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ABSTRACT

We are developing a hierarchy of theories to reason about actor systems, with the

ability to reuse proofs formalized at an abstract level in reasoning about concrete

actor programs. Several actor languages, e.g., the ABCL family of languages, imple-

ment First-In First-Out (FIFO) communication between actors. Furthermore, many

practical systems require FIFO communication for correctness. In previous work,

Musser and Varela formalized properties including monotonicity of actor local states,

guaranteed message delivery, and general con- sequences of fairness. While the actor

model requires fairness, it does not require FIFO communication.

In this thesis, we extend the actor reasoning framework to enable proving cor-

rectness of systems which require FIFO communication. This is done by extending the

actor framework within the Athena proof system, in which proofs are both human-

readable and machine- checkable, taking advantage of its library of algebraic and

relational theories.

We introduce three new theories into the actor model framework of Athena. All

three of these theories are developed at the abstract level, enabling the use of them in

many concrete programs. The first two of these theories introduce sequence numbers

into the messages passed between actors, one for sending and one for receiving. We

take advantage of the monotonicity of actor transitions to show that send sequence

numbers and receive sequence numbers will only ever increase.

The third new theory begins to prove the ordering of messages given an order

of the sequence numbers. We use results from the first two theories to show that if

two messages are about to be sent or received, then the order in which the messages

are sent or received is dictated by the sequence numbers. We then use that result to

show that two messages must be received in the same order in which they were sent.

We continue on to show an example of an actor system, based on the computa-

tion of the Sieve of Eratosthenes, that requires FIFO communication in order to be

able to prove correctness of its computation.
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1. Introduction and Motivation

The actor model of computation [1], [2] can be useful as both a theoretical framework

upon which it is possible to reason about concurrent computations [3], [4], as well as

a practical means of building a distributed system [5], [6]. Actors concurrently encap-

sulate state, which makes them an intuitive choice for distributed computations [7].

Each actor must have a unique identifier and communicate with other actors through

asynchronous message passing. Depending on its defined behavior, upon receiving

a message an actor may change its state, send a message to another actor, and/or

create a new actor.

Crucial to actor model computations is the ability to reason about them. These

so called “actor theories” formalize the transitions by which each actor progresses

from state to state, and the configurations that each point in the transition holds.

The actor model imposes fairness on a progression of computations in order to be

valid. Fairness means that if a transition (from an actor configuration) is infinitely

often enabled, the transition must eventually happen [8].

FIFO communication further restricts valid computations to ensure that asyn-

chronous messages between any two actors arrive in the order they were sent. While

FIFO communication is not a requirement of the actor model of computation, several

languages, e.g., the ABCL family of languages [9], [10] impose it to facilitate rea-

soning about and developing practical actor programs. Other actor languages, e.g.,

SALSA [6], require FIFO communication to be implemented at the application-level.

Actor languages can use different models for representing sequential computa-

tion within an actor. Agha, Mason, Smith, and Talcott use the untyped call-by-value

lambda calculus to represent an actor’s internal behavior [3]. Varela and Agha use

an object’s instance and class to represent an actor’s state and its behavior [6]. This

work follows on with Musser and Varela’s approach, in which behavior within an

actor is defined as axioms on certain functions and relations on their local states [8].

Our research goal is to develop a rich hierarchy of reusable theories modeling

abstract actor computation, that is, following the actor model’s operational semantics,

to be able to derive general theorems that apply to all concrete actor programs that

1
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follow the model. In this thesis, we enrich the reasoning theory hierarchy to model

systems which follow FIFO communication between actors.

The direction we take in this thesis is based around loose message ordering. In

other words, we focus on a message arriving before another, but with the possibility

of any number of messages arriving between the two.

1.1 Example: Sieve of Eratosthenes

As a motivating example of this thesis, we look at the computation given by

the Sieve of Eratosthenes.

The Sieve of Eratosthenes is a basic computation developed to determine prime

numbers. It begins by filtering out all multiples of two. Then, it takes the next value,

three, and filters out all multiples of three. The computation continues this up to a

given point, and returns all of the remaining numbers. Since no other numbers divide

these, these must be prime numbers. It is intuitive that the Sieve computation is

correct if every number that is returned is a prime number.

In an actor model representation of the Sieve of Eratosthenes, there would be

three actors at the start: an Input actor, an Output actor, and an actor that represents

the number two, called S2. The Input actor sends each value starting at three to the

S2 actor, which will filter out each value that it divides. When it receives a value

that it does not divide, then it will pass it down to the next actor, creating a new one

if it is at the end of the chain. Upon creation, a new actor will send the value that

was used to create it to the Output actor. A graphical representation of the Sieve of

Eratosthenes is given in Figure 1.1.

However, assume that the Input actor sends three, four, five, six, seven, eight,

and nine to the S2 actor. The S2 actor will surely receive all of them, assuming

guaranteed message delivery, but there is no guarantee that the S2 actor will receive

the number nine after it receives the number three. If this ends up being the case,

then the S2 actor will create the S9 actor, which will then send the number nine to

the Output actor. In the Athena proof system, this would be represented as follows:

(Initial then (send S2 Output (sm two))

then (receive Output S2 (sm two))

then (send Input S2 (sm three))
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then (send Input S2 (sm four))

then (send Input S2 (sm five))

then (send Input S2 (sm six))

then (send Input S2 (sm seven))

then (send Input S2 (sm eight))

then (send Input S2 (sm nine))

then (receive S2 Input (sm nine))

then (create S2 (si nine))

then (send (si nine) Output (sm nine))

then (receive Output (si nine) (sm nine )))

After this happens, the Output actor would return the number nine as a prime

number, which is incorrect. Therefore, in order for this computation to be correct,

there must be some means of ensuring that the number three will reach the S2 actor

before the number nine reaches the S2 actor.

In this thesis, we first discuss the current foundation of actor model proofs that

are developed in the Athena proof system. We go on to extend this foundation to

include a means of ensuring FIFO communication, and then prove that the foundation

for FIFO communication ensures that messages are received in the correct order. We

finally show an example, based upon the Sieve of Eratosthenes, of a computation

that can be incorrect without FIFO communication, but will always be correct when

Figure 1.1: An Actor Model Representation of the Sieve of Eratosthenes.
The Input actor continuously sends the numbers in increasing order, which
are filtered out by the intermediate actors, which send their associated
values to the Output actor.
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FIFO communication is introduced.



2. Actor Proofs and Athena

The proofs regarding FIFO communications are built upon an existing library of

formal proofs using the program Athena. Athena uses a proof system that is both

human-readable and machine checkable, in an effort to improve readability while still

allowing it to be easily used. The fact that the proofs are human-readable allows

them to be easily used for educational purposes.

In this section, we will explore the existing actor proof hierarchy. We will give

some of the basic definitions of actors in the Athena proof language, and show some

currently existing lemmas on which we will be building our framework. The current

actor model reasoning framework is shown in Figure 2.1.

Semigroup (Associativity)

Monoid

Identity Element

Abelian Monoid

Commutativity

Configuration

Actor Configuration

Transition Path

Transition Step Relation

Binary Relation

IrreflexiveTransitive

Strict Partial Order

Transitive Closure

Transition Path Relation

Indexed Transition Path

Infinitely Often Enabled Fair Transition Path

IOE Fair Transition Path

Figure 2.1: Algebraic, Relational, and Actor Theories. Arrows represent
theory refinement.
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2.1 Configurations

First, we formally define configurations. A configuration represents a multiset

that holds specific information that pertains to the current point in a computation.

Configurations are defined as a polymorphic structure with three different con-

structors: Null, One, and ++:

structure (Cfg T) := Null | (One T) | (++ (Cfg T) (Cfg T))

Null is the default constructor which represents an empty configuration. One is

a constructor for a configuration containing a single object. Configurations are com-

bined into a new configuration by means of the ++ constructor. The ++ constructor

is defined to be associative and commutative, two properties that are used several

times in the proofs concerning FIFO.

2.2 Actors

Now that configurations have been defined, the actors themselves must be de-

fined as well.

Actor configurations will hold two types of objects: actors and messages. Like

configurations, actors are formally defined as a polymorphic structure, this time al-

lowing for an ID sort and a local state sort.

datatype (Actor Id LS) :=

( actor ’ Id LS) | ( message ’ Id LS Id Ide)

Note that Ide is a sort of quoted string in Athena, short for “Identifier”. How-

ever, these constructors cannot be used directly in configurations, so there must be

functions that use the One constructor from the configuration objects:

define actor := lambda (id ls) (One ( actor ’ id ls))

define message := lambda (fr to c) (One ( message ’ fr to c))

A commonly used predicate for the actors is the unique-ids predicate, which

claims that the actor state relationship is a function, i.e. each identifier within a

configuration has at most one associated local state. There are many proofs about

unique-ids, however the most commonly used one in the FIFO proofs is:

define unique-ids1 :=
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(forall ?s ?s1 ?s2 ?id1 ?ls1 ?id2 ?ls2 .

(unique-ids ?s) &

?s = ?s1 ++ (actor ?id1 ?ls1) &

?s = ?s2 ++ (actor ?id2 ?ls2) &

?id1 = ?id2

==> ?s1 = ?s2 & ?ls1 = ?ls2)

What this lemma is claiming is that if a configuration has two different repre-

sentations, and the ids are the same of both actors in those configurations, then both

the local states and the additional configurations must be the same.

2.3 Transitions

Next, actor transitions are defined. The three types of actor transitions are

send, receive, and create. A send transition is made when an actor sends a message, a

receive transition is made when and actor receives a message, and a create transition

is made when an actor creates another actor:

datatype (Step Id) :=

(receive Id Id Ide) | (send Id Id Ide) | (create Id Id)

After this, a means of reasoning about a series of transitions is required. This

takes the form of transition paths. Transition paths are a sequence of transitions,

beginning at Initial, and proceeding along through different steps:

datatype (TP Id LS) := Initial | (then (TP Id LS) (Step Id))

Another useful predicate that is given in the actor model framework is the

“directly leads to” predicate. This is represented as “—>>” in Athena. This is a

transitive relation, and built upon this are the predicates “—>>+” and “—>>*”

predicates, which are the irreflexive and reflexive predicates for “leads to”, respec-

tively.

declare -- >>: (Id , LS) [(TP Id LS) (TP Id LS)] -> Boolean

declare -- >>+, -- >>*:

(Id , LS) [(TP Id LS) (TP Id LS)] -> Boolean

declare -- >>**:

(Id , LS) [N (TP Id LS) (TP Id LS)] -> Boolean
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One of the last definitions gives a means of indexing transition paths. These

indexed transition paths are defined through the function itp:

declare itp: (Id , State) [(TP Id State) N] -> (TP Id State)

2.4 Fairness and Progress

As we mentioned earlier, fairness is the property that if a transition is infinitely

often enabled, then it must eventually occur. Athena builds upon this, and adds two

lemmas, called receive-happens and send-happens.

define send-happens :=

(forall ?T ?n ?s ?ls ?c .

(unique-ids config (itp ?T ?n)) &

config (itp ?T ?n) = ?s ++ (actor sender ?ls) &

?ls ready-to (send sender receiver ?c)

==>

exists ?k ? s ’ ? ls ’ .

?k >= ?n &

config (itp ?T ?k) = ? s ’ ++ (actor sender ? ls ’ ) &

? ls ’ ready-to (send sender receiver ?c) &

(itp ?T (S ?k)) = (itp ?T ?k) then (send sender receiver ?c))

Building on this, we add an axiom to be used with progress called eventually-

ready-to-receive:

define eventually-ready-to-receive :=

(forall ?T ?n0 ?s0 ?ls0 ?c .

config (itp ?T ?n0) =

?s0 ++ (actor receiver ?ls0)

++ (message sender receiver ?c) &

(unique-ids config (itp ?T ?n0))

==>

exists ?n ?s ?ls .

?n >= ?n0 &

config (itp ?T ?n) =

?s ++ (actor receiver ?ls)

++ (message sender receiver ?c) &

?ls ready-to (receive receiver sender ?c))
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A consequence of fairness and eventually-ready-to-receive is guaranteed message

delivery, which is the property when a message is about to be sent, there must exist

a point later on during which that message is received.

define guaranteed-message-delivery :=

(forall ?T ?n0 ?s0 ?ls0 ?ls1 ?c .

config (itp ?T ?n0) =

?s0 ++ (actor sender ?ls0) ++ (actor receiver ?ls1) &

?ls0 ready-to (send sender receiver ?c) &

(unique-ids config (itp ?T ?n0))

==>

exists ?n ?s ?ls2 ?ls3 .

?n >= ?n0 &

config (itp ?T ?n) =

(?s ++ (actor sender ?ls2)) ++ (actor receiver ?ls3) ++

(message sender receiver ?c) &

?ls3 ready-to (receive receiver sender ?c) &

(itp ?T (S ?n)) = (itp ?T ?n) then (receive receiver sender ?c))

2.5 Monotonicity of Transitions

Another frequently used result is the monotonicity of actor transitions. This

means that for any predicate R, if that predicate holds for a local state and its next

local state, then if a transition leads to another, then R must hold for the local state

in the first transition and the local state in the second transition, and any transition

after that on:

define actor-monotonicity :=

(forall ?T ?T0 ?s0 ?id ?ls0 .

(forall ?ls ?step . ?ls R (next ?ls ?step))

==>

(( unique-ids config ?T0) &

config ?T0 = ?s0 ++ (actor ?id ?ls0) &

?T0 -->>* ?T

==>

exists ?s ?ls .

config ?T = ?s ++ (actor ?id ?ls) & ?ls0 R ?ls))



3. Defining FIFO

Guaranteed message delivery means that messages reach their intended destination,

but not necessarily that they reach it in the order in which they were sent. While for

some computations this is not a problem, we have shown that for some others such

as the Sieve of Eratosthenes, it can cause the computation to be incorrect.

To obtain FIFO communication between a sender and receiver, the sender can

add a sequence number to each message it sends to the receiver, with the receiver

maintaining an expected sequence number for any message it receives from that

sender. Then the receiver only accepts a message from that sender if the sequence

number in the message matches the expected one. While this is a well-known tech-

nique for achieving FIFO order, there are many details to be worked out to ensure

that it operates correctly. By carrying out the specification and proof at an abstract

level, as is done in the following sections, it is possible to reduce the task of ensur-

ing correctness for a concrete application to checking that a few simple axioms are

satisfied in that application.

All of the following development is placed within three new theories: Send-

Sequencing, Receive-Sequencing, and Fifo. The relationship between these three the-

ories and the rest of the actor model reasoning framework in Athena is shown in

Figure 3.1.

3.1 Messages

To add sequence numbers to messages, the function msg is introduced that

simply wraps up a sequence number and a message together so they can be treated

as a message in the actor model. This allows actors to send sequence numbers in

addition to the actual payload of a message.

For sequence numbers the natural numbers are used. Recall that Ide, a prede-

fined quoted string type in Athena, is the type that messages are assumed to have in

the actor model.

declare msg: [N Ide] -> Ide

10
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Semigroup

Monoid

Identity

Abelian Monoid

Commutativity

Configuration

Actor Configuration

Transition Path

Transition Step Relation

Binary Relation

ReflexiveIrreflexive Transitive

Monotonic Transition

Receive SequencingSend Sequencing

PreorderStrict Partial Order

Transitive Closure

Transition Path Relation

Indexed Transition Path

Infinitely Often EnabledFair Transition Path

IOE Fair Transition Path

Progress

Fifo

Figure 3.1: Algebraic, Relational, and Actor Theories with FIFO Theories.
Rectangular nodes are algebraic theories, diamonds are relational theories,
and ovals are actor theories. Bold nodes represent the theories defined in
this thesis.
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assert msg-injective :=

(forall ?x0 ?y0 ?x1 ?y1 .

(msg ?x0 ?y0) = (msg ?x1 ?y1) ==> ?x0 = ?x1 & ?y0 = ?y1)

We assume no other properties of the msg function other than its type and that it is

injective, as is required in some of the later proofs.

In the same spirit, we specify how actors can keep track of sequence numbers

via functions send-seq and recv-seq.

declare send-seq , recv-seq: (Id , LS) [(Cfg (Actor Id LS)) Id] -> N

with the intended meaning that (send-seq (actor a ls) b) is the sequence number

that actor a uses for sending a message to actor b. This is also referred to as the

send sequence number of actor a with respect to b. We formally specify the meaning

of send-seq with axioms that together provide an inductive definition. Any way of

implementing the function that satisfies the axioms is acceptable. For each (a, b)

pair, only the local state of the actor a varies; i.e., the sequence number (or some way

of computing it) must be embedded in a’s local state.

The base case of the inductive definition is when an actor is created, or when

the computation begins; in either case we specify the sequence number as zero:

define send-seq-base :=

(forall ?a ?b ?lsb .

(send-seq (actor ?a (new-ls ?lsb)) ?b) = zero)

define send-seq-init :=

(forall ?a ?b ?lsa .

(exists ?s . config Initial = ?s ++ (actor ?a ?lsa))

==> (send-seq (actor ?a ?lsa) ?b) = zero)

For the inductive step, the send-seq value is incremented when an actor sends a

message to another actor, but only then:

define send-seq-rec :=

(forall ?a ?b ?lsa ?op .

(exists ?c . ?op = (send ?a ?b ?c)) ==>

(send-seq (actor ?a (next ?lsa ?op)) ?b)

= (S (send-seq (actor ?a ?lsa) ?b)))

define send-seq-non-send :=

(forall ?a ?b ?lsa ?op .



13

~ (exists ?c . ?op = (send ?a ?b ?c)) ==>

(send-seq (actor ?a (next ?lsa ?op)) ?b)

= (send-seq (actor ?a ?lsa) ?b))

The definitions pertaining to the receive sequence numbers are the same as for

the send sequence numbers, but using receive instead of send:

define recv-seq-base :=

(forall ?a ?b ?lsb .

(recv-seq (actor ?a (new-ls ?lsb)) ?b) =

zero)

define recv-seq-init :=

(forall ?a ?b ?lsa .

(exists ?s .

(config Initial = ?s ++ (actor ?a ?lsa)))

==> (recv-seq (actor ?a ?lsa) ?b) = zero)

define recv-seq-rec :=

(forall ?a ?b ?lsa ?op .

(exists ?c .

?op = (receive ?a ?b ?c)) ==>

(recv-seq (actor ?a (next ?lsa ?op)) ?b) =

(S (recv-seq (actor ?a ?lsa) ?b)))

define recv-seq-non-recv :=

(forall ?a ?b ?lsa ?op .

~( exists ?c .

?op = (receive ?a ?b ?c)) ==>

(recv-seq (actor ?a (next ?lsa ?op)) ?b) =

(recv-seq (actor ?a ?lsa) ?b))

3.2 Specifying Ready-to

Each actor should only be ready to make a send or receive transition if the

sequence number matches up correctly. For example, an actor a is only ever ready

to receive a message from sender b if the receive sequence number actor a holds for

sender b matches the sequence number of the message.

Since an actor implementer may have originally specified a ready-to predicate

without concern for FIFO communication, how can we layer on this extra requirement

of matching sequence numbers? The solution we use is to rename the given ready-to
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predicate as ready-to-pred, and then define ready-to in terms of ready-to-pred and the

new sequence number requirements.

declare ready-to-pred: (Id,LS) [LS (Step Id)] -> Boolean

define ready-to-send-def :=

(forall ?id ?ls ?to ?c .

?ls ready-to (send ?id ?to ?c)

<==>

(exists ?ct .

?c = (msg (send-seq (actor ?id ?ls) ?to) ?ct) &

(?ls ready-to-pred (send ?id ?to ?ct))))

define ready-to-recv-def :=

(forall ?id ?ls ?fr ?c .

?ls ready-to (receive ?id ?fr ?c)

<==>

(exists ?ct .

?c = (msg (recv-seq (actor ?id ?ls) ?fr) ?ct) &

(?ls ready-to-pred (receive ?id ?fr ?ct))))

define ready-to-create-def :=

(forall ?id ?ls ?new .

?ls ready-to (create ?id ?new)

<==>

(?ls ready-to-pred (create ?id ?new )))

3.3 Message Ordering

Next, a concept of a message being sent or received before another is required.

This builds upon the leads-to predicates, but is set up around the messages instead

of the transitions themselves.

First, we define a predicate that determines whether or not an actor is “about

to” send or receive a message. In terms of the actor model, this refers to a point in an

indexed transition path that has a configuration with an actor being ready to send or

receive a message, and the next point in the transition path is that actual transition.

declare about-to-send , about-to-receive: (Id ,LS)
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[(TP Id LS) N (Cfg (Actor Id LS)) Id Id LS LS N Ide] -> Boolean

define about-to-send-def :=

(forall ?T ?n ?s ?a ?b ?lsa ?lsb ?x ?c .

(about-to-send ?T ?n ?s ?a ?b ?lsa ?lsb ?x ?c)

<==>

config (itp ?T ?n) =

?s ++ (actor ?a ?lsa) ++ (actor ?b ?lsb) &

?lsa ready-to (send ?a ?b (msg ?x ?c)) &

(itp ?T (S ?n)) = (itp ?T ?n) then (send ?a ?b (msg ?x ?c)))

define about-to-receive-def :=

(forall ?t ?n ?s ?a ?b ?lsa ?lsb ?x ?c .

(about-to-receive ?t ?n ?s ?a ?b ?lsa ?lsb ?x ?c)

<==>

(config (itp ?t ?n) =

?s ++ (actor ?a ?lsa)

++ (actor ?b ?lsb)

++ (message ?b ?a (msg ?x ?c)) &

?lsa ready-to (receive ?a ?b (msg ?x ?c)) &

(itp ?t (S ?n)) =

(itp ?t ?n) then (receive ?a ?b (msg ?x ?c))))

Thus, within indexed transition path T, this says that actor a is about to send (msg x

c) to actor b at point n if and only if actor a has local state lsa, actor b has local state

lsb, actor a is ready to send (msg x c) to actor b, and the next transition in the path

is the actual sending of (msg x c) to b. The same follows for the receive definition as

well.

With these definitions, it follows simply that an actor sends (receives) one mes-

sage before another in a transition path if there are points in the path at which each

message is about to be sent (received), and the first point is before the second. This

is specified in terms of sends-before and receives-before predicates:

declare sends-before , receives-before:

(Id ,LS) [(TP Id LS) Id Id Ide Ide] -> Boolean

define sends-before-def :=

(forall ?T ?a ?b ?c0 ?c1 ?sq0 ?sq1 .
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(sends-before ?T ?a ?b (msg ?sq0 ?c0) (msg ?sq1 ?c1))

<==>

exists ?n0 ?n1 ?s0 ?lsa0 ?lsb0 ?s1 ?lsa1 ?lsb1 .

(about-to-send ?T ?n0 ?s0 ?a ?b ?lsa0 ?lsb0 ?sq0 ?c0) &

(about-to-send ?T ?n1 ?s1 ?a ?b ?lsa1 ?lsb1 ?sq1 ?c1) &

?n0 < ?n1)

define receives-before-def :=

(forall ?t ?a ?b ?c0 ?c1 ?sq0 ?sq1 .

(( receives-before ?t ?a ?b (msg ?sq0 ?c0) (msg ?sq1 ?c1))

<==>

(exists ?n0 ?n1 ?s0 ?lsa0 ?lsb0 ?s1 ?lsa1 ?lsb1 .

(about-to-receive ?t ?n0 ?s0 ?a ?b ?lsa0 ?lsb0 ?sq0 ?c0) &

(about-to-receive ?t ?n1 ?s1 ?a ?b ?lsa1 ?lsb1 ?sq1 ?c1) &

?n0 < ?n1)))

These definitions and axioms restrict the actor model and are intended to estab-

lish FIFO communication. In the next section, we show that they do in fact impose

FIFO communication on the actor model.



4. Proving FIFO

The main theorem to be shown is that messages must be received in the order in

which they were sent. In other words, if a message was sent before another, then it

must also be received before the other. In terms of the sends-before and receives-before

predicates, and arbitrary actor ids sender and receiver, we have

define send-receive-order :=

(forall ?T ?c0 ?c1 ?sq0 ?sq1 .

(unique-ids config ?T) &

(sends-before ?T sender receiver (msg ?sq0 ?c0) (msg ?sq1 ?c1))

==>

(receives-before ?T receiver sender (msg ?sq0 ?c0) (msg ?sq1 ?c1)))

To carry out the proof, we introduce several lemmas, discussing them in turn

in the next sections.

4.1 Monotonicity of Sequence Numbers

It must be shown that when any transition occurs, the sequence numbers that

actors hold never decrease. The proof takes advantage of the actor-monotonicity

lemma, which was described in Section 2.5.

First, predicates are required that state that a local state’s send (receive) se-

quence number is less than another local state’s send (receive) sequence number.

These relations are the sslt and rslt predicates, which stand for “send sequence less

than” and “receive sequence less than,” resp.

declare sslt , rslt: (Id ,LS) [LS LS] -> Boolean

define sslt-def :=

(forall ?ls0 ?ls1 .

?ls0 sslt ?ls1 <==>

(send-seq (actor sender ?ls0) receiver) <=

(send-seq (actor sender ?ls1) receiver ))

define rslt-def :=

(forall ?ls0 ?ls1 .

17
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?ls0 rslt ?ls1 <==>

(recv-seq (actor receiver ?ls0) sender) <=

(recv-seq (actor receiver ?ls1) sender ))

First it must be shown that the rslt and sslt predicates themselves are monotonic,

i.e.,

define sslt-mono :=

(forall ?ls0 ?step . ?ls0 sslt (next ?ls0 ?step))

define rslt-mono :=

(forall ?ls0 ?step . ?ls0 rslt (next ?ls0 ?step))

The proofs for these two lemmas are straight-forward, and take advantage of

Athena’s datatype-cases proof mechanism to show that no matter what kind of tran-

sition the step variable is, it must follow that the rslt predicate will hold:

1 define rslt-mono-proof :=

2 method (theorem adapt)

3 l e t {given := lambda (P) (get-property P adapt Theory );

4 chain-last := method (L) (!chain-help given L ’last );

5 [LS0 next ready-to new-ls unique-ids before after config

6 sender receiver] :=

7 (adapt [LS0 next ready-to new-ls unique-ids before

8 after config sender receiver ]);

9 [ls-sort step-sort] :=

10 (map sort-of (qvars-of (adapt theorem )))}

11 conclude (adapt theorem)

12 pick-any ls:ls-sort step:step-sort

13 l e t {goal := (ls rslt (next ls step ))}

14 (!two-cases

15 assume T1 :=

16 (exists ?c . step = (receive receiver sender ?c))

17 l e t {A :=

18 (!chain-last

19 [T1

20 ==> (( recv-seq (actor receiver (next ls step))

21 sender) =

22 (S (recv-seq (actor receiver ls) sender )))

23 [(given recv-seq-rec )]])}
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24 (!chain-last

25 [true

26 ==> (( recv-seq (actor receiver ls) sender) <=

27 (S (recv-seq (actor receiver ls) sender )))

28 [Less=.S3]

29 ==> (( recv-seq (actor receiver ls) sender) <=

30 (recv-seq (actor receiver (next ls step)) sender ))

31 [A]

32 ==> (ls rslt (next ls step))

33 [( given rslt-def )]])

34 assume T2 :=

35 (~( exists ?c . step = (receive receiver sender ?c)))

36 l e t {A :=

37 (!chain-last

38 [T2

39 ==> (( recv-seq (actor receiver (next ls step))

40 sender) =

41 (recv-seq (actor receiver ls) sender ))

42 [(given recv-seq-non-recv )]])}

43 (!chain-last

44 [( !reflex (recv-seq (actor receiver ls) sender ))

45 ==> (( recv-seq (actor receiver ls) sender) <=

46 (recv-seq (actor receiver ls) sender ))

47 [Less=. Implied-by-equal]

48 ==> (( recv-seq (actor receiver ls) sender) <=

49 (recv-seq (actor receiver (next ls step)) sender ))

50 [A]

51 ==> (rslt ls (next ls step))

52 [( given rslt-def )]]))

We are then able to prove that if an actor is in a local state at one transition, and

another in a second transition, and the first transition leads to the second transition,

then the receive sequence number of the first local state with respect to any actor

must be less than or equal to the receive sequence number of the second local state

with respect to the same actor.

define rslt-act-mono :=

(forall ?T ?T0 ?s0 ?ls0 ?s ?ls .

(unique-ids config ?T0) &
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config ?T0 = ?s0 ++ (actor receiver ?ls0) &

config ?T = ?s ++ (actor receiver ?ls) &

?T0 -- >>* ?T

==> ?ls0 rslt ?ls)

The proof of this lemma is an application of actor-monotonicity theorem.

From these results we derive a lemma pertaining to equality of receive sequence

numbers, that if two transition points have an actor in two local states, but the

receive sequence numbers with respect to another actor are the same, then there

cannot be a transition between them that involves that actor receiving a message

from the respective actor.

define recv-seq-eq :=

(forall ?T ? T ’ ?s ? s ’ ?ls ? ls ’ .

config ?T = ?s ++ (actor receiver ?ls) &

config ? T ’ = ? s ’ ++ (actor receiver ? ls ’ ) &

(unique-ids config ?T) & (unique-ids config ? T ’ ) &

(recv-seq (actor receiver ?ls) sender) =

(recv-seq (actor receiver ? ls ’ ) sender)

==> ~ exists ?T0 ? T0 ’ ?c .

