through Programming Language 46

2.7.4.2 Actor Authentication and Authorization 49

2.7.4.3 Actors Execution . 52

3. Electronic Marketplace Model . 56

3.1 Elements of the Marketplace Model 56

3.2 Customizable Middleware for Actor Communication 57

3.3 Actor Scenario . 59

3.4 Vulnerabilities of the Marketplace Model 60

4. Model Applicability to Secure e-Marketplace 61

4.1 Security Aspects of Secure Mobile Actors 62

4.2 Security Aspects of Transactors . 63

4.3 Security Aspects of Hierarchical Model 64

4.4 Security Aspects of Mobile Ambients 65

4.5 Security Integration of Model Properties 66

5. Conclusion and Future Directions . 68

5.1 Contribution of this Thesis . 68

5.2 Future Directions . 69

5.3 Conclusion . 69

REFERENCES . 71

EHRENWÖRTLICHE ERKLÄRUNG . 77

LIST OF FIGURES

2.1 Architecture of an actor, and the actions it performs 8

2.2 Coordinated activity with casts, directors and messengers. 21

2.3 Cut-and-paste attack . 33

3.1 Architecture of the Marketplace . 57

3.2 Architecture of a store in the marketplace. 58

5

LIST OF TABLES

4.1 Actor models and security requirements 61

4.2 Security requirements that the security instruments fulfill. 67

6

LIST OF ABBREVIATIONS

Actor Language . AL

Access Control List . ACL

Actor Topology Sensitive Random-Stealing . ARS

Central Processing Unit . CPU

Coordination Model Manager . CMM

Denial of Service . DoS

Global Positioning System . GPS

Information Technology . IT

Local Area Network . LAN

Message Authentication Code . MAC

Network Topology Sensitive Random-Stealing . NRS

Proof-Carrying Code . PCC

Partial Result Authentication Code . PRAC

Load-Sensitive Random-Stealing . RS

Seller Manager . SM

Secure Mobile Actor Language . SMAL

Transaction Manager . TM

7

1. Introduction

1.1 Motivation

As the hardware and software devices, that today’s mobile users utilize, di-

versify strongly; the threats against the information security increase. This circum-

stance requires distributed systems that are adjusted with intelligent and secure

components with an open dynamically reconfigurable design. These components

have to fulfill furthermore security and dependability requirements like authentica-

tion, integrity, confidentiality, accountability, and availability.

This thesis describes a middleware platform for actor based e-commerce appli-

cations, like online auctions, which fulfills the features mentioned above. The seller

and buyer actors 1 come together on this platform to interact with each other and

their environment in order to fulfill their tasks. It is a flexible, dynamic middleware,

which adapts itself to constantly changing distributed heterogeneous environments.

Message traffic between the actors uses stateful and consistent protocols.

Furthermore, this middleware platform accomplishes a secure environment to

model the behavior of the actors that migrate from one host (location) to the other.

In order to realize security, the system protects a subset of actors, from malicious

locations but also from malicious codes. Some of the actor models that can be

utilized in such distributed, unreliable environments are the Secure Actor Model,

Transactors Model2, Hierarchical Coordination Model, and Mobile Ambients.

Considering the above mentioned aspects, we are going to start with defin-

ing the security requirements, actors and actor models with their computational

semantics. Later we will return to the electronic marketplace model that we have

developed for this thesis and discuss the applications of the actor models to security

of the e-marketplace.

Information security is defined in the theory as achieved when security require-

1Actors are computational agents, which are distributed over time and space
2Transactors is a fault-tolerant programming model for composing loosely-coupled distributed

components running in an unreliable environment such as the internet into systems that reliably
maintain globally consistent distributed state [16] [17].

1

2

ments are fulfilled. These requirements are grouped as authentication, information

confidentiality, data integrity, accountability, system availability, data anonymity,

and privacy.

Digital actors [1] are mobile computational agents that encapsulating a state,

a set of operations that manipulate the state and a thread of control. Each actor

has furthermore a conceptual location, a unique mail address, associated with it.

The Actor Language (AL) introduced by Agha, Mason, Smith and Talcott [2] as

an extension to the call-by-value λ-calculus [27], provides a mechanism for speci-

fying the creation and manipulation of actors. AL has been extended by Toll and

Varela [41] with mobility features into the Mobile Actor Language (MAL) and with

security features into the Secure Mobile Actor Language (SMAL).

Transactors proposed by Field and Varela [17] is a fault-tolerant programming

model for composing loosely-coupled distributed components. The transactor model

is formalized via the τ -calculus, which is an extended λ-calculus, that incorporates

constructs to create globally-consistent distributed states. Furthermore, an oper-

ational semantics for the τ -calculus is used to formally prove safety and liveness

properties.

The hierarchical model proposed by Varela and Agha [43] is an actor based

model for coordination of concurrent activities. In this model, actors are grouped

into casts. Unique actors called directors are responsible of the coordination in a

cast and messengers are responsible of sending messages between casts. Hierarchical

model furthermore, extends the computational semantics of AL in order to capture

casts and directors.

Mobile Ambients [8] is a mobility paradigm, where computational ambients are

hierarchical structures, which actors are confined to, and move under the control

of actors. They scales up mobile computation into widely distributed, intermit-

tently connected and well administered computational environments. Furthermore,

Cardelli and Gordon introduce a calculus describing the movement of processes and

devices, including movement through administrative domains.

Information systems, where mobile codes are migrating and communicating,

consist of two main components: actors and locations. Both actors and locations

3

have to be protected from malicious actors and locations. In the theory of informa-

tion security there are numerous instruments that can be used in order to prevent

or detect vulnerabilities of information systems. The most common ones are crypto-

graphic techniques, Proof-carrying code (PCC) and sand boxing. These instruments

can be combined with each other or with security specifications of actor models in

order to achieve a secure actor environment.

The electronic marketplace model that we have developed consists of a mid-

dleware framework, where actors representing sellers and buyers come together in

online auctions that take place in stores. We create various scenarios over this model

in order to show how the actor models can overcome these vulnerabilities, since there

is no single model that fulfills all of the security requirements.

1.2 Structure of Thesis

This thesis describes in Chapter 2, the basic security requirements of informa-

tion systems. That is followed with the description of the actor model and various

models that extend the actor model with features that have the potential to make

the actors model more secure. Chapter 2 is concluded with instruments that have

been suggested by other authors in order to make an actor based information system

more secure.

In Chapter 3, an electronic marketplace scenario is introduced, its architecture

is described, and its vulnerabilities are defined.

In Chapter 4 the actor models defined in Chapter 2 are classified according to

how they compare with respect to security requirements of an information system

compared. Later on in this chapter, we will show by example how far they can fulfill

security for the marketplace scenario.

The thesis will be concluded with future directions and possible security and

feature extensions of the electronic marketplace.

2. Background and Related Work

In this chapter, we are going to describe first the security requirements of infor-

mation systems in general. Then, we will discuss different actor models with their

computational semantics. And afterwards various security instruments that can be

applied to actor environments are going to be described.

2.1 Security Requirements

Security refers to techniques for ensuring the ability of the software to prevent

unauthorized access by mistake or deliberately to code or data.

The use of mobile codes generates a lot of security problems and achieving a

100% security in a distributed network system is not possible. The security problems

or sort of attacks a specific computer system is open to have to be determined and a

focused set of countermeasures against these identified threats has to be developed.

Optimal security architecture could be constructed this way. Furthermore, the mo-

bile agent systems must be seen as embedded in an application scenario, and the

best way to evaluate an actor based approach is to determine whether the specific

security problems for this application scenario are solved.

In order to avoid misunderstanding, in this section the general security re-

quirements of distributed software systems will be roughly defined.

2.1.1 Authentication

Authentication between the mobile actors and the locations is a major concern.

An actor must authenticate on each visited location so that the location can decide

whether if the actor is trusted. On the other hand the location must authenticate

with the actor so that the actor can be sure it is on the correct location. That is

what we call two-way authentication.

If the two-way authentication fails then, a malicious location could, for exam-

ple, masquerade as another location to deceive the actor about its real host. As a

consequence, the actor could disclose sensitive information, because it assumes it is

4

5

a trusted location. This can be realized for actors via unique actor addresses, sim-

ilar to the IP-Addresses in the network systems. But the question is if they really

are dependable, since they can be changed3. Some other cryptographic methods

referring to authentication will be described later in this thesis.

2.1.2 Confidentiality

Confidentiality demands that information be protected against unauthorized

access. Confidential information that an actor carries, like the trading algorithms,

or the private data, like the account information of the actor’s owner, must not

be accessible for the other actors or locations. Furthermore confidentiality involves

accomplishment of information security during an information flow.

Symmetrical and asymmetrical encryption techniques can be used in order to

protect the information or code that an actor carries.

2.1.3 Integrity

Integrity is necessary to make sure that a particular piece of data has not

been modified during some period. Integrity has to be fulfilled for example when an

actor has a predefined itinerary, otherwise the actor could be sent to arbitrary hosts.

Integrity of the mobile code is also a very common field of security, since it is hard

to detect the locations and protect mobile codes during a remote computations.

Digital signatures, integrity/checkers or message authentication codes (MAC)

are some of the security instruments that can be used to make sure that some specific

data has not been changed during any time of an actor’s life.

2.1.4 Accountability

Accountability means that each subject is responsible for any action it has

taken and can not deny responsibility later on.

Using cryptographic techniques, such as digital signatures, is a way to provide

accountability. Because actors are mobile, carrying secret information, like private

3In the Information-Technology-Security (IT-Security) there is a very common attack called
IP-Spoofing, which is a technique in which a malicious host claims to own a specific IP address to
intercept requests to that IP address and take the role of the other computer. See [13] for more
details.

6

keys without compromising it is not trivial. How accountability could be managed

in a system, where actors are mobile will be presented in the coming sections.

2.1.5 Availability

Availability aims to ensure that access to a service cannot be restrained in an

unauthorized way and guarantees a reliable and prompt access to data and resources

for authorized principals. Availability is broken usually because programming fail-

ure, like using insecure classes in object-oriented programming.

In case of mobile agents, a malicious host can, for example, refuse to execute an

actor, which is Denial of Service (DoS) attack. Or malicious actor could consume all

host resources, inflicting a DoS attack on other actors. Another attack against the

availability of system components is called Distributed-DoS, where many malicious

components attack one component at the same time, like bombing the destination

with messages sent at the same time. Redundancy of computer systems, hardware

and software could be realized through techniques like load balancing or fault tol-

erance. PCC can also be used to minimize such deficits. These techniques will be

discussed later in detail.

2.1.6 Anonymity and Privacy

Anonymity is the state of not being identifiable, privacy on the other hand,

is the state of being free from unwanted intrusion. Hiding one’s identity may be by

choice, for legitimate reasons such as privacy. In order to realize privacy, the private

information saved in a system must be protected from unauthorized third parties,

which requires trusting the system. In some cases anonymity entails privacy pro-

tection. By converting the private data into anonymous data, identity dependency

of the data can be disestablished. Privacy refers to the concept of informational

self-determination, which means that the owner of the private data is the only one

who can decide about the usage of the data.

Anonymity is a major concern, especially in e-commerce. It must be for ex-

ample possible for an actor to keep his owner as a secret, when purchasing some

7

article. There are some projects like the JAP project at the University of Dresden4,

in which a software guarantees anonymity on the level of IP addresses when surfing

the web. Referring to online actors, Callsen and Agha have proposed the visibility

feature in ActorSpaces [7], as a way to ensure anonymity of message recipients.

2.2 Actors

Actors as Agha [1] describes in his approach, are computational agents, which

are distributed over time and space. In comparison to passive objects, as can be

seen in the Figure 2.1 [44], actors encapsulate a state and a thread of control. The

communication between the agents are realized with point-to-point messages that

are buffered in an input queue. The messages that are received by the interface of an

actor are interpreted with public methods, which operate on the state of the actor.

Furthermore, the actors are associated with a conceptual location and a unique

name, like a mail address, which can be used as a reference by other actors [42].

The actors communicate with other actors or their surrounding in order to

fulfill their duties. While processing a message there are three basic actions that an

actor may perform:

1. changing the local state and becoming ready to process the next message in

its mail queue,

2. creating a finite set of actors with some initialized behaviors, and

3. sending messages to peer actors.

The actor model does not necessarily use a specific programming language.

But it is possible to extend any sequential language with appropriate constructs

for creating new actors, sending asynchronous messages and accepting incoming

messages. The local computation of an actor in response to the message received

can be modeled by the usual sequential constructs.

4See http://anon.inf.tu-dresden.de/index en.html for details.

8

Figure 2.1: Architecture of an actor, and the actions it performs

2.2.1 Actor Language

Individual actors are the smallest coordination unit in the middleware model.

The basic actor language (AL) proposed by Agha, Mason, Smith and Talcott [2]

provides a mechanism for specifying the creation and manipulation of actors. Each

actor is a unit of computation encapsulating data and behavior. The behavior

defines how the actor reacts on receipt of a message [41]. In AL actor’s behavior is

described by a lambda abstraction, which embodies the code to be executed when

a message is received. Respectively the actor primitives are:

• new(b) for creating an actor with behavior b. It also returns the new actor’s

name.

9

• send(v0, v1) where v1 is the content and v0 the destination actor, creates a

new message and puts it in the message delivery system.

• ready(b’) for ending the current execution and making the actor ready to

receive a new message using behavior b’.

new(b) creates a new actor and returns its address. It is also possible to create

multiple actors with this schema. The parent actor knows the name of the newly

created actors, therefore it can send messages to each of them with each others

names.

2.2.2 Actor Configuration

An actor configuration is a global snapshot of a group of an actors. It consists

of actor mapping, messages in transit, a set of receptionists, and a set of external

actors.

Assuming that two sets AT (atoms) and X (variables) are given and V, E and

M are defined as follows:

Definition 1: V E M

The set of values V, the set expressions E and the set of messages M are

defined inductively as follows:

V = At ∪ X ∪ λX.E ∪ pr(V,V)

E = V ∪ app(E,E)∪ Fn(E
n) where Fn(E

n) is all arity-n primitives.

M = 〈V⇐ V〉
Actor names are denoted with variables. At any given point an actor can be

either ready to receive a message, ready(e), or currently busy with execution of

some expression e. And < v0 ⇐ v1 > denotes a message v0 sent to an actor v1.

An actor configuration with actor map, α, multi-set of messages, µ, reception-

ists, ρ, and external actors, χ, is written 〈α | µ〉ρχ, where5 ρ, χ ∈ Pω[X], α ∈ X →f E,

µ ∈Mω[M], and let A = Dom(α), then:

1. ρ ⊆ A, and A ∩ χ = ∅.
5Let Pω[X] be the set of finite subsets of X, Mω[M] be the set of multi-sets with elements in

M, X0 →f X1 be the set of finite maps from X0 to X1, Dom(f) be the domain of f, and FV(e) be
the set of free variables in e.

