
IMPLEMENTATION OF THE TRANSACTOR MODEL:
FAULT TOLERANT DISTRIBUTED COMPUTING

USING ASYNCHRONOUS LOCAL CHECKPOINTING

By

Phillip Kuang

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Major Subject: COMPUTER SCIENCE

Examining Committee:

Carlos A. Varela, Thesis Adviser

Charles V. Stewart, Member

Ana Milanova, Member

Rensselaer Polytechnic Institute
Troy, New York

July 2014
(For Graduation August 2014)



CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Transactor Model . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Tau Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.3 Transition Rules . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.4 Worldview Union Algorithm . . . . . . . . . . . . . . . . . . . 4

1.2 SALSA Actor Language . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Transactor Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. Language Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Transactor Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Transactor, Worldview, History . . . . . . . . . . . . . . . . . 16

3.1.2 Message Sending/Reception . . . . . . . . . . . . . . . . . . . 19

3.1.3 Stabilization, Checkpointing, Rollback . . . . . . . . . . . . . 20

3.1.4 Transactor Creation . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.5 State Mutation/Retrieval . . . . . . . . . . . . . . . . . . . . . 22

3.2 Persistent State Storage . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Universal Storage Locator . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Storage Service . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Proxy Transactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Global Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Consistent Transaction Protocol . . . . . . . . . . . . . . . . . 26

3.4.2 Ping Director . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Language Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

ii



4. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Reference Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Bank Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 House Purchase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Argus Programming Language and System . . . . . . . . . . . . . . . 56

5.2 Atomos Transactional Programming Language . . . . . . . . . . . . . 57

5.3 Stabilizers: A Modular Checkpointing Abstraction for Concurrent
Functional Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6. Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2.1 Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2.2 Node Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2.3 Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2.4 Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2.5 Garbage Collection . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2.6 Continuations . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

APPENDICES

A. Transactor Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B. Example Execution Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 66

C. Symbol List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

iii



LIST OF FIGURES

1.1 Tau calculus grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Tau calculus defined forms . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Semantic domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 History transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Transition rules encoding basic actor semantics . . . . . . . . . . . . . . 8

1.6 Transition rules encoding basic transactor semantics . . . . . . . . . . . 9

1.7 Transition rules modeling spontaneous failures . . . . . . . . . . . . . . 9

1.8 Transition rules for programmatic rollback and consistency management 10

1.9 Transactor transition diagram . . . . . . . . . . . . . . . . . . . . . . . 11

1.10 Relations on history versions . . . . . . . . . . . . . . . . . . . . . . . . 11

1.11 Dependence worldview algorithm (γ′, δ′, ρ′) = (γt, δt, ) ⊕ (γm, δm, ρm) 12

1.12 Class hierarchy diagram for the SALSA actor library . . . . . . . . . . . 13

1.13 SALSA code compilation process . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Class hierarchy diagram for the transactor library . . . . . . . . . . . . 16

3.2 History class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Worldview class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Transactor storage service interface . . . . . . . . . . . . . . . . . . . . 24

3.5 PingDirector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Consistent transaction protocol using the PingDirector . . . . . . . . . 31

4.1 Simple reference cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Persistent reference cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Persistent reliable reference cell . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Simple reference cell implementation . . . . . . . . . . . . . . . . . . . . 37

4.5 Persistent reference cell implementation . . . . . . . . . . . . . . . . . . 38

iv



4.6 Persistent reliable reference cell implementation . . . . . . . . . . . . . 39

4.7 Electronic money transfer example: Teller . . . . . . . . . . . . . . . . . 40

4.8 Electronic money transfer example: Bankaccount . . . . . . . . . . . . . 41

4.9 Electronic money transfer example: Pinger . . . . . . . . . . . . . . . . 42

4.10 Teller account implementation . . . . . . . . . . . . . . . . . . . . . . . 43

4.11 Bankaccount implementation . . . . . . . . . . . . . . . . . . . . . . . . 44

4.12 Pinger implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.13 Teller implementation with CTP and PingDirector . . . . . . . . . . . 46

4.14 Bankaccount implementation with CTP and PingDirector . . . . . . . 47

4.15 House purchase scenario involving semantic failure . . . . . . . . . . . . 48

4.16 sellSrv implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.17 buySrv implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.18 buySrv implementation cont. . . . . . . . . . . . . . . . . . . . . . . . . 52

4.19 creditDB implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.20 apprSrv implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.21 lendSrv implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.22 srchSrv implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.23 verifySrv implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.1 Transactor class skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.1 Bank transfer example initial state . . . . . . . . . . . . . . . . . . . . . 67

B.2 Bank transfer example checkpointed state . . . . . . . . . . . . . . . . . 68

B.3 Bank transfer example failed state . . . . . . . . . . . . . . . . . . . . . 69

B.4 House purchase example initial state . . . . . . . . . . . . . . . . . . . . 70

B.5 House purchase example initial state cont. . . . . . . . . . . . . . . . . 71

B.6 House purchase example checkpointed state . . . . . . . . . . . . . . . . 72

B.7 House purchase example checkpointed state cont. . . . . . . . . . . . . . 73

v



B.8 House purchase example failed state . . . . . . . . . . . . . . . . . . . . 74

B.9 House purchase example failed state cont. . . . . . . . . . . . . . . . . . 75

C.1 Symbol list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

vi



ACKNOWLEDGMENT

I would like to express my gratitude to Professor Carlos A. Varela for his guidance

and support for my research. I would also like to thank John Field for his insight

and advice that helped me gain a different perspective on my work.

vii



ABSTRACT

The Transactor model, an extension to the Actor Model, is a well-formulated way to

model distributed concurrent systems while maintaining a global distributed state.

This model provides semantics to track dependencies among loosely-coupled dis-

tributed components that ensures fault tolerance through a two-phase commit pro-

tocol and issues rollbacks in the presence of failures or state inconsistency. We

seek to introduce an implementation of this model through a transactor language

as an extension of an existing actor language and highlight the capabilities of this

programming model.

We developed our transactor language using SALSA, an actor language de-

veloped as a dialect of Java. This transactor language will in turn be a dialect of

SALSA, which similarly will compile into Java code. We first develop our transac-

tor language as a basic SALSA/Java library in conjunction with the SALSA Java

library. This library implements the fundamental semantics of the transactor model

following the defined transition rules. We then provide example programs written

using this library such as the reference cell, banking transfer, and the house purchase

transaction. Furthermore, we seek to expand our language by introducing a state

storage property known as the Universal Storage Location as an extension of the

Universal Actor Name and Universal Actor Locator in SALSA that levies a Storage

Service to maintain checkpointed transactor states. We also introduce the Con-

sistent Transaction Protocol and Ping Director that improves upon the Universal

Checkpointing Protocol to aid transactor programs in reaching globally consistent

states and perform reliable transactions.

viii



1. Introduction

1.1 The Transactor Model

1.1.1 Overview

The transactor model introduced by Field and Varela is defined to be “a fault

tolerant programming model for composing loosely-coupled distributed components

running in an unreliable environment such as the Internet into systems that reliably

maintain globally consistent distributed state”[1]. Therefore, transactors allow for

guarantees about consistency in a distributed system by introducing semantics on

top of the actor model that allows it to track dependency information and establish

a two phase commit protocol. This allows transactors to recognize reliance on other

transactors and how they directly influence its own current state. As an extension

of the actor model, transactors inherit the core semantics of encapsulating state

and a thread of control to manipulate its state as well as communication through

asynchronous messaging. In addition to these, transactors introduce new semantics

to explicitly model node failures, network failures, persistent storage, and state

immutability.

Similar to an actor, when a transactor receives a message, it may create new

transactors, send messages or modify its own state. Unlike an actor, it also has the

option to stabilize, checkpoint, and rollback. Stabilization is considered the first step

of a two-phase commit protocol and makes a transactor immutable until a checkpoint

or rollback occurs. The second step of the two-phase commit is a checkpoint that,

if successful, makes a transactor persistent and guarantees consistency among peer

transactors. That is, the current transactors state does not have a dependence on

any other volatile transactor states and will be able to survive local temporary node

failures. Lastly rollback brings a transactor back to a previously checkpointed state.

1.1.2 Tau Calculus

The transactor model is formalized under the tau calculus, an extended, un-

typed, call by value lambda calculus. The terms of the tau calculus grammar is

1



2

shown in Figure 1.1 and syntactic sugar is provided in a set of defined forms shown

in Figure 1.2.
10

A = {true, false, nil, . . .} Atoms
N = {0, 1, 2, . . .} Natural numbers
T = {t1, t2, t3, . . .} Transactor names
X = {x1, x2, x3, . . .} Variable names
F = {=, +, . . .} Primitive operators
V ::= Values

A | N | T | X
| �X . E Lambda abstraction
| hV, Vi Pair constructor

EP ::= Pure expressions
V

| (E E) Lambda application
| fst(E) First element of pair
| snd(E) Second element of pair
| if E then E else E fi Conditional
| letrec X = E in E ni Recursive definition
| F(E, . . . , E) Primitive operator

EA ::= Traditional actor constructs
EP

| trans E init E snart New transactor
| send E to E Message send
| ready Ready to receive message
| self Reference to own name
| setstate(E) Set transactor state
| getstate Retrieve transactor state

E ::= Transactor expressions
EA

| checkpoint Make failure-resilient
| rollback Revert to prev. checkpt.
| stabilize Prevent state changes
| dependent? Test dependence

Figure 1.7: The ⌧ -calculus grammar

W ::= V(N ) | S(N ) Volatility value
Y ::= hW, [N ]i Transactor history

H = T f! Y History map
D ::= T  T Dependency
G = {D} Dependence graph
R = {T } Root set
S ::= hV, V ; E, V ; H, G, Ri Transactor
M ::= T ( hV ; H, G, Ri Message

⇥ = T f! S Name service
⌦ = {{M}} Network
K ::= ⌦ k ⇥ Transactor configuration

Figure 1.8: Semantic domains.

[fl1] Spontaneous failure of volatile, persistent transactor causes rollback.p
(h) ¬⌃(h) h # h0

µ k ✓[t 7! hb, sp ; , ; �[t 7! h], �c, ⇢i] t�!
[fl1]

µ k ✓[t 7! hb, sp ; ready, sp ; [t 7! hh0, i], ;, ;i]

[fl2] Spontaneous failure of volatile, ephemeral transactor causes it to be annihilated.
¬p(h) ¬⌃(h)

µ k ✓[t 7! h , nil ; , ; �[t 7! h], , i] t�!
[fl2]

µ k ✓

Figure 1.9: Transition rules modeling spontaneous failures.

Figure 1.1: Tau calculus grammar [1]

Figure 1.3 shows a collection of semantic domains that the tau calculus opera-

tional semantics will manipulate. A transactor history h = 〈w, lh〉, h ∈ Y encodes its

checkpointed history and is composed of a volatility value w ∈ W and an incarnation

list. Here a volatility value encodes if a transactor is volatile (w = V(n), n ≥ 0) or

stable (w = S(n), n ≥ 0). The value of n is known as the incarnation. The length

of the incarnation list tracks how many times a transactor has checkpointed since

its creation and its values reflect the incarnation at which each checkpoint occurred.

Figure 1.4 defines four operations on histories and their resulting transitions. A

history map γ ∈ H associates transactor names to their last known histories includ-

ing its own. A dependency is a directed edge t1 ← t2 ∈ D that encodes that the

state of t1 depends on that of t2 and a dependency graph δ ∈ G is a set of these

directed edges. This auxiliary structure collects all known transactor dependencies



3

including its own based off the names recorded in the history map. The root set

ρ ∈ R of a transactor contains a set of names for which the current evaluation of

a message depends on and is seen as potential dependencies if such a message re-

sults in a state mutation. These three components (γ, δ, ρ) comprise what is known

as the worldview. Transactor messages m ∈ M involve a target recipient transac-

tor, a value representing the payload of the message, and the message’s worldview

associated with the payload allowing dependence information to be transparently

propagated among communicating transactors. Lastly, a transactor configuration

k ∈ K consists of a network Ω or a multiset of messages and a name service Θ that

maps transactor names to transactor references.

A transactor τ ∈ S = 〈b,s√ ; e,s ; γ, δ, ρ〉 is modeled as a 7-tuple in the

tau calculus. This 7-tuple is delimited by semicolons into three logical clusters as

a syntactic convention. The first cluster represents the persistent component of a

transactor which includes its behavior b, a fixed response to every incoming message,

and its persistent state s√, encoding the last checkpointed state modeling stable

storage. The volatile component includes the current evaluation e, an intermediate

evaluation of a transactor’s behavior, and the volatile state s, that has yet to be

checkpointed and is vulnerable to failures. The last component (γ, δ, ρ) represents

the transactor’s dependence worldview.

1.1.3 Transition Rules

Figures 1.5, 1.6, 1.7, and 1.8 depict the transition rules of the tau-calculus.

Figure 1.5 encode the classical semantics of the actor model but differs in the treat-

ment of state. Figure 1.6 augment the basic actor transitions with additional rules

for managing distributed state. Figure 1.7 models spontaneous transient failures;

failures beyond the control of transactors themselves such as a node failure. Fi-

nally, Figure 1.8 define the semantics of program induced failures through explicit

rollback calls or implicit rollbacks as a result of being invalidated due to global in-

consistency. Figure 1.9 illustrates the life of a transactor as it transitions to different

possible states. Each transition rule is shown that progresses a transactor from be-

ing ephemeral or permanent, independent or dependent, and volatile or stable.



4

1.1.4 Worldview Union Algorithm

Figure 1.11 shows the worldview union algorithm used upon reception of mes-

sages to evaluate the dependency information included within the message. This

algorithm unifies the current worldview of the recipient transactor with the world-

view attached to the message by the sender in order to combine and update known

information about transactors in the network. This is a key component of the

transactor model, which allows dependency information to be shared appropriately

through interactions. The first step of this process creates a versioning set to collect

transactor name-history pairs from both history maps and a version dependency

graph from these pairs based off both dependency graphs. Next, transactor history

pairs are merged for duplicate names keeping the most recent history version and

updating inferred history versions of related transactors. These inferences result

from three possible progressions of history versions: stabilization, invalidation, and

validation. Figure 1.10 defines different relations between history versions.

If a transactor history version is succeeded by stabilization then we can update

the dependency graph where all edges containing the outdated history are replaced

with the updated version. For a transactor history that is invalidated, we will

rollback all transactor histories that were dependent on the outdated version. This

is a logical inference we can make even if those transactors have not yet rolled back,

we can reason that they will eventually rollback once they discover their state has

been invalidated. Lastly, a validated history allows us to infer that the transitive

closure of transactors it is dependent on has to have performed stabilization in

accordance to the requirements of the two-phase commitment protocol. This also

allows us to remove any transitive dependency edges the outdated history had since

semantically all transitively backward edges are no longer true dependencies because

all of these transactors are independent as defined in the [dep1] transition. Similarly

we can remove any edges from any transactor that has a dependency on any of these

independent transactors.

Finally we extract the updated worldview from the resulting version set and



5

version dependency graph and we take the message root set less any invalidated

names as our potential dependencies for the message to be processed. Note that

the worldview union algorithm presented here is a slightly optimized version of

the original algorithm presented by [2] that reduces the amount of unnecessary

information tracked by worldviews, providing a more efficient implementation.

1.2 SALSA Actor Language

SALSA [3, 4], which stands for Simple Actor Language System and Archi-

tecture, is a concurrent actor oriented programming language developed by Varela

and Agha. SALSA allows users to easily facilitate dynamically reconfigurable open

distributed systems and implements the core semantics of the actor model on top

of Java. SALSA code is pre-processed into Java code, which compiles in conjunc-

tion with a SALSA actor library into Java byte code and can be run on a Java

Virtual Machine. Figure 1.12 shows the class hierarchy of the SALSA actor library

and Figure 1.13 shows the compilation process for SALSA. In SALSA, actor pro-

grams are written as “behaviors” which translates to Java classes, each of which

extends the salsa.language.UniversalActor class to inherit actor semantics. We

used SALSA as a base language for implementing the transactor model and follow

a similar approach to developing our language by augmenting the SALSA library

with a transactor library to add functionality to support the transactor model. We

also leverage the integration of Java in SALSA to maintain the sequential nature of

dependency semantics.

1.3 Transactor Language

We introduce our transactor language as an extension of the SALSA language

similar to how the transactor model naturally extends the actor model. Our lan-

guage allows users to follow an actor oriented programming paradigm for concurrent

computation in order to build loosely coupled distributed systems. Such systems

built with our transactor language will be able to maintain a globally consistent

state as guaranteed by the transactor model. A need for central coordination is

now obsolete since our language takes into consideration the high latencies of a wide



6

area network where node and link failures are common occurrences. Therefore, de-

pendencies are evaluated lazily and users only need to reason about the possibility

of lost messages since node and application-level failures are handled internally.1

Through our language we also introduce the Consistent Transaction Protocol al-

lowing users to resolve dependencies to reach global consistent states eagerly and

the Proxy, which does not introduce any dependencies. These abstractions encode

common programming patterns to make it easier to compose transactor programs.

