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CHAPTER 1

INTRODUCTION

1.1 Overview

We propose a process algebraic model of a distributed system with resource

access and usage control. Our system has notions of explicitly located mobile agents,

migration of agents between locations, location-transparent asynchronous directed

communication (local and remote), local resources within locations and local re-

source access using synchronous communication. Thus, agents can communicate

with local and remote agents but to access a resource, they have to migrate to

the appropriate location and then establish a dedicated channel to communicate

with the resource. We statically guarantee bounded usage of resources. The bound

on the usage of a resource may be linearly distributed amongst other agents (in-

cluding newly spawned agents). Our system borrows certain concepts from the

π-calculus [34], the actor model [1] and mobile ambients [9]. The type system to

enforce resource access and bounded resource usage is inspired by ideas for resource

access control found in the Dπ calculus [41] and linear type systems (c.f. [25]).

1.2 Motivation

As will be seen in chapter 2, there are already many foundational calculi to

model distributed systems. A natural question that arises is “why one more?”. In

reply, we first note that we do not view our system as a foundational calculus. It

has instances of mutually redundant concepts. The usual thrust of foundational

calculi is to pick a minimalist set of concepts that are sufficiently powerful to model

mobile computation and then study the semantic theory induced by these calculi. A

common mechanism to prove the foundational nature of these calculi is to show that

encoding other foundational calculi is possible. In these calculi, modeling interesting

systems is possible in principle, but extremely inconvenient in practice. On the other

hand we believe that we have adapted many of the good concepts found in several

such calculi and created a calculus where non-trivial distributed systems can be

1
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conveniently modeled. In spite of this being the case, we do not view our work

as research into language design or distributed systems implementation issues. We

note that languages like Pict [39], Nomadic Pict [49], SALSA [48] and LLinda [35]

focus on such issues.

Though there are many calculi to model distributed systems, there is none

that focuses directly on enforcing a bound on resource usage. The notion of bounded

resource usage is useful to model an increasingly common scenario where a small

business out-sources its IT infrastructure needs to a host company and the contract

specifies not just which resources can be accessed at the host site, but also how many

times they can be accessed per month. This can be (and most of the times is) done

by implementing suitable run time checks. However, it is desirable to do away with

these checks by statically guaranteeing certain constraints on resource access and

usage. The concept of linear types can be used for this purpose. Linear types are

well known in the π-calculus community. However, their main use in the π-calculus

seems to be to obtain more fine grained equivalences by refining the contexts in

which a process can be placed (c.f. [25]). Though statically bounded resource usage

is a key feature of our calculus, we still do not view this as the main thrust of this

work.

We mostly view this work as a starting point to investigate the applicability

of formal tools like high level specification languages, rewriting logic systems, proof

assistants, theorem provers and model checkers to help in designing interesting dis-

tributed systems and to deduce and prove interesting semantic properties of such

systems.

1.3 Outline

In chapter 2, we survey the most influential foundational calculi for mobile

computing. In chapter 3 we propose Aπ — a calculus for distributed mobile com-

puting with static resource access and usage control. In chapter 4, we conclude by

summarizing and highlighting future work.



CHAPTER 2

FOUNDATIONAL CALCULI FOR MOBILE PROCESSES

2.1 Introduction

In this chapter we provide a survey of foundational calculi for concurrency and

mobility, and the role of typing therein.

The λ-calculus is a well known model of a sequential programming language.

It occupies an enviable position because it captures all the essential features of func-

tional computation. Moreover, other models such as Turing machines are shown to

be equivalent to it. Unfortunately, the world of concurrent computation is not so

systematic. As noted by Pierce [36], the deep difference between the two cases stems

from what may be observed. The only way to observe a functional computation is

to watch the output values it yields when presented with different inputs. However,

in a concurrent world, we may wish to observe a system of concurrently interacting

processes at different levels of granularity — like observing or ignoring internal tran-

sitions, inherent parallelism, distribution of processes amongst physical processors,

fault tolerance, locations, etc. Thus, a large body of work has arisen to propose

different process calculi in the concurrent world, each one focusing on a particular

subset of the observable features. Just as in the λ-calculus where everything is a

function and function application is the heart of the reduction mechanism, in the

concurrent world, everything is a process and process interaction is at the heart of

the reduction mechanism. A process is a free standing computation that can inter-

act with other processes according to interaction rules specified by that particular

process calculus.

Here, we focus on three major models for concurrency and mobility — the

π-calculus, mobile ambients and the actor model. We shall also look at some typical

properties that are guaranteed by static type systems in these calculi. The calculus

Aπ that we propose in the next chapter borrows certain concepts from all of these

models.

3
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2.2 The π-calculus

The π-calculus of Milner et al. [34] grew out of an earlier formalism known

as the Calculus of Communicating Systems (CCS) by Milner [30], which in turn

was developed from the still earlier Communicating Sequential Processes (CSP)

of Hoare [23]. The π-calculus is often considered to be the canonical model for

concurrent computation. It is very simple, and yet, it can encode many of the

common notions found in a concurrent setting.

The π-calculus is a name passing calculus in which processes communicate

over shared channels. Channel names can be communicated between processes. In

fact, names are the only entities that can be communicated. Value passing can

be encoded in this name passing calculus (roughly in the same way that values are

encoded in the λ-calculus). The scope of names can be restricted (and this is the key

difference from CCS). Restriction is needed to write almost any interesting program,

and, amongst other things, is indispensable to encode value passing. The λ-calculus

has one combinator, function application, often denoted by (M N). This combinator

is neither commutative nor associative, as constrained by the sequential nature of

the computation it models. The π-calculus also has one combinator — process

composition (denoted by P | Q). However, in stark contrast with the function

application, process composition is both commutative and associative. This is the

deep difference between the two cases and allows us to model many of the common

notions found in the concurrent world.1 Process mobility is modeled indirectly

through name restriction and name communication. To see how, we first note that

there are two ways of thinking about mobility. The more intuitive way is to think

of processes actually moving in physical space, and the less intuitive way is to think

about the acquaintance list of a process changing dynamically. To cite an example

(taken from [31]), consider a person talking on a cell phone. The cell phone is

communicating with the tower in that particular cell. Now suppose the person

walks out of her current cell and into the neighboring cell, so that the cell phone is

communicating with the tower in the new cell. Now, if we want to think along the

1As noted by Milner in his Turing award lecture [32], composition can be thought of as a
unifying concept for both the concurrent world and the sequential world. In the sequential world,
the only way that processes (instructions) are allowed to be composed is in a temporal sequence.
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first, more intuitive line, then we need to model the person, the tower, the notion of

a cell and the notion of the person being in a particular cell. However, if we think

along the second, less intuitive line, then we need to model the person, the tower

and the notion of the current acquaintances of the person (which changes as the

computation evolves). The π-calculus takes the second approach (and as discussed

later, mobile ambients take the first approach). The reason for picking the second

approach is in keeping in line with the design goals of the π-calculus: to avoid

selecting anything more than a minimally necessary set of constructs to model the

key notions in a concurrent world.

Note that scope restriction and extrusion are indispensable to model mobility.

Scope extrusion happens when a restricted name is communicated to another pro-

cess. The scope of this name is also transferred along with the name. This makes

it convenient to model exchange of private resources. A restricted name which was

initially known to only one process is now known to (only) those processes to whom

it has been communicated and is thus a shared resource amongst these processes.

2.2.1 Syntax and Semantics of the π-calculus

The syntax and term reduction of the π-calculus is presented in Figure 2.1

(taken from [36]). As can be seen, the calculus provides constructs for synchronous

input and output. Synchronicity is implied from the first rule in the operational

semantics — a process reading from a channel (or writing to a channel) blocks until

another process writes to (or reads from) the same channel.2 Besides these, there are

constructs for process composition and scope restriction. The replication construct,

though standard, is not strictly needed and is usually included only for convenience.

We now provide a detailed description of the syntax and semantics of the

π-calculus.

0 is the nil process. It does nothing. x(y).P is a process that is waiting for

input on channel x. After receiving an input along x, it continues as P , after the

appropriate lexical substitution of y with the received value. xy.P is a process that

outputs y on channel x and then continues as P . P |Q denote a parallel composition

2For asynchronous versions of the π-calculus, we refer the reader to Honda et al. [24] and Boudol
et al. [8]. The basic idea is to allow only the nil 0 process as the continuation of an output prefix.
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Syntax:
P, Q, R ::= 0 inert process

x(y).P input prefix
xy.P output prefix
P |Q parallel composition
(νx)P restriction
!P replication

Renaming of bound variables:

x(y).P = x(z).([z/y]P ) if z /∈ FV (P )
(vy)P = (vz)([z/y]P ) if z /∈ FV (P )

Structural Congruence:

P |Q ≡ Q|P commutativity of parallel composition
(P |Q)|R ≡ P |(Q|R) associativity of parallel composition

((vx)P )|Q ≡ (vx)(P |Q) if x /∈ FV (Q) scope extrusion
!P ≡ P |!P replication

Operational Semantics:

xy.P |x(z).Q → P |[y/z]Q communication
P |R → Q|R if P → Q reduction under |

(νx)P → (νx)Q if P → Q reduction under ν

P ≡ P
′

P
′
→ Q

′
Q

′
≡ Q

P → Q
structural congruence

Figure 2.1: Syntax and operational semantics of the π-calculus

of two processes. Two processes, when composed together, may interact with each

other as governed by the reduction rules described below. (νx)P says that x is

universally fresh in P . Finally, !P denotes an infinite number of P ’s composed

in parallel. This is a common notational convenience used to program a reactive

process, i.e., a process that receives a value, does something and then assumes its

initial behavior again.

The structural congruence relation identifies processes that are lexically the

same, i.e., processes that we can syntactically equate without even looking at their

semantics.

The operational semantics is presented as a reduction relation. The rule for
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communication represents synchronous communication between two processes. The

next two rules say that if P can reduce to Q then this reduction is not affected

if P is grouped with another process or if one or more names in P are scoped

by a restriction operator. The final rule allows reduction of processes modulo the

structural congruence relation. Note that it is this final rule which allows us to

reduce expressions like x(y).P | z(y).Q | xa.R which otherwise are not in any of the

“standard” forms in the semantics rules.

The π-calculus, more than any other model, has a large body of theoretical

work studying both the properties that can be expressed via the calculus and meta

level properties of the calculus itself. Equivalence of processes is usually based upon

bisimulation relations and not upon testing theories which are more common in the

actor model. Though we shall not be concerned with equivalence in this thesis, it

is an interesting topic for future work. Research has also been done in designing

and implementing programming languages based on the π-calculus. The Pict lan-

guage [39] and Nomadic Pict [49] are two such languages. Pict is a language for

concurrent programming while Nomadic Pict is a language for distributed program-

ming. In particular, we highlight Nomadic Pict here because in the Aπ calculus we

propose in this thesis, we shall use location-transparent messaging — one of the

concepts found in Nomadic Pict.

2.2.2 Typing in the π-calculus

Milner’s notion of sorting [33] was historically the first attempt to impose a

type discipline in the π-calculus. A sorting enforces constraints on the name tuples

that can be communicated over a channel. Names are partitioned into a collection

of sorts and a sorting function is defined which maps sorts onto sequences of sorts.

If a sort s is mapped to the sequence (t1, t2), then the channel s can carry only

pairs of names, where the first name is in t1 and the second is in t2. If x is in

sort s, u in t1 and v in t2 then prefixes x(u, v) and x〈u, v〉 respect the sorting.

A process is said to be well sorted if all prefixes in it respect the given sorting.