10

2. if a ∈ A, then FV (α(a)) ⊆ A∪χ, and if < v0 ⇐ v1 >∈ µ, then FV (vi) ⊆ A∪χ

for i < 2.

2.2.3 Operational Semantics

In this subsection, we are going to describe the operational semantics that have

been developed in [2] for the actor model. The notation R[e] represents a redex e

in a reduction context R. For the formal definitions of reduction context, the reader

is referred to [2].

• <fun : a >

e→λ
Dom(α)∪{a} e′ ⇒ 〈α{[e]a} | µ〉ρχ 7→ 〈α{[e′]a} | µ〉ρχ

• <new: a, a′ >

〈α{[R[new(e)]]a} | µ〉ρχ 7→ 〈α{[R[a′]]a, [e]a′} | µ〉ρχ a′ fresh

• <send: a, v0, v1 >

〈α{[R[send(v0, v1)]]a | µ〉ρχ 7→ 〈α{[R[nil]]a} | µ] < v0 ⇐ v1 >〉ρχ

• <receive: v0, v1 >

〈 α{[ready(v)]a} | < a⇐ v0 >
⊎

µ〉ρχ 7→
〈 α{[app(v, v0)]a} | µ〉ρχ

• <out: v0, v1 >

〈 α | µ] < a⇐ v0 >〉ρχ 7→ 〈 α | µ〉ρ′
χ

if a ∈ χ and ρ′ = ρ ∪ (FV (v0) ∩Dom(α))

• <in: v0, v1 >

〈 α | µ〉ρχ 7→ 〈 α | µ] < a⇐ v0 >〉ρχ∪(FV (v0)−Dom(α))

if a ∈ ρ, then FV (v0) ∩Dom(α) ⊆ ρ

In order to simplify actor programming and realize actor coordination more

efficiently, some abstractions have been developed. In the next section, significant

abstractions for the actor model will be described.

11

2.2.4 Communication Abstractions

There are some abstractions, which can be applied in order to simplify pro-

gramming in scalable networks. These abstractions are as follows:

1. Call/Return Communication: Method execution may need in some cases

information from other actors to complete. Such communication patterns,

where a sender invokes a remote operation and uses the return to continue

its computation, are called call/return communication [1] [7]. In the actor

model, call/return communication makes explicit manipulation of the contin-

uation and no synchronization is necessary because communication in actors is

point-point and non-blocking. Although these characteristics are insufficient

as programming abstractions, they provide an efficient execution model [24].

The computation dependent on the reply is separated into a join continuation,

and these transformations preserve the maximal concurrency in the program

[1].

2. Pattern-Directed Communication abstracts a group of actors, if it is need

to communicate not only with one actor, but with a group of actors. The Ac-

torSpace model [7] describes an abstract specification of a group of actors

through associating an actor with specific attributes. An actor space can be

associated with meta-level operations, which allows an actor space manage-

ment that transparently schedules the requests, in order to ensure load bal-

ancing. Chien and Dally ?? proposes a similar abstraction called Concurrent

Aggregates.

3. Synchronization constraints is a language construct proposed by Frölund [19],

which is a part of an actor’s interface, and allows programmers to write exe-

cutable specifications of per-object message-ordering constraint. Synchroniza-

tion constraints delay the dispatch of messages so that the dispatch order is

consistent with the message-ordering constraint. A synchronizer [19], in com-

parison to synchronization constraints, is a distinct entity that specifies the

message-ordering constraints for a group of objects. It transparently delays

the dispatch of messages by a group of actors according to user-specified crite-

12

ria, including atomic group message display. A synchronizer can furthermore

transparently observe message dispatch by objects in the group, and these

observations can influence the way in which message dispatch is delayed in

the future. Although both synchronizers and synchronization constraints ex-

press message-ordering constraints, there are significant differences between

the two concepts. Synchronizers specify constraints in terms of interface of

actors, whereas synchronization constraints specify constraints in terms of the

implementation of actors.

Actors can be modeled in an open system through the concept of actor configura-

tions, which is an instantaneous snapshot of an actor system. Each configuration

has a set of receptionist, which may receive messages from actors outside the config-

uration and a set of external actors which may receive messages from actors within.

The details of actor configuration will be discussed in the Section 2.5 with more

details.

2.3 Secure Mobile Actors

In order to achieve mobility and security towards robust distributed computing

systems, Toll and Varela [41] have extended the AL with primitives for mobility and

security and then developed an operational semantics for these extensions. In this

section, these extensions will be discussed.

2.3.1 Model Properties

Actors are inherently independent, concurrent and autonomous which enables

efficiency in parallel execution and facilitates mobility. Each actor is a unit of

computation encapsulating data and behavior. Communication between actors is

purely asynchronous and guaranteed. That means, when a message is sent, the

model guarantees that the destination actor will receive the message; however, it

does not guarantee the order of message arrival or the order of processing.

In mobile computation, actors do not only interact with other actors, but also

with their environments. Different from actor model, a mobile actor model considers

this property. Because, when the problems associated with worldwide computing are

13

considered, it becomes important to represent the actor’s environment. Otherwise

it is not possible to model the behavior of an actor.

The universal actors extend actors with locations, mobility, and the concept

of universal names and universal locations. Locators represent references that en-

able communication with universal actors at a specific location. An actor’s location

abstracts over its position relative to other actors. Each location represents, like an

actor’s configuration, an actor’s run-time environment and serves like an encapsu-

lating unit for local resources. Ubiquitous resources have a generic representation.

Resource-to-actor translations are stored in resource maps, which are maps between

global names and the names of local actors who fill a resource’s role. Actors keep

references, which get updated upon migration to resources at new locations. They

can also keep references to non-ubiquitous resources by using resource attachment

and detachment operations.

Secure actors restrict communication and migration behaviors to actors within

specific Access Control Lists (ACL). Using this method, no unprivileged actor can

gain access to a resource. Every actor or location has an ACL, which contains a list

of actors allowed to migrate into the location or send/receive messages. ACLs can

only be changed by the location, the actor in consideration, or by a resident actor

in case of passive locations.

2.3.2 Secure Mobile Actor Language

Secure Mobile Actor Language (SMAL) extends AL with semantics that fulfill

some security and mobility features, as mentioned above. So it defines the following

primitives besides the actor primitives new(b), send(v 0, v1) and ready(b’):

For mobility:

• newloc(Y) indicates the appearance or creation of a new location, with an

initial resource map denoted by Y.

• migrate(l’) moves an actor from its current location to one denoted by l′.

• attach(v) saves a resource denoted by v into the actor’s resource map.

• detach(v) removes a resource denoted by v from the actor’s resource map.

14

• register(v0,v1,l) adds the mapping of a resource name to an actor in a

location.

• deregister(v0,v1,l) removes the mapping of a resource name to an actor in

a location.

And for security:

• allow(v) changes the actor’s ACL to include actor v.

• allowloc(v) changes the actor location’s ACL to include actor v.

• disallow(v) changes the actor’s ACL to exclude actor v.

• disallowloc(v) changes the actor location’s ACL to exclude actor v.

If there are no restrictions on messaging or migration of an actor, then as an ar-

gument allow or allowloc primitives receive a null ACL, which is represented by

⊥.

SMAL is a language that has been expanded in layers. In the the first layer

there is the call-by-value λ-calculus, which is extended with primitives for actor

communication to AL. MAL extends AL with mobility primitives6 and SMAL adds

security primitives to MAL.

Assuming that two sets AT (atoms) and X (variables) are given and V, E and

M are defined as follows:

Definition 1: V E M

The set of values V, the set expressions E and the set of messages M are

defined inductively as follows:

V = At ∪ X ∪ λX.E ∪ pr(V,V)

E = V ∪ app(E,E)∪ Fn(E
n) where Fn(E

n) is all arity-n primitives.

M = 〈V⇐ V〉X
The set X of variables represent both actors and locations, where the set

L, with L⊆ X, is the set of locations, and the set R, with R⊆ X, is the set of

resource identities. The structure of M allows selection of valid senders via ACLs,

6Interested readers are refered to [41] for the operational semantics of MAL.

15

where list of ACLs is defined as: ACL ∈ Pω[Dom(α) ∪ {⊥}]. α is defined as:

α ∈ X →f (E × L× (R→f X)× ACL)7.

The definition of actor configuration in AL is also extended with a mapping,

π, from locations to resource maps (π ∈ L →f (R →f X)). According to these

changes, a universal actor configuration is written as: 〈α | µ | π〉ρχ.

MAL and SMAL extends the actor configuration in AL with another rule to

denote that actor names and locations are disjoint. Where ↓i indicates that the

projection of a cross product onto its ith coordinate, the actor configurations in

MAL and SMAL are written as:

1. ρ ⊆ A, and A ∩ χ = ∅.

2. if a ∈ A, then FV (α(a)) ⊆ A∪χ, and if < v0 ⇐ v1 >∈ µ then FV (vi) ⊆ A∪χ

for i < 2,

3. Range(α) ↓i ∩A = ∅.

2.3.3 Operational Semantics

In this section, we are going to present the operational semantics that Toll

and Varela [41] have developed for SMAL.

• <fun : a >

e→λ
Dom(α)∪{a} e′ ⇒ 〈α{[e, l, r, c]a} | µ | π〉ρχ 7→ 〈α{[e′, l, r, c]a} | µ |π〉ρχ

• <new: a, a′ >

〈α{[R[new(e)], l, r, c]a} | µ | π〉ρχ 7→ 〈α{[R[a′], l, r, c]a, [e, l, r, {a, a′}]a′} | µ | π〉ρχ
a′ fresh

• <send: a, v0, v1 >

〈α{[R[send(v0, v1)], l, r, c]a}| µ | π〉ρχ 7→
〈α{[R[nil], l, r, c]a} | µ] < v2 ⇐ v1 >a | π〉ρχ
if r(v0) = v2

〈α{[R[nil], l, r, c]a} | µ] < v3 ⇐ v1 >a | π〉ρχ
7α(a) = e× l × r × c implies that actor a has behavior e and is currently executed at location

l with resource map r and ACL c.

16

if π(l)(v0) = v3

〈α{[R[nil], l, r, c]a} | µ] < v0 ⇐ v1 >a | π〉ρχ
if v0 /∈ Dom(()r) and v0 /∈ Dom(()π)

• <receive: v0, v1 >

〈 α{[R[ready(v)], l, r, c]v0} | < v0 ⇐ v1 >a] µ | π〉ρχ 7→
〈 α{[R[app(v, v1)], l, r, c]v0} | µ | l〉ρχ
if a ∈ c or c = ⊥

• <out: v0, v1 >

〈 α | µ] < a⇐ v0 >a | π〉ρχ 7→ 〈 α | µ | π〉ρ′
χ

if a ∈ χ, and ρ′ = ρ ∪ (FV (v0) ∩Dom(α))

• <in: v0, v1 >

〈 α | µ | π〉ρχ 7→ 〈 α | µ] < a⇐ v0 >a′ | π〉ρχ∪(FV (v0)−Dom(α))

if a ∈ ρ, then FV (v0) ∩Dom(α) ⊆ ρ

• <migrate : l′ >

〈α{[R[migrate(l′)], l, r, c]a} | µ | π] [c′, r′]l〉ρχ 7→
〈α{[R[nil], l′, r, c]a | µ | π] [c′, r′]l′〉ρχ
if a ∈ c′ or c′ = ⊥

• <newloc: Y >

〈α{[R[newloc(Y)], l, r, c]a} | µ | π〉ρχ 7→
〈α{[R[l′], l, r, c]a | µ | π] [{a}, Y]l′〉ρχ l′ fresh

• <attach: a′ >

〈α{[R[attach(a′)], l, r, c]a} | µ | π〉ρχ 7→
〈α{[R[nil], l, r ∪ (a′ → a′′), c]a | µ | π] [c′, r′ ∪ (a′ → a′′)]l′〉ρχ

• <detach: a′ >

〈α{[R[detach(a′)], l, r ∪ (a′ → a′′), c]a} | µ | π〉ρχ 7→
〈α{[R[nil], l, r, c]a | µ | π 〉ρχ

• <register: a′, a′′, l′ >

〈α{[R[register(a′, a′′, l′)], l, r]a} | µ | π] [c′, r′]l′〉ρχ 7→

17

〈α{[R[nil], l, r ∪ (a′ → a′′)]a} | µ | π] [c′, r′ ∪ (a′ → a′′)]l′〉ρχ
if (a′ → a′′) ∈ r

• <unregister: a′, a′′, l′ >

〈α{[R[unregister(a′, a′′, l′)], l, r]a} | µ | π] [c′, r′ ∪ (a′ → a′′)]l′〉ρχ 7→
〈α{[R[nil], l, r]a} | µ| π 〉ρχ
if (a′ → a′′) ∈ r

• <allow: a′ >

〈α{[R[allow(a′)], l, r, c]a} | µ | π〉ρχ 7→
〈α{[R[nil], l, r, c ∪ {a′}]a | µ| π 〉ρχ

• <allow: ⊥ >

〈α{[R[allow(nil)], l, r, c]a} | µ | π〉ρχ 7→
〈α{[R[nil], l, r,⊥]a} | µ| π 〉ρχ

• <allowloc: a′ >

〈α{[R[allowloc(a′)], l, r, c]a} | µ | π] [c′, r′]l〉ρχ 7→
〈α{[R[nil], l, r, c]a} | µ| π] [c′ ∪ {a′}, r′]l 〉ρχ

• <allowloc: ⊥ >

〈α{[R[allowloc(nil)], l, r, c]a} | µ | π] [c′, r′]l〉ρχ 7→
〈α{[R[nil], l, r, c]a | µ| π] [⊥, r′]l 〉ρχ

• <disallow: a′ >

〈α{[R[disallow(a′)], l, r, c ∪ {a′}]a} | µ | π〉ρχ 7→
〈α{[R[nil], l, r, c]a} | µ| π 〉ρχ

• <disallow: ⊥ >

〈α{[R[disallow(nil)], l, r, c]a} | µ | π〉ρχ 7→
〈α{[R[nil], l, r, ∅]a} | µ| π 〉ρχ

• <disallowloc: a′ >

〈α{[R[disallowloc(a′)], l, r, c]a} | µ | π] [c′ ∪ {a′}, r′]l〉ρχ 7→
〈α{[R[nil], l, r, c]a} | µ| π] [c′, r′]l 〉ρχ

18

• <disallowloc: ⊥ >

〈α{[R[disallowloc(nil)], l, r, c]a} | µ | π] [c′, r′]l〉ρχ 7→
〈α{[R[nil], l, r, c]a} | µ| π] [∅, r′]l 〉ρχ

2.4 Transactors

The transactor model of Field and Varela [17] is a fault-tolerant program-

ming model for composing loosely-coupled distributed components running in an

unreliable environment such as internet into systems that reliably maintain globally

consistent distributed state. This model allows the elements of traditional transac-

tion processing to be composed modularly. This model extends the lambda-calculus

based on the actor model and formalizes it with the τ -calculus.