?T -- >>+ ?T0 & ?T0 -->>* ? T ’ &

?T0 = (? T0 ’ then (receive receiver sender ?c)))

The corresponding lemmas for the sslt predicate are as follows:

define sslt-act-mono :=

(forall ?t ?t0 ?s0 ?ls0 ?s ?ls .

(unique-ids config ?t0) &

config ?t0 = ?s0 ++ (actor sender ?ls0) &

config ?t = ?s ++ (actor sender ?ls) &

?t0 -->>* ?t

==> ?ls0 sslt ?ls)

define send-seq-eq :=

(forall ?t ? t ’ ?s ? s ’ ?ls ? ls ’ .

config ?t = ?s ++ (actor sender ?ls) &

config ? t ’ = ? s ’ ++ (actor sender ? ls ’ ) &

(unique-ids config ?t) & (unique-ids config ? t ’ ) &

(send-seq (actor sender ?ls) receiver) =

(send-seq (actor sender ? ls ’ ) receiver)
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==> ~ exists ?t0 ? t0 ’ ?c .

?t -- >>+ ?t0 & ?t0 -->>* ? t ’ &

?t0 = (? t0 ’ then (send sender receiver ?c)))

4.2 Sequence Ordering

We then show a small lemma that claims that if an actor is ready to send a

message, then the sequence number of that message must correspond to the send

sequence number of the sender with respect to the receiver.

define enabled-send-seq :=

(forall ?t ?a ?b ?c ?x ?s ?ls .

config ?t = ?s ++ (actor ?a ?ls) &

?ls ready-to (send ?a ?b (msg ?x ?c))

==> ?x = (send-seq (actor ?a ?ls) ?b))

This lemma follows quickly from the ready-to axioms given earlier.

The final lemma claims that if an actor is about to send two messages, then the

sequence numbers of the messages dictate the order of the messages.

define send-seq-ordered :=

(forall ?t ?c0 ?c1 ?n0 ?n1

?x ?y ?s0 ?lsa0 ?lsb0 ?s1 ?lsa1 ?lsb1 .

(about-to-send ?t ?n0 ?s0 sender receiver ?lsa0 ?lsb0 ?x ?c0) &

(about-to-send ?t ?n1 ?s1 sender receiver ?lsa1 ?lsb1 ?y ?c1) &

(unique-ids config ?t) ==>

(?n0 < ?n1 <==> ?x < ?y))

The full proof is in Appendix A, but we give an informal version here.

To prove this lemma, first we assume that at point n0 in transition T, sender is

about to send (msg x c0) to receiver, and at point n1 in transition T, sender is about

to send (msg y c1) to receiver. We then prove the conclusion by using a standard

biconditional introduction.

For the forward direction, we assume n0 < n1. Therefore, (itp T n0) leads to

(itp T n1). From the sslt-act-mono lemma, it follows that x ≤ y. If x = y, then from

send-seq-eq it is known that there can not be a transition between them in which

sender sends a message to receiver. However, (itp T n0) is such a transition, which
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means that x 6= y, and therefore x < y.

For the opposite direction, we assume x < y. For a contradiction we assume

that n1 ≤ n0. Therefore, (itp T n1) leads to (itp T n0), and from send-seq-eq it

follows that the send sequence number of sender with respect to receiver at n1 must

be less than or equal to the send sequence number of sender with respect to receiver

at n0. This is a contradiction, which means that n0 < n1.

With all of these lemmas defined, we are now ready to prove that the all of the

axioms given above ensure message ordering. The full, formal version of this proof is

in Appendix B

First, we let m0 = (msg x0 c0), and m1 = (msg x1 c1). We then assume that

sender sends m0 to receiver before m1. Therefore, sender will be ready to send m0 at

(itp t n0), which enabled-send-seq gives that x0 will be the sending sequence number

of sender with respect to receiver at (itp t n0), and x1 will be the sending sequence

number of sender with respect to receiver at (itp t n1). Therefore, from send-seq-

ordered it is known that x0 < x1. From guaranteed-message-delivery, it is known that

receiver will eventually receive both messages. Let n0’ be the point at which receiver

receives message m0 and n1’ be the point at which receiver receives the message m1.

Since it will be ready to receive both messages, x0 must be the receiving sequence

number of receiver with respect to sender at (itp t n0’), and the same for x1 and (itp t

n1’). From receive-seq-ordered, it is known that n0’ < n1’, which means that receiver

must receive m0 before m1.



5. FIFO Application

5.1 The Sieve of Eratosthenes

Earlier, we discussed an actor model for the computation of the Sieve of Eratos-

thenes. We also showed that without FIFO communication, the Sieve of Eratosthenes

may return an invalid answer. This makes the Sieve of Eratosthenes a good example

to emphasize the importance of FIFO communication.

(Initial then (send S2 Output (sm two))

then (receive Output S2 (sm two))

then (send Input S2 (sm three))

then (send Input S2 (sm four))

then (send Input S2 (sm five))

then (send Input S2 (sm six))

then (send Input S2 (sm seven))

then (send Input S2 (sm eight))

then (send Input S2 (sm nine))

then (receive S2 Input (sm nine))

then (create S2 (si nine))

then (send (si nine) Output (sm nine))

then (receive Output (si nine) (sm nine )))

However, the full version of the Sieve of Eratosthenes uses dynamic actor cre-

ation and requires the ability to iterate through a pipeline of actors, concepts which

are outside the scope of this thesis. Therefore, a smaller version of the Sieve of Er-

atosthenes is used instead. This version will only use two actors, the Input actor and

the Output actor. The Input actor will begin with the number three, and send each

value in turn to the Output actor as it does in the original version of the Sieve of

Eratosthenes. The Output actor will begin with the number two in its list of num-

bers, and filter out any value which is divisible by any of its held values. This model

is referred to later in this thesis as the “Small Sieve Model”. Figure 5.1 shows the

graphical representation of the Small Sieve Model.

The Small Sieve Model creates a smaller version of the Sieve of Eratosthenes,

but still requires FIFO communication in order to ensure correctness. For example,

23
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Figure 5.1: The Small Sieve Model. The Input actor sends each number
to the Output actor, which directly filters the numbers

without FIFO communication it would still be possible for the Output actor to receive

the number nine before it receives the number three.

In the following sections we will formally define the Small Sieve Model in the

Athena proof system, and proceed to show that FIFO communication ensures that

any transition path within the Small Sieve Model will be correct.

5.2 Defining the Small Sieve Model

We now formally define the datatypes for the Small Sieve Model. As we previ-

ously stated, there are only two actors, the Input actor and the Output actor. The

Input actor only stores an integer in its local state, while the Output actor only stores

a list of integers that it has received.

datatype Name := Input | Output

datatype ILS := (inn N)

datatype OLS := (out (List N))

datatype SLS := (input ILS) | (output OLS)

Since many of the functions for actor model proofs were formally defined as

polymorphic, this allows us to redefine functions that work specifically with the Small

Sieve model.

declare config: [(TP Name SLS)] -> (Cfg (Actor Name SLS))

declare next: [SLS (Step Name)] -> SLS

declare new-ls: [SLS] -> SLS

declare ready-to , ready-to-pred: [SLS (Step Name)] -> Boolean

declare sls0: SLS

declare sitp: [(TP Name SLS) N] -> (TP Name SLS)

declare unique-ids: [(Cfg (Actor Name SLS))] -> Boolean

declare output-subset: [SLS SLS] -> Boolean

declare input-le: [SLS SLS] -> Boolean
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declare sm: [N] -> Ide

assert sm-injective :=

(forall ?x ?y . (sm ?x) = (sm ?y) ==> ?x = ?y)

Next, readiness and transitions must be defined for the Input and Output actors.

Since the Small Sieve Model will be using the FIFO communication theories, we define

readiness in terms of the ready-to-pred predicate instead of the ready-to predicate.

For the Input actor, it is always ready to send its held integer, and after sending

it, the Input actor increments its held value.

module Input {

assert ready-to-def :=

[( forall ?ls ?to ?c .

?ls ready-to-pred (send Input ?to ?c) <==>

(?to = Output &

(exists ?n . ?c = (sm ?n) & ?ls = (input inn ?n))))

(forall ?ls ?fr ?c .

?ls ready-to-pred (receive Input ?fr ?c) <==> false)

(forall ?ls ?new .

?ls ready-to-pred (create Input ?new) <==> false )]

assert next-def :=

(fun-def

[(next (input inn ?i) (receive ?id ?fr ?c)) -- > (input inn ?i)

(next (input inn ?i) (send ?id ?to ?c)) -->

[(?id = Input & ?to = Output & ?c = (msg ?sq (sm ?i))) -- >

(input inn (S ?i))

_ --> (input inn ?i)]

(next (input inn ?i) (create ?id ?new)) --> (input inn ?i)])

}

For the Output actor, it is always ready to receive a value, no matter what that

value is. However, after receiving it, the Output actor will only add the integer to its

list if that value is not divided by any of its currently held values.

In addition, the axioms for the output-subset predicate are given here. Since the

output-subset predicate is defined across all local states, axioms for both actors must

be given.
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module Output {

assert ready-to-def :=

[( forall ?ls ?to ?c .

?ls ready-to-pred (send Output ?to ?c) <==> false)

(forall ?ls ?fr ?c .

?ls ready-to-pred (receive Output ?fr ?c) <==>

(?fr = Input & (exists ?n ?l . ?c = (sm ?n) &

?ls = (output out ?l))))

(forall ?ls ?new .

?ls ready-to-pred (create Output ?new) <==> false )]

assert next-def :=

(fun-def

[(next (output out ?ls) (receive ?id ?fr ?c)) -- >

[(?id = Output & ?fr = Input & ?c = (msg ?sq (sm ?n)) &

(forall ?m . ?m In ?ls ==> ~(?m divides ?n))) -->

(output out (?n :: ?ls))

_ --> (output out ?ls)]

(next (output out ?l) (send ?id ?to ?c)) --> (output out ?l)

(next (output out ?l) (create ?id ?new)) --> (output out ?l)])

assert next-invalid-recv :=

(forall ?ls ?id ?fr ?c .

~(?id = Output & ?fr = Input &

(exists ?sq ?n . ?c = (msg ?sq (sm ?n))))

==> (next (output out ?ls) (receive ?id ?fr ?c))

= (output out ?ls))

assert next-def-some-divide :=

(forall ?ls ?n ?sq .

(exists ?m . ?m In ?ls & ?m divides ?n)

==> (next (output out ?ls)

(receive Output Input (msg ?sq (sm ?n))))

= (output out ?ls))

assert output-subset-def :=

(forall ?ls ? ls ’ .

(output out ?ls) output-subset ? ls ’ <==>
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(exists ?l . ? ls ’ = (output out ?l) &

(forall ?x . ?x In ?ls ==> ?x In ?l)))

assert output-subset-input :=

(forall ?ls ? ls ’ .

(input inn ?ls) output-subset ? ls ’ <==> true)

}

5.3 Correctness

We then show that our setup for FIFO communication ensures that the Small

Sieve Model will be correct. We start by given the definition of correctness for the

Small Sieve Model.

In terms of the Sieve of Eratosthenes, and therefore the Small Sieve Model, a

transition path is correct iff every number held by the Output actor is a prime number.

(forall ?t .

(Correct ?t) <==>

(forall ?s ?ls .

config ?t =

?s ++ (actor Output (output out ?ls))

==> (forall ?n .

?n In ?ls ==> Prime ?n)))

Before we begin the proofs about correctness, a few convenience functions are

defined in order to improve the readability of the proofs themselves:

define IC := lambda (T)

(config T =

(actor Input (input inn three ))

++ (actor Output (output out (two :: nil ))))

define sieve-send := lambda (M)

(send Input Output M)

define sieve-recv := lambda (M)

(receive Output Input M)

define SMSG := lambda (S C)

(msg S (sm C))

define IOSEQ := lambda (X)
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(send-seq (actor Input (input inn X)) Output)

define OSEQ := lambda (LS)

(recv-seq (actor Output LS) Input)

define OISEQ := lambda (L)

(OSEQ (output out L))

define IOMSG := lambda (X)

(msg (send-seq (actor Input (input inn X)) Output) (sm X))

declare input-about-to-send , output-about-to-receive:

[(TP Name SLS) N] -> Boolean

The IC macro simply defines the initial conditions of the Small Sieve Model. It

claims that the configuration of transition T will only consist of the Input and Output

actors, with the Input actor holding the number three, and the Output actor holding

a list with just the number two.

The sieve-send and sieve-recv macros use the fact that only the Input actor ever

sends a message, and only the Output actor ever receives a message to simplify the

expression of send and receive transitions.

The SMSG, IOSEQ, OSEQ, OISEQ, and IOMSG macros wrap up the msg,

send-seq, and recv-seq functions to further simplify the writing of the proofs about

the Small Sieve Model.

The definitions of input-about-to-send and output-about-to-receive simplify the

definitions of the about-to-send and about-to-receive predicates:

assert input-about-to-send-def :=

(forall ?t ?n ?x .

(input-about-to-send (sitp ?t ?n) ?x) <==>

(exists ?ls ?sq ?s .

config (sitp ?t ?n) = ?s ++ (actor Input ?ls) &

?ls ready-to (sieve-send (SMSG ?sq ?x)) &

(sitp ?t (S ?n)) =

(sitp ?t ?n) then (sieve-send (SMSG ?sq ?x))))

assert output-about-to-receive-def :=

(forall ?t ?n ?x .

(output-about-to-receive (sitp ?t ?n) ?x) <==>

(exists ?ls ?s .

(config (sitp ?t ?n) =
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?s ++ (actor Output ?ls) ++ (MSG (IOSEQ ?x) ?x) &

?ls ready-to (sieve-recv (IOMSG ?x)) &

(sitp ?t (S ?n)) =

((sitp ?t ?n) then (sieve-recv (IOMSG ?x))))))

Finally, the goal of this section is to prove that given initial conditions, the

Small Sieve Model computation will always be correct:

define always-correct :=

(forall ?t .

((IC ?t) & (unique-ids config ?t))

==> (forall ?n . (Correct (sitp ?t ?n))))

To this end, a few lemmas are given. Many of these follow from the definition

of the Small Sieve Model:

define input-sends-before :=

(forall ?t ?x ?y .

?x < ?y ==>

(sends-before ?t Input Output (IOMSG ?x) (IOMSG ?y)))

define output-monotonic :=

(forall ?t ?t0 ?ls0 ?ls ?s0 ?s .

(unique-ids config ?t0) &

(unique-ids config ?t) &

config ?t0 = ?s0 ++ (actor Output ?ls0) &

config ?t = ?s ++ (actor Output ?ls) &

?t0 -->>* ?t

==> ?ls0 output-subset ?ls)

define output-receives-once :=

(forall ?t ?n ?m ?x .

(unique-ids config (sitp ?t ?n)) &

(unique-ids config (sitp ?t ?m)) &

(output-about-to-receive (sitp ?t ?n) ?x) &

(output-about-to-receive (sitp ?t ?m) ?x)

==> ?n = ?m)

define must-have-received :=

(forall ?t .
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((IC ?t) & (unique-ids config ?t)) ==>

(forall ?n ?s ?l ?x .

(config (sitp ?t ?n) = ?s ++ (actor Output (output out ?l)) &

?x In ?l & ?x > two)

==>

(exists ? n ’ .

? n ’ < ?n &

(output-about-to-receive (sitp ?t ? n ’ ) ?x))))

define output-filtered :=

(forall ?t ?n ?x ?s ?l .

(IC ?t) &

(unique-ids config ?t) &

(output-about-to-receive (sitp ?t ?n) ?x) &

(config (sitp ?t (S ?n)) = ?s ++ (actor Output (output out ?l))) &

(~(?x In ?l))

==>

(forall ? n ’ ? s ’ ? l ’ .

? n ’ > ?n &

(config (sitp ?t ? n ’ ) = ? s ’ ++ (actor Output (output out ? l ’ )))

==>

(~(?x In ? l ’ ))))

define one-isnt-in-output :=

(forall ?t .

((IC ?t) & (unique-ids config ?t)) ==>

(forall ?n ?l .

( actor ’ Output (output out ?l)) in (config (sitp ?t ?n))

==> (~( one In ?l))))

The input-sends-before lemma claims that if a value x < y, then the Input actor

must send x before it sends y. This is due to the fact that the Input actor increments

its state after each time it sends a message, which means that it must send the smaller

value first.

The output-monotonic lemma builds on the output-subset function and actor

monotonicity from section 2.5. Since the list of numbers that the Output actor holds

will always be a subset of its next transition, it follows that for any two transitions,
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if one leads to another then the list held by the Output actor in the first transition

must be a subset of the list held by the Output actor in the second transition.

The output-receives-once lemma claims that the Output actor can only be about

to receive any given value once. This is due to the fact that the Input actor only ever

sends a value once, which means that the message can only ever be in the system

once, and can therefore only be received once. In addition, the Output actor can only

receive messages from the Input actor, due to the definition of the Output actor’s

readiness to receive.

The must-have-received lemma claims that for any value value greater than two,

if the Output actor’s list contains that value, then it must have received it at some

point prior to the current point.

The output-filtered lemma claims that if the Output actor is about to receive a

value, but it is not in the list held by the Output actor in the very next step, then

the Output actor must have filtered it, which means that it will not be in any future

configuration.

The final lemma is the basic lemma that simply claims that the number one

will never be in the list held by the Output actor. This follows quickly from the

other lemmas. If the value one is in the list held by the Output actor at some point,

then since it is not in the Output actor’s list of numbers in the initial configuration,

must-have-received claims that it must have received it at an earlier point. However,

the first sent message must be the value three, which means that three will be sent

before any other value. However, input-sends-before claims that one must have been

sent before three. Therefore, this is a contradiction, and one cannot be in any list

held by the Output actor.

With these lemmas, we are now able to prove that the Small Sieve Model always

gives prime numbers.

First we assume that at transition t, the Output actor holds the list ls. It then

must be shown that all elements of this list are prime. This is done by contradiction,

and it is therefore assumed that some element, n ∈ ls is not prime. Therefore, there

must be some prime p that divides n, which means that p < n. This means that the

Input actor will send p before it sends n, and from the send-receive-order theorem

from the FIFO Theory, it follows that the Output actor will receive p before it receives
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n.

From one-isnt-in-output, one cannot be in the Output actor’s list of numbers.

Since p is prime, the Output actor must add p to its list of integers at this point.

Therefore, when the Output actor receives n, it will already be holding p, which

means that n will be filtered out. From output-receives-once we know that the Output

actor can only receive any value once, which means that it will never receive n again

which means that n can not be in ls. This contradicts the original statement, which

means that n must be prime.



6. Related Work

6.1 Formal Proof Systems

A lot of work by other authors has been done on proof systems that create

proofs in a machine-checkable way. However, Athena aims to do this in a way that

allows the proofs to be easily read.

A few such systems are Isabelle [11], Coq [12], and HOL [13]. Unfortunately,

even though these systems can all create machine-checkable proofs, these systems

become difficult to follow without prior knowledge.This means that it is not as easy

to learn from any of these systems as it is from the proofs made in Athena. These

systems tend to work in the background, preventing the user from seeing the steps

that were taken to prove a specific theorem without running the theorem through the

program itself.

The only possible exception is Isabelle-ISAR [14] which provides a far more

readable language than any of the above languages. However, even ISAR is unable to

replicate the ability to define recursive proof methods within a proof, as is possible

in Athena. Since this technique is used in some of the actor model theories, it is

not apparent how ISAR would be able to replicate the entire actor model reasoning

framework developed in Athena.

6.2 Actor Model Proofs

Athena is not the only proof system to explore actor model proofs. The Rebeca

Modeling Language [15] is dedicated solely to this task. In Rebeca, actor model com-

putations are modeled by means of different objects that communicate by means of

message passing. These messages are stored in each object’s message queue, and pro-

cessed in the order in which they arrive. However, Rebeca uses model checking which

does not allow to reason about unbounded nondeterminism as Athena does, making it

difficult to reason about some computations that require this kind of nondeterminism.
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6.3 FIFO

While the actor model framework that is created within Athena does not ini-

tially assume FIFO communication, there are other systems that do. The ABCL/1

is an object-oriented concurrent computation model that does assume FIFO commu-

nications, or a transmission ordering law [10]. Specifically, in ABCL/1 each actor,

or object, sends messages in an order dictated by its local clock. The receiver of

these messages must receive them in the same order as dictated by its local clock.

This means of communication thus ensures that communications are done in a FIFO

manner. However, this requirement is built into ABCL/1. If an actor system does

not guarantee FIFO communication, then ABCL/1 may find that certain properties

hold, while in reality they do not. For example, if an implementation of the actor

representation of the Sieve of Eratosthenes did not guarantee FIFO communication,

the ABCL/1 system would claim that the system would always be correct, while in

reality it would not be.



7. Discussion

7.1 Conclusion

In this thesis, we were able to extend the actor model reasoning framework in

Athena to include the ability to prove correctness about actor systems that require

FIFO communication. We accomplished this by extending messages to include se-

quence numbers, and set up a means by which each actor in the system could store

its send and receive sequence numbers. We then only allowed each actor to receive

a message if the sequence number of the message corresponded to the receiving se-

quence number of the receiving actor. Building upon previous results, we showed that

this forces messages to be received in the same order in which they were sent. This

framework then allowed us to prove that a smaller version of the Sieve of Eratosthenes

would always return prime numbers, and therefore would always be correct.

The main contribution of this work is improving upon the ability to reason about

concurrent computations. It is always important to know that a certain computation

gives the answer that one expects, and it is extremely useful to be able to prove this

fact. It is even more difficult to reason through a concurrent computation due to the

increased complications brought on by concurrency. It is therefore very helpful to

have the ability to confirm that a concurrent computation, and by extension an actor

model computation, is in fact working as expected. It is this ability that has been

improved upon in this thesis.

In addition, being developed in Athena means that the proofs are human-

readable, which means that it is possible to learn from the proofs. Since many of

the proofs regarding FIFO communications were developed at the abstract level, it is

possible for them to be reused for later proofs about actor systems that require FIFO

communication to be correct.

7.2 Future Work

Since the proofs of correctness only pertained to the Small Sieve Model, proofs

relating to the full Sieve of Eratosthenes is the direction in which this work could
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continue. This would require creating a means of reasoning about dynamic actor

creation. Specifically, the Sieve of Eratosthenes requires that ability to recurse over

a pipeline of actors. A pipeline of actors in this case is a set of actors such that each

one only sends to one actor, and only receives from one actor. In the case of the Sieve

of Eratosthenes, the pipeline would start at the Input actor, and continue along the

chain created by the Sieve actors. Proving the correctness of the complete Sieve of

Eratosthenes model would require proving that each of these actors holds a prime

number as its value, and thus would require the ability to recurse along this pipeline.

The Sieve of Eratosthenes also requires reasoning about dynamic actor creation.

While the current implementations of the actor model in Athena use a finite number

of actors, the full Sieve of Eratosthenes can create an arbitrarily large amount of

actors that create the pipeline. This introduces complexities that are not present

when only a finite number of actors are used. For example, if one of the Sieve actors

needs to send a message to another Sieve actor, many of the existing theories require

knowledge of both actors’ local state. While this should be guaranteed, it would be

one additional lemma to prove when reasoning about the Sieve of Eratosthenes.
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APPENDIX A

Proof of Sequence Ordering

1 define send-seq-ordered-proof :=

2 method (theorem adapt)

3 l e t {given := lambda (P) (get-property P adapt Theory );

4 lemma := method (P) (!property P adapt Theory );

5 chain := method (L) (!chain-help given L ’none );

6 chain-last := method (L) (!chain-help given L ’last );

7 [LS0 itp config before after next ready-to new-ls

8 unique-ids ready-to-pred sender receiver] :=

9 (adapt [LS0 itp config before after next ready-to

10 new-ls unique-ids ready-to-pred sender receiver ]);

11 [t-sort _ _ _ _ _ _ s-sort ls-sort _ _ _ _] :=

12 (map sort-of (qvars-of (adapt theorem )));

13 ++A := (given [ ’ ++ Associative ]);

14 ++C := (given [ ’ ++ Commutative ]);

15 SSE := (!lemma send-seq.send-seq-eq );

16 ESS := (!lemma enabled-send-seq );

17 UIP := (!lemma unique-ids-persistence );

18 ITC := (!lemma itp-connected );

19 SAM := (!lemma send-seq.sslt-act-mono );

20 RR+I := (!lemma [ ’-- >> RR+-inclusion ])}

21 conclude (adapt theorem)

22 pick-any t:t-sort c0:Ide c1:Ide n0:N n1:N

23 x:N y:N s0:s-sort lsa0:ls-sort lsb0:ls-sort s1:s-sort

24 lsa1:ls-sort lsb1:ls-sort

25 l e t {a := sender; b := receiver}

26 assume A := (( about-to-send t n0 s0 a b lsa0 lsb0 x c0) &

27 (about-to-send t n1 s1 a b lsa1 lsb1 y c1) &

28 (unique-ids config t))

29 l e t {A1 := (!chain-last

30 [( about-to-send t n0 s0 a b lsa0 lsb0 x c0)

31 ==> (config (itp t n0) =

32 s0 ++ (actor a lsa0)

33 ++ (actor b lsb0) &

34 lsa0 ready-to (send a b (msg x c0)) &

39
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35 (itp t (S n0)) =

36 (itp t n0) then (send a b (msg x c0)))

37 [(given about-to-send-def )]]);

38 A2 := (!chain-last

39 [( about-to-send t n1 s1 a b lsa1 lsb1 y c1)

40 ==> (config (itp t n1) =

41 s1 ++ (actor a lsa1)

42 ++ (actor b lsb1) &

43 lsa1 ready-to (send a b (msg y c1)) &

44 (itp t (S n1)) =

45 (itp t n1) then (send a b (msg y c1)))

46 [(given about-to-send-def )]]);

47 A0 := (!chain-last

48 [( unique-ids config t)

49 ==> (unique-ids config (itp t zero))

50 [(given itp-initial )]]);

51 A0-1 := (config (itp t n0) =

52 s0 ++ (actor a lsa0) ++ (actor b lsb0 ));

53 A0-2 := (lsa0 ready-to (send a b (msg x c0)));

54 A0-3 := ((itp t (S n0)) =

55 (itp t n0) then (send a b (msg x c0)));

56 A1-1 := (config (itp t n1) =

57 s1 ++ (actor a lsa1) ++ (actor b lsb1 ));

58 A1-2 := (lsa1 ready-to (send a b (msg y c1)));

59 A1-3 := ((itp t (S n1)) =

60 (itp t n1) then (send a b (msg y c1)));

61 B0-01 := (!chain-last

62 [A0-1

63 ==> (config (itp t n0) =

64 (s0 ++ (actor b lsb0)) ++ (actor a lsa0))

65 [++C ++A]]);

66 B0-02 := (!chain-last

67 [( B0-01 & A0-2)

68 ==> (x = (send-seq (actor a lsa0) b))

69 [ESS ]]);

70 B0-11 := (!chain-last

71 [A1-1

72 ==> (config (itp t n1) =

73 (s1 ++ (actor b lsb1)) ++ (actor a lsa1))
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74 [++C ++A]]);

75 B0-12 := (!chain-last

76 [( B0-11 & A1-2)

77 ==> (y = (send-seq (actor a lsa1) b))

78 [ESS ]]);

79 B0-03a := (conclude (zero <= n0) (!uspec Less=.zero <= n0));

80 B0-03 := (!chain-last

81 [(A0 & B0-03a)

82 ==> (unique-ids config (itp t n0))

83 [UIP ]]);

84 B0-13a := (conclude (zero <= n1) (!uspec Less=.zero <= n1));

85 B0-13 := (!chain-last

86 [(A0 & B0-13a)

87 ==> (unique-ids config (itp t n1))

88 [UIP ]])}

89 (!equiv

90 assume B1 := (n0 < n1)

91 l e t {B1-21 := (!chain-last

92 [B1

93 ==> (n0 <= n1)

94 [Less=. Implied-by- <]

95 ==> ((itp t n0) -- >>* (itp t n1))

96 [ITC ]]);

97 B1-E1 := (!chain-last

98 [( B0-03 & B0-01 & B0-11 & B1-21)

99 ==> (lsa0 sslt lsa1)

100 [SAM]

101 ==> (( send-seq (actor a lsa0) b) <=

102 (send-seq (actor a lsa1) b))

103 [(given send-seq.sslt-def )]

104 ==> (x <= y)

105 [B0-02 B0-12]

106 ==> ( x < y | x = y)

107 [Less=. definition ]]);

108 B1-E2 := (x =/= y);

109 _ :=

110 (!by-contradiction B1-E2

111 assume B1-E2a := (x = y)

112 l e t {G1 := (!chain-last
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113 [B1-E2a

114 ==> (( send-seq (actor a lsa0) b) =

115 (send-seq (actor a lsa1) b))

116 [B0-02 B0-12 ]]);

117 G2 := (!chain-last

118 [( B0-01 & B0-11 & B0-03 & B0-13 & G1)

119 ==> (~( exists ?t0 ? t0 ’ ?c .