The main property guaranteed by this mechanism is that arity mismatches like

x(u, v).P | x〈y〉.Q are guaranteed not to occur during runtime. The main limitation
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of sorting is that sort information is completely static: it cannot describe sequencing

of values communicated over a channel. For example, it cannot describe a channel

which is used to carry an alternating sequence of two and three tuples, or tuples of

different sort sequences which have the same length. However, in the actor model,

this dynamically changing communication pattern along with asynchronous one-

to-one communication, state encapsulation and fairness, is precisely what makes

actors useful. An actor name identifies a persistent entity, whose behavior evolves

and changes with time. The ability for a name to be used in different ways in

different contexts is desirable, and the notion of polymorphic types (c.f. [28] and [38])

provides partial support for this ability. In [36] Pierce et al. introduce I/O types

— a refinement of Milner’s sorting by imposing further constraints on the usage of

names. The ability to read from a channel, the ability to write to a channel and the

ability to both read and write are all distinguished from one another. Besides the

sorting function, a function I is defined from sorts to a set of tags which specifies

the operations allowed on names in a given sort. The tags are: r for reading, w

for writing and b for both. The fact that a name that belongs to a sort which is

tagged with b can be used in a context which expects a name of a sort that is tagged

with only r or w imposes a natural sub-type relationship between sorts. In [25],

Kobayashi et al. introduce the notion of linear types. This is a further refinement

on I/O types where each sort is tagged with not just the ability to read or write

or both, but also to specify a multiplicity — which is the number of times that

each name can be used. In passing, we note that the basic sorting discipline as

well as its various refinements are useful in at least three key areas. The first is to

prevent careless programming errors. Second and more importantly, they reduce the

number of contexts in which a given process can be correctly placed, thus making

it easier to prove that two processes are equivalent. This is desirable when studying

behavioral equivalences of processes. The third and probably the most important is

that these type disciplines are necessary to prove certain encodings of other calculi

into the basic π-calculus. Since the π-calculus aims to be the most foundational

system to model mobile computation, it is necessary to be able to encode other

paradigms into the π-calculus to prove its foundational nature. And to do so, it is
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necessary to have, at least, a sorted π-calculus. The canonical example is [43] where

a fully abstract translation is presented between the π-calculus and a higher order

π-calculus (where processes themselves can be transmitted over channels). We refer

the reader to Part III of the The π-calculus—A theory of mobile processes [42] for

a more detailed treatment of typing in the π-calculus.

2.3 Mobile Ambients

Mobile ambients were first introduced by Cardelli and Gordon in [9]. Our

presentation is drawn from the lecture notes in [10] which in turn summarize material

from different ambient papers.

The mobile ambients formalism takes a more direct view of mobility than the

one in π-calculus. As will be seen in Section 2.2, in the π-calculus, mobility is

achieved by communicating and restricting the scope of channel names. It is like a

graph in which the edges keep changing as the acquaintances of processes change

with the evolution of the computation. Mobile ambients take a world view in which

processes move in physical space between locations. This view is thus more intuitive.

Further, mobile ambients model not just mobility of a process from one location

to another, they also model mobility of a location from one domain to another—

e.g., think of computations that are running in a laptop as the laptop is taken

from one building to another. The design goals of mobile ambients are markedly

different from those of the π-calculus. When mobile ambients were formulated, the

π-calculus had already been more or less accepted as the analogue of the λ-calculus

in the concurrent world. However, even for a foundational calculi, the π-calculus did

not fairly represent distributed computing over the Internet (worldwide computing)

which has become ubiquitous now. This is because locations, mobility and security

are fundamental concepts in worldwide computing and these concepts enjoy at best

a second class status in the π-calculus, since they exist only as encodings of the

name passing mechanism. However, in mobile ambients, these concepts enjoy a first

class status since they are present more directly in the calculus.

An ambient is a place that is delimited by a boundary and where multiple

processes execute. Each ambient has a name, a collection of local processes, and
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a collection of sub-ambients. Ambients can move in and out of other ambients,

subject to capabilities that are associated with ambient names. Ambient names are

unforgeable. This is the most basic security feature. Thus, a process may obtain a

capability to enter an ambient but from this capability (or by any other means for

that matter) it may not deduce the name of an ambient.

2.3.1 Mobile ambients: an informal introduction

In this section we present a pictorial introduction to mobile ambients. The for-

mal syntax and semantics described in subsequent sections are easier to understand

after first reading this section.

In general, an ambient is a collection of processes and sub-ambients. The

structure of an ambient with name n may be represented as shown in Figure 2.2.

... RP

n

k m

...  ......

Figure 2.2: Basic ambient structure

Note that nothing prevents the existence of two or more ambients with the

same name, either nested or at the same level. Once a name is created , it can be

used to name multiple ambients. Moreover, !n[P ] generates multiple ambients with

the same name. This feature is used to model replication of services.

2.3.1.1 Actions and Capabilities

Operations that change the hierarchical structure of ambients can be inter-

preted as crossing of firewalls or decoding encrypted data. Such operations are thus

sensitive and are restricted by capabilities. As we noted earlier, an ambient can

allow other ambients to perform certain operations (like entering it or communi-

cating with it) without revealing its true name. Capabilities can be transmitted as

messages.



11

The process M.P executes an action regulated by capability M , and then

continues as process P . Thus M is a guard for P . Capabilities are syntactically

derived from names. Given an ambient name m, the capability in m allows entry

into m, the capability out m allows exit out of m and the capability openm allows

the opening of m. Implicitly, the possession of one or all of these capabilities is

insufficient to reconstruct the original name m from which they were extracted.

The following figures explain the three basic capabilities:

in m.P | Q

mn

R

m

n

P | Q R

Figure 2.3: Entry Capability

out m.P | Q R

n

m

P | Q

n

R

m

Figure 2.4: Exit Capability

open m.P Q

m

P | Q

Figure 2.5: Open Capability

We note that while exercising the entry capability — in m.P — if there is no

ambient named m, then the executing process blocks until such an ambient becomes

available. And if there is more than one ambient named m, then one of them is

chosen non-deterministically.

The open capability may seem like a bad idea because the process that has a

capability to open an ambient has no idea of what it might be unleashing by opening

that ambient. However, note that since names cannot be guessed, the only way that

a process can obtain a capability to open an ambient is by requesting precisely

such a capability. Thus, in some ways, the result is not entirely expected. At the

same time, it is desirable for the target ambient to be able to control attempts by

other ambients to move into or open the target ambient. Safe ambients [26], an
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extension to mobile ambients provide such facilities. The key idea in safe ambients

is that capabilities always come in pairs: for instance the usual capability in a and

its co-capability in a. Both the capabilities must be present for that action to be

performed. Consider the following reduction:

a[in a.open b.in c] | b[in a.open b.in d]

The move of b into a is legal because of the presence of the in a capability

in b and the corresponding in a capability in a. Similarly the open action is legal

because of the presence of the open capability and the open co=capability. This

extension makes this calculus more secure than basic mobile ambients.

2.3.1.2 Communication primitives

We first note that the pure mobile ambient calculus — which only has the

three capabilities outlined above — is actually Turing-complete. However, for con-

venience, we also include the ability to communicate.

The usual communication mechanism chosen in work involving ambient cal-

culus is local, undirected communication. Local means that communication can

happen only within an ambient. Undirected means that messages are not directed

to a particular process or agent. Thus a process just emits a message into the ether,

so to speak, and any neighboring process which is waiting for a message can snap

up this message. Later on, we describe a type mechanism to impose some structure

into this otherwise chaotic communication mechanism.

2.3.1.3 Orthogonality of mobility primitives and communication primi-

tives

With the communication mechanism we just described, if a process wants to

communicate with another process in a different ambient, it first has to physically go

to the other ambient. To do so it requires the capability to exit its current ambient

and another capability to enter the new ambient. The alert reader will note that only

these two are not sufficient. In addition, some process in the destination ambient

must have the capability to open the source ambient so that the two processes are
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finally adjacent to each other and communication may commence.

This highlights an interesting design property of the calculus. The choice of a

communication mechanism is orthogonal to the choice of the mobility primitives. In-

deed, we can choose one set of mobility primitives and another set of communication

primitives at will, and our choices will affect the expressiveness and computational

power of the resultant calculus.

out m.P | Q R

n

m m

P R

n

Q

Figure 2.6: A different exit capability

In particular, as seen in Figure 2.6, we can choose to include an additional

capability which allows a process to escape from an ambient. Recall that the exit

capability detailed in Figure 2.4 causes the surrounding ambient of the exercising

process to exit its surrounding ambient.3 With this additional capability, we may

then choose to leave out the open capability and still be able to encode the above

mentioned scenario.

From this angle Aπ, the main calculus described in this thesis, can be roughly

viewed as a mobile ambient calculus with a more restrictive set of of mobility prim-

itives and a more expressive set of communication primitives (directed, local and

non-local communication).

2.3.2 Mobile Ambients: Syntax and Semantics

The formal syntax of mobile ambients calculus is presented in Figure 2.7. We

now briefly explain the constructs.

• Restriction, Inaction, Composition and Replication

These have the same meaning as in the π-calculus. (νn)P creates a new unique

3In the literature the initial exit capability we had is often referred to as a subjective capability
because, from the viewpoint of the ambient it can be read as “I move”. The second exit capability
is often referred to as an objective capability because from the view point of the ambient, it may
be read as “I make this process move”.
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Syntax:
n names

P, Q ::= processes
(νn)P restriction
0 inactivity
P |Q composition
!P replication
M [P ] ambient
M.P capability action
(x).P input action
〈M〉 async output action

M ::= messages
x variable
n name
in M can enter into M
out M can exit out of M
open M can open M
ε null
M.M

′
path

Figure 2.7: Syntax of Mobile Ambients with communication primitives

name n with scope P . The new name can be used to name ambients and to

operate on ambients by name. Like the π-calculus, the (νn) binder can float

outwards (when possible) to extend the scope of a name and can float inwards

(when possible) to restrict the scope of a name.

• Ambients

M [P ]: If M is the name of an ambient, say n, then we get a meaningful con-

struct: n[P ] creates an ambient n executing the process P . However, if M is

a capability or a path, then we get a meaningless construct. Such meaningless

constructs are permitted in the syntax, but they have no computational reduc-

tion rule and so cannot be reduced. A question that arises is why permit them

in the first place? This is done to achieve a uniform messaging system where

a variable can be used to denote both an ambient name and also a capability.

We shall talk about this later in Section 2.3.3.

• Capability action, input and output

M.P first executes the action governed by capability M and then executes
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P . The process blocks until the action governed by M can be performed.

(x).P inputs a message x and then continues as P (with the appropriate

substitutions). Recall that communication is undirected, so a message is not

targeted to a particular process. Also, a message may be received by only

one process. 〈M〉 represents an asynchronous output action. Note that here

a message is being represented as a process which has no continuation (same

as in the asynchronous π-calculus).

The behavior of processes is given by the reduction relation in Figure 2.8. The

first three rules are the reduction rules for actions associated with the in, out and

open capabilities. The next three rules propagate reductions across scopes, ambi-

ent nesting and parallel composition. The next rules allows structural equivalence

during reduction and the final rule allows communication to occur.
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Structural Congruence:

P ≡ P
P ≡ Q ⇒ Q ≡ P
P ≡ Q, Q ≡ R ⇒ P ≡ R
P ≡ Q ⇒ (νn)P ≡ (νn)Q
P ≡ Q ⇒ P |R ≡ Q|R
P ≡ Q ⇒!P ≡!Q
P ≡ Q ⇒ n[P ] ≡ n[Q]
P ≡ Q ⇒ M.P ≡ M.Q
P |Q ≡ Q|P
(P |Q)|R ≡ P |(Q|R)
!P ≡ P |!P
(νn)(νm)P ≡ (νm)(νn)P
(νn)(P |Q) ≡ P |(νn)Q if n 6∈ fn(P )
(νn)(m[P ]) ≡ m[(νn)P ] if n 6= m
P |0 ≡ P
(νn)0 ≡ 0
!0 ≡ 0
P ≡ Q ⇒ M [P ] ≡ M [Q]
P ≡ Q ⇒ (x).P ≡ (x).Q
ε.P ≡ P
(M.M

′
).P ≡ M.M

′
.P

Reduction:

n[in m.P | Q] | m[R] → m[n[P |Q] | R] Red In
m[n[out m.P | Q] | R] → n[P |Q] | m[R] Red Out
open n.P | n[Q] → P |Q Red Open
P → Q ⇒ (νn)P → (νn)Q Red Res
P → Q ⇒ n[P ] → n[Q] Red Amb
P → Q ⇒ P |R → Q|R Red Par
P

′
≡ P, P → Q, Q ≡ Q

′
⇒ P

′
→ Q

′
Red ≡

(x).P |〈M〉 → PM/x Red Comm

Figure 2.8: Semantics of Mobile Ambients with communication primi-
tives
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2.3.3 Typing in mobile ambients

As seen above, there are two different concepts involved in mobile ambients —

mobility and communication. Mobility is governed by run-time capabilities. How-

ever, communication can be further refined by imposing a type discipline. Consider

the following system: n[(x : Int).P | open m] | m[in n.〈3〉]. In essence, the system

consists of two processes, one of which is trying to communicate the integer value 3

to the other which is expecting an integer value. The type system must be able to

ensure that the system is well typed, in spite of the reading and writing actions being

initially located in different ambients. This is done by keeping track of the topic of

conversation within an ambient. In general, an ambient may have many processes,

all of them performing input and output actions. Since output is undirected, it is

necessary that all the processes are dealing with the same type of messages. This

type is the topic of conversation allowed in that ambient. To ensure that all pro-

cesses and ambients are well typed with respect to the topic of conversation, the

following three entities are controlled:

• The processes must be tagged to indicate what type of messages they are going

to exchange. This is reminiscent of the sorting discipline in the π-calculus,

where a name can be used to communicate only one type of value.