2.4.1 Model Properties

Distributed state is a property that many distributed systems have. It de-

notes that the states of distributed components in a network-connected system are

interdependent on one another. The transactor-model maintains these interrelated

states in a wide-area network in a consistent way by exposing key semantic concepts

related to distributed state in a common language.

Transactors extend the actor model by explicitly modeling node failures, net-

work failures, persistent storage, and state immutability. Just like actors, a transac-

tor encapsulates state and communicates with other transactors via asynchronous

message passing. Besides these, in response to a message they may create new

transactors, send messages to other transactors, or modify their internal state. In

addition to these inherited actor operations, a transactor may stabilize, checkpoint,

or rollback.

Stabilization is a transactors commitment not to modify its internal state

until a subsequent checkpoint is performed or until another peer actor causes it to

rollback due to semantic inconsistencies. After a transactor enters a stable state it

can still process messages, it simply cannot change its own state. A checkpoint is

not just a commitment to make the current transactor state persistent, but it is also

a consistency guarantee. It creates a copy of the transactor’s current state, which

19

can be recovered in the event of temporary failures. In order to checkpoint only the

globally consistent states, dependence information is carried along with messages.

Checkpoint can be thought of as the second phase of a two-phase commitment

protocol, where stabilization is the first phase. A rollback brings a transactor back

to its previously check-pointed state or makes it disappear, if there is not any such

state. Node failures are modeled as rollbacks.

2.4.2 Tau-Calculus

The extensional constructs of the τ -calculus can be divided into two categories:

those that encode the traditional actor semantics with explicit state management

and those that support distributed state maintenance.

Traditional actor constructs:

• trans e1 init e2 snart creates a new transactor with behavior e1, and ini-

tiate state e2

• send v to t sends a message with content v to the transactor t

• ready a transactor waiting to process the next incoming message

• self yield the transactor’s own name

• setstate(v) updates a transactor’s state to the value v

• getstate retrieves the value of the state

Distributed state maintenance constructs:

• stabilize current transactor becomes stable/immobile

• checkpoint creates checkpoint if stable and consistent

• dependent? checks whether the transactor is dependent on other transactors

• rollback reverts the transactor to its previous checkpoint

Because of page limitations of this thesis, we refer the interested reader to [17]

for the operational semantics of the τ -calculus that Field and Varela developed.

20

2.4.3 Security and Liveness Properties

The operational semantics for the τ -calculus helps to prove important sound-

ness and liveness properties by showing that globally consistent checkpoints have

equivalent execution traces without any node failures or application-level failures. It

furthermore shows the possibility to reach globally-consistent checkpoints provided

there is some bounded failure-free interval during which checkpointing can occur.

Under certain reasonable preconditions, checkpointing in the transactor model

is possible. Soundness under these conditions refers that a trace containing node

failures and inconsistencies is equivalent to a normal trace (i.e., one containing no

node failure) but with possible message losses. In order to show this, Field and

Varela prove that arbitrary τ -calculus traces can be simulated by traces containing

only the node failure free subset of the τ -calculus. This shows also how global

reasoning about state inconsistencies can be reduced to local reasoning about the

possibility of message loss.

Liveness, as the other τ -calculus property, refers for example to the fact that

using the transactor model operational semantics global checkpoints can be reached.

But not all transactor programs can reach global checkpoints. Therefore Field and

Varela introduce a Universal Checkpointing Protocol, which assumes a set of precon-

ditions that will entail global checkpointing for a set of transactors, and under those

preconditions if the protocol terminates then a global checkpointing is reached.

2.5 Hierarchical Model for Coordination

Varela and Agha have grouped the actors that are active on a middleware

platform, in their hierarchical model approach [43], into casts, so that their activ-

ities can be coordinated efficiently and the communication between these can be

simplified. Furthermore, they have realized the coordination between the actors by

actors designated as directors and also introduced migrating messenger actors to

facilitate remote cast-to-cast communication. In this chapter, the properties of this

model and its operational semantics will be described.

21

2.5.1 Model Properties

The hierarchical model uses abstractions that are themselves actors. The

hierarchical model of actor coordination is based on communication, which requires

the sender to explicitly name the target of a message. Therefore, it is kind of a

constraint interaction between actors, which does not require shared spaces. It

furthermore, explicitly represents locality in order to enable an explicit specification

of the structure of the information flow.

The hierarchical model architecture (see Figure 2.2 [43]) consists of directors,

messengers, coordinated and uncoordinated actors, and casts. An actor can only

receive a message, when the coordination constraints for such message receipt are

satisfied. The coordination constraints are checked for conformance at special actors

named directors. A group of actors coordinated by a director is defined as a cast.

Casts serve as abstraction units for naming, migrating, synchronization and load

balancing, and in this architecture they symbolize a group the actors arranged to

a singular director. The director-actor relationship forms a set of trees, which is

called the coordination forest. Messengers are special migrating actors that carry a

message from a local cast to a remote cast.

Figure 2.2: Coordinated activity with casts, directors and messengers.

Hierarchical model expands the operational semantics defined in [2] with the

concepts of cast and directors. In this subsection, the hierarchical actor language

and the reduction rules, which define valid transitions between actor configurations,

will be introduced.

Compared to ActorSpaces, in a cast incoming messages to a group are managed

22

by the director actor. A director actor is a computationally active component,

which can explicitly support multiple group messaging paradigms. Furthermore,

the hierarchical model requires an explicit description of how actors are grouped

together. Policies, such as pattern matching according to particular actor attributes,

are not directly supported in hierarchical model.

Compared to synchronizers, directors are not declarative. So the coordination

of directors does not only allow for dynamic reconfigurability of coordination policies,

but also for a hierarchic composition of constraints. Furthermore, the hierarchical

model is more restrictive in that it requires actors to belong to one single cast

at a given time. By contrast, the groups controlled by synchronizers may overlap

arbitrarily. The former associates benefits of more predictable performance, because

on the one side the path for hierarchical organization can be more rigid and on the

other coordination is more determinate than in synchronizers.

Compared to reflection-based approach the fact that hierarchical model uses

abstractions that are themselves actors causes some limitations, like the ability to

customize communication by changing the meta-level operations for sending/receiving

messages.

2.5.2 Operational Semantics

In this subsection, operational semantics of actor expressions will be discussed

by defining a transition on coordinated open configurations.

Hierarchical coordination uses the following call-by-value lambda calculus prim-

itives for creating and manipulating actors: newactor(e), newdirectactor(e),

send(v0,v1) and ready(v). Where as newactor(e) corresponds to new(b); ready(v)

to ready(b’); send(v0,v1) is just as the same as in AL, and newdirectactor(e)

as a new primitive creates a new actor with behavior e, directed by the creator, and

returns its name.

Assuming that two sets, AT (atoms) and X (variables), are given, the set of

values V, the set expressions E and the set of messages M are defined as in AL,

except they include the sender, < ... > a.

Let Pw[X] be the set of finite subsets of X, Mw[M] be the set of finite multi-

23

sets with elements in M, X0 X1 be the set of finite maps from X0 to X1, Dom(f)

be the domain of f and FV(e) be the set of free variables in e. We define actor

configurations as follows.

Definition 2: Actor Configurations (K)

An actor configuration is written as 〈δ|α|µ〉ρχ , whereas δ symbolizes a director

map, α an actor map, µ a multi set of messages, ρ receptionists and χ external actors.

In this configuration ρ, χ ∈ Pw[X], δ ∈ X →f X, α ∈ X →f E, µ ∈ Mw[M], and

let A = Dom(α) and D = Dom(δ), then:

1. ρ ⊆ A and A ∩ χ = ∅

2. if a ∈ A, then FV(α(a)) ⊆ A∪χ, and if < v0 ⇐ v1 >a∈ µ then FV(v1) ∈ A∪χ

for i <2.

3. If a ∈ D, and a0 = δ(a), a1 = δ(a0), a2 = δ(a1), . . . , an = δ(an−1), such that

an /∈ D, then ∀i ∈ 0..n : (ai ∈ A and ai 6= a).

The last rule restricts actor configurations so that (1) all directors in the coordination

forest path for an actor belong to the same configuration, and (2) no cycle are allowed

in the actor-director relationship.

Definition 3: Coordination forest path (∆) coordination forest path for an

actor (a), ∆(a), in a configuration κ with director map δ, is defined as:

∆(a) =

 {a} if a /∈ Dom(δ)

{a} ∪∆(δ(a)) otherwise

R in the following definition ranges over the set of reduction contexts. The

purely functional redexes inherit in the operational semantics from the purely func-

tional fragment of the AL. The actor redexes are: newactor(e), newdirectedactor(e),

send(v0, v1) and ready(v).

Definition 4: The single-step transition relation (7→)

On the actor configurations is the least relation satisfying the following rules

(where a′ stands for fresh a):

24

• <fun : a >

e →λ
Dom(α)∪{α} e′ ⇒ 〈δ | α{a→ e} | µ〉ρχ 7→ 〈δ | α{a→ e′} | µ〉ρχ

• <newactor: a, a’>

〈δ | α{a→ R[newactor(e)]} | µ〉ρχ 7→ 〈δ | α{a→ R[a′], a′ → e} | µ〉ρχ

• <newdirectedactor: a, a’>

〈δ | α{a→ R[newdirectedactor(e)]} | µ〉ρχ 7→
〈δ | {a′ → a} | α{a→ R[a′], a′ → e} | µ〉ρχ

• <send: a, v0, v1 >

〈δ | α{a→ R[send(v0, v1)]} | µ〉ρχ 7→ 〈δ | α{a→ R[nil]} | µ, < v0 ⇐ v1 >a〉ρχ

• <redirect: a, v0, v1 >

〈δ | α | µ, < v0 ⇐ v1 >a〉ρχ 7→
〈δ | α | µ, < δ(v0)⇐ msg(v0, v1) >a〉ρχ
if v0 ∈ Dom(δ), δ(v0) 6= a, and v0 /∈ ∆(a)

• <receive: v0, v1 >

〈δ | α{v0 → ready(v)} | < v0 ⇐ v1 >a, µ〉ρχ 7→
〈δ | α{v0 → app(v, v1)} | µ〉ρχ
if v0 /∈ Dom(δ), δ(v0) = a, or v0 ∈ ∆(a)

• <out: v0, v1 >

〈δ | α | µ, < v0 ⇐ v1 >a〉ρχ 7→ 〈δ | α | µ〉ρ′
χ

if v0 ∈ χ, and ρ′ = ρ ∪ (FV (v1) ∩Dom(α))

• <in: v0, v1 >

〈δ | α | µ〉ρχ 7→ 〈δ | α | µ, < v0 ⇐ v1 >a′〉ρχ∪ρ∪(FV (v1)−Dom(α))

if v0 ∈ ρ, FV (v1) ∩Dom(α) ⊆ ρ

The redirect and receive transitions rule ensure that all directors up to the

common ancestor between the sender and the target actors get notified and con-

trolled when to actually send a message to a target actor. As mentioned before,

information flows here locally. That means, if two actors belong to the same cast,

outside actors and directors do not need to be notified.

25

The last two transactions show the openness of actor configurations. The out

transition represents a message delivery to an external actor, and the in transition

represents a message coming from an outside system to one of the configuration’s

receptionists.

2.6 Mobile Ambients

Mobility involves the authorization to enter or exit certain domains. In mobile

computation, it is not realistic to imagine that an agent can migrate from any point

A to any point B on the internet. In order to do this it first has to obtain per-

mission to exit its administrative domain, then obtain permission to enter someone

else’s administrative domain, and then obtain permission to enter a protected area

of some machine, where it is allowed to run. Access to information is controlled

usually by multiple levels of authorization, like local computers, local area networks

and the internet. Mobile programs must be equipped to navigate this hierarchy

of administrative domains, at every step obtaining authorization to move further.

Therefore, Cardelli and Gordon [8] propose Mobile Ambients that captures notions

of locations, mobility, and authorization to move at the most fundamental level.

Mobile ambients is a paradigm of mobility, where computational ambients are hi-

erarchically structured, agents are confined to ambients, and ambients move under

the control of agents. To realize these, mobile ambients allow the movement of self-

contained nested environments that include data and live computation, instead of

moving single actors. In this subsection, mobile ambients with their computational

semantics will be described.

2.6.1 Model Properties

Ambients as an environment, where computation happens, have a boundary

around them. A boundary determines what is in and what is outside an ambient.

Examples of ambients and boundaries, in this sense, can be a web page bounded by

a file, or a single data object bounded by ”itself”. A boundary implies some flexible

addressing scheme that can denote entities across the boundary, like symbolic links,

and Uniform Resource Locators. Mobility is facilitated by flexible addressing, but

26

at the same time it is a cause of problems when the addressing links are broken.

An ambient can be nested within other ambients, therefore the administrative

domains are often organized hierarchically. Each ambient has unique names, which

is used to control access.

Ambients can furthermore, be moved as a whole. If an agent is moved from

one computer to another, its local data should move accordingly and automatically.

Each ambient has local actors, which are the computations that run directly

within the ambient and control the ambient, for example if the ambient has to move.

Ambient model involves besides ambient boundaries. The existence of separate

locations is represented by a topology of boundaries. This topology induces an ab-

stract notion of distance between locations. Locations are not uniformly accessible,

and are not identified by globally unique names. Process mobility is represented as

crossing of boundaries, and security is represented as the ability or inability to cross

boundaries. Interaction between processes can only happen with consideration of

boundaries and their topology.

Cardelli and Gordon [8] use two calculi by describing Mobile Ambients. One

is based on mobility primitives and the other one extending it with local communi-

cations.

When P and Q symbolize processes and n the name of an ambient, P → Q

describes the evolution of a process P into a process Q; mobility primitives are as

follows:

• <P,Q ::= (νn)P>

restriction: creates a new name within a scope P and is transparent with

respect to reduction (P → Q⇒ (νn)P → (νn)Q)

• <P,Q ::= 0>

inaction: shows inactivity, and does not reduce

• <P,Q ::= P | Q>
composition (parallel): parallel execution is commutative and associative (P →
Q⇒ P | R→ Q | R)

27

• <P,Q ::= !P>

replication: represents iteration and recursion, unbounded replication of pro-

cess P (!P can process as many replicas of P as needed, and is equivalent to

P |!P .)