120 (itp t n0) -- >>+ ?t0 &

121 ?t0 -- >>* (itp t n1) &

122 ?t0 =

123 (? t0 ’ then (send a b ?c))))

124 [SSE ]]);

125 G3 := (!chain-last

126 [true ==> ((itp t n0) -->>

127 (itp t (S n0)))

128 [itp-directly-connected]

129 ==> ((itp t n0) -- >>+

130 (itp t (S n0)))

131 [RR+I]]);

132 G4 :=

133 (!chain-last

134 [B1

135 ==> ((S n0) <= n1)

136 [Less=. discrete]

137 ==> ((itp t (S n0)) -- >>* (itp t n1))

138 [ITC ]]);

139 _ := (!both G3 (!both G4 A0-3 ));

140 G5 := (!egen* (exists ?t0 ? t0 ’ ?c .

141 (itp t n0) -- >>+ ?t0 &

142 ?t0 -- >>* (itp t n1) &

143 ?t0 =

144 (? t0 ’ then (send a b ?c)))

145 [(itp t (S n0)) (itp t n0)

146 (msg x c0)])}

147 (!absurd G5 G2))}

148 (!dsyl B1-E1 B1-E2)

149 assume B2 := (x < y)

150 l e t {B2-21 := (!chain-last

151 [B2 ==> (( send-seq (actor a lsa0) b) <
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152 (send-seq (actor a lsa1) b))

153 [B0-02 B0-12]

154 ==> (~(( send-seq (actor a lsa1) b) <=

155 (send-seq (actor a lsa0) b)))

156 [Less=. trichotomy3 ]]);

157 _ :=

158 (!by-contradiction (~ (n1 <= n0))

159 assume (n1 <= n0)

160 l e t {G1 := (!chain-last

161 [(n1 <= n0)

162 ==> ((itp t n1) -- >>*

163 (itp t n0))

164 [ITC]

165 ==> (B0-13 &

166 B0-11 &

167 B0-01 &

168 ((itp t n1) -- >>*

169 (itp t n0)))

170 [augment]

171 ==> (lsa1 sslt lsa0)

172 [SAM]

173 ==> (( send-seq (actor a lsa1) b) <=

174 (send-seq (actor a lsa0) b))

175 [(given send-seq.sslt-def )]])}

176 (!absurd B2-21 (!bdn G1)))}

177 (!chain-last

178 [B2-22

179 ==> (n0 < n1)

180 [Less=. trichotomy1 ]]))



APPENDIX B

Proof of FIFO Order

1 define send-receive-order-proof :=

2 method (theorem adapt)

3 l e t {given := lambda (P) (get-property P adapt Theory );

4 lemma := method (P) (!property P adapt Theory );

5 chain := method (L) (!chain-help given L ’none );

6 chain-last := method (L) (!chain-help given L ’last );

7 [LS0 itp config before after next ready-to new-ls

8 unique-ids ready-to-pred sender receiver contents] :=

9 (adapt [LS0 itp config before after next ready-to

10 new-ls unique-ids ready-to-pred sender

11 receiver contents ]);

12 [t-sort _ _ _ _] :=

13 (map sort-of (qvars-of (adapt theorem )));

14 SSO := (!lemma send-seq-ordered );

15 RSO := (!lemma recv-seq-ordered );

16 UIP := (!lemma unique-ids-persistence );

17 ATR := (given about-to-receive-def );

18 ATS := (given about-to-send-def );

19 ++A := (given [ ’ ++ Associative ]);

20 ++C := (given [ ’ ++ Commutative ])}

21 conclude (adapt theorem)

22 pick-any t:t-sort c0:Ide c1:Ide x0:N x1:N

23 l e t {a := sender; b := receiver}

24 assume T := (unique-ids config t)

25 l e t {S0 := (!chain-last

26 [T ==> (unique-ids config (itp t zero))

27 [itp-initial ]])}

28 assume A := (sends-before t a b (msg x0 c0) (msg x1 c1))

29 l e t { A ’ := (!chain-last

30 [A

31 ==> (exists ?n0 ?n1 ?s0 ?lsa0 ?lsb0 ?s1

32 ?lsa1 ?lsb1 .

33 (about-to-send t ?n0 ?s0 a b

34 ?lsa0 ?lsb0 x0 c0) &

44



45

35 (about-to-send t ?n1 ?s1 a b

36 ?lsa1 ?lsb1 x1 c1) &

37 ?n0 < ?n1)

38 [sends-before-def ]])}

39 pick-witnesses n0 n1 s0 lsa0 lsb0 s1 lsa1 lsb1 for A ’ A ’ ’

40 l e t {A0 := (about-to-send t n0 s0 a b lsa0 lsb0 x0 c0);

41 A1 := (about-to-send t n1 s1 a b lsa1 lsb1 x1 c1);

42 A2 := (n0 < n1);

43 A3 := (!chain-last

44 [(A0 & A1 & T)

45 ==> ((n0 < n1) <==> (x0 < x1))

46 [SSO ]]);

47 A4 := (!mp (!left-iff A3) A2);

48 A00 := (!chain-last

49 [A0

50 ==> (config (itp t n0)

51 = (s0 ++ (actor a lsa0)

52 ++ (actor b lsb0)) &

53 (lsa0 ready-to (send a b (msg x0 c0))) &

54 (itp t (S n0)) =

55 (itp t n0) then (send a b (msg x0 c0)))

56 [ATS ]]);

57 A01 := (config (itp t n0) =

58 s0 ++ (actor a lsa0) ++ (actor b lsb0 ));

59 A02 := (lsa0 ready-to (send a b (msg x0 c0)));

60 A03 := ((itp t (S n0)) =

61 (itp t n0) then (send a b (msg x0 c0)));

62 A04a := (conclude (zero <= n0)

63 (!uspec Less=.zero <= n0));

64 A04 := (!chain-last

65 [(S0 & A04a)

66 ==> (unique-ids config (itp t n0))

67 [UIP ]]);

68 A10 := (!chain-last

69 [A1

70 ==> (config (itp t n1)

71 = s1 ++ (actor a lsa1)

72 ++ (actor b lsb1) &

73 lsa1 ready-to (send a b (msg x1 c1)) &
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74 (itp t (S n1)) =

75 (itp t n1) then (send a b (msg x1 c1)))

76 [ATS ]]);

77 A11 := (config (itp t n1) =

78 s1 ++ (actor a lsa1) ++ (actor b lsb1 ));

79 A12 := (lsa1 ready-to (send a b (msg x1 c1)));

80 A13 := ((itp t (S n1)) =

81 (itp t n1) then (send a b (msg x1 c1)));

82 A14a := (conclude (zero <= n1)

83 (!uspec Less=.zero <= n1));

84 A14 := (!chain-last

85 [(S0 & A14a)

86 ==> (unique-ids config (itp t n1))

87 [UIP ]]);

88 GMD := (!lemma guaranteed-message-delivery );

89 B0 :=

90 (!chain-last

91 [(A01 & A02 & A04)

92 ==>

93 (exists ?n ?s ?ls2 ?ls3 .

94 ?n >= n0 &

95 config (itp t ?n) =

96 (?s ++ (actor a ?ls2))

97 ++ (actor b ?ls3)

98 ++ (One ( message ’ a LS0 b (msg x0 c0))) &

99 ?ls3 ready-to (receive b a (msg x0 c0)) &

100 (itp t (S ?n)) =

101 (itp t ?n) then (receive b a (msg x0 c0)))

102 [GMD ]]);

103 B1 :=

104 (!chain-last

105 [(A11 & A12 & A14)

106 ==>

107 (exists ?n ?s ?ls2 ?ls3 .

108 ?n >= n1 &

109 config (itp t ?n) =

110 (?s ++ (actor a ?ls2))

111 ++ (actor b ?ls3)

112 ++ (One ( message ’ a LS0 b (msg x1 c1))) &
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113 ?ls3 ready-to (receive b a (msg x1 c1)) &

114 (itp t (S ?n)) =

115 (itp t ?n) then (receive b a (msg x1 c1)))

116 [GMD ]])}

117 pick-witnesses n0 ’ s0 ’ lsa0 ’ lsb0 ’ for B0 C0

118 pick-witnesses n1 ’ s1 ’ lsa1 ’ lsb1 ’ for B1 C1

119 l e t {C0-0 := ( n0 ’ >= n0);

120 C0-1 :=

121 (config (itp t n0 ’ ) =

122 ( s0 ’ ++ (actor a lsa0 ’ )) ++ (actor b lsb0 ’ )

123 ++ (One ( message ’ a LS0 b (msg x0 c0))));

124 C0-1a :=

125 (!chain-last

126 [C0-1

127 ==> (config (itp t n0 ’ ) =

128 ( s0 ’ ++ (actor b lsb0 ’ )

129 ++ (actor a lsa0 ’ )

130 ++ (One ( message ’ a LS0

131 b (msg x0 c0 )))))

132 [++A ++A ++C ++A]]);

133 C0-2 := ( lsb0 ’ ready-to (receive b a (msg x0 c0)));

134 C0-3 := ((itp t (S n0 ’ )) =

135 (itp t n0 ’ ) then (receive b a (msg x0 c0)));

136 C0-4 := (!chain-last

137 [( C0-1a & C0-2 & C0-3)

138 ==> (about-to-receive t n0 ’ s0 ’ b

139 a lsb0 ’ lsa0 ’ x0 c0)

140 [about-to-receive-def ]]);

141 C1-0 := ( n1 ’ >= n1);

142 C1-1 :=

143 (config (itp t n1 ’ ) =

144 ( s1 ’ ++ (actor a lsa1 ’ )) ++ (actor b lsb1 ’ )

145 ++ (One ( message ’ a LS0 b (msg x1 c1))));

146 C1-1a :=

147 (!chain-last

148 [C1-1

149 ==> (config (itp t n1 ’ ) =

150 ( s1 ’ ++ (actor b lsb1 ’ )

151 ++ (actor a lsa1 ’ )



48

152 ++ (One ( message ’ a LS0

153 b (msg x1 c1 )))))

154 [++A ++A ++C ++A]]);

155 C1-2 := ( lsb1 ’ ready-to (receive b a (msg x1 c1)));

156 C1-3 :=

157 ((itp t (S n1 ’ )) =

158 (itp t n1 ’ ) then (receive b a (msg x1 c1)));

159 C1-4 := (!chain-last

160 [( C1-1a & C1-2 & C1-3)

161 ==> (about-to-receive t n1 ’ s1 ’ b a

162 lsb1 ’ lsa1 ’ x1 c1)

163 [about-to-receive-def ]]);

164 C2 := (!chain-last

165 [(C0-4 & C1-4 & T)

166 ==> (( n0 ’ < n1 ’ ) <==> (x0 < x1))

167 [RSO]

168 ==> ((x0 < x1) ==> ( n0 ’ < n1 ’ ))

169 [right-iff ]]);

170 C3 := (!mp C2 A4);

171 C4 := (!both C0-4 (!both C1-4 C3));

172 C5 :=

173 (!egen* (exists ?n0 ?n1 ?s0 ?lsa0 ?lsb0

174 ?s1 ?lsa1 ?lsb1 .

175 (about-to-receive t ?n0 ?s0 b a

176 ?lsa0 ?lsb0 x0 c0) &

177 (about-to-receive t ?n1 ?s1 b a

178 ?lsa1 ?lsb1 x1 c1) &

179 ?n0 < ?n1)

180 [ n0 ’ n1 ’ s0 ’ lsb0 ’ lsa0 ’ s1 ’ lsb1 ’ lsa1 ’ ])}

181 (!chain-last

182 [C5

183 ==> (receives-before t b a (msg x0 c0)

184 (msg x1 c1))

185 [receives-before-def ]])



APPENDIX C

Proof of Correctness

1 conclude always-correct

2 l e t {given := lambda (P) (get-property P no-renaming Theory );

3 chain-last := method (L) (!chain-help given L ’last );

4 ++A := (given [ ’Sieve [ ’ ++ Associative ]]);

5 ++C := (given [ ’Sieve [ ’ ++ Commutative ]]);

6 lemma := method (P) (!property P no-renaming Theory );

7 TR := (!lemma [ ’Sieve trans-receive ]);

8 ITC := (!lemma [ ’Sieve itp-connected ]);

9 SRO := (!lemma [ ’Sieve send-receive-order ]);

10 RTR := (!lemma [ ’Sieve ready-to-recv-def ]);

11 ISO2 := (!lemma [ ’Sieve Isolate2 ])}

12 pick-any t:(TP Name SLS)

13 assume I := ((IC t) & (unique-ids config t))

14 l e t {goal := (forall ?n . (Correct (sitp t ?n)))}

15 pick-any m:N

16 l e t { goal ’ := (forall ?s ?ls .

17 (config (sitp t m) =

18 ?s ++ (actor Output (output out ?ls)))

19 ==>

20 (forall ?n .

21 ?n In ?ls ==> (Prime ?n)));

22 Prem := (conclude goal ’

23 pick-any s:(Cfg (Actor Name SLS)) ls:(List N)

24 assume A0 := (config (sitp t m) =

25 s ++ (actor Output (output out ls)))

26 pick-any n:N

27 assume A1 := (n In ls)

28 l e t {ngoal := (~( Prime n))}

29 (!by-contradiction (Prime n)

30 assume ngoal

31 l e t {A000 := (!chain-last

32 [( unique-ids config t)

33 ==> (forall ?n .

34 (unique-ids config (sitp t ?n)))

49
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35 [always-unique-ids ]]);

36 A1-0 := (!chain-last

37 [ngoal

38 ==> (exists ?y .

39 (Prime ?y) &

40 ?y divides n &

41 ?y =/= n)

42 [Prime.non-prime ]])}

43 pick-witness p for A1-0 A-w

44 l e t {sq0 := (IOSEQ p);

45 sq1 := (IOSEQ n);

46 A-w0 := (Prime p);

47 A-w1 := (p divides n);

48 A-w2 := (p =/= n);

49 A-two := (!chain-last

50 [(A-w0 & A-w1)

51 ==> (exists ?y .

52 (( Prime ?y) & (?y divides n)))

53 [existence]

54 ==> (n > two)

55 [composites- >-two ]]);

56 A-w3 := (!chain-last

57 [A-w1

58 ==> (p <= n)

59 [divides.divs-less-than]

60 ==> (p < n | p = n)

61 [Less=. definition ]]);

62 A-w4 := (conclude (p < n)

63 (!dsyl A-w3 A-w2 ));

64 A-w5 := (!chain-last

65 [A-w0

66 ==> (p =/= zero &

67 p =/= one &

68 (forall ?y .

69 (?y divides p)

70 <==> (?y = one | ?y = p)))

71 [Prime.definition]

72 ==> (forall ?y .

73 (?y divides p)



51

74 <==> (?y = one | ?y = p))

75 [right-and right-and ]]);

76 A-w6 := (!chain-last

77 [A-w4

78 ==> (sends-before t Input Output

79 (IOMSG p) (IOMSG n))

80 [input-sends-before ]]);

81 B :=

82 (!chain-last

83 [A-w6

84 ==> (receives-before t Output Input

85 (IOMSG p) (IOMSG n))

86 [SRO]

87 ==> (exists ?n0 ?n1 ?s0 ?lsa0 ?lsb0 ?s1

88 ?lsa1 ?lsb1 .

89 (about-to-receive t ?n0 ?s0 Output Input

90 ?lsa0 ?lsb0 sq0 (sm p)) &

91 (about-to-receive t ?n1 ?s1 Output Input

92 ?lsa1 ?lsb1 sq1 (sm n)) &

93 ?n0 < ?n1)

94 [(given [ ’Sieve receives-before-def ])]])}

95 pick-witnesses n0 n1 s0 lso0 lsi0 s1 lso1 lsi1 for B B-w

96 l e t {B-w1 := (about-to-receive t n0 s0 Output Input

97 lso0 lsi0 sq0 (sm p));

98 B-w2 := (about-to-receive t n1 s1 Output Input

99 lso1 lsi1 sq1 (sm n));

100 B-w3 := (n0 < n1);

101 B-w0a := (!uspec A000 n0);

102 B-w0b := (!uspec A000 n1);

103 B-w0c := (!uspec A000 (S n0));

104 B-w4 :=

105 (!chain-last

106 [B-w1

107 ==> (config (sitp t n0) =

108 s0 ++ (actor Output lso0)

109 ++ (actor Input lsi0)

110 ++ (MSG sq0 p) &

111 lso0 ready-to (sieve-recv (SMSG sq0 p)) &

112 (sitp t (S n0)) =
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113 (sitp t n0) then

114 (sieve-recv (SMSG sq0 p)))

115 [(given [ ’Sieve about-to-receive-def ])]]);

116 B-w20 :=

117 (!chain-last

118 [B-w2

119 ==> (config (sitp t n1) =

120 s1 ++ (actor Output lso1)

121 ++ (actor Input lsi1)

122 ++ (MSG sq1 n) &

123 lso1 ready-to (sieve-recv (SMSG sq n)) &

124 (sitp t (S n1)) =

125 (sitp t n1) then

126 (sieve-recv (SMSG sq1 n)))

127 [(given [ ’Sieve about-to-receive-def ])]]);

128 B-w5 := (config (sitp t n0) =

129 s0 ++ (actor Output lso0)

130 ++ (actor Input lsi0)

131 ++ (MSG sq0 p));

132 B-w5a := (!chain-last

133 [B-w5

134 ==> (config (sitp t n0)

135 = (s0 ++ (actor Input lsi0))

136 ++ (actor Output lso0)

137 ++ (MSG sq0 p))

138 [++A ++C ++A]]);

139 B-w5b := (!chain-last

140 [B-w5a

141 ==> (config (sitp t n0)

142 = (s0 ++ (actor Input lsi0)

143 ++ (MSG sq0 p))

144 ++ (actor Output lso0))

145 [++A ++C ++A]]);

146 B-w21 := (config (sitp t n1) =

147 s1 ++ (actor Output lso1)

148 ++ (actor Input lsi1)

149 ++ (MSG sq1 n));

150 B-w22 := (!chain-last

151 [B-w21
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152 ==> (config (sitp t n1)

153 = (s1 ++ (actor Input lsi1))

154 ++ (actor Output lso1)

155 ++ (MSG sq1 n))

156 [++A ++C ++A]]);

157 B-w23 := (!chain-last

158 [B-w22

159 ==> (config (sitp t n1)

160 = (s1 ++ (actor Input lsi1)

161 ++ (MSG sq1 n))

162 ++ (actor Output lso1))

163 [++C ++A]]);

164 B-w6 :=

165 (lso0 ready-to (sieve-recv (SMSG sq0 p)));

166 B-w24 :=

167 (lso1 ready-to (sieve-recv (SMSG sq1 n)));

168 B-w7 :=

169 ((sitp t (S n0)) =

170 (sitp t n0) then (sieve-recv (SMSG sq0 p)));

171 B-wa :=

172 (!chain-last

173 [( B-w5a & B-w6)

174 ==> (config ((sitp t n0) then

175 (sieve-recv (SMSG sq0 p))) =

176 ((s0 ++ (actor Input lsi0))

177 ++ (actor Output

178 (next lso0

179 (sieve-recv (SMSG sq0 p))))))

180 [TR]

181 ==> (config (sitp t (S n0)) =

182 ((s0 ++ (actor Input lsi0))

183 ++ (actor Output

184 (next lso0

185 (sieve-recv (SMSG sq0 p))))))

186 [B-w7 ]]);

187 B-w25 :=

188 ((sitp t (S n1)) =

189 (sitp t n1) then (sieve-recv (SMSG sq1 n)));

190 B-w26 :=
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191 (!chain-last

192 [(B-w22 & B-w24)

193 ==> (config ((sitp t n1) then

194 (sieve-recv (SMSG sq1 n))) =

195 ((s1 ++ (actor Input lsi1))

196 ++ (actor Output

197 (next lso1

198 (sieve-recv (SMSG sq1 n))))))

199 [TR]

200 ==> (config (sitp t (S n1)) =

201 ((s1 ++ (actor Input lsi1))

202 ++ (actor Output

203 (next lso1

204 (sieve-recv (SMSG sq1 n))))))

205 [B-w25 ]]);

206 B-w8 :=

207 (!chain-last

208 [B-w6

209 ==> (exists ?ct .

210 (SMSG sq0 p) =

211 (msg (OISEQ lso0) ?ct)

212 & (lso0 ready-to-pred (sieve-recv ?ct)))

213 [RTR ]]);

214 B-w27 :=

215 (!chain-last

216 [B-w24

217 ==> (exists ?ct .

218 (SMSG sq1 n) =

219 (msg (OISEQ lso1) ?ct)

220 & (lso1 ready-to-pred (sieve-recv ?ct)))

221 [RTR ]])}

222 pick-witness ct0 for B-w8 C-w

223 pick-witness ct1 for B-w27 C2-w

224 l e t {C-wl := ((SMSG sq0 p) =

225 (msg (OISEQ lso0) ct0));

226 C-wr := (lso0 ready-to-pred (sieve-recv ct0 ));

227 C-w0 := (!chain-last

228 [C-wl

229 ==> (sq0 = (OISEQ lso0) &
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230 (sm p) = ct0)

231 [msg-injective ]]);

232 C-w0l := (sq0 = (OISEQ lso0 ));

233 C-w0r := ((sm p) = ct0);

234 C-w1 :=

235 (!chain-last

236 [C-wr

237 ==> (lso0 ready-to-pred (sieve-recv (sm p)))

238 [C-w0r]

239 ==> (Input = Input &

240 (exists ?n ?l .

241 (sm p) = (sm ?n) &

242 lso0 = (output out ?l)))

243 [Output.ready-to-def]

244 ==> (exists ?n ?l .

245 (sm p) = (sm ?n) &

246 lso0 = (output out ?l))

247 [right-and ]]);

248 C2-wl := ((SMSG sq1 n) =

249 (msg (OISEQ lso1) ct1));

250 C2-wr := (lso1 ready-to-pred (sieve-recv ct1));

251 C2-w0 := (!chain-last

252 [C2-wl

253 ==> (sq1 = (OISEQ lso1) &

254 (sm n) = ct1)

255 [msg-injective ]]);

256 C2-w0l := (sq1 = (OISEQ lso1 ));

257 C2-w0r := ((sm n) = ct1);

258 C2-w1 :=

259 (!chain-last

260 [C2-wr

261 ==> (lso1 ready-to-pred (sieve-recv (sm n)))

262 [C2-w0r]

263 ==> (Input = Input &

264 (exists ?n ?l .

265 (sm n) = (sm ?n) &

266 lso1 = (output out ?l)))

267 [Output.ready-to-def]

268 ==> (exists ?n ?l .
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269 (sm n) = (sm ?n) &

270 lso1 = (output out ?l))

271 [right-and ]])}

272 pick-witnesses n0 ’ l0 for C-w1 D-w

273 pick-witnesses n1 ’ l1 for C2-w1 D2-w

274 l e t {D-w1 := (lso0 = (output out l0));

275 D2-w1 := (lso1 = (output out l1));

276 D-w2 :=

277 (!chain-last

278 [B-wa

279 ==> (config (sitp t (S n0)) =

280 ((s0 ++ (actor Input lsi0))

281 ++ (actor Output

282 (next (output out l0)

283 (sieve-recv (SMSG sq0 p))))))

284 [D-w1 ]]);

285 D-w3 :=

286 (!chain-last

287 [B-w5b

288 ==> (config (sitp t n0) =

289 (s0 ++ (actor Input lsi0)

290 ++ (MSG sq0 p))

291 ++ (actor Output (output out l0)))

292 [D-w1]

293 ==> (exists ?s .

294 (config (sitp t n0) =

295 ?s ++ (actor Output (output out l0))))

296 [existence]

297 ==> (( actor ’ Output (output out l0)) in

298 (config (sitp t n0)))

299 [ISO2 ]]);

300 D-w4 :=

301 (!chain-last

302 [(IC t)

303 ==> (forall ?n ?l .

304 ((( actor ’ Output (output out ?l)) in

305 (config (sitp t ?n)))

306 ==> (~( one In ?l))))

307 [one-isnt-in-output ]]);
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308 D-w5 := (!chain-last

309 [D-w3

310 ==> (~( one In l0))

311 [D-w4 ]]);

312 D-w6 := (p In l1);

313 _ :=

314 (conclude D-w6

315 (!two-cases

316 assume Cs1 := (p In l0)

317 l e t {Cs1-0 :=

318 (!chain-last

319 [B-w5b

320 ==> (config (sitp t n0) =

321 (s0 ++ (actor Input lsi0)

322 ++ (MSG sq0 p))

323 ++ (actor Output

324 (output out l0)))

325 [D-w1 ]]);

326 Cs1-1 :=

327 (!chain-last

328 [B-w3

329 ==> (n0 <= n1)

330 [Less=. Implied-by- <]

331 ==> ((sitp t n0) -- >>* (sitp t n1))

332 [ITC ]]);

333 Cs1-2 :=

334 (!chain-last

335 [( B-w0a & B-w0b & Cs1-0 &

336 B-w23 & Cs1-1)

337 ==> (output out l0 output-subset

338 lso1)

339 [output-monotonic]

340 ==> (( output out l0) output-subset

341 (output out l1))

342 [D2-w1]

343 ==> (forall ?x .

344 ?x In l0 ==> ?x In l1)

345 [output-subset-ext ]])}

346 (!chain-last
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347 [Cs1 ==> (p In l1)

348 [Cs1-2 ]])

349 assume Cs2 := (~(p In l0))

350 l e t {Cs2-0 :=

351 (forall ?m .

352 ?m In l0 ==> ~(?m divides p));

353 _ :=

354 (conclude Cs2-0

355 pick-any m ’ :N

356 assume P := ( m ’ In l0)

357 l e t {P0 := (~( m ’ divides p));

358 P1 :=

359 (conclude

360 (( m ’ divides p) ==>

361 ( m ’ = one | m ’ = p))

362 (!left-iff

363 (!uspec A-w5 m ’ )));

364 P2 := ( m ’ =/= p);

365 _ :=

366 (conclude P2

367 (!by-contradiction

368 ( m ’ =/= p)

369 assume ( m ’ = p)

370 (!absurd

371 ( m ’ In l0)

372 (!chain-last

373 [Cs2

374 ==> (~( m ’ In l0))

375 [( m ’ = p)]]))));

376 P3 := ( m ’ =/= one);

377 _ :=

378 (conclude P3

379 (!by-contradiction P3

380 assume ( m ’ = one)

381 (!absurd

382 ( m ’ In l0)

383 (!chain-last

384 [D-w5

385 ==> (~( m ’ In l0))
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386 [( m ’ = one )]]))));

387 P4 := (conclude

388 (~( m ’ = one | m ’ = p))

389 (!dm (!both P3 P2)))}

390 (!mt P1 P4));

391 Cs2-1 :=

392 (!chain-last

393 [(and (!reflex Output)

394 (!reflex Input)

395 (!reflex (SMSG sq0 p))

396 Cs2-0)

397 ==> ((next (output out l0)

398 (sieve-recv (SMSG sq0 p)))

399 = (output out (p :: l0)))

400 [Output.next-def ]]);

401 Cs2-2 :=

402 (!chain-last

403 [D-w2

404 ==> (config (sitp t (S n0)) =

405 ((s0 ++ (actor Input lsi0))

406 ++ (actor Output

407 output out (p :: l0))))

408 [Cs2-1 ]]);

409 Cs2-3 := (!chain-last

410 [B-w3

411 ==> ((S n0) <= n1)

412 [Less=. discrete]

413 ==> ((sitp t (S n0)) -- >>*

414 (sitp t n1))

415 [ITC ]]);

416 Cs2-4 := (!chain-last

417 [( B-w0c & B-w0b & Cs2-2 &

418 B-w23 & Cs2-3)

419 ==> (output out (p :: l0)

420 output-subset lso1)

421 [output-monotonic ]]);

422 Cs2-5 :=

423 (!chain-last

424 [Cs2-4
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425 ==> (( output out (p :: l0))

426 output-subset

427 (output out l1))

428 [D2-w1]

429 ==> (forall ?x .

430 ?x In (p :: l0) ==> ?x In l1)

431 [output-subset-ext ]]);

432 Cs2-6 := (conclude (p In (p :: l0))

433 (!uspec* In.head [p l0]))}

434 (!chain-last

435 [Cs2-6

436 ==> (p In l1)

437 [Cs2-5 ]])));

438 D-w7a :=

439 (!chain-last

440 [(IC t)

441 ==> (forall ?n ?s ?l ?x .

442 (config (sitp t ?n) =

443 ?s ++ (actor Output (output out ?l)) &

444 ?x In ?l & ?x > two)

445 ==>

446 (exists ? n ’ .

447 ? n ’ < ?n &

448 (output-about-to-receive (sitp t ? n ’ )

449 ?x)))

450 [must-have-received ]]);

451 D-w8a :=

452 (!chain-last

453 [( B-w22 & B-w24 & B-w25)

454 ==> (exists ?ls ?s .

455 (config (sitp t n1) =

456 ?s ++ (actor Output ?ls)

457 ++ (MSG (IOSEQ n) n) &

458 ?ls ready-to (sieve-recv (IOMSG n)) &

459 ((sitp t (S n1)) =

460 ((sitp t n1) then

461 (sieve-recv (IOMSG n))))))

462 [existence]

463 ==> (output-about-to-receive (sitp t n1) n)
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464 [output-about-to-receive-def ]]);

465 D-w8b :=

466 (!chain-last

467 [B-w23

468 ==> (config (sitp t n1) =

469 (s1 ++ (actor Input lsi1)

470 ++ (MSG sq1 n))

471 ++ (actor Output (output out l1)))

472 [D2-w1 ]]);

473 D-w7 := (~(n In l1));

474 _ :=

475 (!by-contradiction D-w7

476 assume (n In l1)

477 l e t {P-1 :=

478 (!chain-last

479 [D-w8b

480 ==> (( config (sitp t n1) =

481 (s1 ++ (actor Input lsi1)

482 ++ (MSG sq1 n))

483 ++ (actor Output

484 (output out l1)))

485 & (n In l1) & (n > two))

486 [augment]

487 ==> (exists ? n ’ .