1.4 Roadmap

Chapter 2 presents a few possible useful applications of a transactor language

that highlight the importance of maintaining a consistent global state. Chapter 3

describes our implementation of a transactor language including how we handle per-

sistent state storage, introduction of two new abstractions, and syntactic language

support. Chapter 4 describes in detail three example programs written in our lan-

guage highlighting the key semantics of the transactor model. Chapter 5 presents

related work in other similar implementations of transactional languages and sys-

tems. Chapter 6 concludes with a discussion of contributions of our implementation

and future work.

1The current version of our language only has support for application-level failures.



713

[vec1] he1, . . . , eni , he1, h. . . , hen, nilii . . .i, n > 0

[vec2] hi , nil

[vec3] ~x , hx1, . . . , xni for some n � 0

[seq] e1; e2 , ((�x. e2) e1), x /2 fv(e2)

[if1] if e1 then e2 fi , if e1 then e2 else nil fi

[let1] let x = e1 in e2 ni , ((�x. e2) e1)
[let2] let hx1, . . . , xni = e1 in

e2

ni

, let x1 = fst(e1) in
. . .

let xn = fst(snd(. . . snd(e1) . . .)) in
e2

ni
. . .

ni
[vabs] �~x. e

, �x0. let ~x = x0 in e ni, x0 /2 fv(e)
[msg1] msg ~x , hmsg, ~xi
[msg2] msgcase

msg1 ~x1 ) e1

| . . .
| msgn ~xn ) en

esac

, �hm, z0i. (
if m = msg1 then

let ~x1 = z0 in e1 ni
else

. . .
if m = msgn then

let ~xn = z0 in en ni
else

ready
fi
. . .

fi;
ready )

[sta1] declstate hu1, . . . , uni in e etats

, declaration of names for n elements of state
[sta2] !ui

, let hx1, . . . , xi, ~zi = getstate in xi ni
ui is the ith name declared in the closest
statically-enclosing declstate scope, of length n, n � i > 0

[sta3] ui := e

, setstate(h!u1, . . . , !ui�1, e, !ui+1, . . . , !uni)
where ui is the ith name declared in the closest
statically-enclosing declstate scope, of length n, n � i > 0

Figure 1.10: Defined forms.Figure 1.2: Tau calculus defined forms [1]



8

10

A = {true, false, nil, . . .} Atoms
N = {0, 1, 2, . . .} Natural numbers
T = {t1, t2, t3, . . .} Transactor names
X = {x1, x2, x3, . . .} Variable names
F = {=, +, . . .} Primitive operators
V ::= Values

A | N | T | X
| �X . E Lambda abstraction
| hV, Vi Pair constructor

EP ::= Pure expressions
V

| (E E) Lambda application
| fst(E) First element of pair
| snd(E) Second element of pair
| if E then E else E fi Conditional
| letrec X = E in E ni Recursive definition
| F(E, . . . , E) Primitive operator

EA ::= Traditional actor constructs
EP

| trans E init E snart New transactor
| send E to E Message send
| ready Ready to receive message
| self Reference to own name
| setstate(E) Set transactor state
| getstate Retrieve transactor state

E ::= Transactor expressions
EA

| checkpoint Make failure-resilient
| rollback Revert to prev. checkpt.
| stabilize Prevent state changes
| dependent? Test dependence

Figure 1.7: The ⌧ -calculus grammar

W ::= V(N ) | S(N ) Volatility value
Y ::= hW, [N ]i Transactor history

H = T f! Y History map
D ::= T  T Dependency
G = {D} Dependence graph
R = {T } Root set
S ::= hV, V ; E, V ; H, G, Ri Transactor
M ::= T ( hV ; H, G, Ri Message

⇥ = T f! S Name service
⌦ = {{M}} Network
K ::= ⌦ k ⇥ Transactor configuration

Figure 1.8: Semantic domains.

[fl1] Spontaneous failure of volatile, persistent transactor causes rollback.p
(h) ¬⌃(h) h # h0

µ k ✓[t 7! hb, sp ; , ; �[t 7! h], �c, ⇢i] t�!
[fl1]

µ k ✓[t 7! hb, sp ; ready, sp ; [t 7! hh0, i], ;, ;i]

[fl2] Spontaneous failure of volatile, ephemeral transactor causes it to be annihilated.
¬p(h) ¬⌃(h)

µ k ✓[t 7! h , nil ; , ; �[t 7! h], , i] t�!
[fl2]

µ k ✓

Figure 1.9: Transition rules modeling spontaneous failures.

Figure 1.3: Semantic domains [1]

Transactors · 17

Basic history operations. We begin by defining some basic operations on histories. Let
h = hw, lhi be a history. Then h is stable, notated ⌃(h), if w = S(n) for some n; otherwise
h is volatile. If lh is nonempty, i.e., it has checkpointed, then h is checkpointed, notatedp

(h); otherwise, h is non-checkpointed. The empty history hV(0), []i will be denoted by
H0.

Relations on histories. Next, we define some relations on histories that will be used in
the transition rules in the operational semantics for the ⌧ -calculus. ’#’, ’!⌃’, and ’!p’
are the least relations satisfying the following conditions:

hV(n), lhi # hV(n + 1), lhi (“rolls back to”)
hS(n), lhi # hV(n + 1), lhi (“rolls back to”)
hV(n), lhi !⌃ hS(n), lhi (“stabilizes to”)
hS(n), lhi !p hV(0), n :: lhi (“checkpoints to”)

‘#’, ‘!⌃’, and ‘!p’ represent all of the valid “single-step” transitions that a history asso-
ciated with a single transactor can make: ‘#’ encodes the fact that a transactor has rolled
back. A volatile transactor can roll itself back (the first case for ‘#’) or be rolled back
“spontaneously” due to node failure or inconsistent state; a stable transactor (the second
case) only rolls back if its state is found to be inconsistent. The ’!⌃’ transition encodes
the fact that a transactor has stabilized, and ’!p’ encodes the fact that a transactor has
checkpointed. Since these relations are functions, we will sometimes speak of “applying”
them to a history to yield a new history.

We can now define the following composite relation:

; , (# [ !⌃ [ !p) (“is succeeded by”)

Intuitively, h1 ;⇤ h2 if h1 and h2 are valid histories for the same transactor (say, ⌧ ), and
h2 occurs after h1 in some execution trace for ⌧ . ‘;⇤’ defines a partial order on histories.
We will say that histories h1 and h2 are comparable if either h1 ;⇤ h2 or h2 ;⇤ h1. In
the former case, we will say h2 >= h1; in the latter case, we will say h1 >= h2.

We define the following relations:

o , [!⌃]· # · ;⇤ (“is invalidated by”)
a , [!⌃]· !p · ;⇤ (“is validated by”)

Intuitively, h1 o h2 if h2 is a history of a transactor that rolled back from the state rep-
resented by history h1 (or the volatile version thereof), then proceeded to do zero or more
additional operations. Also, h1 a h2 if h2 is a history of a transactor that checkpointed
from the state represented by history h1 (or the volatile version thereof), then proceeded
to do zero or more additional operations. Thus, in both cases, the state represented by h2

supersedes the obsolete state represented by h1. We will say that two comparable histories
are consistent if neither invalidates the other.

Relations on history maps. Let �1 and �2 be history maps. Then �1 is invalidated by
�2, notated �1 o �2 if and only if there exists t such that t 2 dom(�1) \ dom(�2), and
�1(t) o �2(t).

Operations on dependence worldview components. Given a dependence graph �, we
define the relationship t1 is transitively dependent on t2 in �, denoted as t1 �� t2, as
follows:

t1 �� t2 iff
⇢

t1 = t2, or
9t, s.t. (t1  t 2 �) ^ (t �� t2)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Figure 1.4: History transitions [1]
6

[pure] Evaluate pure redex.
e �!� e0 e 2 Erdx

P

µ k ✓[t 7! hb, sp ; R[ e ], s ; �, �, ⇢i] t�!
[pure]

µ k ✓[t 7! hb, sp ; R[ e0 ], s ; �, �, ⇢i]

[new] Create new transactor.
µ k ✓[t 7! hb, sp ; R[ trans b0 init s0 snart ], s ; �, �, ⇢i]

t�!
[new]

µ k ✓[t 7! hb, sp ; R[ t0 ], s ; �0, � [ �0, ⇢ [ {t0}i]
[t0 7! hb0, nil ; ready, s0 ; �0, �0 [ �, ;i]

t0fresh
�0 = �[t0 7! H0]
�0 = t0  (⇢ [ {t})

[snd] Send message. Include transactor in message dependencies.
µ k ✓[t 7! hb, sp ; R[ send vm to t0 ], s ; �, �, ⇢i]

t�!
[snd]

µ ] {t0 ( hvm ; �, �, ⇢ [ {t}i} k ✓[t 7! hb, sp ; R[ nil ], s ; �, �, ⇢i]

[rcv1] Message dependences not invalidated by transactor, and viceversa: process message normally.
¬((�m # ⇢m) o �0) ¬(�(t) # �0(t))

(µ ] {t( hvm ; �m, �m, ⇢mi}) k ✓[t 7! hb, sp ; ready, s ; �, �, i]
t�!

[rcv1]
µ k ✓[t 7! hb, sp ; (b vm), s ; �0, �0, ⇢0i]

(�0, �0, ⇢0) = (�, �, )� (�m, �m, ⇢m)

[get] Retrieve state.

µ k ✓[t 7! hb, sp ; R[ getstate ], s ; �, �, ⇢i] t�!
[get]

µ k ✓[t 7! hb, sp ; R[ s ], s ; �, �, ⇢i]

[set1] Transactor is volatile: setting state succeeds.
¬⌃(�(t))

µ k ✓[t 7! hb, sp ; R[ setstate(s) ], ; �, �, ⇢i] t�!
[set1]

µ k ✓[t 7! hb, sp ; R[ true ], s ; �, � [ (t ⇢), ⇢i]

[self] Yields reference to own name.

µ k ✓[t 7! hb, sp ; R[ self ], s ; �, �, ⇢i] t�!
[self]

µ k ✓[t 7! hb, sp ; R[ t ], s ; �, �, ⇢i]

Figure 1.2: Transition rules encoding basic actor semantics.

the message without rolling back if the worldview within the message and the worldview

of the transactor show that the message was generated by a transactor which has since

rolled back. Otherwise, the message will be accepted. In that case, the transactor will

update its worldview based on the message’s worldview.

1.2.3.2 Transactor Configuration Transition Rules

The operational semantics of the transactor model is defined as a labeled transi-

tion sytem between transactor configurations based on the actor model. The transition

rules inherited from the actor model are shown in Figure 1.2. The transitions introduced

in the transactor model are shown in Figures 1.6, 1.3, and 1.9, with the last modeling

spontaneous message loss and node failures.

Figure 1.5: Transition rules encoding basic actor semantics [1]



9

9

; , (# [ !⌃ [ !p) (“is succeeded by”)
o , [!⌃ ]· # · ;⇤ (“is invalidated by”)
a , [!⌃ ]· !p · ;⇤ (“is validated by”)

Figure 1.5: History transition rules

[set2] Transactor is stable: attempt to set state fails.
⌃(�(t))

µ k ✓[t 7! hb, sp ; R[ setstate( ) ], s ; �, �, ⇢i] t�!
[set2]

µ k ✓[t 7! hb, sp ; R[ false ], s ; �, �, ⇢i]

[sta1] Transactor is volatile: stabilization causes it to become stable.
�(t)!⌃ h0

µ k ✓[t 7! hb, sp ; R[ stabilize ], s ; �, �, ⇢i] t�!
[sta1]

µ k ✓[t 7! hb, sp ; R[ nil ], s ; �[t 7! h0], �, ⇢i]

[sta2] Transactor currently stable: stabilize is a no-op.
⌃(�(t))

µ k ✓[t 7! hb, sp ; R[ stabilize ], s ; �, �, ⇢i] t�!
[sta2]

µ k ✓[t 7! hb, sp ; R[ nil ], s ; �, �, ⇢i]

[chk1] Transactor is independent: checkpoint succeeds.
⌃(t, �, �) �(t)!p h0

µ k ✓[t 7! hb, ; checkpoint, s ; �, �, i] t�!
[chk1]

µ k ✓[t 7! hb, s ; ready, s ; [t 7! h0], ;, ;i]

[chk2] Transactor is dependent or volatile: checkpoint simply behaves like ready.
¬⌃(t, �, �)

µ k ✓[t 7! hb, sp ; checkpoint, s ; �, �, i] t�!
[chk2]

µ k ✓[t 7! hb, sp ; ready, s ; �, �, ;i]

[rol1] Transactor is stable: rollback simply behaves like ready.
⌃(�(t))

µ k ✓[t 7! hb, sp ; rollback, s ; �, �, i] t�!
[rol1]

µ k ✓[t 7! hb, sp ; ready, s ; �, �, ;i]

[dep1] Transactor is weakly independent: yields false.
⌃̃(t, �, �)

µ k ✓[t 7! hb, sp ; R[ dependent? ], s ; �, �, ⇢i] t�!
[dep1]

µ k ✓[t 7! hb, sp ; R[ false ], s ; �, �, ⇢i]

[dep2] Transactor is dependent: yields true.
¬⌃̃(t, �, �)

µ k ✓[t 7! hb, sp ; R[ dependent? ], s ; �, �, ⇢i] t�!
[dep1]

µ k ✓[t 7! hb, sp ; R[ true ], s ; �, �, ⇢i]

[lose] Message loss.
(µ ] {m}) k ✓ m�!

[lose]
µ k ✓

Figure 1.6: Transition rules encoding basic transactor semantics.Figure 1.6: Transition rules encoding basic transactor semantics [1]

10

A = {true, false, nil, . . .} Atoms
N = {0, 1, 2, . . .} Natural numbers
T = {t1, t2, t3, . . .} Transactor names
X = {x1, x2, x3, . . .} Variable names
F = {=, +, . . .} Primitive operators
V ::= Values

A | N | T | X
| �X . E Lambda abstraction
| hV, Vi Pair constructor

EP ::= Pure expressions
V

| (E E) Lambda application
| fst(E) First element of pair
| snd(E) Second element of pair
| if E then E else E fi Conditional
| letrec X = E in E ni Recursive definition
| F(E, . . . , E) Primitive operator

EA ::= Traditional actor constructs
EP

| trans E init E snart New transactor
| send E to E Message send
| ready Ready to receive message
| self Reference to own name
| setstate(E) Set transactor state
| getstate Retrieve transactor state

E ::= Transactor expressions
EA

| checkpoint Make failure-resilient
| rollback Revert to prev. checkpt.
| stabilize Prevent state changes
| dependent? Test dependence

Figure 1.7: The ⌧ -calculus grammar

W ::= V(N ) | S(N ) Volatility value
Y ::= hW, [N ]i Transactor history

H = T f! Y History map
D ::= T  T Dependency
G = {D} Dependence graph
R = {T } Root set
S ::= hV, V ; E, V ; H, G, Ri Transactor
M ::= T ( hV ; H, G, Ri Message

⇥ = T f! S Name service
⌦ = {{M}} Network
K ::= ⌦ k ⇥ Transactor configuration

Figure 1.8: Semantic domains.

[fl1] Spontaneous failure of volatile, persistent transactor causes rollback.p
(h) ¬⌃(h) h # h0

µ k ✓[t 7! hb, sp ; , ; �[t 7! h], �c, ⇢i] t�!
[fl1]

µ k ✓[t 7! hb, sp ; ready, sp ; [t 7! hh0, i], ;, ;i]

[fl2] Spontaneous failure of volatile, ephemeral transactor causes it to be annihilated.
¬p(h) ¬⌃(h)

µ k ✓[t 7! h , nil ; , ; �[t 7! h], , i] t�!
[fl2]

µ k ✓

Figure 1.9: Transition rules modeling spontaneous failures.Figure 1.7: Transition rules modeling spontaneous failures [1]



10

7

[rol2] Transactor is volatile and persistent: rollback reverts state to contents of persistent state saved by last checkpoint.p
(�(t)) ¬⌃(�(t)) �(t) # h0

µ k ✓[t 7! hb, sp ; rollback, ; �, , i] t�!
[rol2]

µ k ✓[t 7! hb, sp ; ready, sp ; [t 7! h0], ;, ;i]

[rol3] Transactor is volatile and ephemeral: rollback causes transactor to be annihilated.
¬p(�(t)) ¬⌃(�(t))

µ k ✓[t 7! h , ; rollback, ; �, , i] t�!
[rol3]

µ k (✓ \ t)

[rcv2] Message dependences invalidated by those of transactor but not vice-versa: discard message.
((�m # ⇢m) o �0) ¬(�(t) # �0(t))

(µ ] {t( h ; �m, �m, ⇢mi}) k ✓[t 7! hb, sp ; ready, s ; �, �, i]
t�!

[rcv2]
µ k ✓[t 7! hb, sp ; ready, s ; �0, �0, ;i]

(�0, �0, ) = (�, �, )� (�m, �m, ⇢m)

[rcv3] Transactor dependences invalidated by message and transactor is persistent: transactor rolls back, message remains.
�(t) # �0(t)

p
(�(t))

(µ ] {t( hvm ; �m, �m, ⇢mi}) k ✓[t 7! hb, sp ; ready, ; �, �, i]
t�!