• <P,Q ::= n[P]>

ambient : P is the process running inside the ambient (P → Q⇒ n[P]→ n[Q])

In general, an ambient is denoted as a tree structure by the nesting of ambient

brackets. Each node may contain in addition to subambients a collection of

non-ambient processes running in parallel. (n[P1 | . . . | Pn | m1 | [. . .] | . . . |
mq[. . .]]) where Pi 6= n1[. . .]

• <P,Q ::= M.P>

action and capabilities : executes an action regulated by the capability M, and

then continues as process P

For each capability M there is a rule for reducing M.P, with the following prim-

itives:

• <M ::= in n>

can enter n (entry capability): in n can be used in the action in m.P, and the

reduction rule is: n[in m.P | Q] | m[R]→ m[n[P | Q] | R]

If successful, this reduction transforms a sibling n of an ambient m into a child

of m. After the execution, the processes in m.P continues with P, and both

P and Q find themselves in a lower hierarchical level. If no sibling m can be

found, the operation blocks until a time when such a sibling exists. If more

then one m siblings exist, any one of them can be chosen.

• <M ::= out n>

can exit n (exit capability): out m can be used in the action out m.P, and the

reduction rule is: m[n[out m.P | Q] | R]→ n[P | Q] | m[R]]

If successful, this reduction transforms a child n of an ambient m into a sibling

of m. If the parent is not named m, then the operation blocks until a parent m

exists. After the execution, the process in m.P continues with P, and both P

and Q find themselves at a higher hierarchical level.

28

• <M ::= open n>

can open n (open capability): open m can be used as open m.P, and the re-

duction rule is: open m.P | m[Q]→ P | Q
If no ambient m can be found then the operation blocks itself until such an

ambient is found. If there is more then one ambient m, then it chooses one.

Communication primitives extend the mobility primitives with the following

primitives:

• <P,Q ::= (x).P>

ambient input : captures a capability from the local ether and binds it to a

variable within a scope

• <P.Q ::= 〈M〉>
ambient output : releases a capability into the local ether of the surrounding

ambient

The reduction for the ambient I/O, where P{x ⇓ M} symbolizes the substi-

tution of the capability M for each tree occurrence of the variable x in the process P,

is : (x).P | 〈M〉 → P{x ⇓M}
Communications also enrich the capabilities in order to include paths. For

the purpose of communication, names and variables are added to the collection of

capabilities. Names and capabilities are the only entities that can be communicated.

Multiple capabilities can be combined into paths, especially when one or more of

them are represented by input variables. The path-forming operation on capabilities

is M.M’, for example, (in n.in m). P is interpreted as in n.in m.P.

2.6.2 Operational Semantics

In this subsection, we are going to give operational semantics suggested by

Cardelli and Gordon [8] of the calculus described in the previous subsection, based

on a structural congruence between processes, ≡, and a reduction relation, →.

Structural Congruence

29

——————————————————

P ≡ P (StructRefl)

P ≡ Q⇒ Q ≡ P (Struct Symm)

P ≡ Q,Q ≡ R⇒ Q ≡ R (Struct Trans)

P ≡ Q⇒ (νn)P ≡ (νn)Q (Struct Res)

P ≡ Q⇒ P |R ≡ Q|R (Struct Par)

P ≡ Q⇒!P ≡!Q (Struct Repl)

P ≡ Q⇒ n[P] ≡ n[Q] (Struct Amb)

P ≡ Q⇒M.P ≡M.Q (Struct Action)

P |Q ≡ Q|P (Struct Par Comm)

(P |Q)|R ≡ P |(Q|R) (Struct Par Assoc)

!P ≡ P |!P (Struct Repl Par)

(νn)(νm)P ≡ (νm)(νn)P (Struct Res Res)

(νn)(P |Q) ≡ P |(νn)Q if n /∈ fn(P) (Struct Res Par)

(νn)(m[P]) ≡ m[(νn)P] if n 6= m (Struct Res Amb)

P |0 ≡ P (Struct Zero Par)

(νn)0 ≡ 0 (Struct Zero Res)

!0 ≡ 0 (Struct Zero Repl)

——————————————————

Furthermore, Cardelli and Gordon identify processes up to renaming of bound

names, by which they mean that these processes are understood to be identical, as

opposed to structurally equivalent: (νn)P = (νm)P{n← m} if m /∈ fn(P)

Reduction

——————————————————

n[inm.P |Q]|m[R]→ m[n[P |Q]|R] (Red In)

m[n[outm.P |Q]|R]→ n[P |Q]|m[R] (Red Out)

openn.P |n[Q]→ P |Q (Red Open)

P → Q⇒ (νn)P → (νn)Q (Red Res)

P → Q⇒ n[P]→ n[Q] (Red Amb)

P → Q⇒ P |R→ Q|R (Red Par)

30

P ′ ≡ P, P → Q,Q ≡ Q′ ⇒ P ′ → Q′ (Red ≡)

→∗ reflexive and transitive closure of →
——————————————————

Reduction relations give the behavior of processes. The first three rules are the

one-step reductions for in, out and open. The next three rules propagate reductions

across scopes, ambient nesting and parallel composition. The final rule allows the

use of equivalence during reduction. Finally,→∗ is the chaining of multiple reduction

steps.

Two processes are contextually equivalent if and only if whenever they are

inserted inside an arbitrary enclosing process, they admit the same elementary ob-

servations. In the setting of Mobile Ambients contextual equivalence is formulated

in terms of observing the presence of top-level ambients. A process P exhibits an

ambient named n, P ↓ n, only if P is a process containing a top-level ambient named

n, and a process P eventually exhibits an ambient named n, P⇓n, only if after some

number of reductions, P exhibits an ambient named n. Defining formally:

P↓ n
.
= P ≡ (νm1...mi) (n[P’] |P ′′) where n ∈ {m1...mi}

P⇓ n
.
= P →∗ Q and Q ↓ n

Contextual equivalence in terms of the predicate P ↓ n is defined as follows: Let

a context C() be a process containing zero or more holes, and for any process P,

let C(P) be the process obtained by filling each hole in C with a copy of P. Let

contextual equivalence be the relation P ' Q defined by: P ' Q ∀n and C(),

C(P) ⇓ n ⇔ C(Q) ⇓ n. And if there exists an R such that P →∗ R and R ' Q, it

is written as P→∗' Q .

In computational semantics of the communication property of Mobile Ambi-

ents P and Q range over large classes. So the following semantics are changed and

respectively added:

Structural Congruent

——————————————————

P ≡ Q⇒M [P] ≡M [Q] (Struct Amb)

P ≡ Q⇒ (x).P ≡ (x).Q (Struct Input)

31

ε.P ≡ P (Struct ε)

(M.M ′).P ≡M.M ′.P (Struct .)

——————————————————

Identification of the processes up to renaming of bound variables:

(x).P = (y).P{x← y} if y /∈ fν(P)

Reduction

——————————————————

(x).P | 〈M〉 → P{x←M} (Red Comm)

——————————————————

Now that processes may contain input-bound variables, the definition of con-

textual equivalence can be modified as follows: let P ' Q if and only if for all C()

such that fν(C(P)) = fν(C(Q)) = ∅ , C(P) ⇓ n⇔ C(Q) ⇓ n.

2.7 Vulnerabilities and Security Instruments

In the previous sections, we have described the actor model and its several

variants. In this section, we are going to analyze the main security threats of the

actor model.

The actor model has two main components: actors and locations. These

components are all vulnerable by each other:

• A location may attack an actor’s data

• A location may attack an actor’s code and control flow

• An actor may attack another actor’s data

• An actor may attack a location

The main problem concerning data that has been carried by an actor is that,

mobile actors must disclose its information about code and data if it wants to be

32

executed. Chess et al.’s [9] argument is that it is impossible to prevent actor tamper-

ing unless trusted hardware is available in locations, where actors come together.

Without such hardware, a malicious location can always manipulate actors code,

control flow or data. Possible attacks include simple spying on the actor’s data or

code and modifying the actor’s data, code or control flow, terminating the actor or

changing its state before it migrates from the location. These types of attacks will

be distinguished in the next subsection, regarding the type of information that is

targeted.

2.7.1 Types of data that can be manipulated

An actor is a piece of mobile code, so this code and control flow is the data

that makes an actor. Besides these, actors carry some static and some dynamic

data.

Actor’s data:

This is the data, that an actor carries, which is usually transparent to the actor

itself. Actor’s data contains two types of data, static (nonmutable) and dynamic

(mutable).

Static data is not modifiable during actor transmission. This data can be

public, like the name of the items the actor wants to buy, or private, like the max-

imum amount to pay for an item. As security of public static data only has to

fulfill integrity requirements, private static data has to fulfill both integrity and

confidentiality requirements.

Dynamic data is the data that is modified during actor transmission. An exam-

ple for dynamic data is the list of visited locations with the associated itinerary-price

information. This type of data can also be public or private. In some applications,

an actor sends some up-to-date information to the owner, for example when the

owner is getting close to a physical shop that sells the item. A secure system must

keep this private data confidential and protect its integrity. Otherwise malicious

locations may read it and react dependently or even manipulate it for their own

benefit.

33

Encryption is a method to protect private data. A very common attack to

private encrypted data, that an actor carries, is called cut-and-paste-attack. This

attack is characterized in Figure 2.3. In cut-and-paste-attack the malicious location

p wants to sniff8 the plain text m, which is saved in actor a, encrypted with the

public key of the location q, which makes it only readable by q. When an actor

is executed in a malicious location p, if the location p knows the data is encrypted

with the public key of the location q, p may copy it to another actor b (1), while

the actor a is located in p. Then, the location p sends actor b, to the location q

(2). Location q thinks that the cypher text is from p and the decrypts it using his

private key. Actor q furthermore encrypts it with the public key of the location p

(3) and sends it back with actor b (4). Location p decrypts the cipher text using

his private key and reaches the private data.

Figure 2.3: Cut-and-paste attack

A possible solution to cut-and-paste attacks is proposed by Roth and Co-

nan [36]. They suggest using a Message Authentication Code (MAC) that binds the

actor owner’s public key with a symmetric key, and let this MAC be transmitted

with the static part of the actor.

Actor’s code and control flow:

General requirements for actor’s code are integrity and confidentiality. How-

ever, because the actor must disclose at least some part of its code, so the complete

code cannot be confidential for locations. The main attacks to the confidentiality of

the actor’s code are black-box-attacks and sabotage. In black-box-attack, the actor

8In the area of information security this type of attacks, where a not authorized third party
gains information, are called sniffing-attacks.

34

is executed with different input parameters and different service-calls several times.

The code itself is a black-box, and the malicious location tries the get information

that it is not authorized for by comparing the input-output pairs. In sabotage the

malicious actor alters code at random points to corrupt the actor.

Since the code cannot be protected as a whole, disclosing only some lines of

it may perform an understandable overall semantics. Still if large parts of the actor

are executed, a location can learn the overall semantics. It can spy out the code to

analyze the actor’s intended behavior. If a location successfully analyzes the code

it may even understand the goal of the actor in a negotiation. Spying out code

becomes even easier if the actor is built from reusable software components or uses

code libraries that are already available at each location. One solution might be

actors carrying their own libraries.

As the next step malicious location can manipulate the code, which is known

as spoofing attack in the area of information security. This way the location may

insert a component that makes it possible to remotely control the actor after it has

migrated to another location.

2.7.2 Organizational solutions

Organizational solutions confine the openness of the mobile agent systems to

achieve some level of security. Since there are two main elements in actor based

systems, we are going to concentrate on possible solutions to the problem of data

and information security, using trusted actors and location-reputation.

Trusted actors

The approach of trusted actors refers to the idea that trusted actors migrate

only to and from trusted locations. In order to achieve this, either the actor must

have a predefined itinerary that includes only trusted locations or in the case of

dynamic routing of actors, we can assume that the location network consists of

trusted locations only and no location will allow a mobile actor to migrate to a not

trusted one. From the point of view of the location, it must be ensured that the only

mobile actors accepted are those that have only visited trusted locations before.

35

This is also a solution for the problem that an actor carrying secure sensitive

information, such as a secret key of its owner. This information can be encrypted

with the public key (K−) of the trusted location, making it possible for only the

location to read it. Therefore, an actor can even carry the (K+) of its owner, if the

location is trusted.

In order to create a network of trusted locations, rules that are positioned

outside the mobile systems must be established. However there is the problem of

notifying the actors and the locations after a location becomes malicious.

Location-Reputation

Location-Reputation [5] can be seen as an approach to allow mobile actors to

decide which locations are trusted in an open network environment. This approach

is built over a social control9 mechanism, according to which actors can complain

about any location with certain registration locations. This way malicious locations

lose reputation.

There are several problems with this approach that have to be solved. The ac-

tors can only complain about the locations but not refuse a bad reputation. Another

problem is, since a malicious actor can always complain about a good location, it

may decrease the reputation of this location by keeping the reputation of his home-

location higher. A further problem is that behaving properly for a long time does

not necessarily mean that an actor is not malicious. A location might work properly

over a long time, accumulating a high reputation, and then begin attacking actors

promptly.

Besides these two organizational solutions that circumvent the security prob-

lems, there are several instruments to solve these. These instruments are going to

be discussed in Subsections 2.7.3 and 2.7.4.

2.7.3 Protecting Actors

The techniques of protecting actors from attacks can be grouped in two: tech-

niques that prevent attacks on actor and techniques that detect attacks on actors.

9Social Control is defined as a type of behavior, which enforces all members of a social group
to behave according to rules that were defined within this group.

36

Both of these can be used in combination in order to achieve an heir level of security.

2.7.3.1 Preventing Attacks on Actors

Once an actor has arrived to a location, little can be done to stop the location

from treating the actor as it likes. There is no universal solution to the malicious

location problem, but some partial solutions have been proposed. In this subsection,

we are going to describe different approaches that can be used in order to protect

actors from malicious actors and locations.

Encryption Functions

Sander and Tschudin [37] propose encrypting functions to encrypt an actor

while still allowing it to execute at remote locations. The goal of this approach is

to make it difficult to analyze an actor. The general idea is to let a location execute

the actor carrying an encrypted function without knowing the original function.

The general protocol is as follows:

1. Alice encrypts the function f, resulting in E(f).

2. Alice send the actor A(E(f)) that executes E(f) to Bob.

3. Bob executes A(E(f)) using input x.

4. Bob sends A(E(f))(x) back to Alice.

5. Alice decrypts A(E(f))(x) and obtains x.

This protocol works for polynomials with smooth integers10, which allows a

malicious location to apply black box11 attacks on the actor in order to get infor-

mation about the function.

This technique can so far unfortunately be used only to protect basic mathe-

matical functions. However, with the development of enhancement to this approach,

in the future, it might work with actors in general.

10Smooth integers are those that consists only of small prime numbers.
11An actor is a black box if at any time code and data of the actor cannot be read and modified.