488 ? n ’ < n1 &

489 (output-about-to-receive

490 (sitp t ? n ’ ) n))

491 [D-w7a ]])}

492 pick-witness n ’ for P-1 P-w

493 l e t {Pu := (!uspec A000 n ’ );

494 P-w1 := (!chain-last

495 [( n ’ < n1)

496 ==> ( n ’ =/= n1)

497 [Less.not-equal ]]);

498 P-w2 := (!chain-last

499 [( output-about-to-receive

500 (sitp t n ’ ) n)

501 ==> (Pu & B-w0b &

502 (output-about-to-receive
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503 (sitp t n ’ ) n) &

504 D-w8a)

505 [augment]

506 ==> ( n ’ = n1)

507 [output-receives-once ]])}

508 (!absurd P-w1 (!bdn P-w2 )));

509 D-w8 := (~(n In ls));

510 D-w9b := (!chain-last

511 [(A0 & A1 & A-two)

512 ==> (exists ? n ’ .

513 ? n ’ < m &

514 (output-about-to-receive

515 (sitp t ? n ’ ) n))

516 [D-w7a ]]);

517 D-w9 := (n1 < m);

518 _ :=

519 (conclude D-w9

520 pick-witness n1 ’ for D-w9b T-w

521 l e t {Tu := (!uspec A000 n1 ’ );

522 T-wl := ( n1 ’ < m);

523 T-wr := (output-about-to-receive

524 (sitp t n1 ’ ) n);

525 T-w1 :=

526 (!chain-last

527 [(Tu & B-w0b & T-wr & D-w8a)

528 ==> ( n1 ’ = n1)

529 [output-receives-once ]])}

530 (!chain-last

531 [T-wl ==> (n1 < m) [T-w1 ]]));

532 D-w10 := (config (sitp t (S n1)) =

533 (s1 ++ (actor Input lsi1))

534 ++ (actor Output (output out l1)));

535 D-tmp :=

536 (!chain-last

537 [(D-w6 & A-w1)

538 ==> (exists ?m . ?m In l1 & ?m divides n)

539 [existence]

540 ==> ((next (output out l1)

541 (sieve-recv (SMSG sq1 n)))
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542 = (output out l1))

543 [Output.next-def-some-divide ]]);

544 _ :=

545 (conclude D-w10

546 (!chain-last

547 [B-w26

548 ==> (config (sitp t (S n1)) =

549 ((s1 ++ (actor Input lsi1)) ++

550 (actor Output

551 (next (output out l1)

552 (sieve-recv (msg sq1 (sm n)))))))

553 [D2-w1]

554 ==> (config (sitp t (S n1)) =

555 ((s1 ++ (actor Input lsi1))

556 ++ (actor Output (output out l1))))

557 [D-tmp ]]));

558 D-w11 :=

559 (!chain-last

560 [(( unique-ids config t) &

561 D-w8a & D-w10 & D-w7)

562 ==> (forall ? n ’ ? s ’ ? l ’ .

563 ? n ’ > n1 &

564 (config (sitp t ? n ’ ) =

565 ? s ’ ++

566 (actor Output (output out ? l ’ )))

567 ==>

568 (~(n In ? l ’ )))

569 [output-filtered ]]);

570 _ :=

571 (conclude D-w8

572 (!chain-last

573 [(D-w9 & A0)

574 ==> (~(n In ls))

575 [D-w11 ]]))}

576 (!absurd A1 D-w8 )))}

577 (!chain-last

578 [Prem ==> (Correct (sitp t m))

579 [Correctness.definition ]])
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\specialhead{ABSTRACT}
We are developing a hierarchy of theories to reason about actor systems, with the ability
to reuse proofs formalized at an abstract level in reasoning about concrete actor programs.
Several actor languages, e.g., the ABCL family of languages, implement First-In First-Out
(FIFO) communication between actors. Furthermore, many practical systems require FIFO
communication for correctness. In previous work, Musser and Varela formalized properties
including monotonicity of actor local states, guaranteed message delivery, and general con-
sequences of fairness. While the actor model requires fairness, it does not require FIFO
communication.

In this thesis, we extend the actor reasoning framework to enable proving correctness of
systems which require FIFO communication. This is done by extending the actor framework
within the Athena proof system, in which proofs are both human-readable and machine-
checkable, taking advantage of its library of algebraic and relational theories.

We introduce three new theories into the actor model framework of Athena. All three of
these theories are developed at the abstract level, enabling the use of them in many concrete
programs. The first two of these theories introduce sequence numbers into the messages
passed between actors, one for sending and one for receiving. We take advantage of the
monotonicity of actor transitions to show that send sequence numbers and receive sequence
numbers will only ever increase.

The third new theory begins to prove the ordering of messages given an order of the
sequence numbers. We use results from the first two theories to show that if two messages
are about to be sent or received, then the order in which the messages are sent or received is
dictated by the sequence numbers. We then use that result to show that two messages must
be received in the same order in which they were sent.

We continue on to show an example of an actor system, based on the computation of
the Sieve of Eratosthenes, that requires FIFO communication in order to be able to prove
correctness of its computation.

\chapter{Introduction and Motivation}
\label{sec:Intro}

The actor model of computation~\parencite{hewitt-actors-1977,agha-actors-1986}
can be useful as both a theoretical framework upon which it 
is possible to reason about concurrent computations~\parencite{agha-jfp-1997,talcott-interaction-1998}, as well as a practical means of building a distributed
system~\parencite{armstrong-erlang-1996,varela-agha-salsa-oopsla-2001}.
Actors concurrently encapsulate state, which makes them an intuitive choice
for distributed computations~\parencite{desell-cc-malleability-2007}.
Each actor must have a unique identifier and communicate with other actors
through asynchronous message passing.  Depending on its defined behavior,
upon receiving a message an actor may change its state, send a message to
another actor, and/or create a new actor.

Crucial to actor model computations is the ability to reason about them.
These so called ``actor theories'' formalize the transitions by which each
actor progresses from state to state, and the configurations that each point
in the transition holds.  The actor model imposes \emph{fairness} on
a progression of computations in order to be valid.
Fairness means that if a transition (from an actor
configuration) is infinitely often enabled, the transition must
eventually happen~\parencite{musser-varela-agere-2013}.

\emph{FIFO communication} further restricts valid computations to ensure that
asynchronous messages between any two actors arrive in the order they
were sent.  While FIFO communication is not a requirement of the actor
model of computation, several languages, e.g., the ABCL family of
languages~\parencite{yonezawa-abcl-1986,yonezawa-abcl-90} impose it to facilitate reasoning about
and developing practical actor programs.  Other actor languages, e.g.,
SALSA~\parencite{varela-agha-salsa-oopsla-2001}, require FIFO communication
to be implemented at the application-level.

Actor languages can use different models for representing sequential
computation within an actor.  Agha, Mason, Smith, and Talcott use the
untyped call-by-value lambda calculus to represent an actor's internal
behavior~\parencite{agha-jfp-1997}.  Varela and Agha use an object's
instance and class to represent an actor's state and its
behavior~\parencite{varela-agha-salsa-oopsla-2001}.  This work follows on
with Musser and Varela's approach, in which 
behavior within an actor is defined as axioms on certain functions and
relations on their local states~\parencite{musser-varela-agere-2013}. 

Our research goal is to develop a rich hierarchy of reusable theories
modeling abstract actor computation, that is, following the actor
model's operational semantics, to be able to derive general theorems
that apply to all concrete actor programs that follow the model.  In
this thesis, we enrich the reasoning theory hierarchy to model systems
which follow FIFO communication between actors.

The direction we take in this thesis is based around loose message ordering.
In other words, we focus on a message arriving before another, but with the
possibility of any number of messages arriving between the two.

\section{Example: Sieve of Eratosthenes}
\label{sec:SieveEx}

As a motivating example of this thesis, we look at the computation given by the Sieve of Eratosthenes.

The Sieve of Eratosthenes is a basic computation developed to determine prime numbers.  It begins by filtering out all multiples of two.  Then, it takes the next value, three, and filters out all multiples of three.  The computation continues this up to a given point, and returns all of the remaining numbers.  Since no other numbers divide these, these must be prime numbers.  It is intuitive that the Sieve computation is correct if every number that is returned is a prime number.

In an actor model representation of the Sieve of Eratosthenes, there would be three actors at the start: an {\it Input} actor, an {\it Output} actor, and an actor that represents the number two, called {\it S2}.  The {\it Input} actor sends each value starting at three to the {\it S2} actor, which will filter out each value that it divides.  When it receives a value that it does not divide, then it will pass it down to the next actor, creating a new one if it is at the end of the chain.  Upon creation, a new actor will send the value that was used to create it to the {\it Output} actor.  A graphical representation of the Sieve of Eratosthenes is given in Figure~\ref{fig:ActorSieve}.

\begin{figure}[b]
  \centering
  \includegraphics[scale=.5]{concurrent-sieve}
  \caption[An Actor Model Representation of the Sieve of Eratosthenes]
  {An Actor Model Representation of the Sieve of Eratosthenes. The Input actor continuously sends the numbers in increasing order, which are filtered out by the intermediate actors, which send their associated values to the Output actor.
\label{fig:ActorSieve}}
  %% Graphic here.
\end{figure}

However, assume that the {\it Input} actor sends three, four, five, six, seven, eight, and nine to the {\it S2} actor.  The {\it S2} actor will surely receive all of them, assuming guaranteed message delivery, but there is no guarantee that the {\it S2} actor will receive the number nine after it receives the number three.  If this ends up being the case, then the {\it S2} actor will create the {\it S9} actor, which will then send the number nine to the {\it Output} actor.  In the Athena proof system, this would be represented as follows:

\begin{AthenaNN}
(Initial then (send S2 Output (sm two))
         then (receive Output S2 (sm two))
         then (send Input S2 (sm three))
         then (send Input S2 (sm four))
         then (send Input S2 (sm five))
         then (send Input S2 (sm six))
         then (send Input S2 (sm seven))
         then (send Input S2 (sm eight))
         then (send Input S2 (sm nine))
         then (receive S2 Input (sm nine))
         then (create S2 (si nine))
         then (send (si nine) Output (sm nine))
         then (receive Output (si nine) (sm nine)))
\end{AthenaNN}

After this happens, the {\it Output} actor would return the number nine as a prime number, which is incorrect.  Therefore, in order for this computation to be correct, there must be some means of ensuring that the number three will reach the {\it S2} actor before the number nine reaches the {\it S2} actor.

In this thesis, we first discuss the current foundation of actor model proofs that  are developed in the Athena proof system.  We go on to extend this foundation to include a means of ensuring FIFO communication, and then prove that the foundation for FIFO communication ensures that messages are received in the correct order.  We finally show an example, based upon the Sieve of Eratosthenes, of a computation that can be incorrect without FIFO communication, but will always be correct when FIFO communication is introduced.

\chapter{Actor Proofs and Athena}
\label{sec:Athena}

The proofs regarding FIFO communications are built upon an existing library of formal proofs using the program Athena.  Athena uses a proof system that is both human-readable and machine checkable, in an effort to improve readability while still allowing it to be easily used.  The fact that the proofs are human-readable allows them to be easily used for educational purposes.

In this section, we will explore the existing actor proof hierarchy.  We will give some of the basic definitions of actors in the Athena proof language, and show some currently existing lemmas on which we will be building our framework.  The current actor model reasoning framework is shown in Figure~\ref{fig:Old-Theory-Diagram}.

\begin{figure}
  \diagram{actor-theories1}
  \caption[Algebraic, Relational, and Actor Theories]
  {Algebraic, Relational, and Actor Theories. Arrows represent theory refinement.
     \label{fig:Old-Theory-Diagram}}
\end{figure}

\section{Configurations}
\label{sec:config}

First, we formally define {\it configurations}.  A configuration represents a multiset that holds specific information that pertains to the current point in a computation.

Configurations are defined as a polymorphic structure with three different constructors: {\it Null}, {\it One}, and {\it ++}:

\begin{AthenaNN}
structure (Cfg T) := Null | (One T) | (++ (Cfg T) (Cfg T))
\end{AthenaNN}

{\it Null} is the default constructor which represents an empty configuration.  {\it One} is a constructor for a configuration containing a single object.  Configurations are combined into a new configuration by means of the {\it ++} constructor.  The {\it ++} constructor is defined to be associative and commutative, two properties that are used several times in the proofs concerning FIFO.

\section{Actors}
\label{sec:Actors}

Now that configurations have been defined, the actors themselves must be defined as well.

Actor configurations will hold two types of objects: {\it actors} and {\it messages}.  Like configurations, actors are formally defined as a polymorphic structure, this time allowing for an ID sort and a local state sort.

\begin{AthenaNN}
datatype (Actor Id LS) :=
 (actor' Id LS) | (message' Id LS Id Ide)
\end{AthenaNN}

Note that {\it Ide} is a sort of quoted string in Athena, short for ``Identifier''.  However, these constructors cannot be used directly in configurations, so there must be functions that use the {\it One} constructor from the configuration objects:

\begin{AthenaNN}
define actor := lambda (id ls) (One (actor' id ls))
define message := lambda (fr to c) (One (message' fr to c))
\end{AthenaNN}

A commonly used predicate for the actors is the {\it unique-ids} predicate, which claims that the actor state relationship is a function, i.e. each identifier within a configuration has at most one associated local state.  There are many proofs about {\it unique-ids}, however the most commonly used one in the FIFO proofs is:

\begin{AthenaNN}
 define unique-ids1 :=  
  (forall ?s ?s1 ?s2 ?id1 ?ls1 ?id2 ?ls2 .
    (unique-ids ?s) &
    ?s = ?s1 ++ (actor ?id1 ?ls1) &
    ?s = ?s2 ++ (actor ?id2 ?ls2) &
    ?id1 = ?id2
    ==> ?s1 = ?s2 & ?ls1 = ?ls2)
\end{AthenaNN}

What this lemma is claiming is that if a configuration has two different representations, and the ids are the same of both actors in those configurations, then both the local states and the additional configurations must be the same.

\section{Transitions}
\label{sec:transitions}

Next, actor {\it transitions} are defined.  The three types of actor transitions are {\it send}, {\it receive}, and {\it create}.  A {\it send} transition is made when an actor sends a message, a {\it receive} transition is made when and actor receives a message, and a {\it create} transition is made when an actor creates another actor:

\begin{AthenaNN}
datatype (Step Id) :=
  (receive Id Id Ide) | (send Id Id Ide) | (create Id Id)
\end{AthenaNN}

After this, a means of reasoning about a series of transitions is required.  This takes the form of {\it transition paths}.  Transition paths are a sequence of transitions, beginning at {\it Initial}, and proceeding along through different steps:

\begin{AthenaNN}
datatype (TP Id LS) := Initial | (then (TP Id LS) (Step Id))
\end{AthenaNN}

Another useful predicate that is given in the actor model framework is the ``directly leads to'' predicate.  This is represented as ``\textemdash\textgreater\textgreater'' in Athena.  This is a transitive relation, and built upon this are the predicates ``\textemdash\textgreater\textgreater+'' and ``\textemdash\textgreater\textgreater*'' predicates, which are the irreflexive and reflexive predicates for ``leads to'', respectively.

\begin{AthenaNN}
declare -->>: (Id, LS) [(TP Id LS) (TP Id LS)] -> Boolean
declare -->>+, -->>*: 
 (Id, LS) [(TP Id LS) (TP Id LS)] -> Boolean
declare -->>**: 
 (Id, LS) [N (TP Id LS) (TP Id LS)] -> Boolean
\end{AthenaNN}

One of the last definitions gives a means of indexing transition paths.  These {\it indexed transition paths} are defined through the function {\it itp}:

\begin{AthenaNN}
declare itp: (Id, State) [(TP Id State) N] -> (TP Id State)
\end{AthenaNN}

\section{Fairness and Progress}
\label{sec:progress}

As we mentioned earlier, fairness is the property that if a transition is infinitely often enabled, then it must eventually occur.  Athena builds upon this, and adds two lemmas, called {\it receive-happens} and {\it send-happens}.

\begin{AthenaNN}
define send-happens :=
(forall ?T ?n ?s ?ls ?c .
 (unique-ids config (itp ?T ?n)) &
 config (itp ?T ?n) = ?s ++ (actor sender ?ls) &
 ?ls ready-to (send sender receiver ?c)
 ==>
 exists ?k ?s' ?ls' .
  ?k >= ?n & 
  config (itp ?T ?k) = ?s' ++ (actor sender ?ls') &
  ?ls' ready-to (send sender receiver ?c) &
  (itp ?T (S ?k)) = (itp ?T ?k) then (send sender receiver ?c))
\end{AthenaNN}

Building on this, we add an axiom to be used with progress called {\it eventually-ready-to-receive}:

\begin{AthenaNN}
define eventually-ready-to-receive :=
(forall ?T ?n0 ?s0 ?ls0 ?c .
  config (itp ?T ?n0) = 
  ?s0 ++ (actor receiver ?ls0)
      ++ (message sender receiver ?c) &
  (unique-ids config (itp ?T ?n0))
  ==>
  exists ?n ?s ?ls . 
   ?n >= ?n0 &
   config (itp ?T ?n) = 
     ?s ++ (actor receiver ?ls)
        ++ (message sender receiver ?c) &
     ?ls ready-to (receive receiver sender ?c))
\end{AthenaNN}

A consequence of fairness and {\it eventually-ready-to-receive} is {\it guaranteed message delivery}, which is the property when a message is about to be sent, there must exist a point later on during which that message is received.

\begin{AthenaNN}
define guaranteed-message-delivery :=
(forall ?T ?n0 ?s0 ?ls0 ?ls1 ?c .
 config (itp ?T ?n0) =
   ?s0 ++ (actor sender ?ls0) ++ (actor receiver ?ls1) &
 ?ls0 ready-to (send sender receiver ?c) &
 (unique-ids config (itp ?T ?n0))
 ==>
 exists ?n ?s ?ls2 ?ls3 .
  ?n >= ?n0 &
  config (itp ?T ?n) =
   (?s ++ (actor sender ?ls2)) ++ (actor receiver ?ls3) ++
    (message sender receiver ?c) &
  ?ls3 ready-to (receive receiver sender ?c) &
  (itp ?T (S ?n)) = (itp ?T ?n) then (receive receiver sender ?c))
\end{AthenaNN}

\section{Monotonicity of Transitions}
\label{sec:TransMono}

Another frequently used result is the {\it monotonicity of actor transitions}.  This means that for any predicate {\it R}, if that predicate holds for a local state and its next local state, then if a transition leads to another, then {\it R} must hold for the local state in the first transition and the local state in the second transition, and any transition after that on:

\begin{AthenaNN}
define actor-monotonicity :=
  (forall ?T ?T0 ?s0 ?id ?ls0 .
    (forall ?ls ?step . ?ls R (next ?ls ?step))
    ==>
    ((unique-ids config ?T0) &
     config ?T0 = ?s0 ++ (actor ?id ?ls0) &
     ?T0 -->>* ?T
     ==>
     exists ?s ?ls .
       config ?T = ?s ++ (actor ?id ?ls) & ?ls0 R ?ls))
\end{AthenaNN}

\chapter{Defining FIFO}
\label{sec:Fifo}

{\it Guaranteed message delivery} means that messages reach their intended
destination, but not necessarily that they reach it in the order in
which they were sent.  While for some computations this is not a
problem, we have shown that for some others such as the Sieve of Eratosthenes, it can cause
the computation to be incorrect.

To obtain FIFO communication between a sender and receiver, the sender
can add a sequence number to each message it sends to the receiver,
with the receiver maintaining an expected sequence number for any
message it receives from that sender. Then the receiver only accepts a
message from that sender if the sequence number in the message matches the
expected one.  While this is a well-known technique for achieving FIFO
order, there are many details to be worked out to ensure that it
operates correctly.  By carrying out the specification and proof at an
abstract level, as is done in the following sections, it is possible to
reduce the task of ensuring correctness for a concrete application to
checking that a few simple axioms are satisfied in that application.

All of the following development is placed within three new theories:
{\it Send-Sequencing}, {\it Receive-Sequencing}, and {\it Fifo}.
The relationship between these three theories and the rest of the actor model reasoning framework in Athena is shown in Figure~\ref{fig:Theory-Diagram}.

\begin{figure}
\diagram{actor-theories3}
\caption[Algebraic, Relational, and Actor Theories with FIFO Theories]
{Algebraic, Relational, and Actor Theories with FIFO Theories.
  Rectangular nodes are algebraic theories,  diamonds are relational theories, and
  ovals are actor theories. Bold nodes represent the theories defined in this thesis.
\label{fig:Theory-Diagram}}
\end{figure}

\section{Messages}
\label{sec:Messages}

To add sequence numbers to messages, the function {\it msg} is introduced
that simply wraps up a sequence number and a message together so they
can be treated as a message in the actor model.  This allows
actors to send sequence numbers in addition to the actual payload of a
message. 

For sequence numbers the natural numbers are used. Recall that {\it Ide}, a
predefined quoted string type in Athena, is the type that messages are
assumed to have in the actor model.

\begin{AthenaNN}
declare msg: [N Ide] -> Ide

assert msg-injective := 
  (forall ?x0 ?y0 ?x1 ?y1 . 
     (msg ?x0 ?y0) = (msg ?x1 ?y1) ==> ?x0 = ?x1 & ?y0 = ?y1)
\end{AthenaNN}
%
We assume no other properties of the {\it msg} function other than its
type and that it is injective, as is required in some of the later
proofs.

In the same spirit, we specify how actors can keep track of sequence
numbers via functions {\it send-seq} and {\it recv-seq}.

\begin{AthenaNN}
declare send-seq, recv-seq: (Id, LS) [(Cfg (Actor Id LS)) Id] -> N
\end{AthenaNN}
%
with the intended meaning that {\it (send-seq (actor a ls) b)} is the
sequence number that actor {\it a} uses for sending a message to actor
{\it b}.  This is also referred to as the send sequence number of actor
{\it a} with respect to {\it b}.  We formally specify the meaning of
{\it send-seq} with axioms that together provide an inductive definition.
Any way of implementing the function that satisfies the axioms is
acceptable.  For each {\it (a, b)} pair, only the local state of the actor
{\it a} varies; i.e., the sequence number (or some way of computing it) must
be embedded in {\it a}'s local state.

The base case of the inductive definition is when an actor is created,
or when the computation begins; in either case we specify the sequence
number as zero:

\begin{AthenaNN}
define send-seq-base :=
  (forall ?a ?b ?lsb . 
    (send-seq (actor ?a (new-ls ?lsb)) ?b) = zero)
define send-seq-init :=
  (forall ?a ?b ?lsa .
    (exists ?s . config Initial = ?s ++ (actor ?a ?lsa))
    ==> (send-seq (actor ?a ?lsa) ?b) = zero)
\end{AthenaNN}
%
For the inductive step, the {\it send-seq} value is incremented when an
actor sends a message to another actor, but only then:

\begin{AthenaNN}
define send-seq-rec := 
  (forall ?a ?b ?lsa ?op .
    (exists ?c . ?op = (send ?a ?b ?c)) ==>
    (send-seq (actor ?a (next ?lsa ?op)) ?b) 
      = (S (send-seq (actor ?a ?lsa) ?b)))
define send-seq-non-send :=
  (forall ?a ?b ?lsa ?op .
    ~ (exists ?c . ?op = (send ?a ?b ?c)) ==>
    (send-seq (actor ?a (next ?lsa ?op)) ?b)
        = (send-seq (actor ?a ?lsa) ?b))
\end{AthenaNN}

The definitions pertaining to the receive sequence numbers are the same as for the send sequence numbers, but using {\it receive} instead of {\it send}:

\begin{AthenaNN}
define recv-seq-base := 
 (forall ?a ?b ?lsb .
   (recv-seq (actor ?a (new-ls ?lsb)) ?b) =
    zero)
define recv-seq-init :=
 (forall ?a ?b ?lsa .
  (exists ?s .
    (config Initial = ?s ++ (actor ?a ?lsa)))
    ==> (recv-seq (actor ?a ?lsa) ?b) = zero)
define recv-seq-rec := 
 (forall ?a ?b ?lsa ?op .
   (exists ?c .
     ?op = (receive ?a ?b ?c)) ==>
   (recv-seq (actor ?a (next ?lsa ?op)) ?b) =
   (S (recv-seq (actor ?a ?lsa) ?b)))
define recv-seq-non-recv := 
 (forall ?a ?b ?lsa ?op .
   ~(exists ?c .
      ?op = (receive ?a ?b ?c)) ==> 
   (recv-seq (actor ?a (next ?lsa ?op)) ?b)  =
   (recv-seq (actor ?a ?lsa) ?b))
\end{AthenaNN}

\section{Specifying {\it Ready-to}}
\label{sec:ready-to}

Each actor should only be ready to make a send or receive transition
if the sequence number matches up correctly.  For example, an actor
{\it a} is only ever ready to receive a message from sender {\it b} if the
receive sequence number actor {\it a} holds for sender {\it b} matches the
sequence number of the message.

Since an actor implementer may have originally specified a {\it ready-to}
predicate without concern for FIFO communication, how can we layer on
this extra requirement of matching sequence numbers? The solution we use
is to rename the given {\it ready-to} predicate as {\it ready-to-pred}, and then
define {\it ready-to} in terms of {\it ready-to-pred} and the new sequence
number requirements.

\begin{AthenaNN}
declare ready-to-pred: (Id,LS) [LS (Step Id)] -> Boolean

define ready-to-send-def :=
 (forall ?id ?ls ?to ?c .
  ?ls ready-to (send ?id ?to ?c)
  <==>
  (exists ?ct .
   ?c = (msg (send-seq (actor ?id ?ls) ?to) ?ct) &
   (?ls ready-to-pred (send ?id ?to ?ct))))

define ready-to-recv-def :=
 (forall ?id ?ls ?fr ?c .
  ?ls ready-to (receive ?id ?fr ?c)
  <==>
  (exists ?ct .
   ?c = (msg (recv-seq (actor ?id ?ls) ?fr) ?ct) &
   (?ls ready-to-pred (receive ?id ?fr ?ct))))

define ready-to-create-def :=
 (forall ?id ?ls ?new .
  ?ls ready-to (create ?id ?new)
  <==>
  (?ls ready-to-pred (create ?id ?new)))
\end{AthenaNN}

\section{Message Ordering}
\label{sec:MsgOrder}

Next, a concept of a message being sent or received before another
is required.  This builds upon the {\it leads-to} predicates, but is set
up around the messages instead of the transitions themselves.

First, we define a predicate that determines whether or not an actor
is ``about to'' send or receive a message.  In terms of the actor
model, this refers to a point in an indexed transition path that has a
configuration with an actor being ready to send or receive a message,
and the next point in the transition path is that actual transition.

\begin{AthenaNN}
declare about-to-send, about-to-receive: (Id,LS)
 [(TP Id LS) N (Cfg (Actor Id LS)) Id Id LS LS N Ide] -> Boolean

define about-to-send-def :=
 (forall ?T ?n ?s ?a ?b ?lsa ?lsb ?x ?c .
  (about-to-send ?T ?n ?s ?a ?b ?lsa ?lsb ?x ?c)
  <==>
  config (itp ?T ?n) = 
    ?s ++ (actor ?a ?lsa) ++ (actor ?b ?lsb) &
  ?lsa ready-to (send ?a ?b (msg ?x ?c)) &
  (itp ?T (S ?n)) = (itp ?T ?n) then (send ?a ?b (msg ?x ?c)))

define about-to-receive-def :=
 (forall ?t ?n ?s ?a ?b ?lsa ?lsb ?x ?c .
   (about-to-receive ?t ?n ?s ?a ?b ?lsa ?lsb ?x ?c)
   <==>
   (config (itp ?t ?n) =
     ?s ++ (actor ?a ?lsa)
        ++ (actor ?b ?lsb)
        ++ (message ?b ?a (msg ?x ?c)) &
    ?lsa ready-to (receive ?a ?b (msg ?x ?c)) &
    (itp ?t (S ?n)) =
    (itp ?t ?n) then (receive ?a ?b (msg ?x ?c))))
\end{AthenaNN}
%
Thus, within indexed transition path {\it T}, this says that actor {\it a} is
about to send {\it (msg x c)} to actor {\it b} at point {\it n} if and only if
actor {\it a} has local state {\it lsa}, actor {\it b} has local state {\it lsb},
actor {\it a} is ready to send {\it (msg x c)} to actor {\it b}, and the next
transition in the path is the actual sending of {\it (msg x c)} to {\it b}.
The same follows for the {\it receive} definition as well.