[rcv3]
(µ ] {t( hvm ; �m, �m, ⇢mi}) k ✓[t 7! hb, sp ; ready, sp ; [t 7! �0(t)], ;, ;i]

(�0, , ) = (�, �, )� (�m, �m, ⇢m)

[rcv4] Transactor dependences invalidated by message and transactor is ephemeral: transactor is annihilated.
�(t) # �0(t) ¬p(�(t))

(µ ] {t( h ; �m, �m, ⇢mi}) k ✓[t 7! h , ; ready, ; �, �, i] t�!
[rcv4]

µ k (✓ \ t)

(�0, , ) = (�, �, )� (�m, �m, ⇢m)

Figure 1.3: Transition rules for programmatic rollback and consistency manage-
ment.

1.2.4 The ⌧ -Calculus

The ⌧ -calculus shown in Figure 1.7 is used in order to represent the persistent be-

havior of individual transactors. A transactor’s persistent behavior is a list of message

handlers used in order to respond to individual messages. Syntactic sugar is introduced in

Figure 1.10.

The msgcase construct yields a lambda abstraction whose body processes incom-

ing messages. Messages are assumed to take the form of a vector of parameters, the

first of which is an atom that constitutes a message name. The msgcase body tests the

value of the incoming message and processes the other message arguments appropriately;

messages that are not understood are ignored.

The declstate construct declares names for a transactor’s state, which is presumed

to consist of a vector of elements. This construct does not “expand” into a core ⌧ -calculus

expression, instead, it simply defines a static name scope for subsequent references of the

Figure 1.8: Transition rules for programmatic rollback and consistency
management [1]



11

20 · J. Field and C. A. Varela

Ephemeral

Permanent

sta1

Volatile Stable

sta1
ch

k1

rcv3

fl2
|ro

l2|rc
v4

new
rcv4

set2|sta2|chk2|rol1

set2|sta2|chk2|rol1

chk2

No-op transition

set1|fl1|rcv3|rol3|†

set1|†

chk2

Dead

†

†

Dependent

set2|sta2|rol1Independent

sta1

†

rc
v1

Dependent

rcv1st
a1

pure|new|send|

rcv1|get|self|

dep1|dep2|lose|

rcv2

†

KEY

Fig. 12.

The set of node failure transitions will be represented by the composite transition relation
‘�!

_
’, which is the relational union of the primitive transition rules in all of Figs. 16 and 17.

The transition rules in Figure 16 model “spontaneous” node failures; i.e., failures beyond
the control of the transactors themselves. The transition rules in Figure 17 define the
semantics of “program-induced” failures via the rollback operation, and other operations
to handle inconsistencies resulting from failures.

We will use ‘�!
⌧

’ to denote an arbitrary ⌧ -calculus transition, i.e., �!
⌧

=�!̂ [ �!
_

In the following sections, we will consider each collection of rules in turn. While the
number of transition rules may appear somewhat daunting initially, we believe that each of
them encodes a “semantically orthogonal” component of ⌧ -calculus semantics in a reason-
ably natural way.

Pure Reduction Rules. Fig. 13 depicts a set of standard pure reduction rules for lambda
terms encoding transactor behaviors. These rules are “imported” into the classical actor
calculus whose transition rules are depicted in Fig. 14.

Transition Rules for Basic Actor Semantics. Fig. 14 depicts the collection of transition
rules that encode the semantics of the Actor model [Agha 1986]. The semantics is loosely
modeled after the semantics of Agha et al.[Agha et al. 1997], but with a significantly differ-
ent treatment of state. In the rules of Fig. 14 as well as other rules in the sequel, the relation
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Figure 1.9: Transactor transition diagram [1]

9

; , (# [ !⌃ [ !p) (“is succeeded by”)
o , [!⌃ ]· # · ;⇤ (“is invalidated by”)
a , [!⌃ ]· !p · ;⇤ (“is validated by”)

Figure 1.5: History transition rules

[set2] Transactor is stable: attempt to set state fails.
⌃(�(t))

µ k ✓[t 7! hb, sp ; R[ setstate( ) ], s ; �, �, ⇢i] t�!
[set2]

µ k ✓[t 7! hb, sp ; R[ false ], s ; �, �, ⇢i]

[sta1] Transactor is volatile: stabilization causes it to become stable.
�(t)!⌃ h0

µ k ✓[t 7! hb, sp ; R[ stabilize ], s ; �, �, ⇢i] t�!
[sta1]

µ k ✓[t 7! hb, sp ; R[ nil ], s ; �[t 7! h0], �, ⇢i]

[sta2] Transactor currently stable: stabilize is a no-op.
⌃(�(t))

µ k ✓[t 7! hb, sp ; R[ stabilize ], s ; �, �, ⇢i] t�!
[sta2]

µ k ✓[t 7! hb, sp ; R[ nil ], s ; �, �, ⇢i]

[chk1] Transactor is independent: checkpoint succeeds.
⌃(t, �, �) �(t)!p h0

µ k ✓[t 7! hb, ; checkpoint, s ; �, �, i] t�!
[chk1]

µ k ✓[t 7! hb, s ; ready, s ; [t 7! h0], ;, ;i]

[chk2] Transactor is dependent or volatile: checkpoint simply behaves like ready.
¬⌃(t, �, �)

µ k ✓[t 7! hb, sp ; checkpoint, s ; �, �, i] t�!
[chk2]

µ k ✓[t 7! hb, sp ; ready, s ; �, �, ;i]

[rol1] Transactor is stable: rollback simply behaves like ready.
⌃(�(t))

µ k ✓[t 7! hb, sp ; rollback, s ; �, �, i] t�!
[rol1]

µ k ✓[t 7! hb, sp ; ready, s ; �, �, ;i]

[dep1] Transactor is weakly independent: yields false.
⌃̃(t, �, �)

µ k ✓[t 7! hb, sp ; R[ dependent? ], s ; �, �, ⇢i] t�!
[dep1]

µ k ✓[t 7! hb, sp ; R[ false ], s ; �, �, ⇢i]

[dep2] Transactor is dependent: yields true.
¬⌃̃(t, �, �)

µ k ✓[t 7! hb, sp ; R[ dependent? ], s ; �, �, ⇢i] t�!
[dep1]

µ k ✓[t 7! hb, sp ; R[ true ], s ; �, �, ⇢i]

[lose] Message loss.
(µ ] {m}) k ✓ m�!

[lose]
µ k ✓

Figure 1.6: Transition rules encoding basic transactor semantics.

Figure 1.10: Relations on history versions [1]



12

Transactors · 19

Input: (�t, �t, ), (�m, �m, ⇢m)
Output: (�0, �0, ⇢0)

Step 1: let G = (V, E), where
V = {ht, hi | �t(t) = h _ �m(t) = h}
E = {ht1, h1i  ht2, h2i | (t1  t2 2 �t ^ �t(t1) = h1 ^ �t(t2) = h2)

_(t1  t2 2 �m^ �m(t1) = h1^ �m(t2) = h2)}

Step 2: while 9ht, h1i, ht, h2i 2 V , s.t., h1 < h2 do
if h1 !⌃ h2 then

E = E [ {ht, h2i  ht0, h0i|ht, h1i  ht0, h0i 2 E}
[ {ht0, h0i  ht, h2i|ht0, h0i  ht, h1i 2 E}

else if h1 oh2 then
8t0|ht0, h0i  ht, h1i 2 E, do

V = V [ {ht0, h00i}, where h0 # h00.
else if h1 a h2 then

8t0|ht, h1i�E ht0, h0i, do
V = V [ {ht0, h00i}, where h0 !⌃ h00.

V = V � {ht, h1i}
E = E � {ht, h1i  } � {  ht, h1i}

Step 3: let (�0, �0, ⇢0) be defined as
�0(t) = h iff 9ht, hi 2 V .
t1  t2 2 �0 iff ht1, i  ht2, i 2 E.
⇢0 = ⇢m � {t | �m(t) a �0(t)}

Fig. 11. The dependence worldview union algorithm: (�0, �0, ⇢0) = (�t, �t, )� (�m, �m, ⇢m)

When not otherwise qualified, we will refer to the volatile state of ⌧ , i.e., s, as simply the
state of ⌧ . If ⌧ is both stable and independent, we will say that it is a daemon. Daemons
can be used to model humans or other “external agents” in a system that send and receive
messages, are resilient to (system!) failure, but do not “participate” in global state.

Operations on configurations. Let k = µ k ✓ be a configuration. Then we will use
net(k) to denote the network µ, and ns(k) to denote the nameserver ✓. The domain of k,
denoted by dom(k) is the set of all transactors in k’s name service map, i.e., dom(ns(k)).
Given a configuration k and a transactor name t 2 dom(k), we will use k(t) as a shorthand
for the transactor (ns(k))(t). We will say that a configuration k is ready or resilient iff for
all t 2 dom(k), k(t) is ready or resilient, respectively.

6.5 Transactor Configuration Transition Rules

We will divide the transition rules of the ⌧ -calculus into two principal classes: those rep-
resenting normal transitions, where the only form of failure allowed is message loss, and
node failure transitions representing either spontaneous node failures or rules designed to
manage inconsistencies resulting from such failures.

The set of normal transitions will be represented by the composite transition relation
‘�!̂’, which is the relational union of the primitive transition rules in Fig. 14 and 15.
The transition rules in Figs. 14 encode the “classical” semantics of the Actor model [Agha
1986]. The transition rules in Fig. 15 augment the classical semantics with additional
operations for managing consistency (e.g., creating checkpoints).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

12

Transactors · 19

Input: (�t, �t, ), (�m, �m, �m)
Output: (�0, �0, �0)

Step 1: let G = (V, E), where
V = {ht, hi | �t(t) = h � �m(t) = h}
E = {ht1, h1i  ht2, h2i | (t1  t2 � �t � �t(t1) = h1 � �t(t2) = h2)

�(t1  t2 � �m� �m(t1) = h1� �m(t2) = h2)}

Step 2: while �ht, h1i, ht, h2i � V , s.t., h1 < h2 do
if h1 �� h2 then

E = E � {ht, h2i  ht0, h0i|ht, h1i  ht0, h0i � E}
� {ht0, h0i  ht, h2i|ht0, h0i  ht, h1i � E}

else if h1 �h2 then
�t0|ht0, h0i  ht, h1i � E, do

V = V � {ht0, h00i}, where h0 � h00.
else if h1 � h2 then

�t0|ht, h1i�E ht0, h0i, do
V = V � {ht0, h00i}, where h0 �� h00.

V = V � {ht, h1i}
E = E � {ht, h1i  } � {  ht, h1i}

Step 3: let (�0, �0, �0) be defined as
�0(t) = h iff �ht, hi � V .
t1  t2 � �0 iff ht1, i  ht2, i � E.
�0 = �m � {t | �m(t) � �0(t)}

Fig. 11. The dependence worldview union algorithm: (�0, �0, �0) = (�t, �t, )� (�m, �m, �m)

When not otherwise qualified, we will refer to the volatile state of � , i.e., s, as simply the
state of � . If � is both stable and independent, we will say that it is a daemon. Daemons
can be used to model humans or other “external agents” in a system that send and receive
messages, are resilient to (system!) failure, but do not “participate” in global state.

Operations on configurations. Let k = µ � � be a configuration. Then we will use
net(k) to denote the network µ, and ns(k) to denote the nameserver �. The domain of k,
denoted by dom(k) is the set of all transactors in k’s name service map, i.e., dom(ns(k)).
Given a configuration k and a transactor name t 2 dom(k), we will use k(t) as a shorthand
for the transactor (ns(k))(t). We will say that a configuration k is ready or resilient iff for
all t 2 dom(k), k(t) is ready or resilient, respectively.

6.5 Transactor Configuration Transition Rules

We will divide the transition rules of the � -calculus into two principal classes: those rep-
resenting normal transitions, where the only form of failure allowed is message loss, and
node failure transitions representing either spontaneous node failures or rules designed to
manage inconsistencies resulting from such failures.

The set of normal transitions will be represented by the composite transition relation
‘��

�
’, which is the relational union of the primitive transition rules in Fig. 14 and 15.

The transition rules in Figs. 14 encode the “classical” semantics of the Actor model [Agha
1986]. The transition rules in Fig. 15 augment the classical semantics with additional
operations for managing consistency (e.g., creating checkpoints).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

E = E � {ht0, h0i  } � {  ht0, h0i}

Transactors · 19

Input: (�t, �t, ), (�m, �m, �m)

Output: (�0, �0, �0)

Step 1: let G = (V, E), where
V = {ht, hi | �t(t) = h � �m(t) = h}
E = {ht1, h1i  ht2, h2i | (t1  t2 � �t � �t(t1) = h1 � �t(t2) = h2)

�(t1  t2 � �m� �m(t1) = h1� �m(t2) = h2)}

Step 2: while �ht, h1i, ht, h2i � V , s.t., h1 < h2 do
if h1 �� h2 then

E = E � {ht, h2i  ht0, h0i|ht, h1i  ht0, h0i � E}
� {ht0, h0i  ht, h2i|ht0, h0i  ht, h1i � E}

else if h1 �h2 then
�t0|ht0, h0i  ht, h1i � E, do

V = V � {ht0, h00i}, where h0 � h00.
else if h1 � h2 then

�t0|ht, h1i�E ht0, h0i, do
V = V � {ht0, h00i}, where h0 �� h00.

V = V � {ht, h1i}
E = E � {ht, h1i  } � {  ht, h1i}

Step 3: let (�0, �0, �0) be defined as
�0(t) = h iff �ht, hi � V .
t1  t2 � �0 iff ht1, i  ht2, i � E.
�0 = �m � {t | �m(t) � �0(t)}

Fig. 11. The dependence worldview union algorithm: (�0, �0, �0) = (�t, �t, )� (�m, �m, �m)

When not otherwise qualified, we will refer to the volatile state of � , i.e., s, as simply the
state of � . If � is both stable and independent, we will say that it is a daemon. Daemons
can be used to model humans or other “external agents” in a system that send and receive
messages, are resilient to (system!) failure, but do not “participate” in global state.

Operations on configurations. Let k = µ � � be a configuration. Then we will use
net(k) to denote the network µ, and ns(k) to denote the nameserver �. The domain of k,
denoted by dom(k) is the set of all transactors in k’s name service map, i.e., dom(ns(k)).
Given a configuration k and a transactor name t 2 dom(k), we will use k(t) as a shorthand
for the transactor (ns(k))(t). We will say that a configuration k is ready or resilient iff for
all t 2 dom(k), k(t) is ready or resilient, respectively.

6.5 Transactor Configuration Transition Rules

We will divide the transition rules of the � -calculus into two principal classes: those rep-
resenting normal transitions, where the only form of failure allowed is message loss, and
node failure transitions representing either spontaneous node failures or rules designed to
manage inconsistencies resulting from such failures.

The set of normal transitions will be represented by the composite transition relation
‘��

�
’, which is the relational union of the primitive transition rules in Fig. 14 and 15.

The transition rules in Figs. 14 encode the “classical” semantics of the Actor model [Agha
1986]. The transition rules in Fig. 15 augment the classical semantics with additional
operations for managing consistency (e.g., creating checkpoints).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Figure 1.10: The dependence worldview algorithm [?]
(�0, �0, ⇢0) = (�t, �t, ) � (�m, �m, ⇢m)

9

� � (� � �� � ��) (“is succeeded by”)
� � [�� ]· � · �� (“is invalidated by”)
� � [�� ]· �� · �� (“is validated by”)

Figure 1.5: History transition rules

[set2] Transactor is stable: attempt to set state fails.
�(�(t))

µ � �[t �� hb, s� ; R[ setstate( ) ], s ; �, �, �i] t��
[set2]

µ � �[t �� hb, s� ; R[ false ], s ; �, �, �i]

[sta1] Transactor is volatile: stabilization causes it to become stable.
�(t)�� h0

µ � �[t �� hb, s� ; R[ stabilize ], s ; �, �, �i] t��
[sta1]

µ � �[t �� hb, s� ; R[ nil ], s ; �[t �� h0], �, �i]

[sta2] Transactor currently stable: stabilize is a no-op.
�(�(t))

µ � �[t �� hb, s� ; R[ stabilize ], s ; �, �, �i] t��
[sta2]

µ � �[t �� hb, s� ; R[ nil ], s ; �, �, �i]

[chk1] Transactor is independent: checkpoint succeeds.
�(t, �, �) �(t)�� h0

µ � �[t �� hb, ; checkpoint, s ; �, �, i] t��
[chk1]

µ � �[t �� hb, s ; ready, s ; [t �� h0], �, �i]

[chk2] Transactor is dependent or volatile: checkpoint simply behaves like ready.
¬�(t, �, �)

µ � �[t �� hb, s� ; checkpoint, s ; �, �, i] t��
[chk2]

µ � �[t �� hb, s� ; ready, s ; �, �, �i]

[rol1] Transactor is stable: rollback simply behaves like ready.
�(�(t))

µ � �[t �� hb, s� ; rollback, s ; �, �, i] t��
[rol1]

µ � �[t �� hb, s� ; ready, s ; �, �, �i]

[dep1] Transactor is weakly independent: yields false.
�̃(t, �, �)

µ � �[t �� hb, s� ; R[ dependent? ], s ; �, �, �i] t��
[dep1]

µ � �[t �� hb, s� ; R[ false ], s ; �, �, �i]

[dep2] Transactor is dependent: yields true.
¬�̃(t, �, �)

µ � �[t �� hb, s� ; R[ dependent? ], s ; �, �, �i] t��
[dep1]

µ � �[t �� hb, s� ; R[ true ], s ; �, �, �i]

[lose] Message loss.
(µ � {m}) � � m��

[lose]
µ � �

Figure 1.6: Transition rules encoding basic transactor semantics.