37

Time-Limited Black Boxes

The encrypted functions approach results in an encrypted actor that will be

completely protected against spying out code and data for the lifetime of an actor.

Hohl [20] proposes a technique that will protect the actor for a limited time by re-

laxing the requirement of an actor being a black box for its entire life and introduces

a new property that he calls time-limited black boxes.

Hohl’s approach depends on the difference between understanding every line

of the code and understanding the semantics of an actor. Therefore the author

proposes to mess up code so that an automated program analyzer will need a large

amount of time to understand the code. Without being able to understand the code

and data, a malicious location cannot modify the actor in its own favor. The only

possible attack is then the sabotage of the actor.

Hohl proposes three mess-up techniques, each of which is for actor’s code,

data and control flow. Furthermore, in order to protect data items Hohl proposes

variable recomposition. The technique works on a set of variables and cuts each

variable into pieces, and creates new variables that are composed of segments from

different original variables. Access to these variables must be rearranged accordingly.

Finally, Hohl suggests converting control flow elements, that is, evocative of finite

state machines, where in each state some atomic expression is calculated.

Another important issue of this approach is the need to take precautions for

the time after the protection interval. All data stored within the actor’s state or

data package and needed to interact with other parties must be attributed with an

expiration date, which is encapsulated with each data item in an unforgeable way.

This will make the other locations to verify it and reject the actor and actor’s data

if necessary.

The most important drawback of this approach is that only the existence of an

exact expiration date makes it impossible to use long-living actors and contradicts

one of the principles of software actors in general. The longer the interval is, the

higher is the probability that the actor will be attacked; the shorter the interval is,

the shorter the itinerary can be [5]. Leasing may help here to overcome the problem.

In leasing the expiration date can be extended (renewal of a lease) depending on

38

the need and current level of security.

Environmental Key Generation

The goal of the environmental key generation [34] is to have clueless actors,

so that their private data can be protected against the sniffing attacks from the

malicious locations. This is realized by not allowing actors to know what their

behavior will be because portions of their code or data is encrypted with a secret

key. The scenario is as follows: The actor has a cipher text message and a method to

search the environment for the data needed to generate the secret key for decryption.

When the information is found, the actor can generate the key and decrypt the

message. Without that key, the actor has no idea about the content and the semantic

of the encrypted message; that is, the actor is clueless.

The general idea is to let the actor carry the hash value of information and

let it compare this with the computed hash values at the remote location. If they

match, the hash value is used to decrypt additional information or code that should

be processed.

By using environmental key generation the intention of the actor is protected

as not giving it full knowledge about its task and its code is protected against actions

by using encryption.

The hosting malicious location can still attack the actor after it has decrypted

the message, but to do this the actor must be executed. A priori analysis by dictio-

nary attacks12 is also very expensive.

Riordan and Schneider propose in addition more protocols considering the time

when keys are generated. These protocols can be used to ensure that a particular

data item can be encrypted only before or after, and in combination during a time

interval. All of these relay on the existence of a minimally trusted third party that

is used for key generation but that does not need to understand the semantics of the

12A method used to break security systems, specifically password-based security systems, in
which the attacker systematically tests all possible passwords beginning with words that have
a higher possibility of being used, such as names and places. The word “dictionary” refers to
the attacker exhausting all of the words in a dictionary in an attempt to discover the password.
Dictionary attacks are typically done with software instead of an individual manually trying each
password.

39

information. The interested reader may read more about these protocols in [34].

The major concern of this approach is that it protects data and code but

does not protect the behavior of the agent. For example if we consider an actor

performing a patent search. It searches through the patent data store, computes

hash values of keywords, and compares them with the hash value that it carries. The

location in such a case will not be able to analyze which type of patents the actor is

searching for. Another problem is that decrypting pieces of code at runtime implies

that it must be allowed to create code dynamically, which might be prohibited by

the hosting location.

2.7.3.2 Detecting Attacks on Actors

In the theory of mobile actors, there are lots of mechanisms for detecting

attacks on mobile actors. In this subsection, these mechanisms are going to be

discussed with their strengths and weaknesses.

Replication of Locations

The general idea here is to replicate the actor so that not only a single, but

many actors of the same type roam the network with the same task [5]. Replicating

and comparison can be used to mask the effects of executing an actor on a faulty

processor [38]. Because, according to Schneider’s argument a malicious location can

corrupt a few copies but there will be enough replicas that the encounter can be

avoided and the task successfully completed.

In order to tolerate faulty locations, the behavior of the actor has to be deter-

ministic at every location. Therefore every stage except the source and the destina-

tion is being replicated. Every location in stage i, takes as its input the majority of

the inputs that are received from the replicas comparing the stage i − 1 and sends

its output to all of the locations that it determines comprise stage i + 1.

Assuming that an actor executes in a sequence stage actions, Si, where 0 ≤
i ≤ n, actors process an itinerary that consists of several locations, Li, 0 ≤ i ≤ n.

Let L0 be the home location and Ln be the destination, which might be equal to

the home location. Schneider assumes that there are not only one location for each

40

stage but many of them providing the same set of services and behaving the same,

Si = {L0,i, L1,i, . . .}.
The actors home location replicates the actor and sends copies to all locations

Li,1 ∈ Si. Each replicated actor processes the same action in different locations. At

a stage i, each location Lk,i sends a copy of the actor to all locations of the stage i+1.

So each location at stage Si+1 receive many copies of the same actor, probably with

different data packages, since they might have been attacked. It compares all actors

with each other and chooses the actor with the most frequent stage to execute. By

this decision, it assumes that not more then half of all locations in stage Si were

malicious.

Without the knowledge of penultimate location, which has replicated the actor,

a sufficient large number of processors could behave as though there are in the

penultimate stage and impose a majority of malicious actors on the destination.

Schneider suggests that, if actors carry a privilege, malicious actors can be detected

and ignored by the destination. For implementing such privileges, he furthermore

suggests two protocols, one of which is based on proactive secret sharing [22] and

the other on authentication chains.

The main problem with this approach is that it is unrealistic in common

application domain to assume that locations can be replicated [5]. More then one

location means, for example in an e-commerce scenario for online auctions, more then

one auction for one item at the same time, which is not possible without extreme

synchronization overhead. In addition, in Schneider’s approach, actors must be

replicated as well, and it depends on the actor’s task whether this is possible or not.

For example in the above mentioned auction scenario, if the actors are replicated

this may end up with actors from the same buyer biding against each other in the

same auction.

Replication of Actors

Yee [47] proposed another solution based on actor replication. Whereas two

actors are created for one item, each of which are processing a predefined itinerary

in reverse orders. And if there is a single malicious location in the itinerary, that

41

attacks the actor’s data integrity, this approach will make it possible to detect any

tampering with the actor by comparing the results of the two actors.

This approach is built up on the idea that, if one of the replicate actors reaches

the malicious location after reaching the location providing the best price, then

malicious location changes the actor’s data. But since, the other replicate actor will

reach the malicious location before reaching the location providing the best price,

the malicious location will not be able to modify the data about the lowest price.

Although this approach seems to be more applicable then assuming the loca-

tions can be replicated, it requires the actors itinerary to be predefined. Furthermore

it does not work if more than a single malicious location is present.

Actors as Black-Boxes

Actors, which are converted to a black-box, use basic cryptographic mecha-

nisms like authentication, encryption and the establishment of secure communica-

tion channels in an almost unmodified manner [21].

The malicious locations are no longer able to determine the semantics of an

actor, if the actor is converted into black-box, but it might still be able to run black-

box attacks. By re-executing an actor, a malicious location can gain information

about the actor’s behavior; that is it can determine how it reacts on the given input

parameters [5].

Hohl and Rothermel [21] propose a technique to make the actors capable of

detecting such attacks. The main idea of preventing black-box attacks is to let

the actor verify that the location delivers the same result for equal system call

and any inquiries to the location. In order to ensure this a trusted component

that controls the mechanism is needed and, this component has to be placed on

a trusted location, a registry. For each input, the actor sends a message to the

trusted registry. The message contains a unique statement identification number

associated with the actor’s source or by code and a hash value of the data response.

The registry contains information about all results of inquiries of the actor. Every

time the registry receives such a message, it compares the statement identification

number with the hash value. If they match, then the registry acknowledges the

42

message, otherwise it sends an error message. In case of error message the actor

knows that the location wants to re-execute it and reacts accordingly.

In order to make sure that an actor resides at the expected place, a two-way

authentication has to be performed when the actor moves to a new node [21]. Due

to the black-box property of actors, the actor can run this protocol even when it

already resides on the new node. For authentication, a standard protocol can be

applied. The only modification consists in the specification that an actor must not

communicate before the successful authentication of both partners. The reason for

that specification lies in the possibility that a malicious location may mask itself and

send out an actor to another location. This actor then could simply act as a relay

for the malicious host, forwarding the messages from the other actor and sending

back the answers from the correct host.

Cryptographic Techniques

Cryptographic techniques are going to be discussed here, which are concerned

with:

• Protecting an actor’s read-only data,

• Revealing an actor’s data at specific locations and,

• Protecting an actor’s dynamic data

In order to protect the integrity of the read-only data of an actor, which is immutable

during its the life, techniques based on asymmetric cryptography can be used [5].

At the actor’s home location, A0, the read-only data is signed. This is done by

encrypting the hash value13 , which is extracted from the read-only data, with the

private key of the data owner. The signature becomes a part of the actor, and the

private key remains in the home location. When the actor migrates to new location,

the location verifies the signature using the public key of the home location, usually

in form of a trusted certificate.

Cryptographic techniques can be furthermore used to protect the data item

in such a way that they can be read only at certain locations. This is necessary

13Here a one-way hash function, like MD5, is used.

43

when data items are defined at the home location but will be read only at other

locations or when the data items defined at different locations will be read at the

home location. This problem may be solved by encrypting the data item with the

public key of the destination location. In that case an additional signature may

be used to ensure that the data item has not been modified. Karnik [23] proposed

an approach very similar to this. The disadvantage of this solution is that the

data item has to be encrypted n times if it has to be readable at n locations [5].

Roth and Conan [36] proposed a solution to this problem. They suggest to use a

hybrid encryption technique, whereas the data item is encrypted using symmetric

encryption and only the key is encrypted n times using the public key of all target

locations.

An actor’s dynamic data consists of data that the actor wants to carry to

other locations on its itinerary or that it wants to send to its owner [5]. The dy-

namic data items, which the actor carries, can be protected against sniffing attacks

using encryption and against spoofing attacks by using digital signature. The main

difference between protecting the dynamic and static data is that the dynamic data

changes as the actor migrates from one location to the next. There for general idea

Braun and Rossnak suggest is to let the location to digitally sign each data item

it has transferred to the actor and encrypt some data item with the public key of

the destination location. There are two attacks against this proposal: deleting the

data item without understanding, and modifying the encrypted data, signing it with

the private key of the malicious location and encrypting them with the public key

of the owner. Another problem with this approach is that the size of the actor

increases as it migrates from one location to the next and only a small portion is

real information.

Young and Yung [48] propose the sliding encryption as a solution to this

problem, in which an actor can gather small amount of data from several locations

and encrypt them using a public key without spending too much storage space.

Sliding encryption uses a large key, while at the same time, taking into account

the limited storage of an actor, therefore it aims conserving space rather than time,

which might be of importance for actors that collect small amounts of data on many

44

different hosts.

Karnik [23] proposes append-only logs as a part of an actor’s state to protect

a data item from modifications. Whereas the new data that an actor obtains from

the location it currently visits is inserted in an AppendOnlyContainer and signed

by the current location. In addition, a checksum is carried by the actor, which is

initiated at the actor’s home location with a nonce that is encrypted with the actor

owner’s public key and kept secret at the home location. The checksum is updated

after a new data item has been added. According to this method, the data item is

still readable at later locations. If the confidentiality also has to be protected, then

Karnic suggests encrypting the data by using the public key of the owner. When the

actor returns to its home location, the owner can verify the integrity by unrolling

the encrypted checksums. The drawback of this approach is that it is vulnerable to

a cut and paste attack if a malicious location that knows a checksum as computed

by a location visited earlier [36].

Yee [47] suggest partial result authentication code (PRAC) as a cryptographic

technique to protect actor’s dynamic data. Encryption of partial results is a faster

method, since it relies on secret key cryptography. By using this method, the data

achieved before an actor migrates to a malicious location remains unaffected. When

an actor starts, it has a key for the first location, and before leaving the current

location dynamically generates a new key, by using an m-bit to m-bit one-way hash

function for the next location. Each key can only be used once. Before leaving a

location the actor puts the partial results it got from this location into a message. To

prevent integrity, a MAC is computed using the key, associated with this location,

on the message. The PRAC consists of the message and the MAC. Afterwards the

message can be sent to the owner of carried along to the following locations. A

similar functionality can be achieved using asymmetric cryptography by letting the

host produce a signature on the information instead [6].

Execution Tracing

Execution tracing, proposed by [45] and evolved by Braun and Rossak [5],

allows detecting code and control flow manipulations, by makes it possible to trace

45

an actor, which is to save the history of execution at a single specific location in

an unforgeable way, such that it can be proved that some malicious location has

tampered with the location. The general idea is that each visited location sends a

message to the actor’s home location, or to some other trusted location, a message

after the actor migrates to the location, before it starts to execute the actor and

before it the actor migrates to the next location.

The notification of the forthcoming migration message is sent to the home

location of the actor, and consists of the name of the sender location, the name

of the next location, a hash value of the current state and the executed trace,

and a unique identifier. The message, besides the name of the sender, is signed

with the private key of the sender location. The second message is a notification

of the migration. This message consists of six parts as follows: the name of the

sender; the name of the destination location; and the name of the home location;

actor’s code and current state encrypted with the public key of the destination; the

hash value of the actor’s current state and the name of the destination location

encrypted with the private key of the sender location; and the information signed

by the home location, which consists of hash value of the actor’s code, a time stamp

to guarantee freshness, and a unique identifier to prevent replay attacks. After

performing the authentication and verifying the integrity the destination location

sends an acknowledgement message to the actor’s home location in order to confirm

the state it has received the message. This acknowledgment message consists of the

name of the current location, and the last two parts of the migration message signed

with the private key of this location. And the actor’s owner can prove the correct

execution in execution tracing by retrieving the execution trace of the suspicious

location and simulating actor execution at the home location.

The drawback of this approach is the size of the trace and that it has to

be transmitted from each location to the trusted server and its respective home

location, which slows the overall performance of the actor [5]. To reduce the size of

the trace Vigna [45] does not trace the entire program but only selected statements

where the control flow changes. Another drawback is the necessary management of

created logs.