With these definitions, it follows simply that an actor sends
(receives) one message before another in a transition path if there
are points in the path at which each message is about to be sent
(received), and the first point is before the second.  This is
specified in terms of {\it sends-before} and {\it receives-before} predicates:

\begin{AthenaNN}
declare sends-before, receives-before:
 (Id,LS) [(TP Id LS) Id Id Ide Ide] -> Boolean

define sends-before-def :=
 (forall ?T ?a ?b ?c0 ?c1 ?sq0 ?sq1 .
   (sends-before ?T ?a ?b (msg ?sq0 ?c0) (msg ?sq1 ?c1))
   <==>
   exists ?n0 ?n1 ?s0 ?lsa0 ?lsb0 ?s1 ?lsa1 ?lsb1 .
     (about-to-send ?T ?n0 ?s0 ?a ?b ?lsa0 ?lsb0 ?sq0 ?c0) &
     (about-to-send ?T ?n1 ?s1 ?a ?b ?lsa1 ?lsb1 ?sq1 ?c1) &
     ?n0 < ?n1)

define receives-before-def :=
 (forall ?t ?a ?b ?c0 ?c1 ?sq0 ?sq1 .
   ((receives-before ?t ?a ?b (msg ?sq0 ?c0) (msg ?sq1 ?c1))
    <==>
    (exists ?n0 ?n1 ?s0 ?lsa0 ?lsb0 ?s1 ?lsa1 ?lsb1 .
      (about-to-receive ?t ?n0 ?s0 ?a ?b ?lsa0 ?lsb0 ?sq0 ?c0) &
      (about-to-receive ?t ?n1 ?s1 ?a ?b ?lsa1 ?lsb1 ?sq1 ?c1) &
      ?n0 < ?n1)))
\end{AthenaNN}

These definitions and axioms restrict the actor model and are intended
to establish FIFO communication.  In the next section, we show that
they do in fact impose FIFO communication on the actor model.

\chapter{Proving FIFO}
\label{sec:FifoProofs}

The main theorem to be shown is that messages must be received
in the order in which they were sent.  In other words, if a message
was sent before another, then it must also be received before the
other.  In terms of the {\it sends-before} and {\it receives-before} predicates,
and arbitrary actor ids {\it sender} and {\it receiver}, we have

\begin{AthenaNN}
define send-receive-order :=
(forall ?T ?c0 ?c1 ?sq0 ?sq1 .
 (unique-ids config ?T) &
 (sends-before ?T sender receiver (msg ?sq0 ?c0) (msg ?sq1 ?c1))
 ==>
 (receives-before ?T receiver sender (msg ?sq0 ?c0) (msg ?sq1 ?c1)))
\end{AthenaNN}

To carry out the proof, we introduce several lemmas, discussing them
in turn in the next sections.

\section{Monotonicity of Sequence Numbers}
\label{sec:Monotonicity}

It must be shown that when any transition occurs, the sequence numbers that
actors hold never decrease. The proof takes advantage of the {\it actor-monotonicity} lemma, which was described in Section~\ref{sec:TransMono}.

First, predicates are required that state that a local state's send (receive)
sequence number is less than another local state's send (receive)
sequence number.  These relations are the {\it sslt} and
{\it rslt} predicates, which stand for ``send sequence less than'' and
``receive sequence less than,'' resp.

\begin{AthenaNN}
declare sslt, rslt: (Id,LS) [LS LS] -> Boolean

define sslt-def :=
 (forall ?ls0 ?ls1 .
   ?ls0 sslt ?ls1 <==> 
    (send-seq (actor sender ?ls0) receiver) <=
     (send-seq (actor sender ?ls1) receiver))

define rslt-def :=
 (forall ?ls0 ?ls1 .
  ?ls0 rslt ?ls1 <==>
   (recv-seq (actor receiver ?ls0) sender) <=
    (recv-seq (actor receiver ?ls1) sender))
\end{AthenaNN}

First it must be shown that the {\it rslt} and {\it sslt} predicates themselves are monotonic,
i.e.,

\begin{AthenaNN}
define sslt-mono :=
  (forall ?ls0 ?step . ?ls0 sslt (next ?ls0 ?step))

define rslt-mono := 
  (forall ?ls0 ?step . ?ls0 rslt (next ?ls0 ?step))
\end{AthenaNN}
%

The proofs for these two lemmas are straight-forward, and take advantage of Athena's {\it datatype-cases} proof mechanism to show that no matter what kind of transition the {\it step} variable is, it must follow that the {\it rslt} predicate will hold:

\begin{Athena}
define rslt-mono-proof :=
method (theorem adapt)
 let {given := lambda (P) (get-property P adapt Theory);
      chain-last := method (L) (!chain-help given L 'last);
      [LS0 next ready-to new-ls unique-ids before after config
       sender receiver] :=
       (adapt [LS0 next ready-to new-ls unique-ids before
               after config sender receiver]);
      [ls-sort step-sort] :=
       (map sort-of (qvars-of (adapt theorem)))}
 conclude (adapt theorem)
  pick-any ls:ls-sort step:step-sort
   let {goal := (ls rslt (next ls step))}
   (!two-cases
    assume T1 := 
     (exists ?c . step = (receive receiver sender ?c))
     let {A :=
          (!chain-last
           [T1
            ==> ((recv-seq (actor receiver (next ls step))
                           sender) =
                 (S (recv-seq (actor receiver ls) sender)))
                [(given recv-seq-rec)]])}
     (!chain-last
      [true
       ==> ((recv-seq (actor receiver ls) sender) <=
            (S (recv-seq (actor receiver ls) sender)))
           [Less=.S3]
       ==> ((recv-seq (actor receiver ls) sender) <=
            (recv-seq (actor receiver (next ls step)) sender))
           [A]
       ==> (ls rslt (next ls step))
           [(given rslt-def)]])
    assume T2 :=
     (~(exists ?c . step = (receive receiver sender ?c)))
     let {A :=
          (!chain-last
           [T2
            ==> ((recv-seq (actor receiver (next ls step))
                           sender) =
                 (recv-seq (actor receiver ls) sender))
                [(given recv-seq-non-recv)]])}
     (!chain-last
      [(!reflex (recv-seq (actor receiver ls) sender))
       ==> ((recv-seq (actor receiver ls) sender) <=
            (recv-seq (actor receiver ls) sender))
           [Less=.Implied-by-equal]
       ==> ((recv-seq (actor receiver ls) sender) <=
            (recv-seq (actor receiver (next ls step)) sender))
           [A]
       ==> (rslt ls (next ls step))
           [(given rslt-def)]]))
\end{Athena}

We are then able to prove that if an actor is in a local state at one
transition, and another in a second transition, and the first
transition leads to the second transition, then the receive sequence
number of the first local state with respect to any actor must be less
than or equal to the receive sequence number of the second local state
with respect to the same actor.

\begin{AthenaNN}
define rslt-act-mono :=
  (forall ?T ?T0 ?s0 ?ls0 ?s ?ls .
    (unique-ids config ?T0) &
    config ?T0 = ?s0 ++ (actor receiver ?ls0) &
    config ?T = ?s ++ (actor receiver ?ls) &
    ?T0 -->>* ?T
    ==> ?ls0 rslt ?ls)
\end{AthenaNN}
%
The proof of this lemma is an application of {\it actor-monotonicity} theorem.

From these results we derive a lemma pertaining to equality of receive
sequence numbers, that if two transition points have an actor in two local
states, but the receive sequence numbers with respect to another actor
are the same, then there cannot be a transition between them that
involves that actor receiving a message from the respective actor.

\begin{AthenaNN}
define recv-seq-eq :=
  (forall ?T ?T' ?s ?s' ?ls ?ls' .
    config ?T = ?s ++ (actor receiver ?ls) &
    config ?T' = ?s' ++ (actor receiver ?ls') &
    (unique-ids config ?T) & (unique-ids config ?T') &
    (recv-seq (actor receiver ?ls) sender) = 
       (recv-seq (actor receiver ?ls') sender)
    ==> ~ exists ?T0 ?T0' ?c .
           ?T -->>+ ?T0 & ?T0 -->>* ?T' &
           ?T0 = (?T0' then (receive receiver sender ?c)))
\end{AthenaNN}


The corresponding lemmas for the {\it sslt} predicate are as follows:

\begin{AthenaNN}
define sslt-act-mono :=
 (forall ?t ?t0 ?s0 ?ls0 ?s ?ls .
   (unique-ids config ?t0) &
   config ?t0 = ?s0 ++ (actor sender ?ls0) &
   config ?t = ?s ++ (actor sender ?ls) &
   ?t0 -->>* ?t
   ==> ?ls0 sslt ?ls)

define send-seq-eq :=
  (forall ?t ?t' ?s ?s' ?ls ?ls' .
    config ?t = ?s ++ (actor sender ?ls) &
    config ?t' = ?s' ++ (actor sender ?ls') &
    (unique-ids config ?t) & (unique-ids config ?t') &
    (send-seq (actor sender ?ls) receiver) =
      (send-seq (actor sender ?ls') receiver)
    ==> ~ exists ?t0 ?t0' ?c .
           ?t -->>+ ?t0 & ?t0 -->>* ?t' &
           ?t0 = (?t0' then (send sender receiver ?c)))
\end{AthenaNN}

\section{Sequence Ordering}
\label{sec:SeqOrder}

We then show a small lemma that claims that if an actor is
ready to send a message, then the sequence number of that message must
correspond to the send sequence number of the sender with respect to
the receiver.

\begin{AthenaNN}
define enabled-send-seq :=
 (forall ?t ?a ?b ?c ?x ?s ?ls .
   config ?t = ?s ++ (actor ?a ?ls) &
   ?ls ready-to (send ?a ?b (msg ?x ?c))
   ==> ?x = (send-seq (actor ?a ?ls) ?b))
\end{AthenaNN}
This lemma follows quickly from the {\it ready-to} axioms given earlier.

The final lemma claims that if an actor is about to send two messages,
then the sequence numbers of the messages dictate the order of the
messages.

\begin{AthenaNN}
define send-seq-ordered :=
 (forall ?t ?c0 ?c1 ?n0 ?n1
         ?x ?y ?s0 ?lsa0 ?lsb0 ?s1 ?lsa1 ?lsb1 .
   (about-to-send ?t ?n0 ?s0 sender receiver ?lsa0 ?lsb0 ?x ?c0) &
   (about-to-send ?t ?n1 ?s1 sender receiver ?lsa1 ?lsb1 ?y ?c1) &
   (unique-ids config ?t) ==>
   (?n0 < ?n1 <==> ?x < ?y))
\end{AthenaNN}
The full proof is in Appendix~\ref{sec:SeqOrderProof}, but we give an informal version here.

To prove this lemma, first we assume that at point {\it n0} in transition {\it T}, {\it sender} is about to send {\it (msg x c0)} to {\it receiver}, and at point {\it n1} in transition {\it T}, {\it sender} is about to send {\it (msg y c1)} to {\it receiver}.  We then prove the conclusion by using a standard biconditional introduction.

For the forward direction, we assume {\it n0} $<$ {\it n1}.  Therefore, {\it (itp T n0)} leads to {\it (itp T n1)}.  From the {\it sslt-act-mono} lemma, it follows that {\it x} $\le$ {\it y}.  If {\it x} = {\it y}, then from {\it send-seq-eq} it is known that there can not be a transition between them in which {\it sender} sends a message to {\it receiver}.  However, {\it (itp T n0)} is such a transition, which means that {\it x} $\neq$ {\it y}, and therefore {\it x} $<$ {\it y}.

For the opposite direction, we assume {\it x} $<$ {\it y}.  For a contradiction we assume that {\it n1} $\le$ {\it n0}.  Therefore, {\it (itp T n1)} leads to {\it (itp T n0)}, and from {\it send-seq-eq} it follows that the send sequence number of {\it sender} with respect to {\it receiver} at {\it n1} must be less than or equal to the send sequence number of {\it sender} with respect to {\it receiver} at {\it n0}.  This is a contradiction, which means that {\it n0} $<$ {\it n1}.

With all of these lemmas defined, we are now ready to prove that the
all of the axioms given above ensure message ordering.  The full,
formal version of this proof is in Appendix~\ref{sec:FifoProof}

First, we let {\it m0 = (msg x0 c0)}, and {\it m1 = (msg x1 c1)}.  We then assume that {\it sender} sends {\it m0} to {\it receiver} before {\it m1}.
Therefore, {\it sender} will be ready to send {\it m0} at {\it (itp t n0)}, which {\it enabled-send-seq} gives that {\it x0} will be the sending sequence number of {\it sender} with respect to {\it receiver} at {\it (itp t n0)}, and {\it x1} will be the sending sequence number of {\it sender} with respect to {\it receiver} at {\it (itp t n1)}.
Therefore, from {\it send-seq-ordered} it is known that {\it x0} $<$ {\it x1}.  From {\it guaranteed-message-delivery}, it is known that {\it receiver} will eventually receive both messages.  Let {\it n0'} be the point at which {\it receiver} receives message {\it m0} and {\it n1'} be the point at which {\it receiver} receives the message {\it m1}.  Since it will be ready to receive both messages, {\it x0} must be the receiving sequence number of {\it receiver} with respect to {\it sender} at {\it (itp t n0')}, and the same for {\it x1} and {\it (itp t n1')}.  From {\it receive-seq-ordered}, it is known that {\it n0'} $<$ {\it n1'}, which means that {\it receiver} must receive {\it m0} before {\it m1}.

\chapter{FIFO Application}
\label{sec:FifoApp}

\section{The Sieve of Eratosthenes}

Earlier, we discussed an actor model for the computation of the Sieve of Eratosthenes.  We also showed that without FIFO communication, the Sieve of Eratosthenes may return an invalid answer.
This makes the Sieve of Eratosthenes a good example to emphasize the importance of FIFO communication.

\begin{AthenaNN}
(Initial then (send S2 Output (sm two))
         then (receive Output S2 (sm two))
         then (send Input S2 (sm three))
         then (send Input S2 (sm four))
         then (send Input S2 (sm five))
         then (send Input S2 (sm six))
         then (send Input S2 (sm seven))
         then (send Input S2 (sm eight))
         then (send Input S2 (sm nine))
         then (receive S2 Input (sm nine))
         then (create S2 (si nine))
         then (send (si nine) Output (sm nine))
         then (receive Output (si nine) (sm nine)))
\end{AthenaNN}

However, the full version of the Sieve of Eratosthenes uses dynamic actor creation and requires the ability to iterate through a pipeline of actors,
concepts which are outside the scope of this thesis.  Therefore, a smaller version of the Sieve of Eratosthenes is used instead.
This version will only use two actors, the {\it Input} actor and the {\it Output} actor.  The {\it Input} actor will begin with the number three, and send each value in turn to the {\it Output} actor as it does in the original version of the Sieve of Eratosthenes.
The {\it Output} actor will begin with the number two in its list of numbers, and filter out any value which is divisible by any of its held values.  This model is referred to later in this thesis as the ``Small Sieve Model''.  Figure~\ref{fig:Small-Sieve} shows the graphical representation of the Small Sieve Model.

\begin{figure}
\centering
\includegraphics[scale=.5]{small-sieve}
\caption[The Small Sieve Model]
{The Small Sieve Model.  The Input actor sends each number to the Output actor, which directly filters the numbers \label{fig:Small-Sieve}}
\end{figure}

The Small Sieve Model creates a smaller version of the Sieve of Eratosthenes, but still requires FIFO communication in order to ensure correctness.
For example, without FIFO communication it would still be possible for the {\it Output} actor to receive the number nine before it receives the number three.

In the following sections we will formally define the Small Sieve Model in the Athena proof system, and proceed to show that FIFO communication ensures that any transition path within the Small Sieve Model will be correct.

\section{Defining the Small Sieve Model}
\label{sec:DefSieve}

We now formally define the datatypes for the Small Sieve Model. As we previously stated, there are only two actors, the {\it Input} actor and the {\it Output} actor.  The {\it Input} actor only stores an integer in its local state, while the {\it Output} actor only stores a list of integers that it has received.

\begin{AthenaNN}
datatype Name := Input | Output

datatype ILS := (inn N)
datatype OLS := (out (List N))
datatype SLS := (input ILS) | (output OLS)
\end{AthenaNN}

Since many of the functions for actor model proofs were formally defined as polymorphic, this allows us to redefine functions that work specifically with the Small Sieve model.
\begin{AthenaNN}
declare config: [(TP Name SLS)] -> (Cfg (Actor Name SLS))
declare next: [SLS (Step Name)] -> SLS
declare new-ls: [SLS] -> SLS
declare ready-to, ready-to-pred: [SLS (Step Name)] -> Boolean
declare sls0: SLS
declare sitp: [(TP Name SLS) N] -> (TP Name SLS)
declare unique-ids: [(Cfg (Actor Name SLS))] -> Boolean
declare output-subset: [SLS SLS] -> Boolean
declare input-le: [SLS SLS] -> Boolean

declare sm: [N] -> Ide
assert sm-injective :=
  (forall ?x ?y . (sm ?x) = (sm ?y) ==> ?x = ?y)
\end{AthenaNN}

Next, readiness and transitions must be defined for the {\it Input} and {\it Output} actors.
Since the Small Sieve Model will be using the FIFO communication theories, we define readiness in terms of the {\it ready-to-pred} predicate instead of the {\it ready-to} predicate.

For the {\it Input} actor, it is always ready to send its held integer, and after sending it, the {\it Input} actor increments its held value.
\begin{AthenaNN}
module Input {
assert ready-to-def :=
[(forall ?ls ?to ?c .
  ?ls ready-to-pred (send Input ?to ?c) <==>
  (?to = Output &
    (exists ?n . ?c = (sm ?n) & ?ls = (input inn ?n))))
 (forall ?ls ?fr ?c .
  ?ls ready-to-pred (receive Input ?fr ?c) <==> false)
 (forall ?ls ?new .
  ?ls ready-to-pred (create Input ?new) <==> false)]

assert next-def :=
(fun-def
 [(next (input inn ?i) (receive ?id ?fr ?c)) --> (input inn ?i)
  (next (input inn ?i) (send ?id ?to ?c)) -->
 [(?id = Input & ?to = Output & ?c = (msg ?sq (sm ?i))) -->
  (input inn (S ?i))
   _ --> (input inn ?i)]
 (next (input inn ?i) (create ?id ?new)) --> (input inn ?i)])
}
\end{AthenaNN}

For the {\it Output} actor, it is always ready to receive a value, no matter what that value is.  However, after receiving it, the {\it Output} actor will only add the integer to its list if that value is not divided by any of its currently held values.

In addition, the axioms for the {\it output-subset} predicate are given here.  Since the {\it output-subset} predicate is defined across all local states, axioms for both actors must be given.

\begin{AthenaNN}
module Output {
assert ready-to-def :=
[(forall ?ls ?to ?c .
 ?ls ready-to-pred (send Output ?to ?c) <==> false)
 (forall ?ls ?fr ?c .
    ?ls ready-to-pred (receive Output ?fr ?c) <==>
     (?fr = Input & (exists ?n ?l . ?c = (sm ?n) &
      ?ls = (output out ?l))))
 (forall ?ls ?new .
  ?ls ready-to-pred (create Output ?new) <==> false)]

assert next-def :=
(fun-def
 [(next (output out ?ls) (receive ?id ?fr ?c)) -->
  [(?id = Output & ?fr = Input & ?c = (msg ?sq (sm ?n)) &
    (forall ?m . ?m In ?ls ==> ~(?m divides ?n))) -->
    (output out (?n :: ?ls))
   _ --> (output out ?ls)]
  (next (output out ?l) (send ?id ?to ?c)) --> (output out ?l)
  (next (output out ?l) (create ?id ?new)) --> (output out ?l)])

assert next-invalid-recv :=
(forall ?ls ?id ?fr ?c .
 ~(?id = Output & ?fr = Input &
   (exists ?sq ?n . ?c = (msg ?sq (sm ?n))))
 ==> (next (output out ?ls) (receive ?id ?fr ?c))
     = (output out ?ls))

 assert next-def-some-divide :=
  (forall ?ls ?n ?sq .
    (exists ?m . ?m In ?ls & ?m divides ?n)
    ==> (next (output out ?ls)
              (receive Output Input (msg ?sq (sm ?n))))
         = (output out ?ls))

 assert output-subset-def :=
  (forall ?ls ?ls' .
   (output out ?ls) output-subset ?ls' <==>
    (exists ?l . ?ls' = (output out ?l) &
     (forall ?x . ?x In ?ls ==> ?x In ?l)))

 assert output-subset-input :=
  (forall ?ls ?ls' .
   (input inn ?ls) output-subset ?ls' <==> true)
}
\end{AthenaNN}

\section{Correctness}
\label{sec:Correct}

We then show that our setup for FIFO communication ensures that the Small Sieve Model will be correct.
We start by given the definition of correctness for the Small Sieve Model.

In terms of the Sieve of Eratosthenes, and therefore the Small Sieve Model, a transition path is correct iff every number held by the {\it Output} actor is a prime number.

\begin{AthenaNN}
(forall ?t .
 (Correct ?t) <==>
  (forall ?s ?ls .
   config ?t =
     ?s ++ (actor Output (output out ?ls))
   ==> (forall ?n .
        ?n In ?ls ==> Prime ?n)))
\end{AthenaNN}

Before we begin the proofs about correctness, a few convenience functions are defined in order to improve the readability of the proofs themselves:

\begin{AthenaNN}
define IC := lambda (T)
 (config T =
   (actor Input (input inn three))
++ (actor Output (output out (two :: nil))))

define sieve-send := lambda (M)
 (send Input Output M)
define sieve-recv := lambda (M)
 (receive Output Input M)
define SMSG := lambda (S C)
 (msg S (sm C))
define IOSEQ := lambda (X)
 (send-seq (actor Input (input inn X)) Output)
define OSEQ := lambda (LS)
 (recv-seq (actor Output LS) Input)
define OISEQ := lambda (L)
 (OSEQ (output out L))
define IOMSG := lambda (X)
 (msg (send-seq (actor Input (input inn X)) Output) (sm X))
declare input-about-to-send, output-about-to-receive:
 [(TP Name SLS) N] -> Boolean
\end{AthenaNN}

The {\it IC} macro simply defines the initial conditions of the Small Sieve Model.  It claims that the configuration of transition {\it T} will only consist of the {\it Input} and {\it Output} actors, with the {\it Input} actor holding the number three, and the {\it Output} actor holding a list with just the number two.

The {\it sieve-send} and {\it sieve-recv} macros use the fact that only the {\it Input} actor ever sends a message, and only the {\it Output} actor ever receives a message to simplify the expression of {\it send} and {\it receive} transitions.

\begin{sloppypar}
The {\it SMSG}, {\it IOSEQ}, {\it OSEQ}, {\it OISEQ}, and {\it IOMSG} macros wrap up the {\it msg}, {\it send-seq}, and {\it recv-seq} functions to further simplify the writing of the proofs about the Small Sieve Model.
\end{sloppypar}

The definitions of {\it input-about-to-send} and {\it output-about-to-receive}
simplify the definitions of the {\it about-to-send} and
{\it about-to-receive} predicates:

\begin{AthenaNN}
assert input-about-to-send-def :=
(forall ?t ?n ?x .
 (input-about-to-send (sitp ?t ?n) ?x) <==>
  (exists ?ls ?sq ?s .
   config (sitp ?t ?n) = ?s ++ (actor Input ?ls) &
   ?ls ready-to (sieve-send (SMSG ?sq ?x)) &
   (sitp ?t (S ?n)) = 
    (sitp ?t ?n) then (sieve-send (SMSG ?sq ?x))))

assert output-about-to-receive-def :=
(forall ?t ?n ?x .
 (output-about-to-receive (sitp ?t ?n) ?x) <==>
  (exists ?ls ?s .
   (config (sitp ?t ?n) =
    ?s ++ (actor Output ?ls) ++ (MSG (IOSEQ ?x) ?x) &
    ?ls ready-to (sieve-recv (IOMSG ?x)) &
    (sitp ?t (S ?n)) =
     ((sitp ?t ?n) then (sieve-recv (IOMSG ?x))))))
\end{AthenaNN}

Finally, the goal of this section is to prove that given initial
conditions, the Small Sieve Model computation will always be correct:

\begin{AthenaNN}
define always-correct :=
(forall ?t .
 ((IC ?t) & (unique-ids config ?t))
 ==> (forall ?n . (Correct (sitp ?t ?n))))
\end{AthenaNN}

To this end, a few lemmas are given.  Many of these follow from the
definition of the Small Sieve Model:

\begin{AthenaNN}
define input-sends-before :=
(forall ?t ?x ?y .
 ?x < ?y ==>
 (sends-before ?t Input Output (IOMSG ?x) (IOMSG ?y)))

define output-monotonic :=
(forall ?t ?t0 ?ls0 ?ls ?s0 ?s .
  (unique-ids config ?t0) &
  (unique-ids config ?t) &
  config ?t0 = ?s0 ++ (actor Output ?ls0) &
  config ?t = ?s ++ (actor Output ?ls) &
  ?t0 -->>* ?t
  ==> ?ls0 output-subset ?ls)

define output-receives-once :=
(forall ?t ?n ?m ?x .
  (unique-ids config (sitp ?t ?n)) &
  (unique-ids config (sitp ?t ?m)) &
  (output-about-to-receive (sitp ?t ?n) ?x) &
  (output-about-to-receive (sitp ?t ?m) ?x)
  ==> ?n = ?m)

define must-have-received :=
(forall ?t .
 ((IC ?t) & (unique-ids config ?t)) ==>
  (forall ?n ?s ?l ?x .
   (config (sitp ?t ?n) = ?s ++ (actor Output (output out ?l)) &
    ?x In ?l & ?x > two)
   ==>
   (exists ?n' .
    ?n' < ?n &
    (output-about-to-receive (sitp ?t ?n') ?x))))

define output-filtered :=
(forall ?t ?n ?x ?s ?l .
  (IC ?t) &
  (unique-ids config ?t) &
  (output-about-to-receive (sitp ?t ?n) ?x) &
  (config (sitp ?t (S ?n)) = ?s ++ (actor Output (output out ?l))) &
  (~(?x In ?l))
  ==>
  (forall ?n' ?s' ?l' .
    ?n' > ?n &
    (config (sitp ?t ?n') = ?s' ++ (actor Output (output out ?l')))
    ==>
    (~(?x In ?l'))))

define one-isnt-in-output :=
(forall ?t .
 ((IC ?t) & (unique-ids config ?t)) ==>
  (forall ?n ?l .
    (actor' Output (output out ?l)) in (config (sitp ?t ?n))
    ==> (~(one In ?l))))
\end{AthenaNN}

The {\it input-sends-before} lemma claims that if a value {\it x} $<$ {\it y}, then the {\it Input} actor must send {\it x} before it sends {\it y}.  This is due to the fact that the {\it Input} actor increments its state after each time it sends a message, which means that it must send the smaller value first.

The {\it output-monotonic} lemma builds on the {\it output-subset} function and actor monotonicity from section~\ref{sec:TransMono}.  Since the list of numbers that the {\it Output} actor holds will always be a subset of its next transition, it follows that for any two transitions, if one leads to another then the list held by the {\it Output} actor in the first transition must be a subset of the list held by the {\it Output} actor in the second transition.

The {\it output-receives-once} lemma claims that the {\it Output} actor can only be about to receive any given value once.  This is due to the fact that the {\it Input} actor only ever sends a value once, which means that the message can only ever be in the system once, and can therefore only be received once.  In addition, the {\it Output} actor can only receive messages from the {\it Input} actor, due to the definition of the {\it Output} actor's readiness to receive.

The {\it must-have-received} lemma claims that for any value value greater than {\it two}, if the {\it Output} actor's list contains that value, then it must have received it at some point prior to the current point.

The {\it output-filtered} lemma claims that if the {\it Output} actor is about to receive a value, but it is not in the list held by the {\it Output} actor in the very next step, then the {\it Output} actor must have filtered it, which means that it will not be in any future configuration.

The final lemma is the basic lemma that simply claims that the number {\it one} will never be in the list held by the {\it Output} actor.  This follows quickly from the other lemmas.  If the value {\it one} is in the list held by the {\it Output} actor at some point, then since it is not in the {\it Output} actor's list of numbers in the initial configuration, {\it must-have-received} claims that it must have received it at an earlier point.  However, the first sent message must be the value {\it three}, which means that {\it three} will be sent before any other value.  However, {\it input-sends-before} claims that {\it one} must have been sent before {\it three}.  Therefore, this is a contradiction, and {\it one} cannot be in any list held by the {\it Output} actor.

With these lemmas, we are now able to prove that the Small Sieve Model always gives prime numbers.

First we assume that at transition {\it t}, the {\it Output} actor holds the list {\it ls}.  It then must be shown that all elements of this list are prime.  This is done by contradiction, and it is therefore assumed that some element, {\it n} $\in$ {\it ls} is not prime.  Therefore, there must be some prime {\it p} that divides {\it n}, which means that {\it p} $<$ {\it n}.  This means that the {\it Input} actor will send {\it p} before it sends {\it n}, and from the {\it send-receive-order} theorem from the {\it FIFO Theory}, it follows that the {\it Output} actor will receive {\it p} before it receives {\it n}.

From {\it one-isnt-in-output}, {\it one} cannot be in the {\it Output} actor's list of numbers.  Since {\it p} is prime, the {\it Output} actor must add {\it p} to its list of integers at this point.  Therefore, when the {\it Output} actor receives {\it n}, it will already be holding {\it p}, which means that {\it n} will be filtered out.  From {\it output-receives-once} we know that the {\it Output} actor can only receive any value once, which means that it will never receive {\it n} again which means that {\it n} can not be in {\it ls}.  This contradicts the original statement, which means that {\it n} must be prime.

\chapter{Related Work}
\label{sec:Related}

\section{Formal Proof Systems}
\label{sec:RelatedFormal}

A lot of work by other authors has been done on proof systems that create proofs in a
machine-checkable way. However, Athena aims to do this in a way that allows the proofs to
be easily read.