• The ambients must be tagged to indicate the topic of conversation permitted

in the ambient.

• The open capability must be tagged to indicate what type of ambients it can

open. It is not necessary to tag the in or out capabilities (since unless an

ambient is opened, no communication can occur).

Once the above additional tagged information is available, it is possible to

devise an inference mechanism that looks at the syntax of the system and determines

if it is well typed.

Further note that as shown in Figure 2.7, a variable is used to denote an

ambient name and also a capability. This leads to syntactic anomalies as is seen

from the expression:
(

(x).x.P
)

| 〈n〉 Here, the process wishes to input a capability

and then exercise that capability. Instead, it ends up receiving an ambient name and
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reduces to the meaningless term: n.P . A similar anomaly may arise if a process that

wishes to input an ambient name ends up receiving a capability. Such anomalies

are also handled in the type system.

We refer the reader to [13], [12] and [11] for further details.

2.4 The Actor model

The actor model was first proposed by Hewitt [21] who developed it further

in [22]. It has evolved over the years with a trend towards treating a collection of

actors as the basic unit of discourse instead of a single actor. Our presentation is

based on ideas found in Agha et al. [2] and Thati [46] and these are themselves

based on the system described in Agha [1]. Some alternative formulations can be

found in Clinger [15], Gaspari [29] and Talcott [45].

The actor model is based on asynchronous communications between actors.

Actors are very much like processes — free standing computations, however, actors

are usually persistent, reactive entities. A computational system in this model,

also known as a configuration , consists of a collection of concurrently executing

actors and a collection of messages in transit, and has an interface to its external

environment. Actors communicate via asynchronous messages. These messages

may consist of either values or actor names. A message contains values targeted to

a single actor called the target actor. A message is consumed once it is received

by the target. The programming style usually adopted in this model is an event

based style. Actors are reactive in nature. On receiving a message, an actor can

concurrently perform some or all of the following actions:

1. Send a finite number of messages to other actors.

2. Spawn a finite number of new actors with universally fresh names and instan-

tiate these actors with behaviors.

3. Take a finite number of internal computation steps.

4. Assume a new behavior with the same name.

The model has certain assumptions as follows:
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1. Fairness: It is assumed that the underlying message delivery system provides

certain fairness guarantees — roughly that no message delivery will be in-

finitely postponed. Fairness plays a crucial role in proving certain observa-

tional equivalences in the model and is also indispensable while composing

configurations. We refer the reader to Agha et al. [2] for details.

2. An actor knows the names of only a finite number of other actors (its acquain-

tances). Further, in one computational step, it can send only a finite number

of messages to a finite number of actors.

3. A message can carry a finite number of names.

4. Like names in Mobile Ambients, actor names cannot be guessed. This is

the most basic form of security. Thus, an actor may only learn about new

actors via messages that it receives. Further, as the computation proceeds, it

may forget some names. In the system that we are going to describe, this is

syntactically represented via (static) name scoping. A name is known to the

actor only within its lexical scope.

As compared to other foundational calculi, the actor model has much better

support for encapsulation. Each configuration has an interface to its environment.

The interface determines how this configuration can interact and compose with other

configurations. The interface changes dynamically as the computation evolves and

as actors gain new acquaintances and forget old ones. The interface consists of

a set of actors known as receptionists and another set known as external actors.

Some actors within a configuration are designated as receptionists while the known

actors belonging to other configurations are designated as external actors. Only the

receptionists can receive messages from outside the configuration and actors within

the configuration can send messages either to other actors within the configuration

or to the external actors. As we noted above, current research in actor semantics

abstracts away from the internal events of a configuration and concentrates only on

how configurations evolve and interact with each other. We refer the reader to [45]

and [46] for details. An attempt to model locations and security in the actor model

is found in Toll et al. [47] where a global resource map in conjunction with location
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specific resource maps are used to determine the resource that an actor is trying to

access. The local resource map at a location is first consulted to resolve the target

resource. If there is no entry in the local resource map, then the global resource map

is consulted. Thus, each location may override the default global behaviour. This

is useful, for instance, to map stdout to different resources in different locations.

The actor model predates the π-calculus and has significantly influenced re-

search in programming abstractions for open distributed systems, concurrent object

oriented languages and projects on high performance computing. In many ways, the

model was ahead of its time. The increasing availability of ubiquitous distributed

computing power provides the right infrastructure for the actor model.

Syntax:
C := 0

| x(ỹ).C
| x〈ỹ〉
| (νx)(C)
| [x = y](C1, C2)
| C1|C2

| B〈x, ỹ〉

Figure 2.9: Syntax of System A

2.4.1 System A: An actor algebra

As we noted above, the system described by Agha et al. [2] is the one often

used while describing the actor model. They take a simple functional language

based on the call by value lambda calculus and extend it with additional constructs

to capture the actor model. However, here, we shall describe System A, an actor

algebra proposed by Thati [46], since we believe that the style of this algebra is very

similar to the other calculi described in this chapter.

The syntax of System A is presented in Figure 2.9. For those familiar with

the more common presentation of the Actor system [2], we note that in System A,

the concept of configurations is carried to its extreme. Each actor is viewed as a

configuration (or equivalently as a configuration that has a single actor, which is

also a receptionist).
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Let N be an infinite set of names; B an infinite set of behavior identifiers;

u, v, w, x, y, z range over N ; A, B range over B; and x̃ and ỹ denote tuples of names.

The set of preterms C is defined by the context free grammar in Figure 2.9. C ranges

over C.

Here is a description of each preterm:

1. Nil Process, 0: This represents a configuration with no actors or messages.

2. Output, x〈ỹ〉: This represents a configuration containing a single message. The

message is targeted to an external actor x and contains the tuple of names ỹ.

3. Input, x(ỹ).C: This represents a configuration containing a single actor named

x. The actor is also a receptionist and may receive messages from the environ-

ment. All names in ỹ are distinct and are bound by the input x(ỹ). The actor

receives a message containing a tuple z̃ of the same arity as ỹ, and replaces

itself with the configuration Cz̃/ỹ. The configuration Cz̃/ỹ should in turn con-

tain the actor x with a new behavior (this is guaranteed by System A’s type

system), and possibly some freshly created actors and messages.

4. Composition, C1 | C2: This represents a composition of two actor configura-

tions. For those familiar with Agha et al. [2], we note that unlike that work, in

System A it is assumed that in a configuration, all actors except the reception-

ists have universally fresh names. Normally, two actor configurations can be

composed if there is no actor with the same name in both the configurations.

In System A, this condition is equivalent to saying that there is no receptionist

with the same name in both configurations.

5. If-then-else, [x = y](C1, C2): This preterm is C1 if x and y are the same names.

Otherwise it is C2.

6. Restriction, (νx)C: This represents the configuration C, but with actor x no

longer a receptionist. The name x is private to the configuration. It is bound

by restriction (νx).
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7. Behavior Instantiation, B〈x, ỹ〉. The behavior identifier B represents a tem-

plate for an actor behavior and this template is instantiated with the appro-

priate values.

NIL:
0 : [φ, φ]

MSG:
x〈ỹ〉 : [φ, {x, ỹ}]

ACT:
C : [{x}, χ]

x(ỹ).C : [{x}, fn(C) − {x, ỹ}]
x 6∈ {ỹ}

RES:
C : [ρ ∪ {x}, χ]

(νx)C : [ρ, χ]
x 6∈ ρ

COMP:
C1 : [ρ1, χ1] C2 : [ρ2, χ2]

C1|C2 : [ρ1 ∪ ρ2, (χ1 ∪ χ2) − (ρ1 ∪ ρ2)]
ρ1 ∩ ρ2 = φ

COND:
C1 : [ρ, χ1] C2 : [ρ, χ2]

[x = y](C1, C2) : [ρ, χ]

BINST:
B〈x, ỹ〉 : [{x}, {ỹ} − {x}]

Figure 2.10: Type rules for System A

2.4.2 Type system

We note that not all preterms are valid actor configurations. To see why,

consider the following illustrative examples:

1. The preterm x(y).C1 | x(y).C2 contains two actors with name x and hence

violates uniqueness of actor names.

2. The preterm x(y).0 violates the persistence of actors since the actor x disap-

pears after receiving a message.

3. The preterm x(y).(x(z).C1 | y(z).C2) violates anonymity of newly created

actors since an actor is created with a name received as an input message.

New actors must be created with fresh names.
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4. The preterm x(y).(νz)(x(y).C | u〈z〉) where z 6∈ fn(C) is not a valid con-

figuration because a new name z is generated without associating it with a

behaviour. Recall that in System A, all names are names of actors and must

hence be associated with a behavior.

In System A, the type system plays a central role since it is used filter out

all the preterms that are not valid actor configurations. The preterms that are well

typed are known as terms.

The basic type judgment is of the form C : [ρ, χ] which means that the config-

uration C is a valid actor configuration with receptionists ρ and external actors χ.

The type rules are presented in Figure 2.10. The type system is implicit. The rules

are self explanatory for the most part. Of particular interest are the rules ACT and

COMP and we shall only explain these here.

The ACT rule concerns a single actor. It says that when an actor receives a

message, it can replace itself with a configuration in which it is the only receptionist.

This in turn implies that neither can an actor simply disappear, nor can it create

any actors with well known names. It can only create anonymous actors. Further,

all the free names that it learns about from the message it receives are added to its

external actor set.

The COMP rule concerns the composability of two actor configurations. Con-

sider the two actor configurations C1 and C2 with interfaces [ρ1, χ1] and [ρ2, χ2].

According to the rules of the general actor model, C1 and C2 are composable if and

only if:

1. No two actors in the configurations have the same name.

2. The configurations respect each other’s interface:

χ1 ∩ dom(C2) ⊂ ρ2

χ2 ∩ dom(C1) ⊂ ρ1

These rules reflect the condition that for any configuration, the names of actors

that are not receptionists are unknown to the environment.
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If the above two conditions are satisfied, then, the configuration C obtained by

composing C1 and C2 contains all the actors and messages in the two configurations

and its interface [ρ, χ] is given by:

ρ = ρ1 ∪ ρ2

χ = (χ1 ∪ χ2) − (ρ1 ∪ ρ2)

Now, in system A, we note that any newly created name is assumed to be

universally fresh. Further, as per the type rules, any name that is not within the

scope of a ν operator is a receptionist for that configuration. Thus, in system A,

the two preconditions for composability reduce to the single condition: ρ1 ∩ ρ2 = φ.

In passing we highlight an important consequence of treating the receptionists

and external actors of a configuration as the type of that configuration. The type

is computed based solely on the syntactic information present in a term. Thus, the

ρ and χ sets reflect the current interface of the configuration. The past history

is not reflected in the current interface. This is in contrast with the situation in

Agha et al. [2] where the interface of an configuration increases monotonically; i.e.,

a receptionist will always remain a receptionist and a known external name will

always be known.

2.4.3 Semantics of System A

The semantics of system A is given as a labeled transition system. A transition

is of the form C1
α
→ C2 and means that C1 can perform the action α and evolve into

C2. The actions that can be performed are presented in Table 2.1.

Action(α) Kind fn(α) bn(α)
τ Silent φ φ
in(x〈ỹ〉 ) Input x, ỹ φ

out((νỹ′)x〈ỹ〉) Output {x, ỹ} − {ỹ′} {ỹ′}

Table 2.1: Action labels

The transition C1
τ
→ C2 represents the delivery of a single message to its target

in C1. After the delivery, C1 evolves into C2. This action does not involve any inter-

action with the environment. All such message deliveries are uniformly abstracted
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as a silent transition since we are not interested in the internal details of a config-

uration. The remaining two actions, input and output, represent interactions of a

configuration with its environment. The input action is used to label a transition in

which a configuration accepts a message from the environment targeted to a recep-

tionist in the configuration. The output action is used to label a transition in which

a configuration sends out a message to an external actor. The message may consist

of names of receptionist as well as non-receptionist actors of the configuration.
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Structural congruence:

C1 ≡ C2 if C1≡αC2 congruence up-to alpha equivalence
C1|C2 ≡ C2|C1 commutativity of composition
(C1|C2)|C3 ≡ C1|(C2|C3) associativity of composition
(νx)(νy)C ≡ (νy)(νx)C
(νx)C1|C2 ≡ (νx)(C1|C2) if x 6∈ fn(C2)
C|0 ≡ C
B〈x, ỹ〉 ≡ C(x, ỹ)/(u, ṽ) if B ::= (u, ṽ)u(w̃).C
[x = y](C1, C2) ≡ C1 if x = y
[x = y](C1, C2) ≡ C2 if x 6= y
C1 ≡ C2 ⇒ (νx)C1 ≡ (νx)C2

C1 ≡ C2 ⇒ C|C1 ≡ C|C2

Labeled transition system:

EQUIV:
C1 ≡ C

′

1
α

−→ C
′

2 ≡ C2

C1
α

−→ C2

RECV:
x(ỹ).C|x〈z̃〉

τ
−→ C{z̃/ỹ}

len(ỹ) = len(z̃)

PAR:
C1

τ
−→ C

′

1

C1|C2
τ

−→ C
′

1|C2

HIDE:
C

τ
−→ C

′

(νx)C
τ

−→ (νx)C ′

IN:
C

in(x〈ỹ〉)
−→ C|x〈ỹ〉

C : [ρ, χ], x ∈ ρ

OUT:

(νỹ′)(C|x〈ỹ〉)
out((νỹ′ )x〈ỹ〉)

−→ C

C : [ρ, χ], x 6∈ ρ, {ỹ′} ⊂ {ỹ}

Figure 2.11: Semantics of System A
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The transitions are presented in Figure 2.11. Of particular interest are the rules

IN and OUT. After inputting a message from the environment via the IN transition,

the free names in the message are added to the external actor set of the configuration

(this follows from the type rules to compute the type of the resultant configuration).