Figure 1.11: Relations on history versions [?]

Transactors · 19

Input: (�t, �t, ), (�m, �m, ⇢m)
Output: (�0, �0, ⇢0)

Step 1: let G = (V, E), where
V = {ht, hi | �t(t) = h _ �m(t) = h}
E = {ht1, h1i  ht2, h2i | (t1  t2 2 �t ^ �t(t1) = h1 ^ �t(t2) = h2)

_(t1  t2 2 �m^ �m(t1) = h1^ �m(t2) = h2)}

Step 2: while 9ht, h1i, ht, h2i 2 V , s.t., h1 < h2 do
if h1 !⌃ h2 then

E = E [ {ht, h2i  ht0, h0i|ht, h1i  ht0, h0i 2 E}
[ {ht0, h0i  ht, h2i|ht0, h0i  ht, h1i 2 E}

else if h1 oh2 then
8t0|ht0, h0i  ht, h1i 2 E, do

V = V [ {ht0, h00i}, where h0 # h00.
else if h1 a h2 then

8t0|ht, h1i�E ht0, h0i, do
V = V [ {ht0, h00i}, where h0 !⌃ h00.

V = V � {ht, h1i}
E = E � {ht, h1i  } � {  ht, h1i}

Step 3: let (�0, �0, ⇢0) be defined as
�0(t) = h iff 9ht, hi 2 V .
t1  t2 2 �0 iff ht1, i  ht2, i 2 E.
⇢0 = ⇢m � {t | �m(t) a �0(t)}

Fig. 11. The dependence worldview union algorithm: (�0, �0, ⇢0) = (�t, �t, )� (�m, �m, ⇢m)

When not otherwise qualified, we will refer to the volatile state of ⌧ , i.e., s, as simply the
state of ⌧ . If ⌧ is both stable and independent, we will say that it is a daemon. Daemons
can be used to model humans or other “external agents” in a system that send and receive
messages, are resilient to (system!) failure, but do not “participate” in global state.

Operations on configurations. Let k = µ k ✓ be a configuration. Then we will use
net(k) to denote the network µ, and ns(k) to denote the nameserver ✓. The domain of k,
denoted by dom(k) is the set of all transactors in k’s name service map, i.e., dom(ns(k)).
Given a configuration k and a transactor name t 2 dom(k), we will use k(t) as a shorthand
for the transactor (ns(k))(t). We will say that a configuration k is ready or resilient iff for
all t 2 dom(k), k(t) is ready or resilient, respectively.

6.5 Transactor Configuration Transition Rules

We will divide the transition rules of the ⌧ -calculus into two principal classes: those rep-
resenting normal transitions, where the only form of failure allowed is message loss, and
node failure transitions representing either spontaneous node failures or rules designed to
manage inconsistencies resulting from such failures.

The set of normal transitions will be represented by the composite transition relation
‘�!̂’, which is the relational union of the primitive transition rules in Fig. 14 and 15.
The transition rules in Figs. 14 encode the “classical” semantics of the Actor model [Agha
1986]. The transition rules in Fig. 15 augment the classical semantics with additional
operations for managing consistency (e.g., creating checkpoints).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Figure 1.11: Dependence worldview algorithm
(γ′, δ′, ρ′) = (γt, δt, ) ⊕ (γm, δm, ρm) [1]



13

Object

source
target
method
arguments
continuation
tokenPosition
withMessage

mailbox
send(Message)
process(Message)
run()

actor
messages
put(Message)
get()
isEmpty()

bind(UAN, UAL)
getReferenceByName(UAN)
getReferenceByLocation(UAL)
migrate(UAL)

uan
ual

Thread

ActorMessage

salsa.language

java.lang

Mailbox

JoinDirectorUniversalActor

messages
tokens
continuation
tokensSet
process()
ack(i, token)

wwc.naming

UALUAN

URI

Figure 1.12: Class hierarchy diagram for the SALSA actor library [3]

Program.salsa
SALSA Source Code

Java Source Code
Program.java

SALSA
Actor Library

>> javac Program.java

>> salsac Program.salsa

Java Bytecode
Program.class

>> java Program

Java Virtual Machine

2.2 Actor Creation

2.3 Message Sending

2.4 Internal State Changes

3. CONTINUATIONS

3.1 Token-Passing Continuations

Figure 1.13: SALSA code compilation process [3]



2. Applications

In this chapter we briefly describe a few motivating application scenarios that would

benefit from a transactor model language implementation. A transactor language

benefits composing transactions where we have the ability to analyze meaningful

dependencies between participating agents. The transactor model allows us to rec-

ognize meaningful dependencies through state influences and minimizes the overhead

of rolling back transactions in the presence of failure. This is opposed to traditional

transaction management schemes that delimit a subset of operations on a set of par-

ticipating agents that define a transaction and processes them atomically to reach

global consistent states. This results in a total commit or revert of these operations

without taking into consideration which operations are directly invalidated from a

discovered failure.

Take for example a house purchase service that involves collaborating with

multiple other services. Possible transaction events would include a buying service

communicating with an appraisal service to value the requested property, communi-

cating with a bank or lending service to obtain a mortgage, requesting a title service

to obtain documents about the property, and negotiating with a seller. Among these

sub-transactions, there are multiple potential failure scenarios. One of which may

be a denial of a mortgage due to bad credit. Semantically a house purchase that

depends on the approval of the requested mortgage to fulfill the users requirement

to commit on the purchase would invalidate the entire transaction causing a roll-

back. However, a transactor language lets us model this failure to only rollback

sub-transactions directly dependent on the mortgage. Even though the “parent

transaction” has failed, sub-transactions such as the title search and appraisal in-

formation should be able to commit and preserve their results if the purchase were

to be reattempted. By leveraging the fine-grained dependencies of transactors, we

are able to reuse resources without having to inefficiently redo these actions. This

application is implemented and explained in greater detail in an example in chapter

4.

14



15

Another application would be a travel agency service. The task of this travel

service would be to make travel reservations based off the preferences of the cus-

tomer. A simple travel arrangement may specify an origin and destination, depar-

ture and return date ranges, and a maximum travel budget. To handle this request

the travel service may create sub-transactions to perform searches on airline tickets,

hotel accommodations, and car rental options. Under a transactor language, we can

present varying levels of dependencies such as hotel accommodations dependent on

the success of obtaining airline tickets. A hotel search needs to be rolled back if no

successful flights are found and a different mode of transportation results in a later

arrival date. A more dominant dependency causing total recall of the transaction

could be insufficient funds to satisfy the requirements of the travel request.

The key benefit of a transactor language in these examples is establishing these

dependencies implicitly by observing state mutations as a direct result of interac-

tion with another agent. Influential communications are thereby distinguishable

from casual ones. Any application with a collection of distributed components en-

gaging to negotiate a mutually desirable outcome can be implemented nicely with

an existing transactor language. Under this language, open distributed systems are

easier to build with a dynamic topology so that non-transactional and transactional

components can easily interact.



3. Language Implementation

3.1 Transactor Library

3.1.1 Transactor, Worldview, History

Our language is first developed as a transactor library on top of the SALSA

library. Figure 3.1 shows the class hierarchy diagram of our transactor library. A

transactor is encoded in the transactor.language.Transactor class that extends

and inherits from the salsa.language.UniversalActor class. In additional to the

semantics inherited from a SALSA actor we create Java classes that encapsulate the

semantics of a transactor worldview and history. Figure 3.2 shows the java class

Figure 3.1: Class hierarchy diagram for the transactor library

implementation of a transactor history. This class includes all the fields that define

a history: stable encodes the volatility value, incarnation encodes the current

value of its incarnation, and incarnation list records the list of checkpointed in-

16



17

public class History implements Serializable {
private boolean stable;

private AbstractList<Integer>incarnation list;

private int incarnation;

public History();

public History(History other);

public History(boolean stable, int incarnation,

AbstractList<Integer>incarnation list);

public boolean isStable();

public boolean isPersistent();

public void stabilize();

public void checkpoint();

public void rollback();

public boolean succeeds(History other);

public boolean stablizesFrom(History other);

public boolean invalidates(History other);

public boolean validates(History other);

}
Figure 3.2: History class

carnation values. isStable() and isPersistent() are two primitives that indicate

if the current history is stable and if it has previously checkpointed to stable storage

making it persistent to failures. stabilize(), checkpoint(), and rollback() im-

plement the history transitions described in Figure 1.4. stabilizesFrom(History

other) indicates if a given history is an updated version of the current history that

has been succeeded by stabilization. succeeds(History other), validates(His-

tory other), and invalidates(History other) implement the history relations

defined in Figure 1.10.

Figure 3.3 shows the Java class implementation of the transactor worldview.

This class naturally contains three fields: histMap represents the history map which

maps name strings to History instances, depGraph represents the dependency graph

implemented here as a mapping of name strings to a set of names the name key is

dependent on, and rootSet represents the root set as a set of name strings.

The union(Worldview other) method implements the worldview union algo-



18

public class Worldview implements Serializable {
private HashMap<String, History>histMap;
private HashMap<String, HashSet<String> > depGraph;

private HashSet<String> rootSet;

public Worldview();

public Worldview(HashMap<String, History> hmap,

HashMap<String, HashSet<String>> deps,

HashSet<String> roots);

public Worldview union(Worldview other);

public boolean invalidates(HashMap<String, History> other,

HashSet<String> domain);

public boolean independent(String t);

}
Figure 3.3: Worldview class

rithm defined in Figure 1.11 which returns a worldview that contains updated de-

pendency information reconciled by the algorithm. The union(Worldview other)

method is invoked on reception of a new message and the other argument represents

the worldview associated with the message in order to apply to the worldview of the

recipient. This is important since the worldview union algorithm is not commutative.

invalidates(HashMap<String, History> other, HashSet<String> domain) d-

etermines if the current worldview invalidates the set of names given in domain and

its respective history mappings given in other. This method is also invoked on

reception of a new message by the unionized worldview in order to evaluate if the

recipient transactor invalidates the message dependencies. The first precondition

of the transition rule [rcv2] in Figure 1.8 highlights use of this method. Lastly,

independent(String t) determines if the given transactor name t is indepen-

dent with respect to its dependency information known in the current worldview.

This method is called by the transactor primitive dependent which implements the

[dep1] and [dep2] transition rules defined in Figure 1.6. It is important to note

that this primitive determines a weak independence which means all transactors it

is dependent on are known to have stabilized but it itself may not be stable.

Each transactor instantiates a Worldview but dependency semantics are meant



19

to be transparent to the user. Similar to how SALSA implements a mailbox to

handle message reception transparently, worldview operations are handled internally

and the user cannot directly access such information except with supplied transactor

operators. The class skeleton of the Transactor class is shown in Figure A.1 of

Appendix A.

3.1.2 Message Sending/Reception

Message sending is inherited from SALSA as remote method invocations. We

leverage the existing actor message handling implementation and mount depen-

dency information along with messages to accommodate the transactor model. Just

as in SALSA, message sending is asynchronous and message processing is sequential

though the ordering of messages is not guaranteed. Message parameters are pass

by value to ensure there is no shared memory with transactor states. We provide

two methods to the Transactor class that implements transactor message handling:

public void sendMsg(String method, Object[] params,

Transactor recipient);

public void recvMsg(Message msg, Worldview msg wv);

sendMsg(String method, Object[] params, Transactor recipient) im-

plements a message send by taking as arguments a string, method, that represents

the type of message being sent which should match an appropriate message han-

dler on the recipient transactor and an array of message parameters, params, which

should match the arguments of the message handler signature. With these argu-

ments we instantiate a salsa.language.Message object the same way messages

are created in SALSA but instead we will actually create a new message that

wraps this requested message with the senders worldview and call the correspond-

ing recvMsg(Message msg, Worldview msg wv) message handler on the recipient.

This method implements the [snd] transition rule of Figure 1.5.

recvMsg(Message msg, Worldview msg wv) implements the [rcv1], [rcv2],

[rcv3], and [rcv4] transition rules shown in Figures 1.5 and 1.8. On reception



20

of a message this method first evaluates the message dependencies by invoking the

union algorithm on the recipients worldview along with the message worldview.

Afterward we branch off to one of four receive transition rules by analyzing the

reconciled dependency information. Invalidation of the recipient causes a rollback,

annihilating it if it is ephemeral; invalidation of the message discards the message

before it is processed; and if no invalidations are detected the message is placed in

the transactor’s mailbox to be processed normally by the SALSA library. In the

cases where the recipient does not become invalidated, its worldview is updated to

reflect the unionized worldview.

3.1.3 Stabilization, Checkpointing, Rollback

Stabilization, checkpointing and rollbacks are provided in the form of the fol-

lowing three transactor operator methods:

public void stabilize();

public void checkpoint();

public void rollback(boolean force, Worldview updatedWV);

stabilize() is a simple method that updates the transactor history volatility

value to be stable if it is not already stable and implements the [sta1] and [sta2]

transition rules presented in Figure 1.6. checkpoint() implements [chk1] and

[chk2] and stores the current transactor state in stable storage if the transactor is

independent and stable and clears its worldview. Implementation of stable storage

is described in a later section. rollback(boolean force, Worldview updatedWV)

implements the [rol1], [rol2], and [rol3] transition rules described in Figures 1.6

and 1.8. The arguments force and updatedWV are used when an implicit rollback

is caused by being invalidated by a received message. By passing a true to the

first argument we can force the transactor to rollback under this scenario even if it

is stable. The second argument represents the updated worldview obtained by the

union algorithm so the rolled back state reflects this information.

Implementation of a state rollback is inspired by SALSA actor migration.



21

Each transactor is inherently a SALSA actor, which encapsulates state in a thread

of control so we handle rollbacks by halting the current thread and starting a new

thread from a preserved checkpointed state and attaching the transactor name to it.

However, before doing so, we create a special placeholder transactor, defined by the

transactor.language.Rollbackholder class, to buffer incoming messages while

the rollback operation is taking place. We register this placeholder state with the

current transactor name under the SALSA naming service so messages can be routed

correctly. We then read the checkpointed state from stable storage and tell the local

system to start the transactor state as a new thread and reassign its name with the

naming service. All buffered messages from the placeholder are then forwarded to

the newly reloaded transactor’s mailbox and normal processing resumes.

3.1.4 Transactor Creation

Transactor creation is done with the following transactor method:

public Transactor newTActor(Transactor new T);

We use this method to extend the usual call to the new keyword in order to

instantiate the newly created transactors worldview to reflect dependence on its

parent. The new T argument is an instantiated object of the transactor class to be

created. The new transactor inherits the history map and dependency graph of the

parent augmented with the new transactor’s name and dependencies laid on the

new transactor by the names in the parent’s root set. Both parent and new child

transactor will reflect the same history map and dependency graph but the parent

will append the new transactor’s name in its root set while the child starts with

a fresh root set. This method returns the same reference to the new instantiated

transactor with an updated worldview, as depicted in the [new] transition in Fig-

ure 1.5. The returned reference must then be type casted back to the constructed

transactor class. The following code sample shows use of this method to create a

new HelloWorld transactor:



22

HelloWorld hwObject = (HelloWorld) newTActor(new HelloWorld());

3.1.5 State Mutation/Retrieval

State mutation and retrieval is done with the following two transactor meth-

ods:

public boolean setTState(String field, Object newValue);

public Object getTState(String field);

[get], [set1], and [set2] described in Figures 1.5 and 1.6 are implemented by

the above two methods. setTState(String field, Object newValue) takes as

arguments a string that represents the field being modified and the newValue to

mutate the state with. We use Java reflection to reference the appropriate field in its

state and mutation is done by replacing the value with the new value. State fields are

therefore inherently immutable so set states are actually creating new states similar

to mutating references to a Java String and how the Clojure [5] dynamic program-

ming language handles state changes. Similarly getTState(String field) uses

Java reflection to reference and return the value of the requested field. Dependen-

cies are created on the current root set if a set state occurs and the transactor name

is appended to its root set if a get state occurs.

3.2 Persistent State Storage

3.2.1 Universal Storage Locator

In order to handle persistent state storage, we introduce the Universal Stor-

age Locator (USL) to represent the location where checkpoints will be made. This

location can be the local system, a remote server, or even the cloud, allowing the

user to specify the optimal location to create persistent storage. The USL is in-

spired from the Universal Actor Name (UAN) and Universal Actor Locator (UAL)

in SALSA and is a simple uniform resource identifier. Some examples of USLs are

shown below. The first USL indicates local storage, the second indicates remote

storage on a specified FTP server, and the last USL specifies storage on Amazon’s

Simple Storage Service (S3) cloud storage [6].



23

file://path/to/storage/directory/

ftp://username:password@domain.com:1234/path/to/storage/directory/

http://s3.amazonaws.com/bucket/

Transactors are instantiated with a USL and if none is specified, checkpoints

are made locally in the current directory. Specifying a USL is similar to specifying

UAN and UAL in SALSA:

HelloWorld helloWorld = new HelloWorld ()

at (new UAN("uan://nameserver/id") ,

new UAL("rmsp://host1:4040/id"),

new USL("file://path/to/storage/directory/");1

When a transactor checkpoints it will reference its USL to serialize its state

and store a <transactor-name>.ser file at the location given by its USL. A rollback

will reference the same file at the USL location to retrieve and de-serialize its state.