A few such systems are Isabelle~\parencite{Paulson:Isabelle}, Coq~\parencite{Coq:manual},
and HOL~\parencite{Gordon-Melham:HOL}. Unfortunately, even though
these systems can all create machine-checkable proofs, these systems become difficult to
follow without prior knowledge.This means that it is not as easy to learn from any of
these systems as it is from the proofs made in Athena. These systems tend to work in the
background, preventing the user from seeing the steps that were taken to prove a specific
theorem without running the theorem through the program itself.

The only possible exception is Isabelle-ISAR~\parencite{Wenzel:Isar} which provides a far more readable
language than any of the above languages. However, even ISAR is unable to replicate the
ability to define recursive proof methods within a proof, as is possible in Athena. Since this
technique is used in some of the actor model theories, it is not apparent how ISAR would
be able to replicate the entire actor model reasoning framework developed in Athena.

\section{Actor Model Proofs}
\label{sec:RelatedActor}

Athena is not the only proof system to explore actor model proofs. The Rebeca Modeling Language~\parencite{SirjaniJ11} is dedicated solely to this task. In Rebeca, actor model computations
are modeled by means of different objects that communicate by means of message passing.
These messages are stored in each objectâ��s message queue, and processed in the order in
which they arrive. However, Rebeca uses model checking which does not allow to reason
about unbounded nondeterminism as Athena does, making it difficult to reason about some
computations that require this kind of nondeterminism.

\section{FIFO}
\label{sec:RelatedFifo}

While the actor model framework that is created within Athena does not initially
assume FIFO communication, there are other systems that do. The ABCL/1 is an object-oriented concurrent computation model that does assume FIFO communications, or a
{\it transmission ordering law}~\parencite{yonezawa-abcl-90}.  Specifically, in ABCL/1 each actor, or object, sends messages in
an order dictated by its local clock. The receiver of these messages must receive them in
the same order as dictated by its local clock. This means of communication thus ensures
that communications are done in a FIFO manner. However, this requirement is built into
ABCL/1. If an actor system does not guarantee FIFO communication, then ABCL/1 may
find that certain properties hold, while in reality they do not. For example, if an implementation of the actor representation of the Sieve of Eratosthenes did not guarantee FIFO
communication, the ABCL/1 system would claim that the system would always be correct,
while in reality it would not be.

\chapter{Discussion}
\label{sec:Discuss}

\section{Conclusion}
\label{sec:Conc}

In this thesis, we were able to extend the actor model reasoning framework in Athena
to include the ability to prove correctness about actor systems that require FIFO communication. We accomplished this by extending messages to include sequence numbers, and
set up a means by which each actor in the system could store its send and receive sequence
numbers. We then only allowed each actor to receive a message if the sequence number of
the message corresponded to the receiving sequence number of the receiving actor. Building
upon previous results, we showed that this forces messages to be received in the same order
in which they were sent. This framework then allowed us to prove that a smaller version of
the Sieve of Eratosthenes would always return prime numbers, and therefore would always
be correct.

The main contribution of this work is improving upon the ability to reason about
concurrent computations. It is always important to know that a certain computation gives
the answer that one expects, and it is extremely useful to be able to prove this fact. It is even
more difficult to reason through a concurrent computation due to the increased complications
brought on by concurrency. It is therefore very helpful to have the ability to confirm that a
concurrent computation, and by extension an actor model computation, is in fact working
as expected. It is this ability that has been improved upon in this thesis.

In addition, being developed in Athena means that the proofs are human-readable,
which means that it is possible to learn from the proofs. Since many of the proofs regarding
FIFO communications were developed at the abstract level, it is possible for them to be
reused for later proofs about actor systems that require FIFO communication to be correct.

\section{Future Work}
\label{sec:Future}

Since the proofs of correctness only pertained to the Small Sieve Model, proofs relating
to the full Sieve of Eratosthenes is the direction in which this work could continue. This
would require creating a means of reasoning about dynamic actor creation. Specifically, the
Sieve of Eratosthenes requires that ability to recurse over a pipeline of actors. A pipeline
of actors in this case is a set of actors such that each one only sends to one actor, and only
receives from one actor. In the case of the Sieve of Eratosthenes, the pipeline would start
at the {\it Input} actor, and continue along the chain created by the Sieve actors. Proving the
correctness of the complete Sieve of Eratosthenes model would require proving that each of
these actors holds a prime number as its value, and thus would require the ability to recurse
along this pipeline.

The Sieve of Eratosthenes also requires reasoning about dynamic actor creation. While
the current implementations of the actor model in Athena use a finite number of actors, the
full Sieve of Eratosthenes can create an arbitrarily large amount of actors that create the
pipeline. This introduces complexities that are not present when only a finite number of
actors are used. For example, if one of the Sieve actors needs to send a message to another
Sieve actor, many of the existing theories require knowledge of both actorsâ�� local state.
While this should be guaranteed, it would be one additional lemma to prove when reasoning
about the Sieve of Eratosthenes.
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\chapter{Proof of Sequence Ordering}
\label{sec:SeqOrderProof}

\begin{Athena}
define send-seq-ordered-proof :=
method (theorem adapt)
 let {given := lambda (P) (get-property P adapt Theory);
      lemma := method (P) (!property P adapt Theory);
      chain := method (L) (!chain-help given L 'none);
      chain-last := method (L) (!chain-help given L 'last);
      [LS0 itp config before after next ready-to new-ls
       unique-ids ready-to-pred sender receiver] :=
        (adapt [LS0 itp config before after next ready-to
                new-ls unique-ids ready-to-pred sender receiver]);
      [t-sort _ _ _ _ _ _ s-sort ls-sort _ _ _ _] :=
        (map sort-of (qvars-of (adapt theorem)));
      ++A := (given ['++ Associative]);
      ++C := (given ['++ Commutative]);
      SSE := (!lemma send-seq.send-seq-eq);
      ESS := (!lemma enabled-send-seq);
      UIP := (!lemma unique-ids-persistence);
      ITC := (!lemma itp-connected);
      SAM := (!lemma send-seq.sslt-act-mono);
      RR+I := (!lemma ['-->> RR+-inclusion])}
 conclude (adapt theorem)
  pick-any t:t-sort c0:Ide c1:Ide n0:N n1:N
           x:N y:N s0:s-sort lsa0:ls-sort lsb0:ls-sort s1:s-sort
           lsa1:ls-sort lsb1:ls-sort
   let {a := sender; b := receiver}
   assume A := ((about-to-send t n0 s0 a b lsa0 lsb0 x c0) &
                (about-to-send t n1 s1 a b lsa1 lsb1 y c1) &
                (unique-ids config t))
    let {A1 := (!chain-last
                [(about-to-send t n0 s0 a b lsa0 lsb0 x c0)
                 ==> (config (itp t n0) =
                       s0 ++ (actor a lsa0)
                          ++ (actor b lsb0) &
                      lsa0 ready-to (send a b (msg x c0)) &
                      (itp t (S n0)) =
                       (itp t n0) then (send a b (msg x c0)))
                     [(given about-to-send-def)]]);
         A2 := (!chain-last
                [(about-to-send t n1 s1 a b lsa1 lsb1 y c1)
                 ==> (config (itp t n1) =
                      s1 ++ (actor a lsa1)
                         ++ (actor b lsb1) &
                     lsa1 ready-to (send a b (msg y c1)) &
                     (itp t (S n1)) =
                     (itp t n1) then (send a b (msg y c1)))
                     [(given about-to-send-def)]]);
         A0 := (!chain-last
                [(unique-ids config t)
                 ==> (unique-ids config (itp t zero))
                     [(given itp-initial)]]);
         A0-1 := (config (itp t n0) =
                  s0 ++ (actor a lsa0) ++ (actor b lsb0));
         A0-2 := (lsa0 ready-to (send a b (msg x c0)));
         A0-3 := ((itp t (S n0)) = 
                  (itp t n0) then (send a b (msg x c0)));
         A1-1 := (config (itp t n1) =
                  s1 ++ (actor a lsa1) ++ (actor b lsb1));
         A1-2 := (lsa1 ready-to (send a b (msg y c1)));
         A1-3 := ((itp t (S n1)) =
                  (itp t n1) then (send a b (msg y c1)));
         B0-01 := (!chain-last
                   [A0-1
                    ==> (config (itp t n0) = 
                         (s0 ++ (actor b lsb0)) ++ (actor a lsa0))
                        [++C ++A]]);
         B0-02 := (!chain-last
                   [(B0-01 & A0-2)
                     ==> (x = (send-seq (actor a lsa0) b))
                         [ESS]]);
         B0-11 := (!chain-last
                   [A1-1
                    ==> (config (itp t n1) = 
                         (s1 ++ (actor b lsb1)) ++ (actor a lsa1))
                        [++C ++A]]);
         B0-12 := (!chain-last
                   [(B0-11 & A1-2)
                    ==> (y = (send-seq (actor a lsa1) b))
                        [ESS]]);
         B0-03a := (conclude (zero <= n0) (!uspec Less=.zero<= n0));
         B0-03 := (!chain-last
                   [(A0 & B0-03a)
                    ==> (unique-ids config (itp t n0))
                        [UIP]]);
         B0-13a := (conclude (zero <= n1) (!uspec Less=.zero<= n1));
         B0-13 := (!chain-last
                   [(A0 & B0-13a)
                    ==> (unique-ids config (itp t n1))
                        [UIP]])}
         (!equiv
          assume B1 := (n0 < n1)
           let {B1-21 := (!chain-last
                          [B1
                           ==> (n0 <= n1)
                               [Less=.Implied-by-<]
                           ==> ((itp t n0) -->>* (itp t n1))
                               [ITC]]);
                B1-E1 := (!chain-last
                          [(B0-03 & B0-01 & B0-11 & B1-21)
                            ==> (lsa0 sslt lsa1)
                                [SAM]
                            ==> ((send-seq (actor a lsa0) b) <=
                                 (send-seq (actor a lsa1) b))
                                [(given send-seq.sslt-def)]
                            ==> (x <= y)
                                [B0-02 B0-12]
                            ==> ( x < y | x = y)
                                [Less=.definition]]);
                B1-E2 := (x =/= y);
                _ :=
                 (!by-contradiction B1-E2
                  assume B1-E2a := (x = y)
                   let {G1 := (!chain-last
                               [B1-E2a
                                ==> ((send-seq (actor a lsa0) b) =
                                     (send-seq (actor a lsa1) b))
                                    [B0-02 B0-12]]);
                        G2 := (!chain-last
                               [(B0-01 & B0-11 & B0-03 & B0-13 & G1)
                                ==> (~(exists ?t0 ?t0' ?c .
                                      (itp t n0) -->>+ ?t0 &
                                       ?t0 -->>* (itp t n1) &
                                       ?t0 =
                                       (?t0' then (send a b ?c))))
                                    [SSE]]);
                        G3 := (!chain-last
                               [true ==> ((itp t n0) -->>
                                          (itp t (S n0)))
                                          [itp-directly-connected]
                                     ==> ((itp t n0) -->>+
                                          (itp t (S n0)))
                                         [RR+I]]);
                        G4 :=
                         (!chain-last
                          [B1
                           ==> ((S n0) <= n1)
                               [Less=.discrete]
                           ==> ((itp t (S n0)) -->>* (itp t n1))
                               [ITC]]);
                        _ := (!both G3 (!both G4 A0-3));
                        G5 := (!egen* (exists ?t0 ?t0' ?c .
                                       (itp t n0) -->>+ ?t0 &
                                       ?t0 -->>* (itp t n1) &
                                       ?t0 = 
                                        (?t0' then (send a b ?c)))
                                     [(itp t (S n0)) (itp t n0)
                                      (msg x c0)])}
                   (!absurd G5 G2))}
           (!dsyl B1-E1 B1-E2)
           assume B2 := (x < y)
            let {B2-21 := (!chain-last
                           [B2 ==> ((send-seq (actor a lsa0) b) <
                                    (send-seq (actor a lsa1) b))
                                   [B0-02 B0-12]
                               ==> (~((send-seq (actor a lsa1) b) <=
                                      (send-seq (actor a lsa0) b)))
                                   [Less=.trichotomy3]]);
                 _ :=
                 (!by-contradiction (~ (n1 <= n0))
                  assume (n1 <= n0)
                   let {G1 := (!chain-last
                               [(n1 <= n0)
                                ==> ((itp t n1) -->>*
                                     (itp t n0))
                                    [ITC]
                                ==> (B0-13 &
                                     B0-11 &
                                     B0-01 &
                                     ((itp t n1) -->>*
                                      (itp t n0)))
                                    [augment]
                                ==> (lsa1 sslt lsa0)
                                    [SAM]
                                ==> ((send-seq (actor a lsa1) b) <=
                                     (send-seq (actor a lsa0) b))
                                    [(given send-seq.sslt-def)]])}
                   (!absurd B2-21 (!bdn G1)))}
            (!chain-last
             [B2-22
              ==> (n0 < n1)
                  [Less=.trichotomy1]]))
\end{Athena}

\chapter{Proof of FIFO Order}
\label{sec:FifoProof}

\begin{Athena}
define send-receive-order-proof :=
method (theorem adapt)
 let {given := lambda (P) (get-property P adapt Theory);
      lemma := method (P) (!property P adapt Theory);
      chain := method (L) (!chain-help given L 'none);
      chain-last := method (L) (!chain-help given L 'last);
      [LS0 itp config before after next ready-to new-ls
       unique-ids ready-to-pred sender receiver contents] :=
        (adapt [LS0 itp config before after next ready-to
                new-ls unique-ids ready-to-pred sender
                receiver contents]);
      [t-sort _ _ _ _] :=
        (map sort-of (qvars-of (adapt theorem)));
      SSO := (!lemma send-seq-ordered);
      RSO := (!lemma recv-seq-ordered);
      UIP := (!lemma unique-ids-persistence);
      ATR := (given about-to-receive-def);
      ATS := (given about-to-send-def);
      ++A := (given ['++ Associative]);
      ++C := (given ['++ Commutative])}
 conclude (adapt theorem)
  pick-any t:t-sort c0:Ide c1:Ide x0:N x1:N
   let {a := sender; b := receiver}
   assume T := (unique-ids config t)
    let {S0 := (!chain-last
                [T ==> (unique-ids config (itp t zero))
                        [itp-initial]])}
     assume A := (sends-before t a b (msg x0 c0) (msg x1 c1))
      let {A' := (!chain-last
                  [A
                   ==> (exists ?n0 ?n1 ?s0 ?lsa0 ?lsb0 ?s1
                               ?lsa1 ?lsb1 .
                        (about-to-send t ?n0 ?s0 a b 
                                       ?lsa0 ?lsb0 x0 c0) &
                        (about-to-send t ?n1 ?s1 a b 
                                       ?lsa1 ?lsb1 x1 c1) &
                         ?n0 < ?n1)
                       [sends-before-def]])}
      pick-witnesses n0 n1 s0 lsa0 lsb0 s1 lsa1 lsb1 for A' A''
       let {A0 := (about-to-send t n0 s0 a b lsa0 lsb0 x0 c0);
            A1 := (about-to-send t n1 s1 a b lsa1 lsb1 x1 c1);
            A2 := (n0 < n1);
            A3 := (!chain-last
                   [(A0 & A1 & T)
                     ==> ((n0 < n1) <==> (x0 < x1))
                         [SSO]]);
            A4 := (!mp (!left-iff A3) A2);
            A00 := (!chain-last
                    [A0
                     ==> (config (itp t n0)
                          = (s0 ++ (actor a lsa0)
                                ++ (actor b lsb0)) &
                          (lsa0 ready-to (send a b (msg x0 c0))) &
                          (itp t (S n0)) =
                           (itp t n0) then (send a b (msg x0 c0)))
                         [ATS]]);
            A01 := (config (itp t n0) =
                    s0 ++ (actor a lsa0) ++ (actor b lsb0));
            A02 := (lsa0 ready-to (send a b (msg x0 c0)));
            A03 := ((itp t (S n0)) =
                    (itp t n0) then (send a b (msg x0 c0)));
            A04a := (conclude (zero <= n0)
                              (!uspec Less=.zero<= n0));
            A04 := (!chain-last
                    [(S0 & A04a)
                     ==> (unique-ids config (itp t n0))
                         [UIP]]);
            A10 := (!chain-last
                    [A1
                     ==> (config (itp t n1)
                          = s1 ++ (actor a lsa1)
                               ++ (actor b lsb1) &
                          lsa1 ready-to (send a b (msg x1 c1)) &
                          (itp t (S n1)) =
                           (itp t n1) then (send a b (msg x1 c1)))
                         [ATS]]);
            A11 := (config (itp t n1) =
                    s1 ++ (actor a lsa1) ++ (actor b lsb1));
            A12 := (lsa1 ready-to (send a b (msg x1 c1)));
            A13 := ((itp t (S n1)) = 
                    (itp t n1) then (send a b (msg x1 c1)));
            A14a := (conclude (zero <= n1)
                              (!uspec Less=.zero<= n1));
            A14 := (!chain-last
                    [(S0 & A14a)
                     ==> (unique-ids config (itp t n1))
                         [UIP]]);
            GMD := (!lemma guaranteed-message-delivery);
            B0 :=
             (!chain-last
              [(A01 & A02 & A04)
               ==>
               (exists ?n ?s ?ls2 ?ls3 . 
                ?n >= n0 &
                config (itp t ?n) = 
                (?s ++ (actor a ?ls2))
                    ++ (actor b ?ls3)
                    ++ (One (message' a LS0 b (msg x0 c0))) &
                    ?ls3 ready-to (receive b a (msg x0 c0)) &
                    (itp t (S ?n)) =
                     (itp t ?n) then (receive b a (msg x0 c0)))
               [GMD]]);
             B1 :=
              (!chain-last
               [(A11 & A12 & A14)
                ==>
                (exists ?n ?s ?ls2 ?ls3 . 
                 ?n >= n1 &
                 config (itp t ?n) = 
                  (?s ++ (actor a ?ls2))
                      ++ (actor b ?ls3)
                      ++ (One (message' a LS0 b (msg x1 c1))) &
                  ?ls3 ready-to (receive b a (msg x1 c1)) &
                  (itp t (S ?n)) =
                   (itp t ?n) then (receive b a (msg x1 c1)))
                [GMD]])}
         pick-witnesses n0' s0' lsa0' lsb0' for B0 C0
         pick-witnesses n1' s1' lsa1' lsb1' for B1 C1
          let {C0-0 := (n0' >= n0);
               C0-1 :=
                (config (itp t n0') = 
                 (s0' ++ (actor a lsa0')) ++ (actor b lsb0')
                      ++ (One (message' a LS0 b (msg x0 c0))));
               C0-1a :=
                (!chain-last
                 [C0-1
                  ==> (config (itp t n0') =
                       (s0' ++ (actor b lsb0')
                            ++ (actor a lsa0')
                            ++ (One (message' a LS0
                                              b (msg x0 c0)))))
                      [++A ++A ++C ++A]]);
               C0-2 := (lsb0' ready-to (receive b a (msg x0 c0)));
               C0-3 := ((itp t (S n0')) = 
                        (itp t n0') then (receive b a (msg x0 c0)));
               C0-4 := (!chain-last
                          [(C0-1a & C0-2 & C0-3)
                          ==> (about-to-receive t n0' s0' b
                                                a lsb0' lsa0' x0 c0)
                               [about-to-receive-def]]);
               C1-0 := (n1' >= n1);
               C1-1 :=
                (config (itp t n1') = 
                 (s1' ++ (actor a lsa1')) ++ (actor b lsb1')
                      ++ (One (message' a LS0 b (msg x1 c1))));
               C1-1a :=
                (!chain-last
                 [C1-1
                  ==> (config (itp t n1') =
                       (s1' ++ (actor b lsb1')
                            ++ (actor a lsa1')
                            ++ (One (message' a LS0
                                              b (msg x1 c1)))))
                      [++A ++A ++C ++A]]);
               C1-2 := (lsb1' ready-to (receive b a (msg x1 c1)));
               C1-3 :=
                ((itp t (S n1')) = 
                 (itp t n1') then (receive b a (msg x1 c1)));
               C1-4 := (!chain-last
                        [(C1-1a & C1-2 & C1-3)
                         ==> (about-to-receive t n1' s1' b a
                                               lsb1' lsa1' x1 c1)
                             [about-to-receive-def]]);
               C2 := (!chain-last
                      [(C0-4 & C1-4 & T)
                       ==> ((n0' < n1') <==> (x0 < x1))
                           [RSO]
                       ==> ((x0 < x1) ==> (n0' < n1'))
                           [right-iff]]);
               C3 := (!mp C2 A4);
               C4 := (!both C0-4 (!both C1-4 C3));
               C5 :=
                (!egen* (exists ?n0 ?n1 ?s0 ?lsa0 ?lsb0
                                ?s1 ?lsa1 ?lsb1 .
                         (about-to-receive t ?n0 ?s0 b a
                                           ?lsa0 ?lsb0 x0 c0) &
                         (about-to-receive t ?n1 ?s1 b a
                                           ?lsa1 ?lsb1 x1 c1) &
                         ?n0 < ?n1)
                       [n0' n1' s0' lsb0' lsa0' s1' lsb1' lsa1'])}
          (!chain-last
           [C5
            ==> (receives-before t b a (msg x0 c0)
                                       (msg x1 c1))
                [receives-before-def]])
\end{Athena}