46

Techniques for Detecting Itinerary Manipulations

The goal of the techniques to detect the itinerary manipulation is to prevent

a location from stopping an actor to migrate to other locations or to send it to

undesirable locations. The general idea of the technique proposed by Roth [35] is to

allow two actors migrate independently within a mobile actor system and exchange

information about the last location visited and the next location to visit. But this

technique has lots of drawbacks since the costs of remote messaging is too high and

the actors can be killed by malicious locations.

2.7.4 Protecting Locations

Malicious actors can attack both other actors and locations they migrate to.

In the previous subsection, the main mechanisms have been described that protect

actors from attacks. In this subsection, the main techniques are going to be described

that protect locations.

This problem is almost solved in the large parts of the literature, e.g., Java

as a programming language and execution environment already provides several

techniques that can be used to protect the underlying location from several types

of attacks carried out by malicious actors [5].

2.7.4.1 Security through Programming Language

If Java is compared to other commonly used programming languages like C

or C++, it is strictly typed and has a pointer model that does not allow illegal

type casting or pointer arithmetics [5]. For example the programmer does not have

opportunity at Java to use an insecure class method like textttstrcpy, which allows

DoS-Attacks through overwriting stack segment of the code.14

SALSA [44] as an actor oriented programming language, uses the object-

oriented concepts of Java, like encapsulation, inheritance, and polymorphism, SALSA

programs may be executed in heterogeneous distributed environments. During the

compilation process SALSA code is compiled to Java, which allows SALSA pro-

grams to employ components of the Java class library [12]. Therefore all of the

14Interested reader can read more about Java security in [32].

47

security aspects of Java can be easily applied to SALSA. At the same time SALSA

introduces a discipline of concurrent programming using actors over the Internet.

In this subsection, we are going to describe the major security properties of Java.

Code Signing

Code signing is a technique used to verify the integrity of mobile code up to a

level. The programmer or the owner of the actor signs a hash value of the actor with

his private key and sends the signature with the actor to the destination location.

The destination location can then verify the integrity of the code by decrypting the

signature. The drawback of this method is that if the actor’s owner signs the code,

then he cannot know if the code is really malicious or not. PCC, which is going to

be described in the following section, proposes a solution to this problem.

Byte-Code Verification

When a Java class is loaded to a virtual machine, it is verified on the level of

byte code [25]. Among other things, byte code verification includes ensuring that

only valid instruction codes are used, no final method is overwritten, local variables

are not accessed until they have been defined with the appropriate value, and control

flow instructions target the beginning of an instruction [5].

The drawback of byte code verification is being very time consuming. There-

fore, Amme et al. [3] suggest testing type safety through looking at the structure of

the code representation.15

Sand-Boxing

The actor authorization process defines which permissions an actor should have

on a specific location. Sand boxing is a further security check that can be performed

after a code has passed he verification and during runtime. This technique includes

the following elements:

• Each class is loaded from a specific code source, and if the class has a signature

then the code includes that, too.

15Interested reader can read more about Java bytecode and the verification in [25].

48

• A permission is a specific action that a code is allowed to perform. In Java

permissions have a type (a class name), a name and an action. For exam-

ple in java, to access all files in a directory /foo/bar, the code must have

the java.io.FilePermission with the directory as name and read as action

string.

• A protection domain is an association of source code and a set of permissions.

• Policy files are used to define protection domains. They can be plain text files

in which it is defined which permissions a code loaded from some URL will

have.

• Key-stores contain certificates that can be used to verify signed code.

The drawback of sand boxing concept is that assigning permissions to protection

domains is done statically per default: that is, it is not possible to withdraw a

permission for an actor once it has been given.

Integrity Checkers

Buffer overflows are the leading cause of software vulnerability. The common

way for the attacker to overwrite values stored on the stack is to use a buffer overflow,

where large inputs are used to cause more data to be written to an area of memory

than space has been allocated. Cowan et al. [10] propose StackGuard against stack

smash attacks resulting from buffer overflows. To detect corrupted control infor-

mation in procedure activation records, StackGuard adds a location that it calls a

canary16 to the stack layout to hold a special guard value.

The goal of StackGuard is to do integrity checking on activation records, with

sufficient precision and timeliness that a program will never reference corrupted

control information in an activation record, which is written to once on entry to a

function, and read from once on exit from a function.

16Before the advent of chemical analyzers, miners used canaries to warn them of the presence of
dangerous gases: when the canary stopped chirping (or, more likely, dropped dead), it was time
to leave the mine in a hurry.

49

A malicious actor has the capability to overwrite control information in some

frame on the stack via a sequential write operation starting from somewhere lower

in memory. Assuming that the attacker does not need to inject code, but can use

executable code already in the address space. This is a growing technique in practice,

and permits us to focus on the most important part of the attack: overwriting control

information, particularly pointers to code, such as return addresses. The attack

works if it can rewrite the control information between the time it was written with

correct values to be saved and the time it was later read assuming it contained

correct values of things to be restored.

By inserting a canary immediately before the control information in each frame

on the stack. Any sequential write through memory, such as by a buffer overflow,

that tries to rewrite the control information will be forced to also rewrite the canary

location. Then the remaining problem is to make the value of the canary something

that’s hard to spoof. The canary is checked immediately before the control values

are restored. The control region is protected by virtue of the fact that the canary

is checked before each use of the protected information.

Integrity checkers has not been adopted to work in mobile agents and the main

drawback of this approach is that it causes delays in the execution of the actor.

2.7.4.2 Actor Authentication and Authorization

One of the main concerns of protecting locations is how the underlying operat-

ing system and hardware can be protected against unauthorized access of actors. In

this subsection, we are going to discuss techniques that can be used to authenticate

and authorize an actor that has migrated to a location.

Authentication of an actor consists of verification of the actor’s identity and

the identity of the actors owner and sender. The result of actor authentication is

the assignment of privileges to the actor according to its identity.

Proof-Carrying Code

Proof-Carrying code is a mechanism proposed by Necula and Lee [29] by which

a host system can determine that it is safe to execute program from a not trusted

source. Hence, the authors refer to problems in the field of operating systems; they

50

illustrate PCC in [31] by using an example of a mobile actor that visits several online

stores.

PCC is a technique by which the host has a safety policy that guaranties safe

behavior of the code, and the code producer creates a formal safety proof for the

not trusted code, that acknowledge to the code’s adherence to the safety rules. And

when the host receives the mobile code, it uses a simple and fast proof validator to

check, that the proof is valid and hence the foreign code is safe to execute [30].

By using PCC the responsibility of ensuring security is shifted to the code

producer. Furthermore, PCC programs are tamperproof in the sense that any mod-

ification will either result in a proof that is no longer valid or one that does not

correspond to the enclosed program. In both cases the program will be rejected.

And in comparison to cryptography, no trusted third parties are required because

PCC is checking intrinsic properties of the code and not its origin [30].

Code consumer receives the PCC, validates the proof that is a part of the

PCC, and loads the code. This check must be done only once, even if the code is

going to be executed several times. Any attempt to change the code or the proof

can be detected and the code can be rejected.

Until now, PCC has not been adopted to work in Java-based environments

and mobile agents [5]. The main drawback of PCC is the size and complexity of

the proof. Experiments showed that it can become even larger than the code that

it has to prove [5]. Besides that it is very difficult to generate such formal proofs in

an automated and efficient way [6].

Path History

Considering the problem of deciding on the level of trust of an actor, two main

criteria play a big role: actor’s identity and which other locations it has visited until

now. Path history [33] supplements an actor about the locations it has visited, so

that when it migrates to a new location, the list of the locations it has visited before

can be verified. In addition the location will ask further questions to the actor in

order to decide on the level of trust.

Ordille [33] suggests two methods:

51

• Each location adds itself to the path history of the actor and signs the complete

path. The destination location verifies the signature, and then determines

whether it can trust every location in the list, whether they have forwarded

the actor properly and whether it has authenticated its immediate predecessor.

• Each location signs a forward, showing to which location the actor is going to

migrate. In order to prevent tempering the forwarding location signs not only

its forward but also the previous ones, and the destination location authenti-

cates each location on the path.

The drawback of this method is the increasing size of the path history and in he

same manner, the verification time.

State Appraisal

When an actor is traveling, it visits several locations and it may be attacked

by a single location or several locations. State appraisal [15] can be used to assure

actor owners and the locations that an actor’s state has not been tampered, such

that both actor’s owner and location are protected. It is based on the idea that

the illicit modifications of an actor can be predicted, described, and later verified.

Therefore, several state appraisal functions are defined before an actor migrates from

its home location, and after a location receives the actor, it verifies the state appraisal

function. This results in giving execution privileges to the actor or rejecting it.

State appraisal is stated after actor authentication and before actor autho-

rization. There are two types of state application functions: one developed by the

actor’s owner and sent with the owner’s signature as a part of the actor’s code; and

one developed by the sender. As the first function determines the set of permissions

that the actor’s owner would like to see granted to the actor, the second function

consists of the set of permits, which is a subset of the first one.

The drawbacks of state appraisal is that a malicious location can also see the

appraisal function and modify the actor in such a way that it will not be detected

in the following locations it visits.

52

History-Based Access Control

The goal of history-based access control is to maintain a selective history of

access requested by a mobile code and to use this information to decide between

trusted and not trusted codes. This approach, developed by Edjlali et al. [14], helps

the location determine the privileges of a mobile code according to its behavior in

its runtime.

With static privileges, as in state appraisal or path history, it is possible to

define that the code has either both of the privileges or neither of them. The authors

propose that it is worthwhile to define mutual exclusive privileges so that the code is

allowed to first open a file for reading but it is allowed to open a network connection

later, where the file might be sent to a remote host. The concept is based on unique

identifiers for programs, which are computed using hash functions over the entire

code. This prevents the applicability of the approach for programs that use dynamic

code loading during runtime.

History-based access control is suggested for Java applet and used to be ex-

tended for actors [5]. In contrast to Java applet, which can open network connection

only to remote hosts in case they want to steal data, actors simply carry the file as

part of their own code. Therefore, some kind of firewall is needed to examine the

actor before it leaves the current location.

2.7.4.3 Actors Execution

After authentication and authorization an actor is executed. Each actor should

be executed in a separate environment, where each access to host resources is verified

against the actor’s permissions [5].

The sand boxing concept, described before, also includes that each actor gets

a separate class loader and thread group [5]. These are necessary to distinguish

between the actors. Class loader creates an individual name space for each actor

and helps the location to make sure that this actor’s classes are removed after it has

left the location. Each actor and the actors it creates belong to the same thread

group. Because if all the actors in a location belongs to one group then a malicious

actor can enlist all of the actors of this thread group and lock them, which would

53

be a DoS-Attack against the actors.

In order to stop malicious actors from unauthorized resource consumption Cza-

jkowski and von Eicken [11] proposed a technique that relies on native code imple-

mentation, code rewriting to track memory usage, and CPU and network bandwidth

consumption. Furthermore Villazon and Binder [46] proposed another solution that

relies completely on Java byte code rewriting, making it suitable for mobile agent

toolkits. It creates a meta-actor for each actor that is currently residing in the

location. Braun [5] suggests applying this to CPU, memory, and network control.

Reification of network bandwidth consists of redirecting calls to the components

that provide network services to the meta-actor, which itself then calls the network

service. Reification of memory on the other hand, consists of object creations and

disposal. Finally, ratification of CPU usage is done by analyzing the actor’s code

and inserting accounting instruction at selected points in the control flow. The

drawback of this approach is because of byte code rewriting process and additional

inspection, increased execution times.

Load Balancing

Internet is constantly growing as a ubiquitous platform for high-performance

distributed computing. For actors as mobile codes using heterogeneous resources,

between these resources a load balancing must be realized, so that not only several

resources are overloaded, but the total consumption is equally distributed. An

overload of resources may end up with delays in the system or in the worst case

with DoS. Actor satisfaction is a measure of an actor’s ability to process and send

messages, which will be used in describing the success of different load balancing

techniques.

Distributed Join-Calculus, proposed by Fournet et al. [18] realizes load bal-

ancing in an environment of mobile actors. This calculus allows expressing actors

moving between physical sites. Individually a location resides on a physical site,

and contains a group of processes. Therefore a location can be automatically moved

to another site. Actors may have sub-actors, which move together with the actor.

For this reason Fournet et al. organized the actors in a tree.

54

Desell et al. [12] propose a framework that wraps computation into autonomous

actors, which freely roam over the network to find their target execution environ-

ment. This framework consists besides other features a middleware infrastructure

for autonomous reconfiguration and load balancing, which is completely transparent

to application programmers. This IOS middleware triggers actor migration based

on profiling resources in a completely decentralized manner. Furthermore this in-

frastructure allows continuously balancing the load, while the resources change as

nodes are dynamically added and removed.

In order to balance computational load, Desell et al. suggest three types of

random work stealing, which vary by the amount of profiling done and the complex-

ity of the decision agents. The simplest decision agent decides according to the load

of the individual theaters and actors, while more complex agents consider additional

factors such as network and actor topology. A theater joins autonomous network by

registering with a peer server and receiving addresses of other peers in the network.

• Load-Sensitive Random Stealing (RS): based on randomly propagating a ran-

dom steal packet over the network

• Actor Topology Sensitive Random Stealing (ARS): extends RS with additional

profiling information

• Network Topology Sensitive Random Stealing (NRS): in addition to resource

availability of ARS, NRS takes the topology of the network into consideration

and classifies its neighbors into groups (local, regional, national, and interna-

tional).

Soft-Fault Tolerance

The concept of soft-fault tolerance of software contains aspects like: separate

control and forwarding; modular processes that can be restarted independently;

processes protected in own memory space; and individual process watch dogs.

Fournet et al. [18] suggest Distributed Join-Calculus, which expresses mobile

agents moving between physical sites. It expresses remote execution and dynamic

55

loading of remote resources, and with locality and static scooping rules, is an asyn-

chronous variant of Miller’s π-Calculus [26]. But is still has the same expressive

power as the π-Calculus. Distributed Join-Calculus furthermore, provides a simple

model of failures. According to this model, crash of a physical site causes a perma-

nent failures for all actors that are executed in that site, so the failure of an actor

can be detected from any other running actor, allowing error recovery.

Desell [12] suggests using a round-robin strategy to disperse actors to all their

available neighbors in the case of soft termination of a location. The goal of this to

complete the termination process as soon as possible before the node failure.

Stoica et al., suggest in Chord Model [40], which is a decentralized lookup

service that stores key/value pairs for distributed networks. Each Chord node is

identified by an m-bit identifier and each node stores the key identifiers in the system

closest to the nodes identifier. Each node maintains a m-entry routing table that

allows it to look up keys efficiently. The lookup service functions despite network

partitions and node failures. Stoica et al., provides a ”best effort” availability grantee

based on access of at least one of the reachable replica nodes. Chord is furthermore,

incrementally scalable, with insertion and lookup costs scaling logarithmically with

the number of Chord nodes. Although Chord protocol and system has not been

used on actors until now, the experiments show that it is a valuable component for

many decentralized, larga-scale distributed applications.