The implementation of a USL also allows the possibility of mobile transactors similar

to how a SALSA actor’s UAN and UAL allow it to perform migration. Separating

a transactor’s storage location makes it location independent, allowing it migrate as

opposed to a locally checkpointing transactor. However further research still needs

to be done on modeling mobile transactors whose state may be location dependent.

3.2.2 Storage Service

Here we introduce the Transactor Storage Service, a service class that handles

performing serialization/de-serialization of a transactor’s state and storing/retrieving

it at the transactor’s USL. We implement this service as an interface shown in Fig-

ure 3.4. This simple interface has two methods for storing and retrieving state. We

chose to create a interface to give the user the ability to implement his or her own

desired serialization technique and USL protocol. Doing so gives the user the flex-

1This example is written with language support syntax which would compile to use the
newTActor(Transactor new T) method.



24

ibility to define the optimal implementation that best caters to the given program

specifications and performance requirements.

public interface TSTorageService {

public void store(Object state, URI USL);

public void Object get(URI USL);

}
Figure 3.4: Transactor storage service interface

For example a user might wish to use a FTP server to handle checkpoints and

will create USLs with the ftp:// scheme and implement the store(Object state,

URI USL) and get(URI USL) methods to handle the FTP protocol with authenti-

cation. A high performance program can implement the use of cloud storage that

has many benefits to program performance such as data redundancy and locality.

Another high performance example is an implementation that utilizes memory stor-

age instead of persistent storage to achieve fast checkpoint and rollback calls in a

program that disregards the possibility of node failures.

We implement this service by extending the salsa.language.ServiceFactory,

which manufactures references to standard location dependent services in SALSA.

If no storage service implementation is specified then the system will default to a

local file storage implementation. Internally, checkpoints and rollbacks invoke this

service through the service factory with the following calls:

ServiceFactory.getTStorage().store(this, USL);

Transactor.State savedState =

(Transactor.State) ServiceFactory.getTStorage().get(USL);

3.3 Proxy Transactor

In the transactor model, the semantics of message passing with dependencies

were developed while taking into consideration the possibility of transactors whose

task is to pass along messages they receive without affecting the dependencies of



25

those messages. Such a transactor is known as a proxy transactor. Similar to a

network proxy, a proxy transactor routes messages to other transactors and in doing

so must not introduce any new dependencies on that proxy. Proxy transactors can

prove useful in order to provide privacy for a certain resource or perform message

filtering.

We implement this abstraction by creating a transactor.lanuage.Proxy

transactor class that extends the transactor.language.Transactor class. By

doing so we inherit all the semantics of a traditional transactor, however we will

override the message send and receive implementations to prevent inserting volatile

dependencies. We do so by simply issuing an explicit call to stabilize prior to

sending or processing a new message. By stabilizing before sending a message, we

guarantee that the recipient transactor remains independent with respect the proxy.

This affects situations where the proxy may perform a get state introducing its name

to the message root set and the recipient subsequently performing a set state creat-

ing new dependencies on the names in the message root set. If the recipient wishes

to perform a checkpoint in the future then its worldview would have knowledge of

the proxy being stable and therefore not impede it from doing so.

We perform stabilization before processing a message upon reception to guar-

antee new dependencies are not introduced to the proxy. By being stable, any set

state calls while processing a message become no-ops and therefore the proxy will

not inherit any new dependencies from the message. Similarly, programmatic roll-

backs are also no-ops due to being stable. However, a proxy is allowed to checkpoint

and rollbacks due to node failures are possible. These two possibilities are also han-

dled by stabilization: the proxy returns to a stabilized state after checkpointing to

a volatile state; intermediate evaluation states of a stable transactor’s behavior are

logged to persistent storage according to the transactor model.2

The last consideration to make to ensure proxy transactors do not influence any

global dependencies is the creation of child proxy transactors and creation of child

transactors by the proxy transactor. We remove the ability of a proxy transactor

to create child transactors since doing so will alter its worldview to reflect a volatile

2This feature has not yet been implemented in our language.



26

child and could carry on as a dependency by future message recipients. A proxy

that attempts to create a child transactor becomes a no-op. Lastly, to eliminate

any transitive dependencies that stem from a proxy, we restrict proxy creation only

to transactors who meet two conditions: the transactor must be independent and

stable and the names in the transactor’s root set must also be stable. We reason

that this is logical because any invalidation of the parent transactor or transactors

whose state resulted in the creation of the proxy will also invalidate the proxy and

possibly any recipients of the proxy messages. This would be inconsistent with the

semantics of a proxy transactor.

3.4 Global Consistency

3.4.1 Consistent Transaction Protocol

To aid in composing transactor programs, we introduce the Consistent Trans-

action Protocol (CTP). This protocol draws inspiration from the Universal Check-

pointing Protocol (UCP) presented in [1]. The UCP was developed to ensure the

liveness property of the tau calculus under a set of preconditions. If these pre-

conditions are met then global checkpoints are established through this protocol.

However, a strict precondition of the UCP states that no failures can occur while

the UCP is taking place and no transactors will rollback during the UCP. This as-

sumes previous application dependent communication and a fault resistant system

to guarantee these conditions are met. While it is proven that global checkpoints

are possible in this type of situation, any failure would render the UCP useless.

Such failures may halt program progress if the rest of the program is unaware of

the failure without extra communication. Therefore we have introduced this new

protocol to ensure global consistent states can be reached even in the presence of

failures.

We abstract over a transaction defined as a set of participating transactors

communicating with each other that results in a global checkpoint or rollback.

Transactions are started by a trigger message sent by an outside agent whose recipi-

ent is defined to be the coordinator. On reception of the trigger message the message

handler behavior defined in the coordinator starts the transaction by starting the



27

“conversation” among the participating transactors. During this “conversation”,

states may be altered and new dependencies might be created. Eventually the

transaction ends when all “conversations” have been completed and ideally we wish

to reach a globally consistent state by issuing a global checkpoint or a rollback in the

case of failure, to promote atomicity and consistency. Durability of the transaction

is ensured by checkpointing a successful transaction and is dependent on the storage

implementation.

In order to reach a consistent state each participant must be made aware of the

state of the transactors it has become dependent on and more importantly it must

be made aware of any failures that may have invalidated itself. The UCP handles

relaying this information though the use of ping messages whose main purpose is

to carry dependency information and tell the recipient to attempt a checkpoint if

it has enough information to be aware of its independence, otherwise it is a no-op

and the cycle of ping messages continue until a checkpoint can be made. These

ping messages can also be used to inform others of failure and cause rollbacks to

invalidated transactors. The UCP only permits the use of ping messages to reach

checkpoints while our protocol will also allow invalidation information to be carried

along in ping messages.

In our proposed protocol we define 5 preconditions:

1) The transitive closure of all participants and their dependencies accrued

during the transaction must be known ahead of time and each participant must be

able to receive and issue ping messages.

2) There must be isolation of the participating transactors during the transac-

tion; i.e., communication only within the set of participants and messages may not

be received from an outside transactor that would introduce new dependencies.

3) Each participant starts from a state that is independent of any transactors

other than those among the participants. We also assume the outside agent who

sends the trigger message will not introduce any dependencies on itself or any other

outside transactors.

4) Each participant must be stable at the end of the transaction unless it has

rolled back at some point during the transaction.



28

5) The coordinator must be able to recognize a transaction has come to an

end and indicates start of the consistency protocol.

Once a transaction completes, each participant will send ping messages to all other

participants and attempt a checkpoint if it is independent. On reception of a ping

message, the transactor will also attempt a checkpoint.

Since each transactor arrives at a stable state at the end of a transaction if

it has not rolled back, a checkpoint succeeds if it is independent or has received

enough ping messages to know it is independent. In the case of failure, a rolled

back transactor is volatile at the end of a transaction so all checkpoint calls will

be no-ops. On the other hand, ping messages sent out from the failed transactor

will alert all those who were dependent on it and invalidate them, causing them

to also rollback. Therefore a globally consistent state is reached at the end of the

transaction through this protocol. This protocol also exemplifies eager evaluation

of dependencies as opposed to the natural lazy evaluation of the transactor model.

3.4.2 Ping Director

In order to accommodate the CTP we introduce a new abstraction know as

the Ping Director shown in Figure 3.5. The Ping Director is responsible for trigger-

ing the CTP by requesting all participants to ping each other. We also extend the

transactor with a new operator and three additional message handlers native to all

transactors shown below:

public void startTransaction(Transactor[] participants,

Transactor coordinator,

String msg,

Object[] msg args);

public void transactionStart(String msg, Object[] msg args,

PingDirector director);

public void pingreq(Transactor[] pingreqs);

public void ping()



29

behavior PingDirector extends Transactor {
private Transactor[] participants;

private boolean ack;

public PingDirector();

public void pingStart(Transactor[] participants,

Transactor coordinator, String msg,

Object[] msg args);

public void ping();

public void endTransaction();

}
Figure 3.5: PingDirector

The last two methods, pingreq(Transactor[] pingreqs) and ping(), give

transactors the ability to send and receive ping messages. pingreq(Transactor[]

pingreqs) takes an array of transactors and issues ping messages to each one, and

ping() handles the reception of ping messages to attempt a checkpoint. The

pingStart(...) method is a new transactor operator that is invoked by the out-

side agent who triggers the transaction. This method takes as arguments the ar-

ray of participants, the coordinator transactor to receive the trigger message, the

trigger message, and the trigger message arguments. Internally this method will

create a instance of the PingDirector that will handle the current transaction and

send a pingStart message to the PingDirector instance with the array of partic-

ipants, coordinator transactor reference, trigger message and its arguments. The

PingDirector will then record in its state the array of participants and then send

a transactionStart message with the trigger message and its arguments and a

reference to itself to the coordinator. The PingDirector also sends itself a ping()

message to be described later. The transactionStart(String msg, Object[]

msg args, PingDirector director) method records the PingDirector instance

reference in its state and sends the trigger message to itself to be processed and

start the transaction.

Since messages from the PingDirector affect the state of the coordinator,



30

we need the PingDirector to be independent so it will not affect the dependen-

cies of the transaction. We do so by having the system create an instance of the

PingDirector through a new service known as the Transaction Director. We ac-

cess the Transaction Director through the salsa.language.ServiceFactory and

request a new instance of the PingDirector instead of explicitly creating one in the

startTransaction(...) method.

When the coordinator recognizes the completion of the transaction it will

send a endTransaction() message to the PingDirector causing the PingDirector

to stabilize. This stabilization alerts the PingDirector that the transaction is

complete. The PingDirector recognizes this alert through the ping() it sent itself

at the start of the transaction. On reception of a ping() message the PingDirector

attempts a set state on the ack field. The value set is not important but the success

of this set state is an important indicator of if the transaction has completed. Before

the transaction has completed, the PingDirector will be volatile and therefore set

states are legal and will return true; however, when the PingDirector receives an

endTransaction() message causing it to stabilize, the set state will no longer be

legal and will return false. We use this as the indicator and have the PingDirector

resend the ping() message to itself until it recognizes it has stabilized in a polling

manner. At that point the PingDirector will send pingreq messages to every

participant and pass to each one the array of participants for them to ping. We

use stabilization as an indicator instead of parsing the actual value of ack because

updating the value of ack by the coordinator will apply new dependencies that

will be carry along the pingreq messages. This makes it possible for some pingreq

messages to be dropped due to being invalidated by the newly discovered dependency

information and therefore some participants omit themselves from communicating

ping messages.

The complex overhead of preparing a transaction and completing a transaction

is shown in Figure 3.6. Fortunately, this protocol is simplified by our abstraction

and the user only needs to worry about indicating the start and end of a transaction.

An example of this abstraction being utilized is shown in the examples in chapter

4. We also note that a proxy transactor, described in the previous section, cannot



31

Figure 3.6: Consistent transaction protocol using the PingDirector

be designated as a coordinator since it cannot alter its state to record a reference to

the PingDirector. Semantically, proxies have no effect on the global dependency

so therefore they do not participate in the CTP, being that they will always be

consistent with the global state.

We note that currently the CTP assumes that the coordinator and ping di-

rector are resistant to failure. However if one of these agents failed then the CTP

would not be able to be triggered. To accommodate for this possibility we pro-

pose extending the protocol to provide fault tolerance in the form of redundancy.

This can be done by assigning multiple coordinators where each would be able to

recognize a transaction completion and trigger the protocol if one fails. The same

can be done with creating multiple ping directors for a transaction and supplying a

reference to each one to the coordinator. The exact details of implementing a fault

tolerant CTP are left as future work.



32

3.5 Language Syntax

Similar to SALSA, transactor programs are written as actor behaviors that

are compiled into Java classes that extend the transactor.language.Transactor

class. Through this inheritance chain, behaviors have access to an augmented set of

operators that include both the actor and transactor library. These operators can

only be called by the transactor itself and are not explicit message handlers; therefore

other transactors cannot directly issue a stabilize, checkpoint, or rollback on

another transactor. These operators must be placed in message handlers inside the

transactor’s behavior. These operations are also sequential in nature, unlike message

sends, which are concurrent. We define here our proposed syntax changes for our

new transactor language that extends the SALSA/Java syntax.

The following statements are added/modified in the SALSA grammar along

with the compiled transactor library code. A more illustrative example of our pro-

posed syntax is shown in the house purchase example in chapter four.

stabilize; ::= this.stabilize();

checkpoint; ::= this.checkpoint(); return;

rollback; ::= this.rollback(false, null); return;

behavior <Identifier> ::= behavior <Identifier> extends Transactor

behavior proxy <Identifier> ::= behavior <Identifier> extends Proxy

dependent; ::= this.dependent();

tself; ::= this.self();

startTransaction(<ArgumentList>);

::= this.startTransaction(<ArgumentList>);

endTransaction; ::= this.sendMsg("endTransaction", new Object[0],

((PingDirector)this.getTState("pingDirector")));

new <Transactor-Behavior>

::= (<Transactor-Behavior>)this.newTActor(new <Transactor-Behavior>);



33

<State-Identifier>:=<Expression>;

::= this.setTState("<State-Identifier>", <Expression>);

~!<State-Identifier>;

::= ((<State-Identifier-Class>)this.getTState("<State-Identifier>"));



4. Examples

4.1 Reference Cell

let cell = trans
declstate 〈contents〉 in

msgcase
set〈val〉 ⇒
contents := val

| get〈customer〉 ⇒
send data〈!contents〉

to customer
esac

etats
init
〈0〉

snart

Figure 4.1: Simple reference cell [1]

The example shown in Figures 4.1, 4.2, and 4.3 shows three different imple-

mentations of a reference cell written in the tau calculus. These three different

versions highlight the semantics of the transactor model by providing progressively

more refined notions of consistent state under different failure and interaction as-

sumptions. The first version (cell) defines an unreliable reference cell that is volatile

and never checkpoints so it does not tolerate failures. Any transactor that depends

on the cell’s value will not be able to checkpoint and a failure will cause it to be an-

nihilated. This version of the reference cell is simply the actor implementation. The

second version (pcell1) presents a persistent reference cell that performs a checkpoint

on initialization so it will be able to survive failures. This cell will also stabilize and

checkpoint after each set to ensure the new value is persistent but this makes the

assumption that the sender is stable and independent, which may not be the case.

It also stabilizes before responding to gets to ensure no dependencies are incurred in

the cell’s customer and checkpoints to preserve the invariant of being checkpointed

and volatile. The last version (pcell2) ensures that the cell is reliable in that it will

only recognize set messages if the sender is independent and stable so no outstanding

34



35

let pcell1 = trans
declstate 〈contents〉 in

msgcase
initialize〈〉 ⇒
stabilize;
checkpoint

| set〈val〉 ⇒
contents := val
stabilize;
checkpoint

| get〈customer〉 ⇒
stabilize;
send data〈!contents〉

to customer
checkpoint

esac
etats

init
〈0〉

snart

Figure 4.2: Persistent reference cell [1]

dependencies are created. A volatile sender will cause the cell to rollback and dis-

card any changes to its state. Figures 4.4, 4.5, and 4.6 shows implementations of the

there different reference cells written in compiled code in SALSA of our transactor

language.

4.2 Bank Transfer

The example shown in Figures 4.7, 4.8, and 4.9 is the classic money transfer

transaction implemented with three transactors in the tau calculus. There is a teller

transactor that acts as the ATM machine, which performs the desired money transfer

between two given accounts. The bankaccount transactor represents a simple bank

account with a given balance and message handler to perform adjustments to its

balance. Lastly the pinger transactor is a auxiliary transactor that sends ping

messages to each participant to broadcast their current state to each other in order

for dependencies to be resolved and checkpoints to be reached or inconsistencies to

be discovered. Each transactor is assumed to be initially persistent. The example



36

let pcell3 = trans
declstate 〈contents〉 in

msgcase
initialize〈〉 ⇒
stabilize;
checkpoint

| set〈val〉 ⇒
contents := val
if dependent? then

rollback
else

stabilize;
checkpoint

fi
| get〈customer〉 ⇒

stabilize;
send data〈!contents〉

to customer
checkpoint

esac
etats

init
〈0〉

snart

Figure 4.3: Persistent reliable reference cell [1]

presented here is an updated version of the one presented in [1] with the addition

of the pinger transactor to correct a issue with the old example that prevented

transactors from resolving an inconsistent state. This updated example is also more

robust allowing the teller to work with any two bank accounts.