Similarly, after outputting a message via the OUT rule, the private names that are

exported in the message are no longer private and become receptionists.

2.5 Other models

We briefly describe a few other models that are relevant the system we propose

in the next chapter.

• Dπ is a distributed π-calculus proposed by Hennessy et al. [41]. Computation

is distributed over different locations in which processes may migrate from

one site to another and in which sites may fail. Distribution is achieved by

requiring that processes be located at locations. As in mobile ambients, loca-

tions may be nested, giving rise to hierarchies of locations. Communication

channels are explicitly located: the use of a channel requires knowledge of

both the channel and its location. There are primitives to create new channels

and new locations as well as to halt locations. Like mobile ambients, names

are endowed with permissions. The holder of a name may use that name in

the manner allowed by these permissions. The following permissions are used

(some permissions apply to channel names, others to location names):

– sending data along a channel.

– receiving data along a channel.

– running a thread at a location.

– placing sub-locations inside a location.

– creating new channels at a location.

– move a location inside another location.

– kill a location
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Dπ has a type system, whose main function is to control the capabilities

associated with each instance of a name. For example, when exporting a new

location name, it is natural to constrain the usage of that location by the

recipient. These constraints can be specified as a subset of the permissions

mentioned above. For instance, the recipient of a location name can be given

permission to read from only certain channels within that location, write to

only certain channels, and be able to create new channels at that location.

Thus, for example, the recipient cannot kill that location or move that location

inside some other location. Thus the type system is primarily a means for

resource access control. Hennessy et al. present a version of Dπ in [20] where

they focus exclusively on resource access control in a distributed setting. The

type system there is slightly different in that they tag agents with accumulated

capabilities as agents roam around instead of typing each instance of a resource

name as is done in the basic Dπ typing system. To prove type safety, they

use the notion of a tagged operational semantics which was first proposed by

Pierce and Sangiorgi in [37].

• The join-calculus [18] can be interpreted as a reformulation of the π-calculus

with a more explicit notion of places of interaction. It is one of the first at-

tempts to model locality. The join-calculus is a specific instance of the reflexive

CHAM — a general semantic framework based on the CHAM framework [7].

In CHAM4 (Chemical Abstract Machine), molecules float around in a soup.

The soup can be heated or cooled to break terms into molecules or coalesce

molecules into terms. This is thus a reversible operation. Two complementary

molecules can react as shown:

[a.p, M, N, a.q] → [p, M, N, q]

This reaction is non-reversible. Further note that there is no notion of locality

here. Any two complementary molecules in the soup may react.

4CHAM is essentially a term rewriting system modulo structural equivalence while reflexive
CHAM is essentially a first order rewriting system modulo structural equivalence.
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The reflexive CHAM extends CHAM in two important ways. First, it imposes

locality. Second, reactions are allowed to produce not only new molecules but

also reaction rules for those molecules. Locality is not imposed directly but is

an indirect interpretation. A reaction rule is to be thought of as a location and

the molecules that reduce according to this rule are thought to be processes

that travel to this location before they can interact with each other. An

interaction can produce new molecules, and more interestingly, can produce

new reaction rules (locations). However, new reaction rules are created in a

safe way. In particular, a process that receives input names may create a new

reaction rule that uses these names but cannot create reaction rules for these

names. As noted above, locality is present in a rather primitive form. The

distributed join-calculus [17] adds a notion of named locations and a notion

of distributed failures.

• The Kell calculus [44] is a very recent formulation. It is a higher order dis-

tributed process calculus.5 Most of the calculi for mobile computation stick to

a first order approach. They show that higher order can be encoded in the first

order setting and then insist that this is the correct approach because a first

order approach has a simpler semantic theory. The Kell calculus is different in

this aspect. In [44], the authors argue that certain constructs like distributed

software updates, introduction of new components in a system and dynamic

reconfiguration in general are inherently higher order constructs. They further

argue that the semantic theory induced by the higher order calculi is not as

complicated as the first order camp believes it to be.

2.6 Conclusion

In this chapter we looked mainly at the π-calculus, mobile ambients and the

actor model. These three foundational systems have been very influential in stimu-

lating research in process algebraic modeling of mobile computation (amongst other

areas).

5Strictly speaking, it is actually a family of calculi.



30

In the next chapter we propose the Aπ calculus for resource access and usage

control. It borrows certain concepts from the three systems we described here and

its type system is inspired by the style found in the Dπ calculus.



CHAPTER 3

THE Aπ CALCULUS

3.1 Introduction

In this chapter we propose Aπ — a calculus for distributed mobile computing

with static resource access and usage control. We first present the core system. In

a subsequent section, we show how to equip it with various useful extensions.

3.2 Basic Aπ

As in the design of any system, there are several alternatives for each concept

that we wish to model. Our main focus is on resource access control and bounded

resource usage in a distributed setting. So, when presented with alternatives for

concepts that are orthogonal to our main concern, we often pick the simplest possible

alternative. We use the name basic Aπ for the system we obtain from this exercise.

We describe basic Aπ in this section.

The main entity in Aπ is an agent. An agent is a computation that has a name.

An agent is located in a location. It may migrate to other locations. Agents can

communicate with other local as well as remote agents via asynchronous message

passing with blocking receives and non-blocking sends. Unlike mobile ambients,

message passing is directed ; i.e., each message is addressed to a particular agent. In

basic Aπ, message communication is location transparent; i.e., an agent just needs

to know the name of another agent to communicate with it. This is similar to the

high level location-independent messaging primitive found in the Nomadic Pict lan-

guage [49]. Location transparent messaging is simpler to model because it requires

only a global mailbox. Later, this is extended to location-aware communication.

Message communication is typed, and is similar to the system in the Erlang

language [6]. Agents explicitly announce the type of the message they are sending.

This type is tagged to the message as the message makes its way to the destination

agent. The receiving agent can choose to receive messages of a particular type. We

note that the information tagged to a message is essential to our system. In general,

31
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when we have an asynchronous message passing system, it is not possible to type the

processes (or actors or agents) solely and some typing information has to be passed

along with the message itself. We shall talk about this more when we present the

type system, but in passing we note that a limited form of tuple communication is

possible in basic Aπ (see Section 3.3.6).

Each location has certain resources that are static and cannot leave that loca-

tion. Agents communicate with resources via channels. A channel is to be viewed

as a dedicated communication link between an agent and a resource. We note that

resources are not modeled directly but a channel implicitly represents a resource.

Further, since channel names are scoped by the agent that creates them, a channel

name is more accurately interpreted as an instance of a communication link between

a resource and an agent. There may be several such links between a resource and

the same or different agents, and these links do not interfere with each other. A

channel is a located entity; i.e., to use a channel, the agent must first migrate to

the location of the channel. Channel communication is synchronous with blocking

sends and blocking receives. A new agent may be spawned to perform a potentially

blocking computation to prevent the initial agent from being blocked. When re-

questing access to a resource, the agent specifies an usage bound. We impose a type

system that guarantees the following: In response to a request, if an agent manages

to obtain access to a resource (via a channel), then a well typed agent will respect

this usage bound. We note that in basic Aπ, channels may only communicate values.

This keeps things simple, but it is straightforward to extend this to a system where

channels can communicate names as well.

In basic Aπ, any agent can create located channels as well as new locations.

Remote channel creation is not allowed; i.e., an agent has to migrate to the remote

location and then create a channel there. Unlike the Dπ-calculus or mobile ambients,

we have a flat space for locations and there is no hierarchy between locations. All

new locations are created in this same flat space. Further, locations are static and

cannot be moved (movement does not make sense in a flat space). We later extend

this to a system where only certain privileged agents can create new locations and/or

new located channels.
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In basic Aπ, there is no control over migration into and out of locations, or the

ability to communicate remotely. In the actor model, the interface of a configuration

is controlled via the notions of receptionists and external actors. We later extend our

system to provide similar control. However, we take a more fine-grained approach in

which appropriate run-time capabilities are required to execute any of the following

actions: sending a remote message, receiving a remote message, migrating out from

a location, migrating into a location, creating new channels at a location, creating

new locations.

We assume that names (of either agents, locations or channels) are unforgeable

entities, and cannot be guessed. An agent begins execution with the knowledge of

certain names. It can learn new names from fellow agents or it can create new names

and communicate them to fellow agents.

3.2.1 Syntax of basic Aπ

Since message typing is explicit in the syntax, we first explain the types in the

language. (The type system itself is explained later in Section 3.2.2.) The types are

outlined in Table 3.1.

Type
N Agent names
L Location names
V Values
ζ ::= N|L|V Convenience type
Ci i ≥ 0 Channel names
Ti ::= L[Ci] i ≥ 0 Located channels

Table 3.1: Types for the Aπ calculus

N and L are ground unstructured types used for agent names and location

names. Ci actually stands for a collection of types. Cn is the type of a channel that

can be used at most n times. Channel names themselves are unstructured entities.

Ti is used to type located channels. It is a structured type and can be used to type

values conforming to this structure — e.g., l[c] is a channel c located at location l.

Channels can only communicate values of type V. In basic Aπ, V is assumed to be a

ground unstructured type. However, this is not a requirement and in a subsequent
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extension, we interpret V as a structured type. The types N , L and V are grouped

together into type ζ for convenience, since many of the typing and reduction rules

involving these types are similar. Agents can communicate values of type Ti or ζ .
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Threads:

p ::= nil

β(d : X).p X = ζ | Ti agent communication: asynchronous output
?(d : X).p X = ζ | Ti agent communication: input
νagt(β(q)).p New agent
a(v).p synchronous writing to a resource
a??(v : V).p synchronous reading from a resource
νch(a : Ci).p New Located Channel
νloc(l : L).p New location
l :: p moving to location l
d = e ? p : q match
∗p replication

Agents:

A ::= nil
α[p] | A Agent with name α composed with other agents

Channels:
C ::= nil

a | C Channel a

Location:

L ::= nil

l

[

A | C

]
∣

∣

∣

∣

L Locations with agents, and located channels

Directed Messages:

M ::= nil
α〈d : ζ〉 | M Message for agent α with data d composed with other messages

System:

S ::= nil
L | M A collection of locations with a global mailbox

Figure 3.1: Syntax of the Aπ calculus
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The syntax of the system is presented in Figure 3.1. Threads are basic se-

quences of computational instructions. An agent is a named thread. We use p, q, r

to denote threads and α, β, γ to denote agent names. l, m, n are used for location

names and a, b, c are used for channel names.

We now explain the syntactic constructs:

• α[nil]: Agent named α is executing the nil thread.

• α[β(d : X).p]: Agent named α outputs a message d with type X to agent

named β and then proceeds to execute p. As indicated by the side condition,

X is ζ or a located channel type Ti. Strictly speaking, this annotation is

required only if d is of type Ti. If it is of type ζ , then we could infer its type

implicitly instead of requiring it to be explicit in the syntax. For uniformity,

we require it to be explicit. As will become clear later, the reason why we

cannot infer the type Ti of a located channel is because it is possible to output

a located channel with a subtype of its original type; i.e., if the original type

was Ti then it is possible to output this located channel as belonging to the

type Tj , where 0 ≤ j ≤ i. Thus, it becomes necessary to explicitly annotate

the output construct with a type. The type system ensures that we cannot

output a located channel of type Ti with type Tj where j > i.