The drawback of these methods is that they are application dependent, so that

they do not tolerate hard node failures at the middleware level. Besides that it uses

replication or information propagation in order to fulfill its function, and because

of that the amount of information that has to be protected increases.

3. Electronic Marketplace Model

In Chapter 2, some major mechanisms are discussed that can be used for the security

of actors. In this chapter, a marketplace model for actors will be described, which

we will use in order to make the actor security scenarios in Chapter 4 more concrete.

In Section 3.1, only the basic elements of the model will be described. It will be

followed, in Section 3.2, by the description of the online marketplace architecture,

which separates application level and middleware levels. We will conclude this

chapter with the vulnerabilities of our marketplace model.

3.1 Elements of the Marketplace Model

The marketplace consists of two types of actors; manager actors that are

responsible of management of different features of the marketplace, and seller and

buyer actors that represent the product owners and the customers of the real world,

respectively. (See Figure 3.1)

Buyer/seller actors migrate from one location to the next, take part in the

auctions, and try to buy/sell the items in their item list with the best price. Auctions

take place in online stores. In each store different auctions take place and after

the auction is over the buyer actors are sent to other locations. Actors join the

Marketplace every time by connecting the Coordination Model Manager (CMM)

and the Seller Manager (SM). The seller and buyer actors come together in auctions.

After every auction the results are reported to the Transaction Manager (TM). TM

is the storing unit of the marketplace. All of the transaction results flow to its

database.

Each seller actor contains a list of items on sale and for each item their prop-

erties like product description, available quantity, an initial minimum bidding price,

and a minimum bid increment. Similarly, each buyer actor contains a list of items

to buy, descriptions, desired quality of the items and maximum price to pay for each

item, and a common budget.

In every store (see Figure 3.2) there is a Store Manager responsible for match-

56

57

Figure 3.1: Architecture of the Marketplace

ing the seller and the buyer actors and creation of auctions. One product of a buyer

is only represented in one store in order to prevent inconsistencies. At the end of

an auction the information in the store manager is updated and the agents are sent

to another location, which can be another auction or the home location of the actor

depending on whether the actor has fulfilled its duties or not.

The electronic marketplace is a system that enables dynamically choosing the

number of actors, which impacts the number of actor migrations, and the number

of messages sent, for a given buyer. The goal is to increase the possibility of the

actors to get all the products desired by the buyer within the given budget, and to

accomplish this task in the given time period. Furthermore, from the perspective

of the sellers and auctioneers, the system enables to dynamically choose the most

suitable auction type, with the goal of optimizing their profitability.

3.2 Customizable Middleware for Actor Communication

middleware refers to software technology that enables the modular connection

of distributed software [49]. The role of middleware is to abstract over the low level

protocols required to implement the policies, which represent the roles for component

interactions. The system itself is responsible for handling low-level details such as

sending messages over the network, providing for synchronization, and guaranties

58

Figure 3.2: Architecture of a store in the marketplace.

reliability. And through middleware application interactions appear to be local.

The applications need not be explicitly aware of the composition and distribution

of hardware.

In distributed systems different autonomous computing elements interact over

a shared network. The asynchronous nature of the actor model makes the applica-

tion development difficult. Actor model requires policies expressing basic require-

ments for service, like for the entrance of a seller actor to an auction, realizing the

payment or product delivery. Factors such as the presence of faulty hardware or

insecure networks, which affect the security of a system very strongly, are most

of the time orthogonal to each other. These factors are orthogonal in the sense

that they only affect the implementation of the protocol and do not alter the basic

implementation of the service.

A clear separation of protocols from application code provides an abstraction

limit in the spirit of abstract data types, which increases the flexibility, maintain-

ability, and portability of distributed code. Hence, policies, which define the rules

59

by which components interact, used to be specified separated from protocols, which

define the mechanisms by which policies are implemented.

Orthogonal design constraints, furthermore, force components to stick on to

multiple policies. A framework for protocol composition preserves the modularity of

such policies so that their implementations may be safely composed. For example,

an existing encryption protocol may be safely composed with an existing primary

backup protocol in order to satisfy both secrecy and fault-tolerance policies [4].

Furthermore the middleware may be extended with automatic load balancing

component, which lets auction stores migrate autonomously by profiling resource

usage on sites.

The marketplace model will use a middleware in order to realize the features

mentioned above. Since this thesis concentrates on the security aspect of actors that

are used in e-commerce applications, especially online negotiations, the middleware

concept will not be further discussed here.

3.3 Actor Scenario

In this section, we will define a possible scenario, where a mobile user, Bob,

is willing to buy a notebook. He knows the main features of the laptop he wants

to buy and maximal amount of money he wants to pay for it. He goes to the

Marketplace and logs in by using his login and password. If the server verifies these,

then it opens a site where Bob can enter the specifications of the notebook he wants

to buy. The CMM generates an actor and sends it to a store where notebooks

with the matching specifications are sold. The store manager looks at the ongoing

auctions and depending on if there is a matching auction or not, whether lets Bob’s

actor join the auction or creates a new auction. The actor bids on behalf of Bob

during the auction. If it wins the auction then returns the information to the TM,

which updates the database and realizes the money transaction. At the same time

generates a message and sends it to Bob. The message involves the information

about the seller, bidding result and the exact specifications of the notebook. If the

actor does not win the auction, then it is sent to the next auction.

This scenario may be used also for the reverse auctions [28], where multiple

60

seller actors try to make the lowest bid, in order to sell the notebook to a single

buyer actor.

When an actor is active it has a lot of weaknesses, which makes its code and

the data it carries open to attacks. The marketplace has also a lot of sensitive

private information about the owners of the actors. These vulnerabilities of the

actor model will be discussed in the next section.

3.4 Vulnerabilities of the Marketplace Model

If we regard the marketplace model components roughly, we can group them

as actors and locations. Both actor and locations can have a malicious character.

Malicious actors may attack a location for example by using its resources like

memory, CPU cycles or network bandwidth, so the location is not able to provide

its usual service to the other actors. These kinds of attacks are known as DoS-

attacks in the area of information security. A malicious actor can also attack other

actors that are currently resident at the same location. Some of the possible attacks

result from the programming language, other are possible because of the hosting

location, communication structure and services provided. A malicious actor may,

for example, masquerade himself as some other actor by changing its address. This

way it may gain sensitive information stored in the databases of the middleware or

use services on behalf of others.

Malicious locations may try to attack the actors that are currently resident on

it or other actors by attacking the communication links. The general problem, what

makes an actor vulnerable is, that an actor must disclose its information about code

and data if it wants to be executed.

The goal of our actor model is to have mechanism that realize the entrance-

security and mechanisms that protects the code and the data of the actor during its

transport between auctions and locations.

4. Model Applicability to Secure e-Marketplace

In this chapter, we will give some examples of how the mechanisms described in

Chapter 2 can be used in order to achieve a secure actor based e-commerce appli-

cation.

Figure 4.1 summarizes which security requirements of information systems can

be fulfilled by using the methods we have described in Chapter 2. The properties of

the different actor models are going to be discussed in Chapter 4 with more details

and some examples are going to be given.

Table 4.1: Actor models and security requirements

61

62

4.1 Security Aspects of Secure Mobile Actors

The secure mobile actor model extends the actor model with locations, mobil-

ity, universal names for actors and locations, and resources acccess control.

The universal names, as unique identifiers of actors and locations, allow actors

and locations to identify themselves when they migrate or communicate. The names

of the trusted locations and actors are saved in form of ACLs, in every actor and

location. Secure actors also restrict communication and migration using ACLs,

so that no unprivileged actor can gain access to a not authorized resource and

respectively no location can indirectly query an actor without being in its ACL.

Suppose that a seller actor wants to migrate to the marketplace in order to

sell the products in its item list. The SM looks at its ACL, and dependently sends

the actor to a store or rejects the actor. Rejection does not mean that this actor will

not be allowed to enter the marketplace any more, but that the actor has to prove,

using mechanisms like PCC, who it is and that it will not harm locations or other

actors in the system. Since the actor names are universal, as far as a malicious actor

does not masquerade itself as an other actor, who is already in the ACL of the SM,

they can be used for authentication.

Since no unauthorized actor can enter the system, the information that actors

in the system carries or locations have, stays confidential for the not authorized

access. Furthermore, since not authorized actors/locations cannot access the data

they also cannot manipulate it.

The secure actor model furthermore has some reliability property; since it

guaranties that the destination actor will receive the messages sent. But it does not

guarantee that the message will not be changed on the way, so this property can be

extended with some other integrity mechanisms, like digital signatures or MACs.

Suppose that a buyer actor bidding for a product calculates the MAC of the

bid it is going to send to the auctioneer actor and sends both of them in one message.

The auctioneer actor can then verify the MAC in order to be sure that it has not

been modified, and then accepts it. So that we can make sure that both the message

has not been changed and reaches the auctioneer.

63

4.2 Security Aspects of Transactors

Transactors extend the actor model by explicitly modeling node failures, net-

work failures, persistent storage, and state immutability. It reliably maintains glob-

ally constant distributed states using stabilize, checkpoint and rollback operations.

Stabilization of a transactor is a commitment not to modify its internal state

until subsequent checkpoint is performed or until another peer actor causes it to

rollback due to a semantic inconsistency. Checkpoint, as the next commitment that

stores globally consistent states of a transactor persistently, is at the same time a

consistency guarantee. Both stabilization and checkpointing fulfill data integrity

requirements, since in case of a not authorized manipulation the not manipulated

states are available in the system.

Suppose that the bidding process of an auction is over and seller actor s is

going to sell an item to buyer actor b for a decided price. The auction is not over

till the money transfer is over. So states of all of the actors that took place in the

auction are stabilized but not yet committed. Auctioneer actor notifies the TM from

the result of the auction. TM sends a message to the bank server of the buyer actor,

asking it to transfer to the price of the product to seller’s account. If the bank server

refuses to the transfer the amount or does not answer in a definite time period then

TM notifies the auctioneer actor, actor s and actor b from the result. All the actors

do a rollback and the auction starts from last committed state, without the buyer

s. If the bank server sends a message saying that the transfer has succeeded, then

TM notifies the auctioneer actor, actor s and actor b, so that they commit their

states. At the same time the auctioneer actor sends a broadcast to all of the actors

about the success of the transaction, and they commit their states.

Furthermore transactors allow fault-tolerance through globally consistent dis-

tributed states. In case of a node or network failure, a rollback operation brings

a transactor back to its previously checkpointed, immutable state. Through these,

transactors may not allow all the time the authorized actors to reach the system

resources but stops the actor data from getting completely lost because of unautho-

rized manipulation of the system. So we may say that transactors partially fulfill

the accountability requirement.

64

4.3 Security Aspects of Hierarchical Model

Hierarchical model extend actor model with concepts of casts and directors.

Actors are mapped to the director actors, which coordinate the communication in

that cast. In this model messengers coordinate remote cast-to-cast communication.

Casts serve as abstraction units for naming, migrating, synchronization and load

balancing.

Since the director is responsible of the communication in a cast, we can talk

about a net of trust. Where the actors do not need to authenticate themselves

against other actors in the same cast. In case an uncoordinated actor wants to

send a message to one of the actors in the cast, it uses a messenger that has to

authenticate itself only to the director, which simplifies the authentication process.

Suppose a new actor wants to join an auction. All of the seller and buyer actors

that are bidding in the auction belong to one cast. The auctioneer agent plays in that

case the role of a director actor. It authenticates itself using some authentication

mechanism and after that it is authorized to send and receive messages directly from

other actors that are taking part in the auction. Besides that all of the actors in a

store can be grouped into a cast. So that if an actor wants to leave auction p and

want to migrate to auction q in the same store, then the director of p communicates

with q through the director of the store cast, without the need of authentication,

and notifies it from the situation. In the next step, director actor q accepts the

actor’s migration without an authentication.

The hierarchical architecture of the model and directories checking the coor-

dination constrains provide confidentiality in the casts. According to that an actor

can only receive a message, when the coordination constraint for such message re-

ceipt are satisfied. For the remote messaging, since the messenger does not have

to know about the information it is carrying, confidentiality of this information can

be gained by using cryptographic mechanisms, like encrypting the information with

the public key of the destination actor. This property of the hierarchical model

furthermore, can be used to keep actor replicas consistent, in order to cope with

malicious location attacks.

Supposing that an auctioneer actor wants to send the results of an auction to

65

the TM. It encrypts the information about the results using the public key of TM,

and sends it through the messenger actor to TM. Since the remote messenger is

just a cipher text, malicious actors or location can not know from whom it is, and

although they may try to sniff it, they cannot access the information. Only the real

destination, TM, may decrypt the message using its private key.

Hierarchical model also satisfies availability up to a level because of its load

balancing property.

Let a new buyer actor joins the Marketplace, with some specific items to sell.

Instead of sending a broadcast to all buyer actors in the marketplace, SM sends a

message to all of the store-directors and store directors then send only to the buyer

actors that are interested in buying these items. So that the network will not be

overloaded and the availability of the resources for authorized actors will not be

diminished.

4.4 Security Aspects of Mobile Ambients

In the mobile ambients model, an actor has to go through a three-phase

authentication-authorization process based on unique actor and location names.

They first have to get a permission to exit their current location, and then they

have to get permission to enter the destination location. Here we can talk of a

multiple level of authentication depending on the route to take. After entering the

destination location, the actor furthermore has to get authorization for entering the

protected information of some server. Therefore only authorized actors can access

the confidential data and change it.

Besides mobile ambients allowing an authentication through names, they sim-

plify the authentication process through a hierarchical structure as in the hierar-

chical model. In our Marketplace scenario, a buyer/seller can be represented with

more than one actor depending on the coordination model [28]. Extending the cast

concept of the hierarchical coordination model, in Mobile Ambients, actors may

belong to more then one ambient at the same time. Therefore, besides grouping

actors depending on the auctions, at the same time each actor representing a single

buyer/seller can be grouped to an ambient. This property allows them to commu-

66

nicate with each other without authenticating themselves every time, as they are

bidding in different auctions.

4.5 Security Integration of Model Properties

Combining the above-mentioned properties of an actor model is a difficult is-

sue, and even if we manage it, the results are not going to fulfill all of the security

requirements. Therefore, in order to fill out the security holes that remain after com-

bining the actor models, we combine them with the security instruments described

in Section 2.7. Table 4.2 shows a comparison of these instruments according to the

level of fulfilling the security requirements. In the table weak refers to a property

that is easy to come over or hard to realize at an actor environment; and strong

refers to a property that can be efficiently used on actors or locations.