The transaction starts with an outside transactor sending the teller a transfer

message with the amount to transfer, delta, and accounts, inaccount and outaccount,

to credit and debit respectively. The last argument required is the pinger transactor

to be used in this transaction. We assume that the outside transactor creates an

appropriate pinger transactor initialized with a reference to the teller. The outside

transactor is assumed to be stable and both it and the created pinger transactor

are assumed to be independent so extra dependencies will not be introduced to the

teller and bank accounts. On reception of the transfer message, the teller will send a



37

behavior cell extends Transactor {
private int contents = 0;

public cell(int contents) {
super(self);

this.setTState("contents", contents);

}

public void set(int val) {
this.setTState("contents", val);

}

public void get(Transactor customer) {
Object[] args = {((int)this.getTState("contents"))};
this.sendMsg("data", args, customer);

}
}

Figure 4.4: Simple reference cell implementation

pingStart to the pinger with references to both accounts and adjustment messages

to both accounts with the amount to adjust. The pinger sets its state with both

accounts, stabilizes, and sends itself a ping telling itself to ping the teller. It is

important to note here that the pingStart message is the first message sent by the

teller and therefore the teller passes this message like a proxy without introducing

new dependencies to the pinger. The subsequent adj messages sent by the teller

involve a reference to self which adds the teller name to the message root set.

When each account receives the adj message, both perform a set state updating

their balances and add a dependency on the teller. Each account determines if the

updated balance is a valid amount. If so, it stabilizes and sends a done message

to the teller, otherwise it sends a done message and performs a rollback. Each

time the teller receives a done message it updates the number of acknowledgements

it has received and stabilizes once it receives both. At this point the teller does

not know if each adjustment was successful or not, assuming the done message is

not interpreted, and it is also now dependent on both accounts since it has also

performed a set state.

The pinger transactor starts the commit protocol after the teller gets an ac-



38

behavior pcell extends Transactor {
private int contents = 0;

public pcell(int contents) {
super(self);

this.setTState("contents", contents);

}

public void initialize() {
this.stabilize();

this.checkpoint(); return;

}

public void set(int val) {
this.setTState("contents", val);

this.stabilize();

this.checkpoint(); return;

}

public void get(Transactor customer) {
this.stabilize();

Object[]args = {((int)this.getTState("contents"))};
this.sendMsg("data", args, customer);

this.checkpoint(); return;

}
}

Figure 4.5: Persistent reference cell implementation

knowledgement from both accounts. We can observe that the ping message handler

of the teller performs a set state on an auxiliary member, acked, and replies with

a ping if it is successful and pingreq if it fails. This is used to indicate if the

teller is currently stable, which only occurs after obtaining both acknowledgements.

Until the teller is stable, it will exchange ping messages with the pinger and once

it is, it sends a pingreq. Another important point to be made here is even though

the teller is dependent on the pinger, it has no real effect since the pinger is inde-

pendent. On reception of a pingreq the pinger sends pingreq messages to both

accounts and checkpoints to return it to a volatile state so it can process new trans-

actions. These pingreq messages cause both accounts to reply with a pingreq to

the teller, which informs the teller the status of both accounts. Therefore if either



39

behavior prcell extends Transactor {
private int contents = 0;

public prcell(int contents) {
super(self);

this.setTState("contents", contents);

}

public void initialize() {
this.stabilize();

this.checkpoint(); return;

}

public void set(int val) {
this.setTState("contents", val);

if (this.dependent()) {
this.rollback(false, null); return;

}
else {

this.stabilize();

this.checkpoint(); return;

}
}

public void get(Transactor customer) {
this.stabilize();

Object[] args = {((int)this.getTState("contents"))};
this.sendMsg("data", args, customer);

this.checkpoint(); return;

}
}

Figure 4.6: Persistent reliable reference cell implementation

account has rolled back it will cause the teller to also rollback, and according to

[rcv3] the message remains so the teller will ping the other account causing that

to also rollback. In this scenario the checkpoint calls are no-ops and ping messages

received by a rolled back account are dropped since they are invalidated. In the

absence of failure each transactor will be able to successfully checkpoint and a glob-

ally consistent state is reached once the transaction completes. Figures 4.10, 4.11,

and 4.12 show the SALSA transactor implementation of the teller, bankaccount,



40

let teller = trans
declstate 〈acks, acked〉 in

msgcase
transfer〈delta, inacct, outacct, pinger〉 ⇒
send pingStart〈inacct, outacct〉 to pinger ;
send adj〈delta, self〉 to inacct ;
send adj〈−delta, self〉 to outacct ;

| done〈msg〉 ⇒
send println〈msg〉 to stdout ;
acks := !acks + 1;
if !acks = 2 then

stabilize;
fi

| pingreq〈requester〉 ⇒ // may cause rollback
send ping〈〉 to requester ;
checkpoint

| ping〈pinger〉 ⇒
if (acked := nil) = true then

send ping〈〉 to pinger ;
else

send pingreq〈〉 to pinger ;
fi

esac
etats

init
〈0, nil〉

snart

Figure 4.7: Electronic money transfer example: Teller [1]

and pinger respectively. The execution trace of our implementation is shown in

Appendix B Figures B.1, B.2, and B.3.

The implementation of the bank transfer along with the pinger transactor

led to the development of our Consistent Transaction Protocol and Ping Director.

Figures 4.13 and 4.14 present the same example implemented with the CTP and

PingDirector, allowing us to simplify the original implementation and remove the

pinger transactor. We assume a startTransaction message is sent by an outside

agent to start this transaction.



41

let bankaccount = trans
declstate 〈bal〉 in

msgcase
adj〈delta,atm〉 ⇒
bal := !bal + delta;
if !bal < 0 then

send done〈"Not enough funds!"〉 to atm;
rollback

else
stabilize;
send done〈"Balance update successful"〉 to atm;

fi
| pingreq〈requester1,requester2〉 ⇒

send pingreq〈requester2 〉 to requester1 ;
| ping〈〉 ⇒ // may cause rollback

checkpoint
esac

etats
init
〈0〉

snart

Figure 4.8: Electronic money transfer example: Bankaccount [1]

4.3 House Purchase

This example simulates the subset of operations that might be performed

by a collection of web services involved in the negotiation of a house purchase.

Traditionally, a house purchase is a complex task that involves multiple parties and

back and forth communication. Some steps required include appraising the desired

house, searching for the title, applying for a mortgage, and making negotiations. We

represent these operations using five services: the buySrv representing the buyer,

the sellSrv representing the seller, the apprSrv representing the appraisal service,

the lendSrv representing the mortgage lender, and the srchSrv representing the

title search service. Our example defines the following steps taken to complete a

house purchase:

1) The buyer chooses a candidate house and initiates the buySrv to manage the

house purchase process

2) The buySrv contacts the appraisal service, apprSrv, in order to obtain the market



42

let pinger = trans
declstate 〈acct1, acct2, atm〉 in

msgcase
init〈〉 ⇒
stabilize;
checkpoint;

| pingStart〈inacct, outacct〉 ⇒
acct1 := inacct ;
acct2 := outacct ;
stabilize;
send ping〈〉 to self ;

| ping〈〉 ⇒
send ping〈self〉 to !atm;

| pingreq〈〉 ⇒
send pingreq〈!atm, !acct2〉 to !acct1 ;
send pingreq〈!atm, !acct1〉 to !acct2 ;
checkpoint

esac
etats

init
〈nil, nil, atm〉

snart

Figure 4.9: Electronic money transfer example: Pinger

value of the house

3) The apprSrv contacts the sellSrv and requests basic information about the

house

4) The apprSrv combines the house specifications with other reference information

to compute a tentative market price. This tentative market price is only an estimate

which is not a definite appraisal until an on-site visit is made to the house to verify

the accuracy of the original specifications

5) The buySrv makes an offer to the sellSrv based on the appraisal. The buySrv

also contacts the srchSrv to perform a title search and the lendSrv to obtain a

mortgage

6) The lendSrv contacts the apprSrv to confirm the appraisal information which

is given after an on-site verification is completed

7) The lendSrv approves the mortgage and the buySrv will close the house purchase

once it receives a response from the srchSrv and the sellSrv accepts the offer



43

behavior teller extends Transactor {
private int acks = 0;

private Object acked;

public teller() {
super(self);

}

public void initialize() {
this.stabilize();

this.checkpoint(); return;

}

public void transfer(int delta, bankaccount inacct,

bankaccount outacct, pinger acct pinger) {
Object[] accts = {inacct, outacct};
this.sendMsg("startPing", accts, acct pinger);

Object[] in params = {delta, this.self()};
Object[] out params = {-1*delta, this.self()};
this.sendMsg("adj", in params, inacct);

this.sendMsg("adj", out params, outacct);

}

public void done(String msg) {
standardOutput<-println(msg);

this.setTState("acks", ((int)this.getTState("acks")) + 1);

if (((int)this.getTState("acks")) == 2){
this.stabilize();

}
}

public void pingreq(Transactor requester) {
this.sendMsg("ping", new Object[0], requester);

this.checkpoint(); return;

}

public void ping(Transactor acct pinger) {
if (this.setTState("acked", null))

this.sendMsg("ping", new Object[0], acct pinger);

else

this.sendMsg("pingreq", new Object[0], acct pinger);

}
}

Figure 4.10: Teller account implementation



44

behavior bankaccount extends Transactor {
private int bal = 0;

public bankaccount(int balance) {
super(self);

this.setTState("bal", balance);

}

public void initialize() {
this.stabilize();

this.checkpoint(); return;

}

public void adj(int delta, teller atm) {
this.setTState("bal",

((int)this.getTState("bal")) + delta);

Object[] response = new Object[1];

if (((int)this.getTState("bal")) < 0){
response[0] = "Not enough funds!";

this.sendMsg("done", response, atm);

this.rollback(false, null); return;

}
else {

this.stabilize();

response[0] = "Balance update successful!";

this.sendMsg("done", response, atm);

}
}

public void pingreq(Transactor requester1,

Transactor requester2) {
Object[] req = {requester2};
this.sendMsg("pingreq", req, requester1)

}

public void ping() {
this.checkpoint(); return;

}
}

Figure 4.11: Bankaccount implementation



45

behavior pinger extends Transactor {
private bankaccount acct1;

private bankaccount acct2;

private teller atm;

public pinger() {
super(self);

}

public void init(teller atm) {
this.setTState("atm", atm);

this.stabilize();

this.checkpoint();

}

public void startPing(bankaccount acct1,

bankaccount acct2) {
this.setTState("acct1", acct1);

this.setTState("acct2", acct2);

this.stabilize();

this.sendMsg("ping", new Object[0], this.self());

}

public void ping() {
Object[] me = {this.self()};
this.sendMsg("ping", me,

((Transactor)this.getTState("atm")));

}

public void pingreq() {
Object[] ping1 = {((Transactor)this.getTState("atm")),

((Transactor)this.getTState("acct2"))};
Object[] ping2 = {((Transactor)this.getTState("atm")),

((Transactor)this.getTState("acct1"))};
this.sendMsg("pingreq", ping1,

((Transactor)this.getTState("acct1")));

this.sendMsg("pingreq", ping2,

((Transactor)this.getTState("acct2")));

this.checkpoint(); return;

}
}

Figure 4.12: Pinger implementation



46

behavior teller extends Transactor {
private int acks = 0;

private Object acked;

public teller() {
super(self);

}

public void initialize() {
this.stabilize();

this.checkpoint(); return;

}

public void transfer(int delta, bankaccount inacct,

bankaccount outacct) {
Object[] in params = {delta, this.self()};
Object[] out params = {-1*delta, this.self()};
this.sendMsg("adj", in params, inacct);

this.sendMsg("adj", out params, outacct);

}

public void done(String msg) {
standardOutput<-println(msg);

this.setTState("acks", ((int)this.getTState("acks")) + 1);

if (((int)this.getTState("acks")) == 2){
this.stabilize();

this.sendMsg("endTransaction", new Object[0],

((PingDirector)this.getTState("pingDirector")));

}
}

}
Figure 4.13: Teller implementation with CTP and PingDirector

The steps above describe a scenario where every step runs accordingly without

any semantic failures. However, one possible way this house purchase may fail can be

observed in step 6 in the case of the verification discovering inaccurate information.

Upon this discovery the apprSrv voluntarily rolls back its state in order to reprocess

the verified specifications. This in turn causes the mortgage information to be

inconsistent with the information the buySrv has. As a result, the buySrv must

also be caused to rollback due to this invalidated dependency where it may choose



47

behavior bankaccount extends Transactor {
private int bal = 0;

public bankaccount(int balance) {
super(self);

this.setTState("bal", balance);

}

public void initialize() {
this.stabilize();

this.checkpoint(); return;

}

public void adj(int delta, teller atm) {
this.setTState("bal",

((int)this.getTState("bal")) + delta);

Object[] response = new Object[1];

if (((int)this.getTState("bal")) < 0){
response[0] = "Not enough funds!";

this.sendMsg("done", response, atm);

this.rollback(false, null); return;

}
else {

this.stabilize();

response[0] = "Balance update successful!";

this.sendMsg("done", response, atm);

}
}

}
Figure 4.14: Bankaccount implementation with CTP and PingDirector

to renegotiate the sale price. Figure 4.15 depicts this failure scenario.

Figures 4.16, 4.17 4.18, 4.20, 4.21, 4.22, 4.23, and 4.19 show our implemen-

tation of this example written in our proposed language syntax. Figure 4.23 is

an implementation of the on-site verification process and Figure 4.19 represents a

credit database contacted by the lender in order to obtain the buyers credit history

used to calculate the requested mortgage. searchSrv, verifySrv, creditDB are

implemented as proxies because they only provide access to a resource in order to

obtain information and thus will not have an effect on the global dependency. This



48

Figure 4.15: House purchase scenario involving semantic failure [1]

implementation also allows other types of failures to occur such as an offer rejection

and mortgage denial. We make use of our Consistent Transaction Protocol and

Ping Director in this example to manage the house purchase transaction to notify

all participants of a failure or issue a global checkpoint so we arrive at a globally

consistent state. This transaction is started by the following call by an outside agent:

Transactor[] participants = {<buySrv>, <sellSrv>, <apprSrv>,

<lendSrv>, <searchSrv>,

<verifySrv>, <creditDB>};
startTransaction(participants, <buySrv>,

"newHousePurchase", <houseid>);

An important observation can be made from this example highlighting how

the transactor model tracks fine grained dependencies. Though the use of the CTP

promotes atomicity of a transaction, its primary purpose is to guarantee consistency,



49

as the name suggests. The atomicity aspect of the CTP and the transactor model

only applies to participants who are strictly invalidated by a dependency on a failed

component. In that regard, other participants, such as the srchSrv who remains

independent throughout the transaction, will not rollback even if another participant

encounters failure. This key feature separates the transactor model from other

traditional transaction methodologies that have an ”all or nothing” approach. Like

the srchSrv, any participant who is semantically not affected by the overall result

of the transaction will not have its operations reverted. This offers benefits in

terms of preventing unnecessary rollbacks and not having to redo the same task if

the transaction is attempted again allowing it to reuse results without having to

recompute them. The srchSrv is a highly simplified implementation of an actual

title search service that would involve a much more complex process. This process

locates the required information for the title to the house, and this result would have

to be re-computed if the search service were to rollback. If the overall transaction

does fail and is reattempted, that title information will still be persistent, allowing us

to reuse resources. The fact that the srchSrv is implemented as a proxy also ensures

us that it has no effect on the global dependency of the transaction and will not incur

any upon itself. Similarly, the verifySrv and creditDB both being proxies have no

effect on the rest of the transaction and will not be caused to rollback. An execution

trace of our implementation is shown in Appendix B, Figures B.4, B.5, B.6, B.7, B.8,

and B.9.