• α[?(d : X).p]: Agent named α is waiting for a message of type X and continues

to execute p after appropriate parameter substitution.. As indicated by the

side condition, X is of type ζ or Ti.

• α[νagt(β(q)).p]: Agent named α creates a sub-agent named β and then contin-

ues to execute thread p. β concurrently starts executing q (this follows from

the interleaved concurrency in the operational semantics). β is assumed to be

a universally fresh agent name.

• α[a(v).p]: Agent named α writes value v to resource represented by channel a

and then continues to execute p. As will be seen in the operational semantics,

the communication is synchronous. We note that since channel names and

agent names belong to different types, it would be possible to use the same
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output and input constructs for both channels and agents. However, we choose

to use different syntactic constructs for better readability.

• α[a??(v : V).p]: Agent named α reads a value from the resource represented

by channel a and then proceeds to execute p.

• α[νch(a : Ci).p]: Agent named α creates a new channel named a of type Ci

and then continues to execute p. a is assumed to be fresh within the current

location of α. The type system will automatically infer the corresponding

located channel type of a.

• α[νloc(l : L).p]: Agent named α creates a new location named l. l and then

continues to execute p. is assumed to be an universally fresh location name.

• α[l :: p]: Agent named α migrates to location l and then executes p in the new

location.

• α[d = e ? p : q]: Agent named α executes the standard match construct.

Depending on the result of the match, it either executes p or q. The type

system ensures that the values d and e are of the same type.

• α[∗p] : Agent named α repeatedly executes thread p. We note that this

particular style of repetition (coupled with an appropriate type rule as shown

in Figure 3.2) allows us to get away without needing recursive types. The

other common style is to not have any construct for repetition, but to make

repetition explicit in the program. For example p ::= (A | B).p is used to

define a process p that does action A or B, and then continues again as p.

This style requires some notion of recursive types to type p.

As seen in Figure 3.1, the structure of the system consists of a collection of

locations and a global mailbox. The mailbox is not modeled explicitly, it is implicit

in the structure of S. Each location consists of a collection of agents and a collection

of channels local to that location. We further note that an agent never disappears.

It may reach a stage where it is executing the nil thread and thus will never process

any outstanding messages targeted to it. This is somewhat similar to the actor
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model where an actor may start performing an internal computation step that is

divergent.

3.2.2 The Type System

We first note that not all well formed syntactic terms are valid systems.

Broadly, a well formed term may fail to be a valid system because of two reasons.

First, a name may be used improperly. Consider the term α[β(d : V).β??(v : V).p].

The agent named α is trying to use the name β as both an agent and a channel.

This is clearly invalid. Second, a located channel created (or received) with type

Ti may be passed along to other agents or new child agents in such a way that it

eventually ends up being used more than i times. This too is a violation. We now

present a type system to prevent violations in both of these categories. In passing

we note that since we assume names to be unforgeable and unguessable, we do not

have to worry about agents having unauthorized access to resources.

Our description will avoid those mathematical technicalities which are either

not needed to understand the type system (e.g., the lattice structure of the sub-

typing relationship.) or which are obvious (e.g., tuple arity checks or arithmetic

involving ∞.) Only the intended meaning of these constructs shall be described.

The types in our system have already been described in Table 3.1. Also, as may

be seen from the syntax of the language, the typing is explicit. Whether explicit

typing or implicit type inference is to be preferred is not so clear. Implicit type

inference is desirable in open distributed systems where not all participants can be

expected to adhere to the same explicit type discipline and moreover, a principal

need not rely on any trust in the type annotations of incoming code. Intuitively,

implicit type inference looks less powerful than explicit type annotations. However,

as presented in [27], in a Dπ-like calculus with notions of locations and migration,

there exists an algorithm for implicit type inference.

The basic type judgment has the form

Γ ⊢m α[p]

This means that with the type environment Γ, the agent with name α and thread
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p is well typed to run at location m. A type environment is a collection of agent

names, location names, values and located channel names, each with an associated

type. The usage bound of a located channel is explicit in its type. Initial type

environments are assumed to be consistent. This means that no entity with the same

name is typed twice in the environment.6 The type rules preserve the consistency

of a consistent type environment.

We will sometimes omit the location subscript to indicate that the agent is

well typed at all locations:

Γ ⊢ α[p]

Consider the type environment Γ =
{

l : L, l[a] : T4, l[b] : T∞, m : L, α : N , β :

N
}

In this environment, at location l, resource a may be used at most four times

and resource b may be used an infinite number of times. Further, no resources are

known at location m and α and β are the only known agent names. Thus for an

agent to be well typed at location l in this environment, amongst other things, it

has to be named either α or β and can communicate with only these two agents.

However, as will be seen in the type rules, it can learn the names of new agents and

begin communicating with them.

The basic type judgment uses subsidiary type judgments of the form:

Γ ⊢ X : T

This says that in the type environment Γ, X is well typed with type T . Typically

X is either an agent name or a location name or a located channel name. Thus,

Γ ⊢ α : N means that in the type environment Γ, name α is well typed to be

an agent name. Similarly, Γ ⊢ l[c] : Ti means that in type environment Γ, c is a

channel with usage bound i located at location l.

A type environment is thus a collection of declarations of the form X : T . We

say that X is the subject of the declaration. We use the notation Γ, X : T to denote

a type environment which is obtained by extending Γ with the global declaration

6This is not strictly required. We can have name overloading, but we would like to keep things
simple.
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X : T . For this to be well defined, X should not be the subject of any declaration

in Γ. We use the notation ΓX:T to denote a type environment which is the same as

Γ but in which the type of X is now T . For this to be well defined Γ must have a

declaration with subject X.
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(t-ground)
Γ ⊢ α : N , m : L

Γ ⊢m α[nil]

(t-agt-out-1)
Γ ⊢ α : N , β : N , d : ζ Γ ⊢m α[p]

Γ ⊢m α
[

β(d : ζ).p
]

(t-agt-out-2)
Γ ⊢ α : N , β : N , l[c] : Ti Γl[c]:Tj

⊢m α[p]

Γ ⊢m α
[

β(l[c] : Tk).p
] i ≥ j + k

(t-agt-in-1)
Γ ⊢ α : N Γ, d : ζ ⊢m α[p]

Γ ⊢m α
[

?(d : ζ).p
]

(t-agt-in-2)
Γ ⊢ α : N Γ, l : L, l[a] : Ti ⊢m α[p]

Γ ⊢m α
[

?(l[a] : Ti).p
]

(t-ch-out)
Γ ⊢ m[a] : Ti, v : V, α : N Γm[a]:Ti−1

⊢m α[p]

Γ ⊢m α
[

a(v).p
] i > 0

(t-ch-in)
Γ ⊢ m[a] : Ti, α : N Γm[a]:Ti−1

, v : V ⊢m α[p]

Γ ⊢m α
[

a??(v : V).p
] i > 0

(t-new-agt)
Γ ⊢ α : N Γ1, β : N ⊢m α[p] Γ2, β : N ⊢m β[q] Γ = Γ1 ⊎ Γ2

Γ ⊢m α
[

νagt(β(q)).p
]

(t-new-ch)
Γ ⊢ α : N Γ, m[a] : Ti ⊢m α[p]

Γ ⊢m α
[

νch(a : Ci).p
] i ≥ 0

(t-new-loc)
Γ ⊢ α : N Γ, l : L ⊢m α[p]

Γ ⊢m α
[

νloc(l : L).p
]

(t-move)
Γ ⊢ α : N , n : L Γ ⊢n α[p]

Γ ⊢ α[n :: p]

(t-rep)
Γ ⊢ α : N Γ ⊢∞m α[p]

Γ ⊢m α[∗p]

(t-match-1)
Γ ⊢ α : N , d : ζ, e : ζ Γ ⊢m α[p], α[q]

Γ ⊢m α
[

d = e ? p : q
]

(t-match-2)
Γ ⊢ α : N , d : Ti, e : Tj Γ ⊢m α[p], α[q]

Γ ⊢m α
[

d = e ? p : q
] i, j ≥ 0

Figure 3.2: Type rules for agents in the Aπ calculus
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The type rules are presented in Figure 3.2.

• t-ground : This is a ground rule that specifies that an agent executing the nil

thread is well typed.

• t-agt-out-1: For α
[

β(d : ζ).p
]

to be well typed in Γ, α, β and d should be

well typed in Γ and the continuation α[p] should also be well typed in Γ.

• t-agt-out-2: This is similar to the previous one, except that we are now dealing

with a located channel and so we need to account for the usage bound. If a

located channel with initial bound i is being output with bound k, then we

need ensure that in the continuation, it is being used at most j times where

i ≥ j + k.

• t-agt-in-1 and t-agt-in-2: For the input constructs to be well typed , we need to

ensure that the continuation is well typed in Γ extended with d or l[a]. Recall

that the definition of environment extension requires d or l[a] to be fresh in

Γ. If it is not, then the process can still be well typed after alpha renaming

d or l[a]. Note that in t-agt-in-2, the type environment is also extended with

the location name l. Thus, communicating a located channel is tantamount

to communicating the location name as well as the channel name within that

location.

• t-ch-out and t-ch-in: To perform I/O via a located channel m[a], the agent

must first be located at location m. In the type system this is captured by

checking if m[a] is globally typed and if so, then, locally typing the agent at

location m. Further, we must ensure that the usage bound on m[a] is respected

by the continuation.

• t-new-agt: The essential idea here is to split the initial environment Γ into two

environments Γ1 and Γ2 such that the new agent named β is typable in Γ2

extended with β and the continuation is typable in Γ1 extended with β. The

splitting of Γ into Γ1 and Γ2 is captured by the ⊎ operator: Γ = Γ1 ⊎ Γ2. The

definition of ⊎ imposes different interpretations on the νagt operator.
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Any definition of ⊎ must necessarily satisfy the following condition: After

splitting the initial environment, the usage bounds on all located channels

must be respected. The other issue to be decided is “what names does the

new agent initially know of?”

Consider a type environment Γ =
{

l[a] : T5, m[a] : T6, β : N , n : L
}

.

One way of splitting it is the following:

Γ1 =
{

l[a] : T5, m[a] : T5, β : N , n : L
}

Γ2 =
{

m[a] : T1

}

In this split, the usage bounds on both located channels are respected, but

the new agent knows only a subset of the names known to the initial agent.

This resembles a scenario where a child agent is being created for a specific

purpose.

Another way of splitting it is the following:

Γ1 =
{

l[a] : T2, m[a] : T5, β : N , n : L
}

Γ2 =
{

l[a] : T3, m[a] : T1, β : N , n : L
}

In this split, the usage bounds on both located channels are respected, and the

new agent knows all the names of the initial agent. This resembles a UNIX

like scenario where a process forks into two.

The exact definition of the ⊎ operator is an implementation issue and there is

no need to decide it here.

• t-new-ch and t-new-loc: These are simple to understand. The only interesting

issue is that the t-new-ch rule does not rule out remote channel creation.

However, it ensures that remote channel creation is safe in the following way:

An agent that is well typed in location m will also be well typed to create a

new channel at location m, irrespective of its current location. Remote channel

creation is ruled out in the operational semantics.

• t-move: This says that for α[n :: p] to be well typed at any location, all that
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is required is that the continuation α[p] be well typed at location n.

• t-rep: Here, we use a new type judgment: ⊢∞m . We say that Γ ⊢∞m α[p] if :

1. Γ ⊢m α[p] and

2. The only located channels that p uses (to read from or write to) have a

bound ∞. Note that p is allowed to communicate non-∞ located chan-

nels.

• t-match-1 and t-match-2: There are a couple of interesting things here. First

note that we require d and e to be of the same type. Further, if they are lo-

cated channels, then they are allowed to have different usage bounds. Second,

we see that using a channel name in a match construct is not counted as a

usage of that name as far as the usage bound limits are concerned. Third,

we see that for the match construct to be well typed, both of the possible

continuations p and q must be well typed in the same environment. This is

a conservative rule but it is the best we can do in a simple type system. It

is conservative because it throws away any information available by looking

at the possible values of d and e and treats both continuations in an uniform

way. In more powerful type systems with notions like dependent types (c.f.

the Epigram language [3]) or proof-based approaches, it is possible to treat

both continuations non-uniformly.

3.2.3 Operational Semantics

The operational semantics of Aπ are given modulo the structural equivalence

in Figure 3.3.

The first rule gives equivalence up-to alpha renaming. The next five rules

deal with commutativity and associativity, at the location and system levels. These

rules are based on the structure of locations and systems and are obvious. The

only interesting rule is the one for replication. We note that this particular rule for

unwinding replication enforces sequentiality. Another common alternative, found

for instance in mobile ambients, is to choose the following rule: α[∗p] ≡ α[p] | α[∗p].