\chapter{Proof of Correctness}
\label{sec:CorrectProof}

\begin{Athena}
conclude always-correct
 let {given := lambda (P) (get-property P no-renaming Theory);
      chain-last := method (L) (!chain-help given L 'last);
      ++A := (given ['Sieve ['++ Associative]]);
      ++C := (given ['Sieve ['++ Commutative]]);
      lemma := method (P) (!property P no-renaming Theory);
      TR := (!lemma ['Sieve trans-receive]);
      ITC := (!lemma ['Sieve itp-connected]);
      SRO := (!lemma ['Sieve send-receive-order]);
      RTR := (!lemma ['Sieve ready-to-recv-def]);
      ISO2 := (!lemma ['Sieve Isolate2])}
 pick-any t:(TP Name SLS)
  assume I := ((IC t) & (unique-ids config t))
   let {goal := (forall ?n . (Correct (sitp t ?n)))}
    pick-any m:N
     let {goal' := (forall ?s ?ls .
                    (config (sitp t m) = 
                     ?s ++ (actor Output (output out ?ls)))
                    ==>
                    (forall ?n .
                     ?n In ?ls ==> (Prime ?n)));
          Prem := (conclude goal'
     pick-any s:(Cfg (Actor Name SLS)) ls:(List N)
      assume A0 := (config (sitp t m) =
                    s ++ (actor Output (output out ls)))
       pick-any n:N
        assume A1 := (n In ls)
         let {ngoal := (~(Prime n))}
         (!by-contradiction (Prime n)
          assume ngoal
           let {A000 := (!chain-last
                         [(unique-ids config t)
                          ==> (forall ?n .
                               (unique-ids config (sitp t ?n)))
                              [always-unique-ids]]);
                A1-0 := (!chain-last
                         [ngoal
                          ==> (exists ?y .
                               (Prime ?y) &
                               ?y divides n &
                               ?y =/= n)
                              [Prime.non-prime]])}
           pick-witness p for A1-0 A-w
            let {sq0 := (IOSEQ p);
                 sq1 := (IOSEQ n);
                 A-w0 := (Prime p);
                 A-w1 := (p divides n);
                 A-w2 := (p =/= n);
                 A-two := (!chain-last
                           [(A-w0 & A-w1)
                            ==> (exists ?y .
                                 ((Prime ?y) & (?y divides n)))
                                [existence]
                            ==> (n > two)
                                [composites->-two]]);
                 A-w3 := (!chain-last
                          [A-w1
                           ==> (p <= n)
                               [divides.divs-less-than]
                           ==> (p < n | p = n)
                               [Less=.definition]]);
                 A-w4 := (conclude (p < n)
                          (!dsyl A-w3 A-w2));
                 A-w5 := (!chain-last
                          [A-w0
                           ==> (p =/= zero &
                                p =/= one &
                                (forall ?y .
                                 (?y divides p)
                                  <==> (?y = one | ?y = p)))
                               [Prime.definition]
                           ==> (forall ?y .
                                (?y divides p)
                                <==> (?y = one | ?y = p))
                               [right-and right-and]]);
                 A-w6 := (!chain-last
                          [A-w4
                           ==> (sends-before t Input Output
                                            (IOMSG p) (IOMSG n))
                               [input-sends-before]]);
                 B :=
                 (!chain-last
                  [A-w6
                   ==> (receives-before t Output Input
                                        (IOMSG p) (IOMSG n))
                       [SRO]
                   ==> (exists ?n0 ?n1 ?s0 ?lsa0 ?lsb0 ?s1
                               ?lsa1 ?lsb1 .
                        (about-to-receive t ?n0 ?s0 Output Input
                                          ?lsa0 ?lsb0 sq0 (sm p)) &
                        (about-to-receive t ?n1 ?s1 Output Input
                                          ?lsa1 ?lsb1 sq1 (sm n)) &
                        ?n0 < ?n1)
                       [(given ['Sieve receives-before-def])]])}
            pick-witnesses n0 n1 s0 lso0 lsi0 s1 lso1 lsi1 for B B-w
             let {B-w1 := (about-to-receive t n0 s0 Output Input
                                            lso0 lsi0 sq0 (sm p));
                  B-w2 := (about-to-receive t n1 s1 Output Input
                                            lso1 lsi1 sq1 (sm n));
                  B-w3 := (n0 < n1);
                  B-w0a := (!uspec A000 n0);
                  B-w0b := (!uspec A000 n1);
                  B-w0c := (!uspec A000 (S n0));
                  B-w4 :=
                   (!chain-last
                    [B-w1
                     ==> (config (sitp t n0) =
                          s0 ++ (actor Output lso0)
                             ++ (actor Input lsi0)
                             ++ (MSG sq0 p) &
                          lso0 ready-to (sieve-recv (SMSG sq0 p)) &
                          (sitp t (S n0)) =
                          (sitp t n0) then
                           (sieve-recv (SMSG sq0 p)))
                         [(given ['Sieve about-to-receive-def])]]);
                  B-w20 :=
                   (!chain-last
                    [B-w2
                     ==> (config (sitp t n1) =
                          s1 ++ (actor Output lso1)
                             ++ (actor Input lsi1)
                             ++ (MSG sq1 n) &
                          lso1 ready-to (sieve-recv (SMSG sq n)) &
                          (sitp t (S n1)) =
                          (sitp t n1) then
                           (sieve-recv (SMSG sq1 n)))
                         [(given ['Sieve about-to-receive-def])]]);
                  B-w5 := (config (sitp t n0) =
                           s0 ++ (actor Output lso0)
                              ++ (actor Input lsi0)
                              ++ (MSG sq0 p));
                  B-w5a := (!chain-last
                            [B-w5
                             ==> (config (sitp t n0)
                                  = (s0 ++ (actor Input lsi0))
                                        ++ (actor Output lso0)
                                        ++ (MSG sq0 p))
                                 [++A ++C ++A]]);
                  B-w5b := (!chain-last
                            [B-w5a
                             ==> (config (sitp t n0)
                                  = (s0 ++ (actor Input lsi0)
                                        ++ (MSG sq0 p))
                                        ++ (actor Output lso0))
                                 [++A ++C ++A]]);
                  B-w21 := (config (sitp t n1) =
                            s1 ++ (actor Output lso1)
                               ++ (actor Input lsi1)
                               ++ (MSG sq1 n));
                  B-w22 := (!chain-last
                            [B-w21
                             ==> (config (sitp t n1)
                                  = (s1 ++ (actor Input lsi1))
                                        ++ (actor Output lso1)
                                        ++ (MSG sq1 n))
                                 [++A ++C ++A]]);
                  B-w23 := (!chain-last
                            [B-w22
                             ==> (config (sitp t n1)
                                  = (s1 ++ (actor Input lsi1)
                                        ++ (MSG sq1 n))
                                        ++ (actor Output lso1))
                                  [++C ++A]]);
                  B-w6 := 
                   (lso0 ready-to (sieve-recv (SMSG sq0 p)));
                  B-w24 :=
                   (lso1 ready-to (sieve-recv (SMSG sq1 n)));
                  B-w7 :=
                   ((sitp t (S n0)) =
                    (sitp t n0) then (sieve-recv (SMSG sq0 p)));
                  B-wa :=
                   (!chain-last
                    [(B-w5a & B-w6)
                     ==> (config ((sitp t n0) then
                                  (sieve-recv (SMSG sq0 p))) =
                          ((s0 ++ (actor Input lsi0))
                               ++ (actor Output
                                   (next lso0
                                    (sieve-recv (SMSG sq0 p))))))
                          [TR]
                     ==> (config (sitp t (S n0)) =
                          ((s0 ++ (actor Input lsi0))
                               ++ (actor Output
                                   (next lso0
                                    (sieve-recv (SMSG sq0 p))))))
                         [B-w7]]);
                   B-w25 :=
                    ((sitp t (S n1)) =
                     (sitp t n1) then (sieve-recv (SMSG sq1 n)));
                   B-w26 :=
                    (!chain-last
                     [(B-w22 & B-w24)
                      ==> (config ((sitp t n1) then
                                   (sieve-recv (SMSG sq1 n))) =
                           ((s1 ++ (actor Input lsi1))
                                ++ (actor Output
                                    (next lso1
                                     (sieve-recv (SMSG sq1 n))))))
                          [TR]
                      ==> (config (sitp t (S n1)) =
                           ((s1 ++ (actor Input lsi1))
                                ++ (actor Output
                                    (next lso1
                                     (sieve-recv (SMSG sq1 n))))))
                          [B-w25]]);
                    B-w8 :=
                     (!chain-last
                      [B-w6
                       ==> (exists ?ct .
                            (SMSG sq0 p) =
                            (msg (OISEQ lso0) ?ct)
                          & (lso0 ready-to-pred (sieve-recv ?ct)))
                          [RTR]]);
                    B-w27 :=
                     (!chain-last
                      [B-w24
                       ==> (exists ?ct .
                            (SMSG sq1 n) =
                             (msg (OISEQ lso1) ?ct)
                          & (lso1 ready-to-pred (sieve-recv ?ct)))
                          [RTR]])}
             pick-witness ct0 for B-w8 C-w
             pick-witness ct1 for B-w27 C2-w
              let {C-wl := ((SMSG sq0 p) =
                            (msg (OISEQ lso0) ct0));
                   C-wr := (lso0 ready-to-pred (sieve-recv ct0));
                   C-w0 := (!chain-last
                            [C-wl
                             ==> (sq0 = (OISEQ lso0) &
                                  (sm p) = ct0)
                                 [msg-injective]]);
                   C-w0l := (sq0 = (OISEQ lso0));
                   C-w0r := ((sm p) = ct0);
                   C-w1 :=
                    (!chain-last
                     [C-wr
                      ==> (lso0 ready-to-pred (sieve-recv (sm p)))
                          [C-w0r]
                      ==> (Input = Input &
                           (exists ?n ?l .
                            (sm p) = (sm ?n) &
                            lso0 = (output out ?l)))
                          [Output.ready-to-def]
                      ==> (exists ?n ?l .
                           (sm p) = (sm ?n) &
                           lso0 = (output out ?l))
                          [right-and]]);
                   C2-wl := ((SMSG sq1 n) =
                             (msg (OISEQ lso1) ct1));
                   C2-wr := (lso1 ready-to-pred (sieve-recv ct1));
                   C2-w0 := (!chain-last
                             [C2-wl
                              ==> (sq1 = (OISEQ lso1) &
                                   (sm n) = ct1)
                                  [msg-injective]]);
                    C2-w0l := (sq1 = (OISEQ lso1));
                    C2-w0r := ((sm n) = ct1);
                    C2-w1 :=
                     (!chain-last
                      [C2-wr
                       ==> (lso1 ready-to-pred (sieve-recv (sm n)))
                           [C2-w0r]
                       ==> (Input = Input &
                            (exists ?n ?l .
                             (sm n) = (sm ?n) &
                             lso1 = (output out ?l)))
                           [Output.ready-to-def]
                       ==> (exists ?n ?l .
                            (sm n) = (sm ?n) &
                            lso1 = (output out ?l))
                           [right-and]])}
              pick-witnesses n0' l0 for C-w1 D-w
              pick-witnesses n1' l1 for C2-w1 D2-w
               let {D-w1 := (lso0 = (output out l0));
                    D2-w1 := (lso1 = (output out l1));
                    D-w2 :=
                     (!chain-last
                      [B-wa
                       ==> (config (sitp t (S n0)) =
                            ((s0 ++ (actor Input lsi0))
                                 ++ (actor Output
                                     (next (output out l0)
                                      (sieve-recv (SMSG sq0 p))))))
                           [D-w1]]);
                    D-w3 :=
                     (!chain-last
                      [B-w5b
                       ==> (config (sitp t n0) = 
                            (s0 ++ (actor Input lsi0)
                                ++ (MSG sq0 p))
                                ++ (actor Output (output out l0)))
                           [D-w1]
                       ==> (exists ?s .
                            (config (sitp t n0) =
                             ?s ++ (actor Output (output out l0))))
                           [existence]
                       ==> ((actor' Output (output out l0)) in
                            (config (sitp t n0)))
                           [ISO2]]);
                    D-w4 :=
                     (!chain-last
                      [(IC t)
                       ==> (forall ?n ?l .
                            (((actor' Output (output out ?l)) in
                             (config (sitp t ?n)))
                             ==> (~(one In ?l))))
                           [one-isnt-in-output]]);
                    D-w5 := (!chain-last
                             [D-w3
                              ==> (~(one In l0))
                                  [D-w4]]);
                    D-w6 := (p In l1);
                    _ :=
                     (conclude D-w6
                      (!two-cases
                       assume Cs1 := (p In l0)
                        let {Cs1-0 :=
                             (!chain-last
                              [B-w5b
                               ==> (config (sitp t n0) =
                                    (s0 ++ (actor Input lsi0)
                                        ++ (MSG sq0 p))
                                        ++ (actor Output
                                            (output out l0)))
                                   [D-w1]]);
                             Cs1-1 :=
                              (!chain-last
                               [B-w3
                                ==> (n0 <= n1)
                                    [Less=.Implied-by-<]
                                ==> ((sitp t n0) -->>* (sitp t n1))
                                    [ITC]]);
                             Cs1-2 :=
                              (!chain-last
                               [(B-w0a & B-w0b & Cs1-0 &
                                 B-w23 & Cs1-1)
                                ==> (output out l0 output-subset
                                     lso1)
                                    [output-monotonic]
                                ==> ((output out l0) output-subset
                                     (output out l1))
                                    [D2-w1]
                                ==> (forall ?x .
                                     ?x In l0 ==> ?x In l1)
                                    [output-subset-ext]])}
                        (!chain-last
                         [Cs1 ==> (p In l1)
                                  [Cs1-2]])
                       assume Cs2 := (~(p In l0))
                        let {Cs2-0 :=
                             (forall ?m .
                              ?m In l0 ==> ~(?m divides p));
                             _ :=
                              (conclude Cs2-0
                               pick-any m':N
                                assume P := (m' In l0)
                                 let {P0 := (~(m' divides p));
                                      P1 :=
                                       (conclude
                                        ((m' divides p) ==>
                                         (m' = one | m' = p))
                                        (!left-iff
                                         (!uspec A-w5 m')));
                                      P2 := (m' =/= p);
                                      _ :=
                                       (conclude P2
                                        (!by-contradiction
                                         (m' =/= p)
                                         assume (m' = p)
                                          (!absurd 
                                           (m' In l0)
                                           (!chain-last
                                            [Cs2
                                             ==> (~(m' In l0))
                                                 [(m' = p)]]))));
                                      P3 := (m' =/= one);
                                      _ :=
                                       (conclude P3
                                        (!by-contradiction P3
                                         assume (m' = one)
                                          (!absurd 
                                           (m' In l0)
                                           (!chain-last
                                            [D-w5
                                             ==> (~(m' In l0))
                                                 [(m' = one)]]))));
                                      P4 := (conclude
                                             (~(m' = one | m' = p))
                                             (!dm (!both P3 P2)))}
                                 (!mt P1 P4));
                             Cs2-1 :=
                              (!chain-last
                               [(and (!reflex Output)
                                     (!reflex Input)
                                     (!reflex (SMSG sq0 p))
                                     Cs2-0)
                                ==> ((next (output out l0)
                                           (sieve-recv (SMSG sq0 p)))
                                     = (output out (p :: l0)))
                                    [Output.next-def]]);
                             Cs2-2 :=
                              (!chain-last
                               [D-w2
                                ==> (config (sitp t (S n0)) =
                                     ((s0 ++ (actor Input lsi0))
                                          ++ (actor Output
                                              output out (p :: l0))))
                                    [Cs2-1]]);
                             Cs2-3 := (!chain-last
                                       [B-w3
                                        ==> ((S n0) <= n1)
                                            [Less=.discrete]
                                        ==> ((sitp t (S n0)) -->>*
                                             (sitp t n1))
                                            [ITC]]);
                             Cs2-4 := (!chain-last
                                       [(B-w0c & B-w0b & Cs2-2 &
                                         B-w23 & Cs2-3)
                                         ==> (output out (p :: l0)
                                              output-subset lso1)
                                             [output-monotonic]]);
                             Cs2-5 :=
                              (!chain-last
                               [Cs2-4
                                ==> ((output out (p :: l0))
                                     output-subset
                                     (output out l1))
                                    [D2-w1]
                                ==> (forall ?x .
                                     ?x In (p :: l0) ==> ?x In l1)
                                    [output-subset-ext]]);
                             Cs2-6 := (conclude (p In (p :: l0))
                                       (!uspec* In.head [p l0]))}
                     (!chain-last
                        [Cs2-6
                         ==> (p In l1)
                             [Cs2-5]])));
                    D-w7a :=
                     (!chain-last
                      [(IC t)
                       ==> (forall ?n ?s ?l ?x .
                            (config (sitp t ?n) =
                            ?s ++ (actor Output (output out ?l)) &
                            ?x In ?l & ?x > two)
                            ==>
                            (exists ?n' .
                             ?n' < ?n &
                             (output-about-to-receive (sitp t ?n')
                                                      ?x)))
                           [must-have-received]]);
                    D-w8a :=
                     (!chain-last
                      [(B-w22 & B-w24 & B-w25)
                       ==> (exists ?ls ?s .
                            (config (sitp t n1) =
                             ?s ++ (actor Output ?ls)
                                ++ (MSG (IOSEQ n) n) &
                             ?ls ready-to (sieve-recv (IOMSG n)) &
                              ((sitp t (S n1)) =
                               ((sitp t n1) then
                                (sieve-recv (IOMSG n))))))
                           [existence]
                       ==> (output-about-to-receive (sitp t n1) n)
                           [output-about-to-receive-def]]);
                    D-w8b :=
                     (!chain-last
                      [B-w23
                       ==> (config (sitp t n1) =
                            (s1 ++ (actor Input lsi1)
                                ++ (MSG sq1 n))
                                ++ (actor Output (output out l1)))
                           [D2-w1]]);
                    D-w7 := (~(n In l1));
                    _ :=
                     (!by-contradiction D-w7
                      assume (n In l1)
                       let {P-1 :=
                            (!chain-last
                             [D-w8b
                              ==> ((config (sitp t n1) =
                                   (s1 ++ (actor Input lsi1)
                                       ++ (MSG sq1 n))
                                       ++ (actor Output
                                           (output out l1)))
                                     & (n In l1) & (n > two))
                                  [augment]
                              ==> (exists ?n' .
                                   ?n' < n1 &
                                   (output-about-to-receive
                                     (sitp t ?n') n))
                                  [D-w7a]])}
                       pick-witness n' for P-1 P-w
                        let {Pu := (!uspec A000 n');
                             P-w1 := (!chain-last
                                      [(n' < n1)
                                       ==> (n' =/= n1)
                                           [Less.not-equal]]);
                             P-w2 := (!chain-last
                                      [(output-about-to-receive
                                        (sitp t n') n)
                                       ==> (Pu & B-w0b &
                                            (output-about-to-receive
                                             (sitp t n') n) &
                                            D-w8a)
                                           [augment]
                                       ==> (n' = n1)
                                           [output-receives-once]])}
                        (!absurd P-w1 (!bdn P-w2)));
                    D-w8 := (~(n In ls));
                    D-w9b := (!chain-last
                               [(A0 & A1 & A-two)
                                ==> (exists ?n' .
                                     ?n' < m &
                                     (output-about-to-receive
                                      (sitp t ?n') n))
                                    [D-w7a]]);
                    D-w9 := (n1 < m);
                    _ :=
                     (conclude D-w9
                      pick-witness n1' for D-w9b T-w
                       let {Tu := (!uspec A000 n1');
                            T-wl := (n1' < m);
                            T-wr := (output-about-to-receive
                                      (sitp t n1') n);
                            T-w1 :=
                             (!chain-last
                              [(Tu & B-w0b & T-wr & D-w8a)
                               ==> (n1' = n1)
                                   [output-receives-once]])}
                       (!chain-last
                        [T-wl ==> (n1 < m) [T-w1]]));
                    D-w10 := (config (sitp t (S n1)) =
                              (s1 ++ (actor Input lsi1))
                                  ++ (actor Output (output out l1)));
                    D-tmp :=
                     (!chain-last
                      [(D-w6 & A-w1)
                       ==> (exists ?m . ?m In l1 & ?m divides n)
                           [existence]
                       ==> ((next (output out l1)
                                  (sieve-recv (SMSG sq1 n)))
                            = (output out l1))
                           [Output.next-def-some-divide]]);
                    _ :=
                     (conclude D-w10
                      (!chain-last
                       [B-w26
                        ==> (config (sitp t (S n1)) =
                             ((s1 ++ (actor Input lsi1)) ++
                              (actor Output
                               (next (output out l1)
                                (sieve-recv (msg sq1 (sm n)))))))
                            [D2-w1]
                        ==> (config (sitp t (S n1)) =
                             ((s1 ++ (actor Input lsi1))
                                  ++ (actor Output (output out l1))))
                            [D-tmp]]));
                    D-w11 :=
                     (!chain-last
                      [((unique-ids config t) &
                        D-w8a & D-w10 & D-w7)
                       ==> (forall ?n' ?s' ?l' .
                            ?n' > n1 &
                            (config (sitp t ?n') =
                             ?s' ++ 
                              (actor Output (output out ?l')))
                            ==>
                            (~(n In ?l')))
                           [output-filtered]]);
                    _ :=
                     (conclude D-w8
                      (!chain-last
                       [(D-w9 & A0)
                         ==> (~(n In ls))
                             [D-w11]]))}
               (!absurd A1 D-w8)))}
     (!chain-last
       [Prem ==> (Correct (sitp t m))
                 [Correctness.definition]])
\end{Athena}
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\begin{picture}(12844,15339)(0,-10)
\whiten\path(12,12)(12,15312)(12832,15312)
	(12832,12)(12,12)
\path(12,12)(12,15312)(12832,15312)
	(12832,12)(12,12)
%  m 
\put(4412,13432){\ellipse{1658}{-720}}
%  i 
\put(6492,14872){\ellipse{3020}{-720}}
%  am 
\put(5692,11992){\ellipse{2976}{-720}}
%  c 
\put(6992,13432){\ellipse{2770}{-720}}
%  cf 
\put(5692,10552){\ellipse{2582}{-720}}
%  ac 
\put(5692,9112){\ellipse{3566}{-720}}
%  tt 
\put(5692,7672){\ellipse{2778}{-720}}
%  dt 
\put(5692,6232){\ellipse{4206}{-720}}
%  br 
\put(10512,10552){\ellipse{2888}{-720}}
%  ir 
\put(11712,9112){\ellipse{2036}{-720}}
%  t 
\put(9332,9112){\ellipse{1972}{-720}}
%  spo 
\put(9452,7672){\ellipse{3370}{-720}}
%  tc 
\put(9792,6232){\ellipse{3278}{-720}}
%  tr 
\put(7732,4792){\ellipse{4206}{-720}}
%  ts 
\put(7732,3352){\ellipse{4468}{-720}}
%  ioe 
\put(5432,1912){\ellipse{4374}{-720}}
%  fts 
\put(10052,1912){\ellipse{4296}{-720}}
%  ioef 
\put(7732,472){\ellipse{5046}{-720}}
%  s 
\put(2352,14872){\ellipse{4734}{-720}}
\put(2352,14760){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Semigroup (Associativity)}}}}
\put(4412,13320){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Monoid}}}}
\put(6492,14760){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Identity Element}}}}
\put(5692,11880){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Abelian Monoid}}}}
\put(6992,13320){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Commutativity}}}}
\put(5692,10440){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Configuration}}}}
\put(5692,9000){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Actor Configuration}}}}
\put(5692,7560){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Transition Path}}}}
\put(5692,6120){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Transition Step Relation}}}}
\put(10512,10440){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Binary Relation}}}}
\put(11712,9000){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Irreflexive}}}}
\put(9332,9000){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Transitive}}}}
\put(9452,7560){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Strict Partial Order}}}}
\put(9792,6120){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Transitive Closure}}}}
\put(7732,4680){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Transition Path Relation}}}}
\put(7732,3240){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Indexed Transition Path}}}}
\put(5432,1800){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Infinitely Often Enabled}}}}
\put(10052,1800){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Fair Transition Path}}}}
\put(7732,360){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}IOE Fair Transition Path}}}}
%  br->t 
\path(10226,10193)(10225,10192)(10222,10188)
	(10215,10179)(10204,10167)(10193,10154)
	(10182,10141)(10172,10129)(10164,10120)
	(10157,10111)(10149,10102)(10142,10093)
	(10135,10084)(10127,10075)(10118,10065)
	(10110,10055)(10101,10045)(10093,10035)
	(10085,10025)(10077,10016)(10070,10007)
	(10062,9998)(10054,9988)(10046,9979)
	(10037,9968)(10028,9958)(10019,9947)
	(10011,9937)(10002,9927)(9994,9918)
	(9987,9909)(9979,9900)(9971,9890)
	(9962,9880)(9954,9870)(9944,9859)
	(9935,9848)(9927,9838)(9918,9828)
	(9910,9818)(9902,9809)(9894,9800)
	(9886,9790)(9878,9780)(9869,9770)
	(9860,9759)(9851,9748)(9842,9738)
	(9834,9728)(9826,9719)(9818,9709)
	(9811,9700)(9803,9691)(9794,9680)
	(9783,9668)(9772,9654)(9760,9640)
	(9748,9627)(9740,9617)(9737,9613)(9736,9612)
%  ir->spo 
\path(11227,8792)(11226,8792)(11222,8789)
	(11211,8782)(11195,8772)(11176,8760)
	(11155,8747)(11135,8735)(11118,8724)
	(11102,8714)(11087,8705)(11074,8697)
	(11061,8689)(11050,8682)(11038,8675)
	(11026,8667)(11014,8660)(11001,8652)
	(10988,8644)(10974,8635)(10960,8627)
	(10947,8619)(10934,8610)(10921,8603)
	(10909,8595)(10897,8587)(10885,8580)
	(10873,8573)(10861,8565)(10848,8558)
	(10835,8549)(10822,8541)(10808,8533)
	(10794,8524)(10780,8515)(10766,8506)
	(10752,8498)(10739,8490)(10726,8482)
	(10714,8474)(10702,8467)(10689,8459)
	(10677,8451)(10664,8443)(10651,8435)
	(10637,8427)(10623,8418)(10608,8409)
	(10594,8400)(10580,8391)(10566,8383)
	(10553,8375)(10540,8367)(10528,8359)
	(10515,8351)(10503,8344)(10491,8336)
	(10478,8328)(10465,8320)(10451,8311)
	(10437,8302)(10423,8294)(10409,8285)
	(10395,8276)(10381,8268)(10368,8260)
	(10355,8252)(10343,8244)(10331,8237)
	(10319,8229)(10307,8222)(10294,8214)
	(10280,8205)(10265,8195)(10248,8185)
	(10229,8173)(10210,8162)(10191,8150)
	(10175,8140)(10162,8132)(10155,8127)
	(10152,8125)(10151,8125)
\blacken\path(10182,8062)(9975,8016)(10109,8181)(10182,8062)
\path(10182,8062)(9975,8016)(10109,8181)(10182,8062)
%  ir->tc 
\path(11707,8749)(11707,8748)(11707,8745)
	(11706,8736)(11705,8721)(11703,8702)
	(11701,8680)(11700,8657)(11698,8635)
	(11696,8615)(11695,8597)(11693,8580)
	(11692,8565)(11690,8550)(11689,8535)
	(11687,8521)(11685,8506)(11684,8490)
	(11682,8474)(11680,8457)(11678,8439)
	(11675,8421)(11673,8403)(11670,8385)
	(11668,8367)(11665,8350)(11663,8333)
	(11660,8317)(11658,8301)(11655,8285)
	(11652,8269)(11649,8251)(11646,8234)
	(11643,8215)(11639,8196)(11636,8177)
	(11632,8158)(11628,8139)(11624,8120)
	(11620,8102)(11616,8084)(11612,8067)
	(11608,8050)(11605,8036)(11601,8021)
	(11597,8005)(11593,7990)(11589,7973)
	(11584,7957)(11580,7940)(11575,7923)
	(11570,7905)(11565,7888)(11560,7872)
	(11555,7855)(11550,7840)(11545,7824)
	(11541,7810)(11536,7795)(11531,7780)
	(11526,7766)(11520,7750)(11515,7735)
	(11509,7719)(11503,7703)(11496,7686)
	(11490,7669)(11483,7652)(11476,7636)
	(11469,7620)(11463,7604)(11456,7589)
	(11450,7574)(11443,7560)(11437,7546)
	(11429,7531)(11421,7515)(11413,7498)
	(11404,7482)(11396,7465)(11386,7447)
	(11377,7430)(11368,7414)(11359,7398)
	(11350,7382)(11341,7368)(11333,7354)
	(11326,7342)(11318,7330)(11310,7316)
	(11301,7303)(11293,7290)(11284,7277)
	(11275,7265)(11266,7252)(11257,7240)
	(11249,7228)(11240,7218)(11232,7207)
	(11224,7198)(11217,7188)(11209,7179)
	(11201,7169)(11193,7160)(11184,7149)
	(11175,7139)(11166,7128)(11156,7118)
	(11147,7108)(11138,7098)(11129,7088)
	(11120,7079)(11112,7070)(11103,7061)
	(11094,7052)(11085,7043)(11076,7034)
	(11066,7024)(11056,7014)(11045,7004)
	(11035,6994)(11025,6985)(11016,6976)
	(11007,6968)(10998,6959)(10989,6951)
	(10979,6943)(10969,6934)(10959,6925)
	(10949,6916)(10938,6907)(10927,6898)
	(10916,6889)(10906,6880)(10896,6872)
	(10886,6864)(10876,6856)(10867,6849)
	(10857,6841)(10847,6833)(10836,6825)
	(10825,6816)(10814,6808)(10803,6799)
	(10792,6791)(10781,6783)(10771,6776)
	(10761,6768)(10751,6761)(10741,6754)
	(10731,6747)(10720,6740)(10708,6731)
	(10694,6722)(10679,6711)(10663,6700)
	(10648,6690)(10636,6681)(10628,6676)
	(10625,6673)(10624,6673)
\blacken\path(10656,6610)(10449,6565)(10582,6729)(10656,6610)
\path(10656,6610)(10449,6565)(10582,6729)(10656,6610)
%  spo->tc 
\path(9536,7306)(9536,7305)(9538,7298)
	(9541,7286)(9545,7271)(9548,7257)
	(9551,7245)(9554,7235)(9556,7225)
	(9558,7216)(9561,7205)(9563,7195)
	(9566,7183)(9569,7172)(9571,7161)
	(9574,7151)(9576,7141)(9579,7131)
	(9581,7120)(9584,7109)(9587,7097)
	(9589,7086)(9592,7075)(9595,7064)
	(9597,7054)(9600,7043)(9602,7033)
	(9605,7021)(9608,7009)(9611,6998)
	(9614,6986)(9616,6975)(9619,6965)
	(9621,6955)(9624,6944)(9627,6932)
	(9630,6921)(9632,6909)(9635,6897)
	(9638,6887)(9640,6876)(9643,6866)
	(9645,6855)(9649,6842)(9652,6827)
	(9657,6811)(9660,6797)(9662,6790)(9662,6789)
\blacken\path(9730,6805)(9709,6594)(9594,6772)(9730,6805)
\path(9730,6805)(9709,6594)(9594,6772)(9730,6805)
%  dt->tr 
\path(6175,5880)(6176,5880)(6180,5877)
	(6188,5871)(6202,5861)(6219,5850)
	(6237,5838)(6254,5826)(6269,5816)
	(6282,5807)(6295,5798)(6306,5791)
	(6317,5783)(6328,5775)(6340,5768)
	(6352,5759)(6364,5751)(6377,5742)
	(6390,5733)(6404,5724)(6417,5715)
	(6429,5706)(6442,5697)(6453,5689)
	(6465,5681)(6477,5673)(6489,5665)
	(6501,5657)(6514,5648)(6527,5638)
	(6541,5629)(6555,5619)(6568,5610)
	(6582,5601)(6594,5592)(6606,5584)
	(6618,5576)(6630,5568)(6642,5559)
	(6655,5551)(6668,5541)(6682,5532)
	(6696,5522)(6710,5513)(6724,5504)
	(6737,5494)(6750,5486)(6762,5477)
	(6774,5469)(6786,5461)(6798,5453)
	(6811,5444)(6824,5435)(6838,5426)
	(6851,5416)(6865,5407)(6879,5397)
	(6892,5388)(6904,5380)(6916,5372)
	(6928,5363)(6940,5355)(6952,5347)
	(6965,5338)(6979,5328)(6996,5317)
	(7013,5305)(7032,5292)(7050,5280)
	(7065,5270)(7074,5263)(7078,5260)(7079,5260)
\blacken\path(7120,5317)(7245,5146)(7040,5202)(7120,5317)
\path(7120,5317)(7245,5146)(7040,5202)(7120,5317)
%  tc->tr 
\path(9314,5887)(9313,5887)(9309,5884)
	(9300,5878)(9286,5868)(9269,5857)
	(9251,5845)(9234,5833)(9219,5822)
	(9205,5813)(9193,5805)(9181,5797)
	(9170,5789)(9158,5781)(9147,5773)
	(9135,5765)(9122,5756)(9109,5747)
	(9095,5738)(9082,5729)(9068,5720)
	(9055,5711)(9043,5703)(9031,5694)
	(9019,5686)(9007,5678)(8995,5670)
	(8982,5661)(8969,5652)(8955,5643)
	(8941,5633)(8927,5624)(8913,5614)
	(8900,5605)(8887,5597)(8875,5588)
	(8863,5580)(8850,5572)(8838,5563)
	(8825,5554)(8811,5545)(8797,5536)
	(8783,5526)(8769,5516)(8755,5507)
	(8741,5498)(8728,5489)(8716,5480)
	(8703,5472)(8691,5464)(8679,5455)
	(8666,5447)(8652,5438)(8638,5428)
	(8624,5419)(8610,5409)(8596,5400)
	(8583,5391)(8570,5382)(8558,5373)
	(8546,5365)(8534,5357)(8522,5349)
	(8508,5340)(8494,5330)(8477,5318)
	(8459,5306)(8440,5293)(8421,5280)
	(8407,5270)(8397,5263)(8393,5260)(8392,5260)
\blacken\path(8426,5199)(8221,5145)(8348,5315)(8426,5199)
\path(8426,5199)(8221,5145)(8348,5315)(8426,5199)
%  t->spo 
\path(9362,8746)(9362,8745)(9363,8738)
	(9364,8726)(9365,8711)(9366,8697)
	(9367,8685)(9368,8675)(9368,8665)
	(9369,8656)(9370,8646)(9371,8635)
	(9372,8624)(9373,8613)(9374,8602)
	(9375,8592)(9376,8582)(9377,8573)
	(9378,8562)(9379,8551)(9380,8540)
	(9380,8528)(9381,8517)(9382,8507)
	(9383,8497)(9384,8487)(9385,8476)
	(9386,8465)(9387,8453)(9388,8441)
	(9389,8430)(9390,8419)(9391,8409)
	(9392,8399)(9393,8388)(9394,8377)
	(9395,8365)(9395,8353)(9396,8342)
	(9397,8331)(9398,8321)(9399,8311)
	(9400,8300)(9401,8287)(9403,8272)
	(9404,8256)(9405,8242)(9406,8235)(9406,8234)
\blacken\path(9475,8239)(9423,8034)(9336,8227)(9475,8239)
\path(9475,8239)(9423,8034)(9336,8227)(9475,8239)
%  tr->ts 
\path(7732,4426)(7732,4425)(7732,4418)
	(7732,4406)(7732,4391)(7732,4377)
	(7732,4365)(7732,4355)(7732,4345)
	(7732,4336)(7732,4326)(7732,4315)
	(7732,4304)(7732,4293)(7732,4282)
	(7732,4272)(7732,4262)(7732,4253)
	(7732,4242)(7732,4231)(7732,4220)
	(7732,4208)(7732,4197)(7732,4187)
	(7732,4177)(7732,4167)(7732,4156)
	(7732,4145)(7732,4133)(7732,4121)
	(7732,4110)(7732,4099)(7732,4089)
	(7732,4079)(7732,4068)(7732,4057)
	(7732,4045)(7732,4033)(7732,4022)
	(7732,4011)(7732,4001)(7732,3991)
	(7732,3980)(7732,3967)(7732,3952)
	(7732,3936)(7732,3922)(7732,3915)(7732,3914)
\blacken\path(7802,3914)(7732,3714)(7662,3914)(7802,3914)
\path(7802,3914)(7732,3714)(7662,3914)(7802,3914)
%  ts->ioe 
\path(7199,3007)(7198,3007)(7194,3004)
	(7183,2998)(7168,2988)(7148,2976)
	(7128,2964)(7108,2952)(7090,2941)
	(7075,2931)(7060,2923)(7047,2915)
	(7034,2907)(7023,2900)(7012,2893)
	(7000,2886)(6988,2879)(6975,2871)
	(6962,2863)(6949,2855)(6936,2847)
	(6923,2839)(6910,2831)(6897,2824)
	(6885,2817)(6874,2809)(6862,2802)
	(6850,2795)(6839,2788)(6826,2781)
	(6814,2773)(6800,2765)(6787,2757)
	(6773,2748)(6760,2740)(6746,2732)
	(6733,2724)(6720,2716)(6708,2708)
	(6695,2701)(6684,2694)(6672,2687)
	(6660,2679)(6647,2672)(6634,2664)
	(6621,2656)(6607,2647)(6593,2639)
	(6580,2631)(6566,2622)(6553,2614)
	(6540,2606)(6527,2599)(6515,2591)
	(6503,2584)(6492,2577)(6479,2570)
	(6467,2562)(6454,2554)(6441,2546)
	(6427,2538)(6414,2530)(6400,2521)
	(6386,2513)(6373,2505)(6361,2497)
	(6348,2490)(6336,2483)(6325,2475)
	(6313,2468)(6301,2461)(6289,2454)
	(6275,2445)(6260,2436)(6244,2426)
	(6226,2415)(6207,2404)(6189,2393)
	(6173,2383)(6161,2376)(6154,2371)(6150,2369)
\blacken\path(6186,2309)(5979,2265)(6113,2428)(6186,2309)
\path(6186,2309)(5979,2265)(6113,2428)(6186,2309)
%  ts->fts 
\path(8270,3007)(8271,3007)(8275,3004)
	(8286,2998)(8302,2988)(8321,2976)
	(8342,2964)(8361,2952)(8379,2941)
	(8395,2931)(8409,2923)(8423,2915)
	(8436,2907)(8447,2900)(8458,2893)
	(8470,2886)(8482,2879)(8495,2871)
	(8508,2863)(8521,2855)(8535,2847)
	(8548,2839)(8561,2831)(8573,2824)
	(8586,2817)(8598,2809)(8609,2802)
	(8621,2795)(8633,2788)(8645,2781)
	(8658,2773)(8671,2765)(8685,2757)
	(8699,2748)(8713,2740)(8726,2732)
	(8740,2724)(8753,2716)(8765,2708)
	(8777,2701)(8789,2694)(8801,2687)
	(8814,2679)(8826,2672)(8839,2664)
	(8853,2656)(8867,2647)(8881,2639)
	(8894,2631)(8908,2622)(8922,2614)
	(8935,2606)(8947,2599)(8960,2591)
	(8972,2584)(8984,2577)(8996,2570)
	(9008,2562)(9021,2554)(9035,2546)
	(9048,2538)(9062,2530)(9076,2521)
	(9090,2513)(9103,2505)(9116,2497)
	(9128,2490)(9140,2483)(9152,2475)
	(9164,2468)(9176,2461)(9188,2454)
	(9202,2445)(9217,2436)(9234,2426)
	(9252,2415)(9270,2404)(9289,2393)
	(9305,2383)(9317,2376)(9324,2371)(9328,2369)
\blacken\path(9366,2428)(9501,2265)(9293,2308)(9366,2428)
\path(9366,2428)(9501,2265)(9293,2308)(9366,2428)
%  ioe->ioef 
\path(5971,1564)(5972,1564)(5976,1561)
	(5986,1555)(6002,1545)(6021,1534)
	(6041,1522)(6060,1510)(6078,1499)
	(6093,1490)(6107,1481)(6120,1474)
	(6133,1466)(6143,1459)(6154,1452)
	(6166,1445)(6178,1438)(6190,1430)
	(6203,1423)(6216,1415)(6229,1407)
	(6242,1399)(6254,1391)(6266,1384)
	(6278,1377)(6290,1370)(6301,1363)
	(6313,1356)(6324,1349)(6336,1341)
	(6349,1334)(6362,1326)(6375,1318)
	(6388,1310)(6402,1302)(6415,1294)
	(6428,1286)(6441,1278)(6453,1271)
	(6465,1264)(6476,1256)(6488,1249)
	(6500,1242)(6512,1235)(6525,1227)
	(6538,1219)(6551,1211)(6565,1202)
	(6579,1194)(6592,1186)(6605,1178)
	(6618,1170)(6630,1163)(6642,1155)
	(6654,1148)(6665,1141)(6677,1134)
	(6689,1127)(6702,1119)(6715,1111)
	(6728,1103)(6742,1095)(6755,1086)
	(6769,1078)(6782,1070)(6794,1063)
	(6806,1056)(6818,1048)(6829,1041)
	(6841,1035)(6852,1027)(6864,1020)
	(6878,1012)(6892,1003)(6909,993)
	(6926,982)(6945,971)(6963,960)
	(6978,951)(6990,944)(6997,939)(7001,937)
\blacken\path(7046,992)(7180,828)(6973,872)(7046,992)
\path(7046,992)(7180,828)(6973,872)(7046,992)
%  fts->ioef 
\path(9502,1560)(9501,1560)(9497,1557)
	(9487,1551)(9471,1541)(9452,1530)
	(9432,1518)(9412,1506)(9395,1495)
	(9379,1486)(9365,1478)(9352,1470)
	(9339,1462)(9328,1455)(9317,1449)
	(9306,1442)(9294,1434)(9281,1427)
	(9268,1419)(9255,1411)(9242,1403)
	(9229,1396)(9216,1388)(9204,1380)
	(9192,1373)(9181,1366)(9169,1359)
	(9158,1352)(9146,1345)(9134,1338)
	(9122,1330)(9109,1323)(9095,1315)
	(9082,1306)(9068,1298)(9055,1290)
	(9042,1282)(9029,1275)(9017,1267)
	(9005,1260)(8994,1253)(8982,1246)
	(8970,1239)(8958,1231)(8945,1223)
	(8932,1215)(8918,1207)(8904,1199)
	(8891,1191)(8877,1183)(8864,1175)
	(8851,1167)(8839,1159)(8827,1152)
	(8815,1145)(8804,1138)(8792,1131)
	(8779,1123)(8767,1116)(8754,1108)
	(8740,1100)(8727,1092)(8713,1083)
	(8700,1075)(8687,1068)(8674,1060)
	(8662,1053)(8650,1046)(8639,1039)
	(8627,1032)(8616,1025)(8603,1017)
	(8590,1009)(8575,1000)(8559,991)
	(8541,980)(8523,969)(8505,958)
	(8489,949)(8477,942)(8470,937)(8466,935)
\blacken\path(8493,870)(8286,826)(8421,990)(8493,870)
\path(8493,870)(8286,826)(8421,990)(8493,870)
%  s->m 
\path(2840,14520)(2841,14520)(2845,14517)
	(2854,14510)(2869,14500)(2887,14488)
	(2906,14475)(2924,14463)(2941,14451)
	(2955,14441)(2968,14432)(2981,14424)
	(2993,14416)(3005,14408)(3017,14399)
	(3030,14391)(3044,14381)(3058,14372)
	(3072,14362)(3086,14353)(3100,14343)
	(3114,14334)(3127,14325)(3140,14316)
	(3153,14307)(3164,14300)(3175,14293)
	(3186,14285)(3198,14277)(3210,14269)
	(3222,14260)(3235,14251)(3248,14243)
	(3260,14234)(3273,14226)(3285,14218)
	(3296,14210)(3307,14202)(3318,14195)
	(3329,14187)(3341,14180)(3352,14172)
	(3364,14164)(3376,14155)(3389,14147)
	(3402,14138)(3415,14129)(3427,14121)
	(3440,14112)(3452,14104)(3463,14096)
	(3475,14089)(3486,14081)(3496,14074)
	(3508,14066)(3519,14059)(3531,14051)
	(3543,14042)(3556,14034)(3568,14025)
	(3581,14017)(3593,14008)(3605,14000)
	(3617,13992)(3628,13984)(3639,13977)
	(3650,13970)(3662,13961)(3675,13953)
	(3689,13943)(3704,13933)(3722,13921)
	(3741,13908)(3760,13895)(3779,13882)
	(3795,13871)(3805,13864)(3809,13861)(3810,13861)
\blacken\path(3857,13914)(3983,13743)(3778,13798)(3857,13914)
\path(3857,13914)(3983,13743)(3778,13798)(3857,13914)
%  i->m 
\path(6010,14527)(6009,14527)(6005,14524)
	(5995,14517)(5980,14507)(5961,14495)
	(5942,14481)(5923,14469)(5906,14458)
	(5891,14448)(5877,14438)(5865,14430)
	(5853,14422)(5842,14415)(5831,14407)
	(5820,14400)(5808,14392)(5796,14384)
	(5784,14375)(5771,14367)(5758,14358)
	(5746,14350)(5734,14341)(5722,14333)
	(5710,14326)(5699,14318)(5688,14310)
	(5677,14303)(5665,14295)(5654,14288)
	(5641,14279)(5629,14271)(5616,14262)
	(5603,14253)(5590,14245)(5577,14236)
	(5564,14227)(5552,14219)(5540,14211)
	(5528,14203)(5517,14196)(5505,14188)
	(5494,14180)(5482,14172)(5470,14164)
	(5457,14156)(5444,14147)(5431,14138)
	(5417,14129)(5404,14120)(5392,14112)
	(5379,14104)(5367,14096)(5356,14088)
	(5345,14080)(5333,14073)(5322,14065)
	(5310,14057)(5298,14049)(5285,14040)
	(5272,14031)(5259,14023)(5246,14014)
	(5233,14005)(5221,13997)(5209,13989)
	(5197,13981)(5186,13973)(5175,13966)
	(5164,13958)(5153,13951)(5141,13943)
	(5129,13934)(5115,13925)(5099,13914)
	(5082,13903)(5065,13891)(5048,13880)
	(5033,13870)(5021,13862)(5014,13857)(5011,13855)
\blacken\path(5047,13795)(4842,13742)(4969,13911)(5047,13795)
\path(5047,13795)(4842,13742)(4969,13911)(5047,13795)
%  m->am 
\path(4702,13094)(4703,13093)(4706,13089)
	(4715,13080)(4726,13068)(4739,13054)
	(4751,13041)(4761,13030)(4771,13020)
	(4779,13011)(4787,13002)(4795,12993)
	(4803,12984)(4812,12975)(4821,12965)
	(4831,12954)(4840,12944)(4850,12934)
	(4859,12924)(4867,12914)(4876,12905)
	(4884,12896)(4893,12887)(4902,12877)
	(4911,12866)(4921,12855)(4931,12845)
	(4941,12834)(4950,12824)(4959,12814)
	(4967,12805)(4976,12795)(4985,12785)
	(4994,12775)(5004,12764)(5014,12753)
	(5024,12742)(5034,12732)(5043,12721)
	(5052,12712)(5061,12702)(5070,12693)
	(5079,12683)(5088,12673)(5098,12662)
	(5108,12651)(5118,12640)(5128,12629)
	(5137,12619)(5146,12610)(5155,12600)
	(5163,12591)(5172,12581)(5182,12570)
	(5193,12557)(5206,12543)(5220,12528)
	(5232,12514)(5241,12504)(5245,12500)(5246,12499)
\blacken\path(5302,12543)(5385,12348)(5198,12448)(5302,12543)
\path(5302,12543)(5385,12348)(5198,12448)(5302,12543)
%  c->am 
\path(6684,13080)(6683,13079)(6680,13075)
	(6671,13066)(6660,13054)(6647,13041)
	(6635,13028)(6625,13016)(6616,13007)
	(6607,12998)(6599,12989)(6591,12981)
	(6583,12972)(6574,12962)(6565,12952)
	(6556,12942)(6546,12932)(6537,12922)
	(6528,12912)(6520,12903)(6511,12894)
	(6503,12885)(6494,12876)(6485,12866)
	(6476,12856)(6466,12845)(6456,12835)
	(6446,12824)(6437,12815)(6428,12805)
	(6420,12796)(6411,12787)(6402,12777)
	(6393,12767)(6383,12757)(6373,12746)
	(6364,12735)(6354,12725)(6345,12715)
	(6336,12705)(6327,12696)(6319,12687)
	(6310,12677)(6301,12668)(6291,12657)
	(6281,12647)(6271,12636)(6262,12626)
	(6252,12616)(6244,12606)(6235,12597)
	(6227,12588)(6218,12579)(6208,12568)
	(6197,12556)(6184,12542)(6170,12527)
	(6158,12514)(6149,12504)(6145,12500)(6144,12499)
\blacken\path(6194,12450)(6007,12351)(6092,12545)(6194,12450)
\path(6194,12450)(6007,12351)(6092,12545)(6194,12450)
%  am->cf 
\path(5692,11626)(5692,11625)(5692,11618)
	(5692,11606)(5692,11591)(5692,11577)
	(5692,11565)(5692,11555)(5692,11545)
	(5692,11536)(5692,11526)(5692,11515)
	(5692,11504)(5692,11493)(5692,11482)
	(5692,11472)(5692,11462)(5692,11453)
	(5692,11442)(5692,11431)(5692,11420)
	(5692,11408)(5692,11397)(5692,11387)
	(5692,11377)(5692,11367)(5692,11356)
	(5692,11345)(5692,11333)(5692,11321)
	(5692,11310)(5692,11299)(5692,11289)
	(5692,11279)(5692,11268)(5692,11257)
	(5692,11245)(5692,11233)(5692,11222)
	(5692,11211)(5692,11201)(5692,11191)
	(5692,11180)(5692,11167)(5692,11152)
	(5692,11136)(5692,11122)(5692,11115)(5692,11114)
\blacken\path(5762,11114)(5692,10914)(5622,11114)(5762,11114)
\path(5762,11114)(5692,10914)(5622,11114)(5762,11114)
%  cf->ac 
\path(5692,10186)(5692,10185)(5692,10178)
	(5692,10166)(5692,10151)(5692,10137)
	(5692,10125)(5692,10115)(5692,10105)
	(5692,10096)(5692,10086)(5692,10075)
	(5692,10064)(5692,10053)(5692,10042)
	(5692,10032)(5692,10022)(5692,10013)
	(5692,10002)(5692,9991)(5692,9980)
	(5692,9968)(5692,9957)(5692,9947)
	(5692,9937)(5692,9927)(5692,9916)
	(5692,9905)(5692,9893)(5692,9881)
	(5692,9870)(5692,9859)(5692,9849)
	(5692,9839)(5692,9828)(5692,9817)
	(5692,9805)(5692,9793)(5692,9782)
	(5692,9771)(5692,9761)(5692,9751)
	(5692,9740)(5692,9727)(5692,9712)
	(5692,9696)(5692,9682)(5692,9675)(5692,9674)
\blacken\path(5762,9674)(5692,9474)(5622,9674)(5762,9674)
\path(5762,9674)(5692,9474)(5622,9674)(5762,9674)
%  ac->tt 
\path(5692,8746)(5692,8745)(5692,8738)
	(5692,8726)(5692,8711)(5692,8697)
	(5692,8685)(5692,8675)(5692,8665)
	(5692,8656)(5692,8646)(5692,8635)
	(5692,8624)(5692,8613)(5692,8602)
	(5692,8592)(5692,8582)(5692,8573)
	(5692,8562)(5692,8551)(5692,8540)
	(5692,8528)(5692,8517)(5692,8507)
	(5692,8497)(5692,8487)(5692,8476)
	(5692,8465)(5692,8453)(5692,8441)
	(5692,8430)(5692,8419)(5692,8409)
	(5692,8399)(5692,8388)(5692,8377)
	(5692,8365)(5692,8353)(5692,8342)
	(5692,8331)(5692,8321)(5692,8311)
	(5692,8300)(5692,8287)(5692,8272)
	(5692,8256)(5692,8242)(5692,8235)(5692,8234)
\blacken\path(5762,8234)(5692,8034)(5622,8234)(5762,8234)
\path(5762,8234)(5692,8034)(5622,8234)(5762,8234)
%  tt->dt 
\path(5692,7306)(5692,7305)(5692,7298)
	(5692,7286)(5692,7271)(5692,7257)
	(5692,7245)(5692,7235)(5692,7225)
	(5692,7216)(5692,7206)(5692,7195)
	(5692,7184)(5692,7173)(5692,7162)
	(5692,7152)(5692,7142)(5692,7133)
	(5692,7122)(5692,7111)(5692,7100)
	(5692,7088)(5692,7077)(5692,7067)
	(5692,7057)(5692,7047)(5692,7036)
	(5692,7025)(5692,7013)(5692,7001)
	(5692,6990)(5692,6979)(5692,6969)
	(5692,6959)(5692,6948)(5692,6937)
	(5692,6925)(5692,6913)(5692,6902)
	(5692,6891)(5692,6881)(5692,6871)
	(5692,6860)(5692,6847)(5692,6832)
	(5692,6816)(5692,6802)(5692,6795)(5692,6794)
\blacken\path(5762,6794)(5692,6594)(5622,6794)(5762,6794)
\path(5762,6794)(5692,6594)(5622,6794)(5762,6794)
%  br->ir 
\path(10802,10193)(10803,10192)(10806,10188)
	(10814,10180)(10824,10167)(10836,10154)
	(10847,10141)(10856,10130)(10865,10120)
	(10872,10112)(10880,10103)(10887,10095)
	(10894,10086)(10902,10077)(10911,10067)
	(10919,10057)(10928,10047)(10936,10037)
	(10944,10027)(10952,10018)(10960,10009)
	(10967,10001)(10975,9991)(10983,9982)
	(10992,9972)(11001,9961)(11010,9951)
	(11019,9941)(11027,9931)(11035,9922)
	(11043,9913)(11051,9904)(11059,9894)
	(11067,9884)(11076,9874)(11085,9863)
	(11094,9853)(11103,9843)(11111,9833)
	(11119,9823)(11127,9814)(11135,9805)
	(11143,9796)(11151,9786)(11160,9776)
	(11169,9765)(11178,9755)(11187,9744)
	(11195,9735)(11203,9725)(11211,9716)
	(11219,9707)(11227,9698)(11236,9688)
	(11246,9676)(11258,9662)(11270,9648)
	(11282,9634)(11290,9625)(11293,9621)(11294,9620)
\blacken\path(11347,9665)(11424,9468)(11241,9574)(11347,9665)
\path(11347,9665)(11424,9468)(11241,9574)(11347,9665)
\blacken\path(9789,9566)(9607,9458)(9682,9656)(9789,9566)
\path(9789,9566)(9607,9458)(9682,9656)(9789,9566)
\end{picture}
}