50

behavior sellSrv {
HashMap minPrices, specs;

int offeredPrice = 0;

sellSrv(HashMap specsInfo, HashMap mins) {
specs := specsInfo;

minPrices := mins;

}

void initialize() {
stabilize;

checkpoint;

}

void reqSpecs(String houseId, Transactor customer) {
customer<-specsResp(∼!specs.get(houseId),

∼!minPrices.get(houseId));
}

void offer(String houseId, int price, buySrv buyer) {
offeredPrice := price;

if (price >= ∼!minPrices.get(houseId)) {
stabilize;

buyer<-close();

} else {
buyer<-rejectOffer();

rollback;

}
}

}
Figure 4.16: sellSrv implementation



51

behavior buySrv {
searchSrv searcher;

apprSrv appraiser;

sellSrv seller;

lendSrv lender;

verifySrv verifier;

creditDB creditHistory;

int price = 0;

String title, mortgage, houseid;

buySrv(searchSrv srchr, apprSrv appr,

sellSrv sellr, lendSrv lendr,

verifySrv verifr, creditDB cHistory) {
searcher := srchr;

appraiser := appr;

seller := sellr;

lender := lendr;

verifer := verifr;

creditHistory := cHistory;

}

void initialize() {
stabilize;

checkpoint;

}

void newHousePurchase(String newHouseId) {
houseid := newHouseId;
∼!appraiser<-reqAppraisal(∼!houseid, self,

∼!seller, ∼!verifier);
}

void appraisal(int newPrice) {
price := newPrice;
∼!seller<-offer(∼!houseid, ∼!price, self);
∼!searcher<-reqSearch(∼!houseid, self);
∼!lender<-reqMortgage(∼!houseid, self, ∼!price,

∼!appraiser, ∼!creditHistory);
}

Figure 4.17: buySrv implementation



52

void titleResp(String newTitle) {
title := newTitle;

}

void mortgageApproval(String approvalid) {
mortgage := approvalid;

}

void close() {
if (∼!title != null && ∼!mortgage != null) {

stabilize;

endTransaction;

} else {
self<-close();

}
}

void rejectOffer() {
endTransaction;

rollback;

}

void mortgageDeny() {
endTransaction;

rollback;

}
}

Figure 4.18: buySrv implementation cont.

behavior proxy creditDB {
creditDB() {}

void initialize() {
checkpoint;

}

void getCreditApproval(String houseid, buySrv buyer,

int price, lendSrv requester) {
requester<-approvalResp("approval-" + houseid);

}
}

Figure 4.19: creditDB implementation



53

behavior apprSrv {
String house, specs;

int price = 0;

buySrv buyer;

Transactor requester;

verifySrv verifier;

apprSrv() {}

void initialize() {
stabilize;

checkpoint;

}

void reqAppraisal(String houseid, buySrv buyr,

sellSrv seller, verifySrv verifr) {
buyer := buyr;

house := houseid;

verifier := verifr;

seller<-reqSpecs(∼!house, self);

}

void specsResp(String newSpecs, int newPrice) {
specs := newSpecs;

price := newPrice;
∼!buyer<-appraisal(newPrice);

}

void reqPrice(Transactor customer) {
requester := customer;
∼!verifier<-verifySpecs(∼!house, ∼!specs, self);

}

void verify(boolean ok, int verifiedPrice) {
if (ok) {

stabilize;
∼!requester<-appraisal(verifiedPrice);

} else {
∼!requester<-appraisal(verifiedPrice);
rollback;

}
}

}
Figure 4.20: apprSrv implementation



54

behavior lendSrv {
buySrv buyer;

String house;

int price = 0;

creditDB creditAgency;

lendSrv() {}

void initialize() {
stabilize;

checkpoint;

}

void reqMortgage(String houseid, buySrv buyr, int reqPrice,

apprSrv appraiser, creditDB creditHistory) {
house := houseid;

price := reqPrice;

buyer := buyr;

creditAgency := creditHistory;

appraiser<-reqPrice(self);

}

void appraisal(int newPrice) {
price := newPrice;
∼!creditAgency<-getCreditApproval(∼!house, ∼!buyer,

∼!price, self);

}

void approvalResp(String approvalid) {
if (approvalid != null) {

stabilize;
∼!buyer<-mortgageApproval(approvalid);

} else {
∼!buyer<-mortgageDeny();
rollback;

}
}

}
Figure 4.21: lendSrv implementation



55

behavior proxy searchSrv {
HashMap titlesDB;

searchSrv(HashMap titlesInfo) {
titlesDB := titlesInfo;

}

void initialize() {
checkpoint();

}

void reqSearch(String houseId, Transactor customer) {
customer<-titleResp(∼!titlesDB.get(houseId));

}
}

Figure 4.22: srchSrv implementation

behavior proxy verifySrv {
HashMap specs, prices;

verifySrv(HashMap newSpecs, HashMap newPrices) {
specs := newSpecs;

prices := newPrices;

}

void initialize() {
checkpoint;

}

void verifySpecs(String houseid, String reqSpecs,

Transactor customer) {
if (reqSpecs.equals(∼!specs.get(houseid))) {

customer<-verify(true, ∼!prices.get(houseid));
} else {

customer<-verify(false, ∼!prices.get(houseid));
}

}
}

Figure 4.23: verifySrv implementation



5. Related Work

5.1 Argus Programming Language and System

Argus [7] is a programming language and system developed to support dis-

tributed programs. Argus was designed to address the various problems that arise

in a distributed system such as non-deterministic behavior of concurrent activi-

ties and node failures. To resolve these issues, Argus defines a set of abstractions

to model distributed behavior. One abstraction is called the guardian. In Argus,

guardians are very much akin to a SALSA actor. Like an actor, guardians are meant

to encapsulate a resource and permit access to its resources through handlers. Direct

access to these resources is strictly forbidden except through the use of handlers.

Handlers are called by other guardians through a message based communication

mechanism and arguments are passed by value to prevent shared access. Guardians

reside in a single node and have the ability to migrate. Guardians can also create

other guardians and pass names of guardians and handlers to each other. Unlike

the single message processing implementation of a SALSA actor, guardians invoke

a new process for each handler call and each guardian may contain one or more

processes running concurrently.

Fault tolerance in Argus is provided with stable objects: resources within a

guardian that are periodically written to stable storage to survive failures. This is

opposed to volatile objects that are discarded in the event of a crash. These objects

are implemented as atomic objects, which allocate access through the use of locks

to resolve concurrency. Similar to a transactor persistent and volatile state, atomic

objects use versioning to handle recovery from failures. A base version is written

to stable storage and modifications are applied to a copy that will be committed to

the base version if a transaction is successful.

Argus also defines another abstraction known as an action to model a trans-

action. Actions are atomic and serializable in nature. There is also a notion of

sub actions enabling actions to be nested and run concurrently within a top action.

Further concurrency control is enforced by lock inheritance and propagating version

56



57

changes up to the parent action. Successful sub actions push version changes to

be inherited by the parent in a stack maintenance manner and the success of the

top action would commit all changes to stable storage, otherwise all changes are

discarded.

Though there are many similarities with Argus and actors, Argus takes a very

different approach toward managing fault tolerant distributed state compared to

transactors. Unlike transactors, Argus does not directly track dependencies and

takes an ”all or nothing” approach to determining if a set of operations should

be committed. Another noticeable difference is the level of concurrency with a

guardian where multiple messages are processed at the same time whereas messages

are queued with transactors.

5.2 Atomos Transactional Programming Language

Atmos [8] is a transactional programming language with implicit transactions,

strong atomicity, and scalable multiprocessor implementation. That is, it makes

transactional memory operation behaviors implicit and uncommitted states of trans-

actional code unseen, and abstracts transactional memory for multiprocessor imple-

mentation. Atomos relies on the transactional memory model which executes read

and write instructions in an atomic way implemented through read and write sets

as a collection of memory addresses. These read sets are used in Atomos to emulate

the locking mechanism found in Argus but also as a failure detection technique.

Atomos declares transactions inside a atomic block which follows closed loop

semantics in that reads to addresses in the transaction’s write set outside of the

transaction do not observe uncommitted changes and writes to addresses within

the read set of a transaction cause a violation possibly causing a rollback. These

situations are defined as an intersection of the read and write sets of two different

transactions. Atomos also introduces new conditional waiting constructs through

its watch and retry statements. A watch observes a particular object in a watch

set that leverages read sets to observe violations to flag reevaluation of the value

of the watch condition. A retry statement, usually used in conjunction with a

watch, rolls back all operations within the transaction, yields the current thread,



58

and communicates the watch set to the scheduler to listen for violations.

Nested atomic transactions are also supported and inherit child read and write

sets to the parent similar to how locks are inherited in the Argus implementation

of nested transactions. Unlike Argus, but comparable to transactors, Atomos pro-

vides open nested transactions, which immediately commit child transactions at

completion. Like transactors where independent agents of a failed transaction can

still checkpoint, the rollback of a parent transaction is independent from completed

open nested transactions.

5.3 Stabilizers: A Modular Checkpointing Abstraction for

Concurrent Functional Programs

Stabilizers [9] is a linguistic abstraction that models transient failures in con-

current threads with shared memory. These abstractions enforce global consistency

by monitoring thread interactions to compute the transitive closure of dependen-

cies. Like transactors, any non-local action such as thread communication or thread

creation constitutes state dependency; however, these dependencies are recorded

even if there is no state mutation. In the presence of transient failure, rollbacks are

performed that revert state to immediately preceding some non-local action which

become implicit checkpoints.

Stabilizers introduce three primitives: stable, stabilize, and cut. stable

allows the user to define a particular region of code to be monitored for non-local

actions and whose effects would be reverted as a single unit. stabilize is analo-

gous to a transactor rollback, reverting execution to a dynamically calculated global

state corresponding immediately prior to a stable section or non-local action. This

state reversion rolls out thread communication and creation in pairs where the com-

municating partner and the created thread will also rollback. The third primitive

delimits how far stabilization can occur. Therefore, a rollback cannot revert state

past a cut. Cuts are useful to prevent rolling back irrevocable operations such as

file I/O.

Unlike transactors, there is no predefined concrete checkpoint to rollback to

since stabilizers perform thread monitoring instead of state captures. Therefore, a



59

stabilize call may not necessarily rollback to the dynamically closest stable sec-

tion. Also, there is no notion of proxies since all communication is logged as a

dependency. Another key difference between transactors and stabilizers is that sta-

bilizers have eager evaluation of dependencies to immediately evaluate a consistent

global state.



6. Discussion and Conclusions

6.1 Contributions

The main contribution of this paper is introducing a language that provides

a comprehensive functional implementation of the transactor model. By creating

a language that realizes the semantics of the transactor model we are able to shift

away from the necessity of developing middleware to handle global state. Instead of

building customized infrastructure to support distributed state, our transactor lan-

guage provides the flexibility to compose various types of distributed programs while

handing dependencies in message passing implicitly. This flexibility can exploited

through the Universal Storage Locator giving users an option to define the best fault

tolerant storage technique for their needs. Also, by having a language implementa-

tion, we are able to more thoroughly test the transactor model and promote further

research into transactor program semantics. From being able to robustly test the

transactor model, we are also able to optimize some of the operational semantics to

yield a more efficient implementation such as the optimized version of the World-

view Union Algorithm presented in this paper. Lastly, a contribution made to the

study of transactors is our introduction of the Consistent Transaction Protocol that

highlights the restrictions and enhances the Universal Checkpointing Protocol. This

new protocol abstracts a technique to promote progress in transactor programs and

reach globally consistent states. Our proposed protocol also allows for programming

transactions that follow traditional A.C.I.D. properties.1

6.2 Future Work

Though our language is currently a functional implementation of the transactor

model, it is still in a developmental stage and leaves much work to be done. As a

consequence of its development it also opens up new directions in the study of

1Atomicity is guaranteed for all dependent participants, isolation is assumed as a precondition
of the protocol, and durability depends on the level of fault tolerance of the underlying storage
system.

60



61

transactors. We summarize some of the key future work in the following.

6.2.1 Compiler

As with any programming language, a robust compiler is required to parse the

syntactic support of a language and create an executable program. Currently, our

transactor language can be written in SALSA with our transactor library. How-

ever, this involves a lot of tedious effort to call the constructs of the library. Our

next objective would be to develop a compiler similar to the SALSA preprocessor

to produce Java code that can be compiled and run on a JVM. This compiler would

greatly simplify writing transactor programs with the proposed syntax, which in-

herits much of the familiar SALSA and Java grammar. A compiler would also allow

our language to implicitly support object model semantics such as inheritance and

polymorphism 2 as well as produce more efficient preprocessed code.

6.2.2 Node Failure

Modeling node failures is still left to be implemented in our language. Fol-

lowing the transition rules of the transactor model, a transactor system needs to

be able to recognize node failures and reload transactors from persistent storage. A

record of previously running transactors on the node would be required, perhaps as

an extension of the naming service. The program would then proceed normally as if

a rollback has occurred. This also opens up concerns on how to bootstrap programs

and restart the network of messages. Along with bootstrapping programs there is

an open question of whether to initially checkpoint the startup transactor to prevent

total program annihilation if the startup node fails before it becomes persistent.

6.2.3 Isolation

One transaction property that the Consistent Transaction Protocol does not

guarantee is isolation. In fact, this is a strict precondition in order for the protocol to

be applied correctly. As an improvement of our proposed protocol we wish to explore

methods that can establish isolation among participants of a given transaction. One

possible technique is to apply a two-phase transaction initialization protocol similar

2This is currently only supported by modifying Java code preprocessed from SALSA code.



62

to the two-phase commit protocol. The necessity of a two-phase process is due to the

message passing nature of transactors where there is no guarantee of when messages

will arrive or even be received. Achieving isolation would be valuable so the user

would only have to reason about the specifics of a transaction rather than consider

its reliability.

6.2.4 Migration

Migration is a powerful ability to change location to another node to make use

of environmental services residing in that node or locate more optimal computational

resources [11]. SALSA has built in support for actor migration and our transactor

language allows transactors to be initialized in different SALSA theaters. However,

transactor migration is still an area of research. Under the transactor model, mi-

gration is not explicitly modeled by the tau calculus and there are concerns over

whether location is represented by a transactor’s state where an implementation

would have to perform reverse migrations should a transactor ever rollback. Mi-

gration also becomes a factor in implementing node failure where each node would

have to track which transactors would have to be recovered. Transactor USL was

developed to permit the possibility of mobile transactors so persistent state storage

would not become a limiting factor.

6.2.5 Garbage Collection

While research has been done to implement distributed garbage collection in

SALSA [10], we have disabled the SALSA garbage collector in our current transac-

tor implementation. In order to correctly apply garbage collection to transactors,

the SALSA garbage collector needs to be extended to accommodate rollbacks in or-

der to reclaim failed transactors and correctly recognize new references to reloaded

transactors.

6.2.6 Continuations

Currently, in order to retrieve information from another transactor, the sender’s

name needs to be passed along with the message so the recipient knows where to

send a reply. This interaction between transactors can be simplified by implementing



63

continuations. Continuations would make it easier to compose transactor programs

by emulating serialized execution among asynchronous transactors. SALSA pro-

vides this in the form of tokens. However, research needs to be done to consider how

to model tokens in tau calculus under the transactor model so that dependencies

can be applied correctly.



REFERENCES

[1] J. Field and C. Varela, “Transactors: A programming model for maintaining
globally consistent distributed state in unreliable environments,” unpublished.

[2] B. Boodman, “Implementing and verifying the safety of the transactor
model,” M.S. thesis, Dept. Comp. Sci., R.P.I., Troy, NY, 2008.

[3] C. Varela, “Worldwide Computing with Universal Actors: Linguistic
Abstractions for Naming, Migration, and Coordination,” Ph.D. dissertation,
Dept. Comp. Sci., U. of Illinois at Urbana-Champaign, 2001.

[4] C. Varela et al., “The salsa programming language: 1.1.2 release tutorial,”
Dept. Comp. Sci., R.P.I., Troy, NY, Tech. Rep. 07-12, 2007.

[5] R. Hickey. (2014). Values and Change - Clojure’s approach to Identity and
State, [Online]. Available: http://www.clojure.org/state, [Accessed: 1 July
2014].

[6] Amazon Web Services. (2014). Amazon Simple Storage Service
Documentation, [Online]. Available:
http://aws.amazon.com/documentation/s3/ [Accessed: 1 July 2014].

[7] B. Liskov, “Distributed programming in argus,” Commun. ACM, vol. 31, no.
3, pp. 300-312, Mar. 1988.

[8] B. D. Carlstrom et al., “The atomos transactional programming language,” in
2006 ACM SIGPLAN Conf. Programming Language Design and
Implementation, New York, NY, 2006, pp. 1-13.

[9] L. Ziarek et al., “Stabilizers: a modular checkpointing abstraction for
concurrent functional programs,” in Proc. 11th ACM SIGPLAN Int. Conf.
Functional Programming, New York, NY, 2006, pp. 136-147.

[10] W. Wang, “Distributed Garbage Collection for Large-Scale Mobile Actor
Systems,” Ph.D. dissertation, Dept. Comp. Sci., R.P.I., Troy, NY, 2006.

[11] C. Varela, Programming Distributed Computing Systems: A Foundational
Approach. Cambridge, MA: MIT Press, 2013.

64



APPENDIX A

Transactor Class

public class Transactor extends UniversalActor {
public class State extends UniversalActor .State {

private Worldview wv;

private String name;

private URI USL;

public PingDirector pingDirector;

public void recvMsg(Message msg, Worldview msg wv);

public void sendMsg(String method, Object[] params,

Transactor recipient);

public void stabilize();

public void checkpoint();

public void rollback(boolean force, Worldview updatedWV);

public Transactor newTActor(Transactor new T);

public boolean dependent();

public Transactor self();

public boolean setTState(String field, Object newValue);

public Object getTState(String field);

public void startTransaction(Transactor[] participants,

Transactor coordinator,

String msg, Object[] msg args);

public void transactionStart(String msg, Object[] msg args,

PingDirector director);

public void pingreq(Transactor[] pingreqs);

public void ping();

}
}

Figure A.1: Transactor class skeleton

65



APPENDIX B

Example Execution Outputs

The following figures shows the execution traces of our bank transfer and house pur-

chase examples. We present the initial worldviews of all participating transactors

before starting the transaction and the resulting worldviews after the transaction

completes. Each printed worldview output is labeled by the transactor implementa-

tion, the transactor name mapped to its history where history displays the current

volatility and incarnation value followed by the list of checkpointed incarnations

inside the square brackets, its current history map, dependency graph, and root set.