Concerning the results of Table 4.2, costs of each instrument, and the re-

quirements of our marketplace model; evolving the actor models with the security

properties of PCC will allow us to reach a optimal level of security at the state of

the art in actor systems in electronic auctions. Bacause the actor models in combi-

nation already fulfill most of the security requirements, and PCC can back them by

fulfilling the security requirements: availability, anonymity and privacy.

Assuming that an actor wants to enter the Marketplace, if it is a new actor,

Marketplace will send a message to the actors owner and programmer, asking for a

proof, which will ensure that the execution of the actor will not affect the availability

of the marketplace in a negative way. This proof should demonstrate that the actor

is not aimed to make any attacks that may stop or even slow down the access of the

authorized actor from consuming the host resources. Next time a new actor wants to

migrate to the marketplace it will bring the proof with. The Marketplace will check

the proof and only after its acceptance allow the actor to enter the marketplace.

Since the proof can demonstrate anything about the execution of the actor,

and the behavior of a location, a proof that the marketplace will demonstrate to the

actor owners may include arguments about the anonymity and privacy policy of the

marketplace.

67

Table 4.2: Security requirements that the security instruments fulfill.

5. Conclusion and Future Directions

5.1 Contribution of this Thesis

The goal of this thesis was to analyze different actor models and their exten-

sions from the point of view of information security in order to show the security

potentials of these models. To achieve its goal this thesis first described different

actor models and then in order to show how they can be used in secure electronic

commerce evaluated on a marketplace model.

In Section 3, we have described a marketplace model, which is a middleware

framework connecting distributed resources for the online auctions. The model con-

sists of three control mechanisms: CMM, SM and TM. CMM and SM components

are responsible of the managing the access of seller and buyer actors to the market-

place sending them to the convenient stores. TM is the database component that

stores the transaction data for the system consistency. Besides these main control

mechanisms of the marketplace, in each store there are store managers in charge of

creating auctions and sending the seller and buyer agents to auctions where they

can bid for the items they want to buy.

Mobile agent technologies provides potential benefits to applications, but they

also pose security threats to those applications. These threats not only come as

malicious agents, but also in the form of malicious hosts.

Using some application scenarios on our marketplace model, we have discussed

in Chapter 4 which actor model satisfies which information security requirements.

According to these secure actor model, hierarchical coordination and mobile ambi-

ents are in charge of fulfilling authentication and information confidentiality; trans-

actor model consists components that realize data integrity and accountability; and

because of its load balancing property hierarchical model can prevent some attacks

against system availability. But none of these actor models prevents attacks against

anonymity and privacy. Therefore, in Section 4.5, we have proposed a security

scenario for the marketplace model that combines actor models with the security

instruments, described in Section 2.7, and fulfills all of the security requirements.

68

69

5.2 Future Directions

The daily lifes of digital device users are getting more and more mobile every

day. So a possible implicational extension of the secure marketplace is integrating

modules that use different specifications of different end-devices, like Global Posi-

tioning System (GPS) united mobile Telephones or PDAs. Through such features

mobile device users will be able to set an actor every moment of their life. And an

actor that is in charge of finding the best bargain, for example for a laptop, can

discover that his owner is getting close to a physical store, which is also represented

in the cyber world and has a good offer. The actor then informs his owner about

an actual bargain result list and where the shop is. So the buyer can go to the store

and take a look at the notebook, and if the store has a better offer then get the

notebook directly from the store.

But such an extension brings also other security problems with itself. Because

the notification message that the actor sends will be transported over unsecured

information channels. And although the message is transferred encrypted until the

base station, today’s security technology is not able to protect the message transfer

from the base station to the mobile device. So it can be attacked during the last

segment.

Since the platform involves grid computing properties many actors from many

different countries will take part in auctions. And every country has its own trade

but also information and data security legislations. So another possible extension

may concentrate on legislative aspects and involving a module that deals with dif-

ferent legislations in different countries.

Besides that only some of the security models and instruments are backed

with computational semantics, and although it is probably not possible to evolve

a computational semantic that consists all of them, semantics that covers most of

these instruments can be developed.

5.3 Conclusion

Security and agent-enabled electronic marketplaces are two research fields that

are gaining more interest every day. Security and intelligence in processing trans-

70

parent information flow in an electronic marketplace can help increase the efficacy

for its participants and reduce user’s cognitive load [39].

Although in the thesis a security strategy for the marketplace is defined, and

according to many scenarios the secure actor communication with each other and

their environment has been shown, in the praxis it is very challenging to combine

all of the aspects. Further studies on this field are critical to the future of secure

electronic commerce.

REFERENCES

[1] Gul Agha. Actors: A Model of Concurrent Computation in Distributed

Systems. MIT Press, 1986.

[2] Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. A

foundation for actor computation. Journal of Functional Programming,

7(1):1–72, 1997.

[3] Wolfram Amme, Niall Dalton, Jeffery von Ronne, and Michael Franz. Safetsa:

A type safe and referentially secure mobile-code representation based on static

single assignment form. In SIGPLAN ’01 Conference on Programming

Language Design and Implementation, pages 137–147, 2001.

[4] Mark Astley, Daniel C. Sturman, and Gul Agha:. Customizable middleware

for modular distributed software. Commun. ACM, 44(5):99–107, 2001.

[5] Peter Barun and Wilhelm Rossak. Mobile Agents: Basic Concepts, Mobile

Models and the Tracy Toolkit. Morgan Kaufman, dpunkt.verlag, Amsterdam,

Holland, 2005.

[6] Niklas Borselius. Mobile agent security. Electronics Communication

Engineering Journal, 14(5):211–218, October 2002.

[7] Christian J. Callsen and Gul Agha. Open heterogeneous computing in

ActorSpace. Journal of Parallel and Distributed Computing, 21(3):289–300,

1994.

[8] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In FoSSaCS ’98:

Proceedings of the First International Conference on Foundations of Software

Science and Computation Structure, pages 140–155, London, UK, 1998.

Springer-Verlag.

[9] David M. Chess, Colin G. Harrison, and Aaron Kershenbaum. Mobile agents:

Are they a good idea? In Mobile Object Systems, pages 25–45, 1996.

71

72

[10] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke,

Steve Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton.

StackGuard: Automatic adaptive detection and prevention of buffer-overflow

attacks. In Proceedings of 7th USENIX Security Conference, pages 63–78, San

Antonio, Texas, January 1998.

[11] Grzegorz Czajkowski and Thorsten von Eicken. Jres: a resource accounting

interface for java. In OOPSLA ’98: Proceedings of the 13th ACM SIGPLAN

conference on Object-oriented programming, systems, languages, and

applications, pages 21–35, New York, NY, USA, 1998. ACM Press.

[12] Travis Desell, Kaoutar El Maghraoui, and Carlos Varela. Load balancing of

autonomous actors over dynamic networks. In Proceedings of the Hawaii

International Conference on System Sciences, HICSS-37 Software Technology

Track, pages 1–10, January 2004.

[13] Klaudia Eckert. IT- Sicherheit: Konzepte, Verfahren, Protokolle . Oldenburg

Verlag, Amsterdam, Holland, 2004.

[14] Guy Edjlali, Anurag Acharya, and Vipin Chaudhary. History-based access

control for mobile code. In CCS ’98: Proceedings of the 5th ACM Conference

on Computer and Communications Security, pages 38–48, New York, NY,

USA, 1998. ACM Press.

[15] William M. Farmer, Joshua D. Guttman, and Vipin Swarup. Security for

mobile agents: Authentication and state appraisal. In Proceedings of the

Fourth European Symposium on Research in Computer Security, pages

118–130, Rome, Italy, 1996.

[16] John Field and Carlos Varela. Toward a programming model for building

reliable systems with distributed state. In Proceedings of the 1st International

Workshop on Foundations of Coordination Languages and Software

Architectures (affiliated with CONCUR), Brno, Czech Republic, August 2002.

http://www.cs.rpi.edu/˜cvarela/foclasa2002.pdf.

73

[17] John Field and Carlos A. Varela. Transactors: a programming model for

maintaining globally consistent distributed state in unreliable environments.

In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, pages 195–208, New York, NY,

USA, 2005. ACM Press.

[18] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and

Didier Rémy. A calculus of mobile agents. In CONCUR ’96: Proceedings of

the 7th International Conference on Concurrency Theory, pages 406–421,

London, UK, 1996. Springer-Verlag.

[19] Svend Frölund. Coordinating Distributed Object: An Actor-Based Approach

to Synchronization. MIT-Press, 1996.

[20] Fritz Hohl. Time limited blackbox security: Protecting mobile agents from

malicious hosts. In Mobile Agents and Security, pages 92–113, London, UK,

1998. Springer-Verlag.

[21] Fritz Hohl and Kurt Rothermel. A protocol preventing blackbox tests of

mobile agents. In Kommunikation in Verteilten Systemen, pages 170–181.

Springer-Verlag, Berlin Germany, 1999.

[22] Stanislaw Jarecki. Proactive secret sharing and public key cryptosystems.

Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA;

Advisor: Professor Ronald L. Rivest, September 1993.

[23] Neeran Mohan Karnik. Security in mobile agent systems. PhD thesis,

University of Minnesota; Adviser-Anand R. Tripathi, 1998.

[24] Wooyoung Kim. Thal: An actor system for efficient and scalable concurrent

computing. Technical report, University of Illinois at Urbana-Champaign,

University of Illinois at Urbana-Champaign, IL, USA, 1997.

[25] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.

Addison Wesley, 1997.

74

[26] Robin Milner. The polyadic pi-calculus: a tutorial. In F. L. Bauer,

W. Brauer, and H. Schwichtenberg, editors, Logic and Algebra of

Specification, pages 203–246. Springer-Verlag, 1993.

[27] Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings

4th Annual IEEE Symp. on Logic in Computer Science, LICS’89, Pacific

Grove, CA, USA, 5–8 June 1989, pages 14–23. IEEE Computer Society Press,

Washington, DC, 1989.

[28] Ayse Morali, Leonardo Varela, and Carlos Varela. An electronic marketplace:

Agent-based coordination models for online auctions. In Proceedings of the

Thirty-First Latin American Computing Conference (CLEI’05), Cali,

Colombia, October 2005. Submitted for publication.

[29] George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Langauges

(POPL ’97), pages 106–119, Paris, France, January 1997.

[30] George C. Necula and Peter Lee. Research on proof-carrying code for

untrusted-code security. In DARPA Workshop on Foundations of Mobile Code

Security, pages 204–204, 1997.

[31] George C. Necula and Peter Lee. Safe, untrusted agents using proof-carrying

code. Lecture Notes in Computer Science, 1419:61–91, 1998.

[32] Scott Oaks. Java security. O’Reilly & Associates, Inc., Sebastopol, CA, USA,

1998.

[33] Joann J. Ordille. When agents roam, who can you trust? In First Conference

on Emerging Technologies and Applications in Communications (etaCOM),

Portland, OR, 1996.

[34] James Riordan and Bruce Schneier. Environmental key generation towards

clueless agents. In Mobile Agents and Security, pages 15–24, London, UK,

1998. Springer-Verlag.

75

[35] Volker Roth. Secure recording of itineraries through co-operating agents. In

ECOOP ’98: Workshop ion on Object-Oriented Technology, pages 297–298,

London, UK, 1998. Springer-Verlag.

[36] Volker Roth and Vania Conan. Encrypting Java archives and its application

to mobile agent security. Lecture Notes in Computer Science, 1991:229–143,

2001.

[37] Tomas Sander and Christian F. Tschudin. Protecting mobile agents against

malicious hosts. Lecture Notes in Computer Science, 1419:44–60, 1998.

[38] Fred B. Schneider. Towards fault-tolerant and secure agentry. In Marios

Mavronicolas, editor, Distributed algorithms, volume 1320 of Lecture Notes in

Computer Science, pages 1–14, Sept 1997.

[39] Rahul Singh, A. F. Salam, and Lakshmi Iyer. Agents in e-supply chains:

Realizing the potential of intelligent infomediary-based e-marketplaces.

Communications of the ACM, 48:109–115, 2005.

[40] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari

Balakrishnan. Chord: A scalable Peer-To-Peer lookup service for internet

applications. In Proceedings of the 2001 ACM SIGCOMM Conference, pages

149–160, 2001.

[41] Robin D. Toll and Carlos Varela. Mobility and security in worldwide

computing. In Proceedings of the 9th ECOOP Workshop on Mobile Object

Systems, Darmstadt, Germany, 2003. http:// www.cs.rpi.edu/research/

groups/wwc/papers/ecoopws2003Full.pdf.

[42] Carlos Varela. Worldwide Computing with Universal Actors: Linguistic

Abstractions for Naming, Migration, and Coordination. PhD thesis, University

of Illinois at Urbana-Champaign, May 2001. Advisor: Professor Gul A. Agha.

[43] Carlos Varela and Gul Agha. A Hierarchical Model for Coordination of

Concurrent Activities. In P. Ciancarini and A. Wolf, editors, Third

International Conference on Coordination Languages and Models

76

(COORDINATION ’99), LNCS 1594, pages 166–182, Berlin, April 1999.

Springer-Verlag. http://osl.cs.uiuc.edu/Papers/Coordination99.ps.

[44] Carlos Varela and Gul Agha. Programming Dynamically Reconfigurable

Open Systems with SALSA. In SIGPLAN Notices. ACM Object Oriented

Programming Languages, Systems and Applications (OOPSLA ’2001)

Intriguing Technology Track Proceedings., pages 20–34, December 2001.

http://www.cs.rpi.edu/ cvarela/oopsla2001.pdf.

[45] Giovanni Vigna. Mobile Code Technologies, Paradigms, and Applications.

PhD thesis, Politecnico di Milano, Milano, Italy, February 1998.

[46] Alex Villazón and Walter Binder. Portable resource reification in java-based

mobile agent systems. In MA ’01: Proceedings of the 5th International

Conference on Mobile Agents, pages 213–228, London, UK, 2002.

Springer-Verlag.

[47] Bennet S. Yee. A sanctuary for mobile agents. In Secure Internet

Programming, pages 261–273, 1997.

[48] Adam Young and Moti Yung. Sliding encryption: A cryptographic tool for

mobile agents. In FSE ’97: Proceedings of the 4th International Workshop on

Fast Software Encryption, pages 230–241, London, UK, 1997. Springer-Verlag.

[49] Apostolos Zarras and Valérie Issarny. A framework for systematic synthesis of

transactional middleware. In IFIP: Proceedings of Middleware’98, pages

257–272. Chapman-Hall, September, 1998.

EHRENWÖRTLICHE ERKLÄRUNG

Hiermit erkläre ich an Eides statt, da ich die vorliegende Arbeit selbständig nur

unter Benutzung der in der Arbeit angegebenen Literatur angefertigt habe.

Ayse Morali

Troy USA, den 29.06.2005

77