This rule can be interpreted as parallel unwinding. It is useful to model replication
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Structural Equivalence:

S1≡αS2 ⇒ S1 ≡ S2 alpha renaming
nil | x ≡ x x ∈ {A, M, C, L, S}

x | y ≡ y | x x, y ∈ {L, M}
(x | y) | z ≡ x | (y | z) x, y, z ∈ {L, M}

l[x | y] ≡ l[y | x] x, y ∈ {A, C}
l[(x | y) | z] ≡ l[x | (y | z)] x, y, z ∈ {A, C}

α[∗p] ≡ α[p. ∗ p] replication

Figure 3.3: Structural Equivalence in the Aπ calculus

of services. Obviously, to use this rule we would need a calculus where uniqueness

of names is not assumed.
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l

[

α[ β(d : ζ).p]

]

−→ l

[

α[p]

]
∣

∣

∣

∣

β〈d : ζ〉 r-m-out-1

l

[

α[ β(d : Ti).p]

]

−→ l

[

α[p]

]
∣

∣

∣

∣

β〈d : Ti〉 r-m-out-2

l

[

α[?(d : ζ).p]

]
∣

∣

∣

∣

α〈e : ζ〉 −→ l

[

α[pe/d]

]

r-m-in-1

l

[

α[?(d : Ti).p]

]
∣

∣

∣

∣

α〈e : Tj〉 −→ l

[

α[pe/d]

]

if i ≤ j r-m-in-2

l

[

α[ a(u).p] | β[a??(v : V).q]

]

−→ l

[

α[p] | β[qu/v]

]

r-ch-comm

l

[

α[d = e ? p : q]

]

−→ l

[

α[p]

]

if d = e r-match-1

l

[

α[d = e ? p : q]

]

−→ l

[

α[q]

]

if d 6= e r-match-2

l

[

α[νagt(β(q)).p]

]

−→ l

[

α[p] | β[q]

]

globally fresh β r-new-agt

l

[

α[νch(a : Ci).p] | C

]

−→ l

[

α[p] | C | a

]

if a 6∈ C r-new-ch

l

[

α[νloc(k : L).p]

]
∣

∣

∣

∣

L −→ l

[

α[p]

]
∣

∣

∣

∣

L

∣

∣

∣

∣

k

[

nil

]

if k 6∈ {l ∪ dom(L)} r-new-loc

l

[

α[m :: p] | A1 | C1

]
∣

∣

∣

∣

m

[

A2 | C2

]

−→

l

[

A1 | C1

]
∣

∣

∣

∣

m

[

α[p] | A2 | C2

]

if l 6= m r-agt-migrate-1

l

[

α[m :: p]

]

−→ l

[

α[p]

]

if l = m r-agt-migrate-2

Figure 3.4: Operational Semantics of the Aπ calculus—I
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l

[

α[p] | A1 | C1

]

| M1 −→ m

[

α[p
′
] | A

′

1 | C
′

1

]

| M
′

1

l

[

α[p] | A1 | C1 | A2 | C2

]

| M1 | M2 −→ m

[

α[p′] | A
′

1 | C
′

1 | A2 | C2

]

| M
′

1 | M
′

2

r-struct-1

S −→ S
′

S | S1 −→ S ′ | S1
r-struct-2

S1 ≡ S2 S2 −→ S3 S3 ≡ S4

S1 −→ S4
r-struct-3

Figure 3.5: Operational Semantics of the Aπ calculus—II

The operational semantics are presented in Figures 3.4 and 3.5. They are

meant to apply to well typed terms only. Further, we require that initially the

system is well formed. For a system to be well formed there should be no agents in

any location with the same name, i.e., agent names are globally unique. Further, at

any location, there should be no channels with the same name, i.e., channel names

are locally unique. If a system is well formed, our transition system guarantees

that any transition preserves the well-formed-ness of the system. (More strongly,

the type system guarantees that any well typed program cannot break either the

well-formed-ness of the system or exceed the usage bounds on any of the resources

in the system. However, we shall not be getting into Subject reduction and Type

safety here. See Chapter 4 for our future plans to use formal techniques to prove

such results.)

The details of the underlying message passing system are mostly orthogonal

to our concerns. As is normal in the actor model, the only constraint we impose

on the message delivery system is fairness. We do not assume ordered delivery of

messages.

We now describe the transition system:

• r-m-out-1 and r-m-out-2 : These just put the message into the global mailbox.

The structural equivalence rules (Figure 3.3) imply that the mailbox is treated

as a multiset.



48

• r-m-in-1 and r-m-in-2 : This delivers a message from the global mailbox to

the target agent. There are a couple of interesting points here.

First, the structure of this rule indicates that we are modeling location-transparent

messaging. Only the name of an agent need be known to communicate with

it.

Second, as done in the Erlang language [6], the receiving agent specifies a

type/pattern while attempting to receive a message. The pattern matching

notion along with the structure of the transition rules serves to have the follow-

ing effect: From all the messages for this agent that are currently in the global

mailbox, the system randomly picks one that pattern matches and delivers it

to the agent. After the message is delivered, the appropriate substitution of

actual names for variables is done. Substitution is defined structurally in the

expected way.

Third, note the side condition on the r-m-in-2 rule. If an agent is expecting

to receive a located channel with an usage bound of i, then the system may

deliver one with a usage bound of j ≥ i.

• r-ch-comm: This is as expected. Channel communication is local and syn-

chronous. The interesting issue here is that we do not need to explicitly ensure

the presence of a in the channel pool C, i.e., the following is not required:

l

[

α[ a(u).p] | β[a??(v : V).q]

]

−→ l

[

α[p] | β[qu/v]

]

r-ch-comm

This is because we already know that agents α and β are well typed at location

l. So, the type system has ensured that both of them have already learnt about

the channel name a before attempting to use it. In particular note that if a

is a valid channel name at l and α has learnt the name a while β has not,

then only α will be well typed to use it. This is an instance of resource access

control provided via the type system.

• r-match-1 and r-match-2 : The type system has already ensured that both

d and e belong to the same type. The only interesting detail is when they
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are located channels. In this case, equality is checked structurally. Both the

location name and the channel name should match.

• r-new-agt, r-new-ch, r-new-loc: These are as expected. Care is taken to ensure

local and global uniqueness of appropriate names. Because of this, migration

requires no side conditions.

Note that we have chosen to give an explicit computational significance to

the various ν operators. This is in sharp contrast to the presentation style in

the π-calculus where the ν operators have an indirect interpretation as “cre-

ation of new channels”. Usually, a combination of an appropriate structural

equivalences and a conditional transition rule of the following form is present:

P → Q

(νx).P → (νx).Q

Because of our more explicit style, it is easier to visualize the reduction of a

term. In the π-calculus approach, the reduction of processes involving scope

restriction and scope extrusion involves heavy usage of the structural equiv-

alences and requires some experience to be comfortable with. Another issue

affected by these two different styles is the addition of failure primitives to

the language. Suppose we desire to add primitives for channel deletion, lo-

cation deletion, location halting, etc., which are constructs to model failure

in calculi for distributed systems. The approach we need to take depends on

which style we have chosen for the channel and location creation primitives.

We shall elaborate upon this in Section 3.3.5.

• r-agt-migrate-1 and r-agt-migrate-2 : The second one may seem odd at first

but it is needed because an agent that tries to migrate to its current location is

indeed well typed and so must be accounted for in the operational semantics.

• r-struct-1, r-struct-2 and r-struct-3 : These are the usual context laws. They

allow us to specify the transitions of a term irrespective of the context in which

it is embedded (wherever the said transition is not dependent on the context).
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3.3 Limitations and Extensions

In this section we point out the limitations of the basic system and indicate

how it can be extended along various dimensions. We have already alluded to some

of these issues in the previous sections but we shall repeat those again to collect

everything in the same section.

3.3.1 Encapsulation via capabilities

3.3.1.1 The tagged language approach

In basic Aπ, there is no encapsulation (as found in the actor model). We do

have locations, but any agent is free to migrate to any location, is free to create new

locations as well as new channels at any locations and is free to communicate with

any agent whose name it knows. This is not desirable in a distributed system. In the

actor model, each configuration7 has a well defined interface (receptionist set and

external actor set) which is used to encapsulate the visibility of that configuration

in the environment. We take a more fine grained approach with capabilities. There

exists a more or less standard way of using a tagged language to add capabilities

to a system. This approach has been used by Pierce and Sangiorgi [37] in the

context of refining channel usage by adding I/O capabilities. We extend the same

approach here. (Keeping in line with our central theme of bounded resource usage,

the extension deals with adding a constraint on the number of times that a capability

may be exercised.)

Our basic idea is the following: suppose we want to add the capabilities of ex-

iting a location and entering a location; i.e., to migrate to a new location, an agent

must already possess the capabilities to exit from its current location and enter the

new location. Let us represent this as the capability set C ::= {in, out}. Then,

we first generate the power-set of C, in this case 2C =
{

{in}, {out}, {in, out}, φ
}

.

Then, we tag each instance of a location name with an element from 2C . For in-

stance, l{in} indicates a “black hole” instance of location l where only entering l is

permitted. Different agents may obtain different instances of l and thus have differ-

7We would like to note that a configuration in the actor model is a more abstract notion meant
to model composability, as compared to a location which is intended to model a real physical
location or site.
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ent capabilities. At the operational semantics level, we need to add an appropriate

conservative rule, such as:

l

[

α[?(M{in} : L).p]

]
∣

∣

∣

∣

α〈m{in,out} : L〉 −→ l

[

α[pm{in}/M{in}
]

]

Note that the system may deliver a name which has additional capabilities

beyond those requested, after stripping the name of its additional capabilities. Also

note that some combinations of capabilities may not make sense. For example

just the capability to exit a location is of no use to an agent that is not initially

located in this location. It is straightforward to tackle this issue. We need to define

a constraining function that filters the power-set to drop out all the non-sensical

combinations.

It is relatively easy to modify the type system to accommodate this tagged

syntax. To see this from an abstract standpoint, we may view the type system as a

mechanism to specify a relation between different syntactic constructs. For example

in basic Aπ, the migration construct, ::, can be viewed as an unary relation that

holds for all location names; i.e., l :: holds if l is a location name. So, extending the

type system to accommodate the tagged syntax involves refining this relation. In

the tagged syntax, the relation holds only for location names that have at least the

in tag, i.e., l{in,...} :: holds.

The tags are meant to be explicitly specified only in an input prefix when

inputting a name with a desired capability set. After that, the name may be used

without the tags. A tag inference algorithm can then reconstruct the tags to get

an explicitly tagged program. This is done because in the approach used by Pierce

and Sangiorgi [37], the operational semantics is defined over a tagged language. The

tagged operational semantics is used to formalize the notion of a run-time error and

thus prove type safety.

We note that in the tagged language approach, there is no direct way to modify

the existing capabilities on a name. The only way to modify existing capabilities is

to try to obtain a fresh instance of a name tagged with the desired capabilities.
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3.3.1.2 Bounded capabilities

We shall now introduce a bound on the number of times that a capability

might be exercised. Then, we shall make a modification to the types of basic Aπ to

obtain a more homogeneous treatment.

As we did with located channels, it is straightforward to introduce an integer

into the structure of the tag to indicate how many times the capability may be

exercised. Thus l{in5} indicates a capability that endows the owner to enter location

l at most five times. As was the case with located channels, a part of this usage

bound may be handed out to other agents. The required extensions to the type

system and the operational semantics will follow on the same lines as the rules that

we currently have for located channels.

We note that in basic Aπ, we type located channels as belonging to a family

of types indexed with an integer: Ti. But in essence, what we have is a bounded

capability to access this located channel. So, we can now type all located channels

as belonging to the same type T and then tag each name instance with a bounded

capability to access this located channel.

Finally, the only issue that remains is “which capabilities should we add?” The

tagged language approach is very general since it allows us to associate any number

of capabilities with any syntactic construct in our language. Table 3.2 shows a

representative set of capabilities.

Type Tag
in Entering a location

L out Exiting a location
chcreate Creating a new channel

T i reading from a channel
o writing to a channel

Table 3.2: Representative capability set

In closing we mention two issues. First, note that the notion of bounded

capabilities has to be used carefully. For instance, suppose a location wants to

control the total number of agents that may be present in the location at any given

time. In such a scenario, giving one agent the capability to enter this location with
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a usage bound of 5 may be o.k. because every time it executes this capability, the

number of agents in the location increases by just one. However, it may not be

o.k. if this agent distributes this capability to five other agents with a usage bound

of 1 each, because, if all of them enter the location, then the number of agents in

the location will increase by five. This situation may be remedied by tagging each

capability with a set of agent names (in this case just one agent name) specifying

the agents that may exercise this capability.