Figures B.1 shows the initial state of transactors before issuing a balance transfer.

Figures B.2 and B.3 shows the state of transactors after a successful and failed

transaction of transferring a balance of 50 and 500 respectively. The current bal-

ance of bank accounts and number of acks for the teller is also shown in our output.

Figures B.4 and B.5 shows the initial state of transactors before issuing a house

purchase transaction. Figures B.6 and B.7 shows the state of transactors after a

successful transaction and Figures B.8 and B.9 shows a failed transaction. Trans-

actor names 1 and 67 in this example refer to the outside transactor which triggers

the transaction and the ping director respectively. Note that srchSrv, verifySrv,

and creditDB are implemented as proxy so they remain in a stable state no matter

the outcome of the transaction.

66



67

SAVINGS ACCOUNT: 
Balance: 100
savings -> V(0) [ 0  ]
History Map: 
savings->V(0) [ 0  ], 
Dep Graph:

Root Set:
savings, 

CHECKING ACCOUNT: 
Balance: 100
checking -> V(0) [ 0  ]
History Map: 
checking->V(0) [ 0  ], 
Dep Graph:

Root Set:
checking, 

TELLER: 
Acks: 0
teller -> V(0) [ 0  ]
History Map: 
teller->V(0) [ 0  ], 
Dep Graph:

Root Set:

PINGER: 
pinger -> V(0) [ 0  ]
History Map: 
pinger->V(0) [ 0  ], 
Dep Graph:

Root Set:

Balance update successful!
Balance update successful!                          
====================================
SAVINGS ACCOUNT: 
Balance: 150

Figure B.1: Bank transfer example initial state



68

Balance update successful!
Balance update successful!                          
====================================
SAVINGS ACCOUNT: 
Balance: 150
savings -> V(0) [ 0 0  ]
History Map: 
savings->V(0) [ 0 0  ], 
Dep Graph:

Root Set:
savings, 

CHECKING ACCOUNT: 
Balance: 50
checking -> V(0) [ 0 0  ]
History Map: 
checking->V(0) [ 0 0  ], 
Dep Graph:

Root Set:
checking, 

TELLER: 
Acks: 2
teller -> V(0) [ 0 0  ]
History Map: 
teller->V(0) [ 0 0  ], savings->S(0) [ 0  ], 
pinger->S(0) [ 0  ], checking->S(0) [ 0  ], 
Dep Graph:

Root Set:

PINGER: 
pinger -> V(0) [ 0 0  ]
History Map: 
pinger->V(0) [ 0 0  ], 
Dep Graph:

Root Set:

Figure B.2: Bank transfer example checkpointed state



69

Balance update successful!
Not enough funds!
====================================
SAVINGS ACCOUNT: 
Balance: 100
savings -> V(1) [ 0  ]
History Map: 
teller->V(1) [ 0  ], savings->V(1) [ 0  ], 
pinger->S(0) [ 0  ], checking->V(1) [ 0  ], 
Dep Graph:

Root Set:
savings, 

CHECKING ACCOUNT: 
Balance: 100
checking -> V(1) [ 0  ]
History Map: 
teller->V(1) [ 0  ], savings->V(1) [ 0  ], 
pinger->S(0) [ 0  ], checking->V(1) [ 0  ], 
Dep Graph:

Root Set:
checking, 

TELLER: 
Acks: 0
teller -> V(1) [ 0  ]
History Map: 
teller->V(1) [ 0  ], savings->V(1) [ 0  ], 
pinger->S(0) [ 0  ], checking->V(1) [ 0  ], 
Dep Graph:

Root Set:

PINGER: 
pinger -> V(0) [ 0 0  ]
History Map: 
pinger->V(0) [ 0 0  ], 
Dep Graph:

Root Set:

Figure B.3: Bank transfer example failed state



70

SEARCHER:
srchSrv -> V(0) [  ]
History Map: 
srchSrv->V(0) [  ], 
Dep Graph:

Root Set:

SELLER:
sellSrv -> V(0) [ 0  ]
History Map: 
sellSrv->V(0) [ 0  ], 
Dep Graph:

Root Set:

VERIFIER:
verifySrv -> V(0) [  ]
History Map: 
verifySrv->V(0) [  ], 
Dep Graph:

Root Set:

APPRAISER:
apprSrv -> V(0) [ 0  ]
History Map: 
apprSrv->V(0) [ 0  ], 
Dep Graph:

Root Set:

CREDITOR:
creditDB -> V(0) [  ]
History Map: 
creditDB->V(0) [  ], 
Dep Graph:

Root Set:

LENDER:
lendSrv -> V(0) [ 0  ]
History Map: 
lendSrv->V(0) [ 0  ], 
Dep Graph:

Figure B.4: House purchase example initial state



71

CREDITOR:
creditDB -> V(0) [  ]
History Map: 
creditDB->V(0) [  ], 
Dep Graph:

Root Set:

LENDER:
lendSrv -> V(0) [ 0  ]
History Map: 
lendSrv->V(0) [ 0  ], 
Dep Graph:

Root Set:

BUYER:
buySrv -> V(0) [ 0  ]
History Map: 
buySrv->V(0) [ 0  ], 
Dep Graph:

Root Set:

===================================

SEARCHER:
srchSrv -> S(0) [  ]
History Map: 
67->V(0) [  ], 1->S(0) [  ], srchSrv->S(0) [  ], TransDirector->S(0) 
[  ], 
sellSrv->V(0) [ 0  ], apprSrv->V(0) [ 0  ], buySrv->V(0) [ 0  ], 
Dep Graph:
67<-67, 67<-1, 67<-TransDirector, apprSrv<-67, apprSrv<-1, apprSrv<-
sellSrv, 
apprSrv<-apprSrv, apprSrv<-buySrv, buySrv<-67, buySrv<-1, 
buySrv<-sellSrv, buySrv<-apprSrv, buySrv<-buySrv, 
Root Set:
67, 1, srchSrv, sellSrv, apprSrv, buySrv, 

SELLER:
sellSrv -> V(0) [ 0 0  ]
History Map: 
67->S(0) [  ], creditDB->S(0) [  ], 1->S(0) [  ], verifySrv->S(0) 
[  ], 
srchSrv->S(0) [  ], lendSrv->S(0) [ 0  ], TransDirector->S(0) [  ], 
sellSrv->V(0) [ 0 0  ], apprSrv->S(0) [ 0  ], buySrv->S(0) [ 0  ], 

Figure B.5: House purchase example initial state cont.



72

SEARCHER:
srchSrv -> S(0) [  ]
History Map: 
67->V(0) [  ], 1->S(0) [  ], srchSrv->S(0) [  ], 
TransDirector->S(0) [  ], sellSrv->V(0) [ 0  ], apprSrv->V(0) [ 0  ], 
buySrv->V(0) [ 0  ], 
Dep Graph:
67<-67, 67<-1, 67<-TransDirector, apprSrv<-67, apprSrv<-1, 
apprSrv<-sellSrv, apprSrv<-apprSrv, apprSrv<-buySrv, buySrv<-67, 
buySrv<-1, buySrv<-sellSrv, buySrv<-apprSrv, buySrv<-buySrv, 
Root Set:
67, 1, srchSrv, sellSrv, apprSrv, buySrv, 

SELLER:
sellSrv -> V(0) [ 0 0  ]
History Map: 
67->S(0) [  ], creditDB->S(0) [  ], 1->S(0) [  ], 
verifySrv->S(0) [  ], srchSrv->S(0) [  ], lendSrv->S(0) [ 0  ], 
TransDirector->S(0) [  ], sellSrv->V(0) [ 0 0  ], 
apprSrv->S(0) [ 0  ], buySrv->S(0) [ 0  ], 
Dep Graph:

Root Set:

VERIFIER:
verifySrv -> S(0) [  ]
History Map: 
67->V(0) [  ], 1->S(0) [  ], verifySrv->S(0) [  ], 
lendSrv->V(0) [ 0  ], TransDirector->S(0) [  ], 
apprSrv->V(0) [ 0  ], sellSrv->V(0) [ 0  ], 
buySrv->V(0) [ 0  ], 
Dep Graph:
67<-67, 67<-1, 67<-TransDirector, lendSrv<-67, lendSrv<-1, 
lendSrv<-sellSrv, lendSrv<-apprSrv, lendSrv<-buySrv, apprSrv<-67, 
apprSrv<-1, apprSrv<-sellSrv, apprSrv<-apprSrv, apprSrv<-buySrv, 
buySrv<-67, buySrv<-1, buySrv<-sellSrv, buySrv<-apprSrv, 
buySrv<-buySrv, 
Root Set:
67, 1, verifySrv, sellSrv, apprSrv, buySrv, 

Figure B.6: House purchase example checkpointed state



73

APPRAISER:
apprSrv -> V(0) [ 0 0  ]
History Map: 
67->S(0) [  ], 1->S(0) [  ], creditDB->S(0) [  ], 
verifySrv->S(0) [  ], 
srchSrv->S(0) [  ], lendSrv->S(0) [ 0  ], TransDirector->S(0) [  ], 
apprSrv->V(0) [ 0 0  ], sellSrv->S(0) [ 0  ], buySrv->S(0) [ 0  ], 
Dep Graph:

Root Set:

CREDITOR:
creditDB -> S(0) [  ]
History Map: 
67->V(0) [  ], 1->S(0) [  ], creditDB->S(0) [  ], 
verifySrv->S(0) [  ], lendSrv->V(0) [ 0  ], 
TransDirector->S(0) [  ], apprSrv->S(0) [ 0  ], sellSrv->V(0) [ 0  ], 
buySrv->V(0) [ 0  ], 
Dep Graph:
67<-67, 67<-1, 67<-TransDirector, lendSrv<-67, lendSrv<-1, 
lendSrv<-verifySrv, apprSrv<-1, buySrv<-1,
lendSrv<-apprSrv, lendSrv<-sellSrv, lendSrv<-buySrv, apprSrv<-67,  
apprSrv<-sellSrv, apprSrv<-apprSrv, apprSrv<-buySrv, buySrv<-67,  
buySrv<-sellSrv, buySrv<-apprSrv, buySrv<-buySrv, 
Root Set:
67, 1, verifySrv, lendSrv, sellSrv, apprSrv, buySrv, 

LENDER:
lendSrv -> V(0) [ 0 0  ]
History Map: 
67->S(0) [  ], 1->S(0) [  ], creditDB->S(0) [  ], 
verifySrv->S(0) [  ], srchSrv->S(0) [  ], apprSrv->S(0) [ 0  ], 
buySrv->S(0) [ 0  ], lendSrv->V(0) [ 0 0  ], 
TransDirector->S(0) [  ], sellSrv->S(0) [ 0  ], 
Dep Graph:

Root Set:

BUYER:
buySrv -> V(0) [ 0 0  ]
History Map: 
67->S(0) [  ], 1->S(0) [  ], creditDB->S(0) [  ], 
verifySrv->S(0) [  ], srchSrv->S(0) [  ], 
lendSrv->S(0) [ 0  ], TransDirector->S(0) [  ], sellSrv->S(0) [ 0  ], 
apprSrv->S(0) [ 0  ], buySrv->V(0) [ 0 0  ], 
Dep Graph:

Root Set:

Figure B.7: House purchase example checkpointed state cont.



74

SEARCHER:
srchSrv -> S(0) [  ]
History Map: 
67->V(0) [  ], 1->S(0) [  ], srchSrv->S(0) [  ], 
TransDirector->S(0) [  ], sellSrv->V(0) [ 0  ], 
apprSrv->V(0) [ 0  ], buySrv->V(0) [ 0  ], 
Dep Graph:
67<-67, 67<-1, 67<-TransDirector, apprSrv<-67, apprSrv<-1, 
apprSrv<-sellSrv, apprSrv<-apprSrv, apprSrv<-buySrv, buySrv<-67, 
buySrv<-1, buySrv<-sellSrv, buySrv<-apprSrv, buySrv<-buySrv, 
Root Set:
67, 1, srchSrv, sellSrv, apprSrv, buySrv, 

SELLER:
sellSrv -> V(1) [ 0  ]
History Map: 
67->S(0) [  ], 1->S(0) [  ], creditDB->S(0) [  ], 
verifySrv->S(0) [  ], srchSrv->S(0) [  ], lendSrv->V(1) [ 0  ], 
TransDirector->S(0) [  ], sellSrv->V(1) [ 0  ], apprSrv->V(1) [ 0  ], 
buySrv->V(1) [ 0  ], 
Dep Graph:
67<-67, 67<-1, 67<-TransDirector, 
Root Set:

VERIFIER:
verifySrv -> S(0) [  ]
History Map: 
67->V(0) [  ], 1->S(0) [  ], verifySrv->S(0) [  ], 
lendSrv->V(0) [ 0  ], TransDirector->S(0) [  ], 
apprSrv->V(0) [ 0  ], sellSrv->V(0) [ 0  ], buySrv->V(0) [ 0  ], 
Dep Graph:
67<-67, 67<-1, 67<-TransDirector, lendSrv<-67, lendSrv<-1, 
lendSrv<-sellSrv, lendSrv<-apprSrv, lendSrv<-buySrv, apprSrv<-67, 
apprSrv<-1, apprSrv<-sellSrv, apprSrv<-apprSrv, apprSrv<-buySrv, 
buySrv<-67, buySrv<-1, buySrv<-sellSrv, buySrv<-apprSrv,
buySrv<-buySrv, 
Root Set:
67, 1, verifySrv, sellSrv, apprSrv, buySrv, 

Figure B.8: House purchase example failed state



75

APPRAISER:
apprSrv -> V(1) [ 0  ]
History Map: 
67->S(0) [  ], 1->S(0) [  ], creditDB->S(0) [  ], 
verifySrv->S(0) [  ], srchSrv->S(0) [  ], lendSrv->V(1) [ 0  ], 
TransDirector->S(0) [  ], sellSrv->V(1) [ 0  ], apprSrv->V(1) [ 0  ], 
buySrv->V(1) [ 0  ], 
Dep Graph:
67<-67, 67<-1, 67<-TransDirector, 
Root Set:

CREDITOR:
creditDB -> S(0) [  ]
History Map: 
67->V(0) [  ], 1->S(0) [  ], creditDB->S(0) [  ], 
verifySrv->S(0) [  ], lendSrv->V(0) [ 0  ], TransDirector->S(0) [  ], 
apprSrv->V(0) [ 0  ], sellSrv->V(0) [ 0  ], buySrv->V(0) [ 0  ], 
Dep Graph:
67<-67, 67<-1, 67<-TransDirector, lendSrv<-67, lendSrv<-1, 
lendSrv<-verifySrv, lendSrv<-apprSrv, lendSrv<-sellSrv, 
lendSrv<-buySrv, apprSrv<-67, apprSrv<-1, apprSrv<-sellSrv, 
apprSrv<-apprSrv, apprSrv<-buySrv, buySrv<-67, buySrv<-1, 
buySrv<-sellSrv, buySrv<-apprSrv, buySrv<-buySrv, 
Root Set:
67, 1, verifySrv, lendSrv, sellSrv, apprSrv, buySrv, 

LENDER:
lendSrv -> V(1) [ 0  ]
History Map: 
67->S(0) [  ], 1->S(0) [  ], creditDB->S(0) [  ], 
verifySrv->S(0) [  ], srchSrv->S(0) [  ], lendSrv->V(1) [ 0  ], 
TransDirector->S(0) [  ], sellSrv->V(1) [ 0  ], apprSrv->V(1) [ 0  ], 
buySrv->V(1) [ 0  ], 
Dep Graph:
67<-67, 67<-1, 67<-TransDirector, 
Root Set:

BUYER:
buySrv -> V(1) [ 0  ]
History Map: 
67->S(0) [  ], 1->S(0) [  ], creditDB->S(0) [  ], 
verifySrv->S(0) [  ], srchSrv->S(0) [  ], lendSrv->V(1) [ 0  ], 
TransDirector->S(0) [  ], sellSrv->V(1) [ 0  ], apprSrv->V(1) [ 0  ], 
buySrv->V(1) [ 0  ], 
Dep Graph:
67<-67, 67<-1, 67<-TransDirector, 
Root Set:

Figure B.9: House purchase example failed state cont.



APPENDIX C

Symbol ListAPPENDIX A
Symbol Table

h1 !⌃ h2 h1 stabilizes to h2

⌃(h) h is stable
p

(h) h has checkpointed

t ⇢ t directly depends on ⇢

t �� t0 t = t0 or according to �, t transitively depends on t0

h1 # h2 h1 rolls back to h2

h1 !p h2 h1 checkpoints to h2

h1 ; h2 h1 is succeeded by h2

h1 ;⇤ h2 h1 occurs at or before h2

⌃(t, �, �) t is independent according to the worldview (�, �, )

h1 a h2 h1 is validated by h2

h1 o h2 h1 is invalidated by h2

(�1, �1, ⇢1)� (�2, �2, ) The union of (�1, �1, ⇢1) and (�2, �2, )

52

Figure C.1: Symbol list [2]

76