Second, note that certain capabilities cannot be (directly) associated with an

instance of some name. For example the capability to create new locations or halt

existing locations (assuming such constructs exist in our language). We wish to

associate these capabilities with an agent, but it does not seem sensible to tag these

capabilities to agent names (since the only action we can perform with an agent

name is communicate with it, which is unrelated to the capabilities we are talking

about). To accommodate such capabilities, we need to introduce a notion of a

privileged type environment. An agent that tries to create or halt a location needs

to be well typed in a privileged type environment.

3.3.2 Static resources

So far we have been thinking of channel communication as resource access.

However in basic Aπ, this is not strictly true. Basic Aπ is more accurately described

as a system of agents that have two communication primitives available to them: lo-

cal and remote asynchronous message passing and local synchronous communication

over shared channels. This is because in basic Aπ, an agent that wishes to com-

municate with a resource actually communicates with another agent on a shared

channel name. Thus this other agent is being thought of as a resource manager.

However, there is nothing in the calculus itself that prevents the resource manager

from migrating to a different location. The static nature of the resource manager is

assumed at the application level. It is desirable to make this static nature explicit in

the calculus itself; i.e., resource managers (and implicitly resources) do not migrate

and thus resources are static and local to a location.

The simplest way to do this is by introducing a new category R of resource
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managers (along with threads, agents, channels, locations, messages and systems).

Resource managers are only allowed to read from and write to a channel, create new

channels (representing a new port to communicate with the resource) and spawn

new resource managers (to enable different agents to concurrently access the same

resource, where this makes sense). The typing system can easily ensure that a

resource manager that attempts to use any other syntactic construct is not well

typed. If desired, the operational semantics rules may be modified so that channel

communication is permitted only if one of the participating entities is an agent and

the other is a resource manager (to rule out agent-agent communication via chan-

nels). The above extensions will make the notions of static resources and resource

communication via channels more concrete in the calculus.

3.3.3 Extending the type system

Note that the current type system is too simple because it cannot deal with

arithmetic expressions. So, it will not be able to type expressions involving located

channels whose bound is an arithmetic variable (instead of an actual number). A

simple example that cannot be typed is the following agent that receives a located

channel with bound 2k, then creates two new agents (that execute a thread q) and

communicates this located channel name with new bound k to each.

α
[

?(d : T2k) . νagt β(q) . νagt γ(q) . β(d : Tk) . γ(d : Tk)
]

To handle such expressions, the usual approach is to have the type system

generate verification conditions along with each typing judgment. In this case, the

verification condition would be k + k ≤ 2k. For the term to be well typed, the

verification condition needs to be discharged. This can be done by proving the

condition using a theorem prover that understands arithmetic. If the condition is

such that it cannot be proven statically (typically in cases where it depends on

run-time values) then an additional run-time check is generated. The operational

semantics also need to be augmented so that any such run-time checks are discharged

before the reduction rule is allowed to go through.
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3.3.4 Location aware messaging

In basic Aπ, agent-to-agent communication is location transparent. This seems

to be a reasonable primitive when agents are mobile and can move around. However,

it is desirable to be able to remotely communicate with resources. Currently, the

only way to communicate with resources is by establishing a location-specific channel

and communicating over that channel. We view a channel as a dedicated means of

communication. It is thus expensive to implement and so it is not desirable to add

global channels that spawn over different locations. However, what can be done is to

add the capability to communicate with resources via asynchronous message passing.

To do so, we now need to model resources explicitly. Recall that currently they are

implicitly modeled via channels. By modeling resources explicitly as belonging to

a different type, say R, it is also possible to use the above mentioned capabilities

approach to limit remote resource access for resources that we do not wish to be

remotely accessible.

3.3.5 Modeling failures

The ability to model failures in a distributed system seems to be useful for

many scenarios. The Dπ calculus has primitives to halt a location and predicates

to test if a location8 is alive. We have briefly touched upon this issue while talking

about the operational semantics rules r-new-ch and r-new-loc in Section 3.2.3.

To recall, there are two ways in which we can handle creation primitives. The

first is the approach taken in the π-calculus. Here channel (or name) creation is not

modeled explicitly in the operational semantics but is modeled via a combination

of structural equivalence rules for scope restriction and extrusion and a conditional

transition rule of the form:

P → Q

(νx).P → (νx).Q

To see what is happening, consider a process that creates a new name and

then sends it to another process: (νu)au.P . The reduction of a term involving such

a process would go like this: (assuming u 6∈ fn(Q))

8Or any of its ancestors since Dπ has hierarchical locations.



56

(νu)au.P | a(x).Q −→ (νu)(au.P | a(x).Q) −→ (νu)(P | Qu/x)

The first reduction is obtained via a structural congruence rule that allows us

to extend the scope of u since u 6∈ fn(Q). The second reduction is obtained via

a transition rule that allows two processes to communicate over a mutually known

name.

Further, via alpha renaming and scope extension as described above, all ν

operators can be pulled up to the topmost level. Thus, a probable snapshot of a

system is

(νa)(νb)(ac.P | a(x).bx.Q |b(x).R)

Here, a and b were initially created somewhere within P , Q and R. Then,

using appropriate structural equivalence rules, they were pulled up to the top so

that they now scope all three processes. However, only the first two processes use

a and the last two processes use b. c is a name that is assumed to be known to the

first process.

Now, let us consider how we can add a primitive to delete a name. Let us

represent the primitive with: ↓ (n). A simple way to model deletion of a name n

would be to annotate the surrounding (νn) to represent that n is now dead:

(νn)(↓ (n).P | Q) −→ (νn
′

)(P | Q)

So, from now on, any process which was initially scoped by n will not be able

to use n since there will be no appropriate reduction rule that may be applied. Note

that the definition of free and bound names within processes needs to be modified

since the (νn′) should still bind all occurrences of n to prevent the previously bound

n from suddenly becoming free. There are other issues that need to be tackled

like “how can globally known names be deleted” but the above approach can be

elaborated as needed.

On the other hand, consider our channel creation primitive r-new-ch :
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l

[

α[νch(a : Ci).p] | C

]

−→ l

[

α[p] | C | a

]

if a 6∈ C r-new-ch

As mentioned, we model channel creation explicitly by creating a new chan-

nel in the pool of channels C. Thus, adding a primitive for channel deletion is

straightforward. Let ↓ch (a : Ci) represent channel deletion.

l

[

α[↓ch (a : Ci).p] | a | C

]

−→ l

[

α[p] | C

]

r-del-ch

Note that in either case, there are common design issues that need to be taken

care of like “Can any name be deleted” or “who can delete names” and other issues

usually dealt with in distributed garbage collection.

The transactor model introduced by Field and Varela in [16] models failures

by extending the actor model with notions of state dependencies between actors,

explicit modeling of secondary storage through commit and rollback primitives, and

the notion of globally consistent states.

3.3.6 Miscellany

We noted earlier that a limited form of tuple communication is possible in basic

Aπ itself. We now elaborate on this. For simplicity, we shall consider only agent to

agent communication. We recall that we use the convenience type ζ to stand for

any of N , L and V. We can see that in the current system, there are no problems

if we start communicating tuples with values of types ζ . We simply need to make

the necessary minor changes to the syntax, the type system and the operational

semantics to accommodate tuple communication. However, the interesting case is

when we wish to have full fledged tuple communication, i.e., allow the tuples to have

values of type Ti also. Even in this case, relatively minor changes to the type system

and operational semantics suffice. If a message contains more than one occurrence

of a name of type Ti, then, in essence, we simply need to do what we currently do

with all these names; i.e., we ensure that the usage bound on each located channel

is respected and so on.
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Another issue is whether our syntax is too verbose. We believe that our

syntax is not too unwieldy and some of the redundancy and explicit typing makes

it simpler to read and easier to understand. However, it is possible to compact

the syntax. We do not need to explicitly type names of types ζ . A type inference

algorithm can easily infer the type of such a name since it depends only on the

syntactic operations that the name is taking part in. (Note that this is possible

partly because we have different operators for agent-agent communication and agent-

resource communication. Alternatively, we can retain the explicit typing and then

use the same operator for both kinds of communication.)

3.4 Examples

We now provide some illustrative examples.

3.4.1 Preliminaries

First, suppose that the Aπ rules have been slightly modified so that channel

names of bound ∞ can be communicated over channels (indeed, only slight mod-

ifications in the type system and operational semantics are needed for this). In

such a Aπ system, consider a collection of agents that are all co-located in the same

location. Suppose that they never use the asynchronous messaging system, never

migrate out of that location, never create new locations and only communicate lo-

cated channels of bound ∞. Then, it is clear that any action in a π-calculus system

can be mapped to an action in such a Aπ system. Thus the standard data encodings

from the π-calculus can be mimicked by such a Aπ system. So, from now on, we

assume that data types like integers and strings are available. Since data types and

basic arithmetic are available, arbitrary computable functions are also available. We

use F, G and H to represent computable functions with arbitrary arities.

We have already indicated how to obtain tuple communication (see Section 3.3).

(For simplicity we shall leave out notation required to ensure correct arities) Tuples

are represented by square brackets: [a, b].

In the spirit of the π-calculus, state is obtained via cells. To briefly recall,

a cell is represented as a process that is trying to write the cell value to a private
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channel. The cell process will usually be blocked since channel communication is

synchronous. A process that wishes to read the cell value is composed with the cell.

It reads from the private channel and after reading, it writes the same value back.

Similarly, a process that wishes to set the cell value is composed with the cell. It

reads the current value from the private channel and after reading it, it writes the

new value back. With suitable discipline, the above idea can be implemented as a

fully functional cell.

For clarity, we shall omit explicitly mentioning the type of output values wher-

ever the type is clear from the context. Also, in addition to the normal agent and

resource names we shall also use more descriptive names like bank, seller and so on.

These descriptive names will be used primarily for agents but may also be used for

located channels. The context will always illuminate the intended category.

3.4.2 Two useful primitives

We now show how two useful primitives can be implemented in terms of ex-

isting constructs. We shall then assume that these primitives are available.

• Remote channel creation: Currently channels can only be created locally.

However, it is simple to obtain global channel creation by spawning an agent

that migrates to the destination location, creates a channel there and then be-

comes the nil agent. So, we shall assume that global channel creation is also

available. We use the operator νrem
ch (l, a : Ci) to denote creation of channel a

with type Ci at location l. Then, the remote channel creation primitive can

implemented as follows:

α
[

νrem
ch (l, a : Cn) . p

]

≡ α
[

νagt β
(

l :: νch(a : Cn)
)

. p
]

• Receive from: Currently, only type/pattern matching is allowed when an agent

wishes to receive a message. However, it is often convenient to be able to

specify “I want to receive a message of type so and so from this particular

agent.” This construct can be represented by β
[

?α(a : T ) . p
]

, which means

that agent β is waiting for a message of type T from agent α and will then

continue as p.
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It is not possible to model this notion as a general construct in our system.

It can however be modeled as a communication protocol between two partici-

pating agents. Suppose agents α and β are communicating via this protocol.

α tags every message that it sends to β with its name as an additional tuple

component. Now, if β wants to receive a message from α with type T , then

it simply invokes ?(m : [T,N ]). On receiving such a message, it compares

the second tuple component with α. If the names do not match, then it sim-

ply sends this message out to itself.9 It keeps doing this till it receives an

appropriate message.

Thus, it is possible to implement this primitive as a protocol. For simplicity,

we shall simply assume the receive from primitive without explicitly showing

the protocol interactions.

3.4.3 Digital Cash

We note that until now we have been thinking of located channel names as

an implicit representation of resources. However, there is nothing in the calculus

itself that enforces this representation. It is merely an interpretation. Alternatively,

we can think of a located channel name that is typed Ti as digital cash with value

i. Just like real cash, this can be used to buy (digital) goods. All of it or part of

it can be given off to another agent. Thus the communication of the name can be

thought of as the flow of digital cash in the system. For this to work, only certain

privileged agents can create new channels. Creation of new channels is interpreted

as petty cash entering the system (after an equivalent amount has been debited from

a corresponding electronic account). We have already talked about privileged type

environments (see Section 3.3).

We shall now program this scenario. Consider an agent β that is selling some

information. It waits for a purchase offer; if the price offered is acceptable, it sends

the information out and then collects payment via digital cash. It can now use

this cash as it wishes. In our example scenario, it deposits this cash into its bank

account.

9The protocol thus assumes fairness (at the least).
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The behavior of β can be programmed as follows:

β

[

∗ ?
(

[Offer , α, n]
)

.

F
(

[Offer , α, n]
)

= acceptable?

α(v) . ?α(M : Tn) . bank
(

[deposit, β, n, M : Tn]
)

:
(

α(rejected)
)

]

Here, F represents an evaluation function that evaluates the offer. As seen

above, β repeatedly does the following: It first receives an offer [offer , α, n] where

offer represents the details of the offer made by α who agrees to pay cash worth

n units. If the offer is acceptable, it sends the information v to α and then waits

for its payment. Note that it is expecting to receive the same amount as what was

promised in the offer. After receiving the payment, it deposits it into the bank. We

note that issues like ordered delivery and message loss are assumed to be resolved

at a lower middle-ware layer. Likewise issues of trust, etc., are also orthogonal.

(For example in the above scenario, what happens if the buyer refuses to pay after

receiving the information?)

Consider the buyer γ. Assume that it is transacting with seller β.

γ

[

wallet(m) . ?wallet( Cash : Tm ) .

β
(

[Offer , γ, m]
)

.

?β(res) . res = rejected?

wallet(Cash : Tm)

:

β(Cash : Tm)

]

It first withdraws some cash from its wallet. Note that cash intended to be

of value m is typed as Tm. It then proceeds to make an offer and if the offer is

accepted, it pays the cash; otherwise, it puts the cash back in its wallet.

Because of the νagt construct, extending the above to a scenario with two

sellers is straightforward. This time, assume that the buyer γ is transacting with
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two sellers β1 and β2:

γ

[

wallet(m) . ?wallet( Cash : Tm ) .

νagt γ1

(

β1

(

[Offer , γ1, m1]
)

.

?β1
(res) . res = rejected?

wallet(Cash : Tm1
)

:

β(Cash : Tm1
) . γ(res)

)

.

νagt γ2

(

β2

(

[Offer , γ2, m1]
)

.

?β2
(res) . res = rejected?

wallet(Cash : Tm2
)

:

β(Cash : Tm2
) . γ(res)

)

.

?γ1
(result1) .

?γ2
(result2)

]

This time, the buyer takes out cash worth m units from its wallet. It then

spawns two agents, one of which makes an offer of m1 to the first seller and the

other makes an offer of m2 to the second seller.

Note that the type system ensures that m1 + m2 ≤ m for the above program

to type check. After pursuing their transactions, the two newly spawned agents

communicate the result back to the original agent.

Finally, consider the bank account. So far, cash was just circulated in the

system. But the bank is where cash is created (by debiting an appropriate electronic

account that has sufficient funds) and is destroyed (by crediting an appropriate

electronic account). Recall that cash worth k units is nothing but a located channel

that may be used k times. The bank manages the creation of these located channels.

The bank agent can receive messages of two kinds — a deposit instruction and

a withdraw instruction. In response to an instruction to deposit digital cash worth

n units, it first credits the concerned electronic account with n. Then, the name

that represents the petty cash is used n times. Thus now the name can never be



63

used again. (This property is guaranteed by the type system.) This “means” that

cash has now been deposited into the bank account.

Similarly, when it receives a message with an instruction to withdraw digital

cash worth n units, it first checks if the concerned electronic account has enough

funds. If so, it then debits the account with n and creates new petty cash worth n

units. (Recall that digital cash worth n units is nothing but a located channel with

a usage bound of n.)

Here is how we can program this scenario. Note that as explained in Sec-

tion 3.3.3, we need to extend the type system before the bank code can be typed.

We assume bank is a privileged banking account and ∗k.p represents k iterations of

p. All agents communicate with this account and pass their names along with each

transaction. For an agent named α, we assume that αact is a cell containing the

electronic account of α.

bank

[

∗ ?
(

[Transaction, cust, k, amt : Tk]
)

.

T ransaction = deposit?

act( [cust, increment, k] ) . νagt tempagt1
(

∗k amt(v)
)

:

nil .

T ransaction = withdraw?

act( [cust, get, Current] ) .

Current < k?

cust(declined)

:

νloc(l) . νrem
ch (l, c : C2k) .

cust(l[c] : Tk) .

νagt tempagt2
(

l :: ∗k c??(v)
)

:

nil

The interesting case is the withdrawal. To withdraw amount k, the agent first
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creates a new located channel with usage bound 2k. Half of this capacity, i.e., k

is passed back as digital cash. The other half is given to a private agent. This

mechanism is necessary because channel communication is synchronous. So, when

it is eventually time to destroy the petty cash, there should be two entities and one

of them should “write” to the located channel k times and the other should “read”

k times. Thus, this procedure encodes the creation and destruction of digital cash

in the system.

3.4.4 Fair polling

Consider a web-site that wishes to conduct a poll. The poll is open to visitors

who satisfy certain criteria. However, to prevent the poll from being skewed, the

web-site wishes to ensure that each visitor vote at most once.

We can model this scenario easily as follows: The polling is done by two agents

α and β working together. Consider α:

α

[

∗?vd(X : N ) . νagt tmpagt(q) . tmpagt(l : L) . tmpagt(X : N )

]

α repeatedly does the following: It first waits to learn about a new visitor to

the location. It does this by waiting to hear from vd, which is a visitor daemon that

keeps track of visitors. When α learns about the name of a new visitor, it spawns a

new agent (tmpagt) to handle this visitor. It sends the current location and the name

of the visitor to the tmpagt and then goes back to its initial behavior. Note that

typing the messages makes it possible to correctly communicate the location and

name inspite of no ordering in the message delivery system. The newly spawned

tmpagt sends the survey form to the visitor. If it receives a response and if the

response qualifies that visitor to vote, then it creates a new located channel and

passes its name with bound 1 to the visitor. This models the requirement that the

visitor can vote at most once. If the visitor does use the name to vote, then the

result is sent on to the aggregator β. Note that a new channel is being created for

each visitor/tmpagt pair, and the tmpagt always reads from this channel. If the

visitor misuses the channel name by trying to read from it, then it (along with the

tmpagt) will hang forever since both will be trying to read from the same channel.
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The thread q executed by each tmpagt is written as:

q ≡

?(L : L) .

?(Y : N ) .

Y (SurveyForm) .

?Y (EvaluatedForm)

G(EvaluatedForm) = qualify?

νch (a : C2) .

Y (L[a] : T1) .

a??(Res) .

β(Res)

:

Y (sorry)

And finally, here is the vote aggregator β. After receiving the result, it stores

it in the data bank for later processing.

β

[

∗ ?(Result) . data[add, Result]

]

3.5 Conclusion and Comparison

In this chapter we proposed a calculus to model distributed mobile comput-

ing. Resource access and the usage bounds on accessible resources are statically

controlled. We indicated several possible extensions and then provided illustrative

examples.

We view the lack of the following abilities as more serious limitations and

believe that these are not optional but are necessary in the core Aπ itself:

• The ability to control traffic into and out of a location.

• Explicitly enforcing the immobile nature of resources.

• A more powerful type system that has logic to deal with arithmetic expressions

involving variables.
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In Section 3.3 we indicated how the above concepts may be added to Aπ. We

shall now consider an Aπ in which the above mentioned concepts have been added

and compare it with other formalisms.

One major way in which Aπ differs from other calculi is that it includes two

different kinds of communication mechanisms which are meant to be used for differ-

ent purposes. One is synchronous and the other is asynchronous and point-to-point.

We believe that this is a direct ramification of the more fundamental issue that

in an open distributed system, everything cannot be treated uniformly. Certain

things are different and it is more natural to allow this difference to creep into the

calculus instead of trying to encode it using some uniform mechanism (unless the

aim is a strictly foundational treatment). Of these two communication mechanisms,

synchronous communication is allowed only locally while asynchronous communica-

tion is allowed locally as well as globally. This mirrors the fact that implementing

synchronous communication spanning multiple locations is very costly and should

be avoided. Moreover synchronous communication via a channel between different

locations incorrectly models remote communication as an instantaneous enterprise

and so should be avoided. In the π-calculus, synchronous as well as asynchronous

communication is possible, but unlike the Aπ calculus, there is nothing that explic-

itly constrains the usage of synchronous communication to a location (and there are

no locations to begin with). In the distributed π-calculus, Dπ, locations are mod-

eled explicitly, but only local synchronous communication is permitted. The usual

communication mechanism in mobile ambients and join-calculus is more severely

limited since it is local, asynchronous and undirected. Finally in the actor model,

only asynchronous point-to-point messaging is present which is good when modeling

remote communication but does not capture dedicated high speed communication

between two co-located processes.

In Aπ, locations are modeled directly and mobility is modeled via agent move-

ment between locations. In particular, as in the π-calculus, mobility is not modeled

via communication of scoped names. Unlike mobile ambients, location movements

are not modeled. This directly rules out an entire class of mobile computing scenarios

where devices like laptops and PDAs move between different administrative domains.
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Further, in difference to Dπ, locations are present in a flat space. Richer notions

like location nesting, location hierarchies and location failures are not present.

As we saw above, the lack of location movement primitives and location nesting

makes Aπ unsuitable to model mobile computing amidst different administrative

domains. On the other hand, the presence of explicit static resources, a separate

communication mechanism between agents and resources and resource usage bounds

makes Aπ more suitable to model electronic commerce scenarios where mobile agents

roam a network and perform certain tasks at different locations. These notions are

not present in any of the other formalisms. Further, both resource access and the

usage limits of resources are statically constrained via the type system. Dπ has

notions of static resource access control but no usage bounds. Linear types are well

known in the π-calculus community to model constraints on resource usage.

We believe that we have not just thrown in several known concepts but have

rather only included those which mix well with each other and, seen in terms of

the communication primitives, have included appropriate constraints so that the

concepts may be used in a meaningful way.



CHAPTER 4

CONCLUSION AND FUTURE WORK

In closing, we summarize and point towards future plans. The Aπ calculus that

we constructed in this thesis is a process algebraic model of a distributed system.

It models explicitly located mobile agents, migration of agents between locations,

location-transparent asynchronous directed communication (local and remote), local

resources within locations and local resource access using synchronous communica-

tion. As shown by the examples, realistic scenarios can be conveniently modeled in

small amounts of code. The type system provides static control over resource access

and resource usage bounds.

As noted in the introduction, we view the main import of this work as a vehicle

to investigate the application of formal techniques to design distributed systems and

prove some of their properties. A common critique of formal techniques is that they

are usually not applicable to any realistic scenario. We agree that in spite of steady

progress in the field and impressive advances in the computing speedup (which in

turn helps in building faster formal methods tools), the current state of the art in the

area is not easily applicable to realistic industrial scenarios. However, as discussed

in [19], formal methods are already being used extensively in the area of hardware

circuit design. We believe that the area of formal methods shows great promise

as a better means for mechanized assurance than currently existing techniques like

testing and simulation.

Broadly speaking, we can talk of two kinds of properties. One is properties of

the system itself. And the other is properties of programs written in this system.

An example of the former kind in Aπ would be type safety modulo usage bounds on

resources; i.e., to prove a result that says “In a well typed program all resource usage

bounds will be respected”. An interesting task for formal tools would be to try to

prove this property. An example of the second kind of property, with regards to

the digital cash example we provided in the previous chapter, is “In the digital cash

implementation, cash is never spuriously created from nothing, but it may sometimes

68
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be lost from the system without getting credited back to some account.” (This may

happen because of the structure of the r-m-in-2 rule in the operational semantics.)

For properties of the first kind, the Maude system10 seems to be a good fit. Maude

is a very powerful executable specification language based on rewriting logic [14].

Rewriting logic is a natural logic to talk about operational semantics which are

usually presented as transition systems themselves. Maude comes with its own

model checker, with support for Linear Temporal Logic, and an inductive theorem

prover. However, when it comes to properties of the second kind, a more expressive

logic like full first order or even temporal logic seems to be a better choice. There

are various external theorem provers and proof assistants to deal with these logics.

One common problem with most theorem provers is that they can only be used

to obtain binary answers. They are of limited use when trying to understand the

reason behind that answer. The concept of denotational proof languages proposed

in Arkoudas [4] and as implemented in Athena11 provides a solution to this issue.

Athena, when hooked up with external first order theorem provers like Vampire [40],

may be thought of as an assistant for formal proof discovery and presentation in a

naturalistic human readable format. The structure of the proofs in Athena closely

resembles human reasoning and this greatly helps in proof comprehension. Besides

theorem provers, Athena can also be hooked up to external model checkers. A

seamless usage of formal tools in the system design phase to avoid buggy designs

has been demonstrated in Arkoudas [5] by combining model checking and theorem

proving. Thus, we believe Maude and Athena are appropriate tools to prove both

kinds of properties about the Aπ calculus.

10http://maude.uiuc.cs.edu
11http://www.cag.csail.mit.edu/~kostas/dpls/athena/
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