%
%  Generated by graphviz version 2.28.0 (20111028.1807) 
%  Title: ActorTheories 
%  Pages: 1 
%
\setlength{\unitlength}{0.00034in}
%
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{\renewcommand{\dashlinestretch}{30}
\begin{picture}(14444,19659)(0,-10)
\whiten\path(12,12)(12,19632)(14432,19632)
	(14432,12)(12,12)
\path(12,12)(12,19632)(14432,19632)
	(14432,12)(12,12)
%  ac 
\put(2692,13432){\ellipse{3566}{-720}}
%  tt 
\put(3192,11992){\ellipse{2778}{-720}}
%  dt 
\put(3372,10552){\ellipse{4206}{-720}}
%  mo 
\put(11572,4792){\ellipse{3802}{-720}}
%  rs 
\thicklines
\put(11852,1912){\ellipse{4964}{-720}}
%  ss 
\put(6772,1912){\ellipse{4478}{-720}}
%  tr 
\thinlines
\put(8272,9112){\ellipse{4206}{-720}}
%  ts 
\put(8272,7672){\ellipse{4120}{-720}}
%  ioe 
\put(8372,6232){\ellipse{4174}{-720}}
%  fts 
\put(4152,6232){\ellipse{3486}{-720}}
%  ioef 
\put(6852,4792){\ellipse{4236}{-720}}
%  pr 
\put(6852,3352){\ellipse{1758}{-720}}
%  fi 
\thicklines
\put(9312,472){\ellipse{2456}{-720}}
%  s 
\thinlines
\path(1624,19552)(80,19552)(80,18832)
	(1624,18832)(1624,19552)
%  m 
\path(2317,18112)(1107,18112)(1107,17392)
	(2317,17392)(2317,18112)
%  cf 
\put(2692,14872){\ellipse{2582}{-720}}
%  i 
\path(3155,19552)(1989,19552)(1989,18832)
	(3155,18832)(3155,19552)
%  am 
\path(3774,16672)(1610,16672)(1610,15952)
	(3774,15952)(3774,16672)
%  c 
\path(4694,18112)(2690,18112)(2690,17392)
	(4694,17392)(4694,18112)
%  br 
\path(9512,15232)(7468,14872)(9512,14512)
	(11556,14872)(9512,15232)
%  r 
\path(12632,13792)(11284,13432)(12632,13072)
	(13980,13432)(12632,13792)
%  ir 
\path(6292,13792)(4848,13432)(6292,13072)
	(7736,13432)(6292,13792)
%  t 
\path(9512,13792)(8107,13432)(9512,13072)
	(10917,13432)(9512,13792)
%  pre 
\path(12372,12352)(11123,11992)(12372,11632)
	(13621,11992)(12372,12352)
%  spo 
\path(8372,12352)(5986,11992)(8372,11632)
	(10758,11992)(8372,12352)
%  tc 
\path(8272,10912)(5950,10552)(8272,10192)
	(10594,10552)(8272,10912)
\put(852,19080){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Semigroup}}}}
\put(1712,17640){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Monoid}}}}
\put(2572,19080){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Identity}}}}
\put(2692,16200){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Abelian Monoid}}}}
\put(3692,17640){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Commutativity}}}}
\put(2692,14760){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Configuration}}}}
\put(2692,13320){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Actor Configuration}}}}
\put(3192,11880){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Transition Path}}}}
\put(3372,10440){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Transition Step Relation}}}}
\put(9512,14760){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Binary Relation}}}}
\put(12632,13320){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Reflexive}}}}
\put(6292,13320){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Irreflexive}}}}
\put(9512,13320){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Transitive}}}}
\put(11572,4680){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Monotonic Transition}}}}
\put(11852,1800){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}\textbf{Receive Sequencing}}}}}
\put(6772,1800){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}\textbf{Send Sequencing}}}}}
\put(12372,11880){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Preorder}}}}
\put(8372,11880){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Strict Partial Order}}}}
\put(8272,10440){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Transitive Closure}}}}
\put(8272,9000){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Transition Path Relation}}}}
\put(8272,7560){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Indexed Transition Path}}}}
\put(8372,6120){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Infinitely Often Enabled}}}}
\put(4152,6120){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Fair Transition Path}}}}
\put(6852,4680){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}IOE Fair Transition Path}}}}
\put(6852,3240){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}Progress}}}}
\put(9312,360){\makebox(0,0)[b]{\smash{{\SetFigFont{6}{16.8}{\rmdefault}{\mddefault}{\updefault}\textbf{Fifo}}}}}
\blacken\path(12537,12519)(12432,12335)(12400,12544)(12537,12519)
\path(12537,12519)(12432,12335)(12400,12544)(12537,12519)
%  ir->spo 
\path(6664,13162)(6667,13160)(6675,13155)
	(6686,13147)(6701,13137)(6719,13125)
	(6737,13113)(6754,13101)(6770,13091)
	(6784,13081)(6798,13072)(6810,13064)
	(6821,13056)(6833,13048)(6844,13040)
	(6856,13032)(6868,13024)(6881,13016)
	(6895,13007)(6908,12997)(6922,12988)
	(6936,12979)(6950,12969)(6964,12960)
	(6977,12951)(6990,12943)(7002,12934)
	(7015,12926)(7027,12918)(7040,12909)
	(7053,12900)(7066,12891)(7081,12881)
	(7095,12872)(7110,12862)(7125,12852)
	(7139,12842)(7153,12832)(7167,12823)
	(7181,12814)(7194,12805)(7207,12796)
	(7219,12788)(7233,12779)(7246,12770)
	(7260,12760)(7275,12751)(7289,12741)
	(7305,12730)(7320,12720)(7334,12710)
	(7349,12701)(7363,12691)(7377,12682)
	(7390,12673)(7403,12664)(7416,12656)
	(7429,12647)(7442,12638)(7456,12628)
	(7471,12619)(7485,12609)(7500,12599)
	(7515,12589)(7530,12579)(7544,12569)
	(7558,12560)(7571,12551)(7584,12542)
	(7597,12534)(7609,12525)(7622,12517)
	(7635,12508)(7650,12498)(7666,12487)
	(7684,12475)(7703,12462)(7723,12449)
	(7743,12435)(7760,12424)(7773,12415)
	(7781,12410)(7784,12407)(7785,12407)
\blacken\path(7826,12464)(7953,12294)(7748,12347)(7826,12464)
\path(7826,12464)(7953,12294)(7748,12347)(7826,12464)
\blacken\path(8622,952)(8764,794)(8555,830)(8622,952)
\path(8622,952)(8764,794)(8555,830)(8622,952)
%  ir->tc 
\path(6076,13125)(6076,13124)(6073,13121)
	(6068,13112)(6059,13097)(6047,13078)
	(6034,13056)(6020,13033)(6007,13012)
	(5995,12992)(5984,12973)(5974,12957)
	(5965,12941)(5956,12926)(5948,12911)
	(5941,12899)(5933,12885)(5926,12872)
	(5918,12857)(5910,12842)(5902,12827)
	(5894,12811)(5886,12795)(5878,12779)
	(5870,12763)(5862,12747)(5854,12732)
	(5847,12716)(5840,12701)(5834,12687)
	(5827,12672)(5821,12658)(5815,12643)
	(5808,12628)(5802,12612)(5795,12596)
	(5789,12579)(5782,12562)(5776,12544)
	(5769,12527)(5763,12509)(5757,12492)
	(5752,12476)(5747,12459)(5742,12443)
	(5737,12428)(5733,12413)(5728,12397)
	(5724,12382)(5720,12366)(5716,12349)
	(5712,12332)(5709,12315)(5705,12297)
	(5702,12279)(5698,12261)(5696,12243)
	(5693,12226)(5691,12208)(5689,12192)
	(5687,12176)(5685,12160)(5684,12145)
	(5683,12129)(5683,12114)(5682,12098)
	(5682,12081)(5682,12065)(5683,12047)
	(5684,12030)(5685,12012)(5686,11994)
	(5688,11977)(5690,11960)(5692,11943)
	(5694,11927)(5697,11912)(5700,11897)
	(5704,11882)(5707,11867)(5711,11852)
	(5715,11837)(5720,11822)(5725,11806)
	(5731,11790)(5737,11773)(5744,11757)
	(5750,11741)(5757,11725)(5764,11710)
	(5772,11695)(5779,11680)(5786,11667)
	(5793,11653)(5800,11641)(5809,11626)
	(5818,11612)(5827,11597)(5837,11582)
	(5848,11567)(5859,11552)(5870,11536)
	(5882,11521)(5894,11506)(5905,11492)
	(5917,11479)(5928,11466)(5939,11453)
	(5950,11441)(5961,11429)(5972,11417)
	(5984,11405)(5997,11392)(6010,11379)
	(6023,11366)(6037,11353)(6051,11340)
	(6065,11327)(6079,11315)(6092,11303)
	(6105,11292)(6118,11281)(6130,11271)
	(6143,11261)(6156,11250)(6170,11240)
	(6184,11229)(6198,11218)(6213,11206)
	(6229,11195)(6244,11184)(6260,11173)
	(6275,11162)(6290,11152)(6304,11143)
	(6318,11134)(6332,11125)(6346,11116)
	(6360,11107)(6374,11098)(6390,11089)
	(6406,11079)(6422,11070)(6439,11060)
	(6455,11050)(6472,11041)(6488,11032)
	(6504,11024)(6519,11016)(6534,11008)
	(6549,11000)(6563,10993)(6578,10985)
	(6594,10978)(6610,10970)(6627,10962)
	(6644,10954)(6661,10946)(6679,10938)
	(6696,10930)(6713,10923)(6729,10916)
	(6745,10909)(6761,10902)(6776,10896)
	(6791,10890)(6806,10884)(6823,10877)
	(6841,10870)(6860,10862)(6882,10854)
	(6906,10845)(6931,10836)(6955,10827)
	(6976,10819)(6992,10813)(7002,10809)
	(7006,10807)(7007,10807)
\blacken\path(7033,10873)(7204,10747)(6992,10739)(7033,10873)
\path(7033,10873)(7204,10747)(6992,10739)(7033,10873)
%  pre->mo 
\path(12308,11650)(12308,11649)(12307,11646)
	(12306,11636)(12303,11621)(12299,11599)
	(12294,11573)(12289,11544)(12284,11515)
	(12279,11487)(12274,11460)(12270,11436)
	(12266,11413)(12262,11392)(12259,11372)
	(12255,11352)(12252,11333)(12249,11315)
	(12246,11298)(12243,11279)(12240,11260)
	(12237,11240)(12233,11219)(12230,11198)
	(12226,11176)(12223,11154)(12219,11131)
	(12216,11109)(12212,11086)(12209,11064)
	(12206,11043)(12202,11021)(12199,11000)
	(12196,10980)(12193,10959)(12190,10941)
	(12187,10922)(12185,10902)(12182,10882)
	(12179,10862)(12176,10841)(12173,10819)
	(12170,10797)(12166,10774)(12163,10751)
	(12160,10728)(12157,10705)(12154,10682)
	(12151,10660)(12148,10638)(12145,10616)
	(12142,10595)(12140,10574)(12137,10553)
	(12135,10533)(12132,10512)(12129,10491)
	(12127,10470)(12124,10448)(12122,10426)
	(12119,10403)(12116,10379)(12113,10355)
	(12111,10331)(12108,10306)(12105,10281)
	(12103,10257)(12100,10232)(12098,10208)
	(12095,10185)(12093,10162)(12091,10139)
	(12089,10117)(12087,10095)(12085,10074)
	(12083,10052)(12081,10031)(12079,10008)
	(12077,9986)(12075,9962)(12073,9938)
	(12071,9914)(12069,9889)(12067,9864)
	(12065,9838)(12063,9813)(12061,9788)
	(12059,9763)(12058,9738)(12056,9714)
	(12055,9691)(12053,9668)(12052,9646)
	(12051,9624)(12050,9602)(12048,9578)
	(12047,9554)(12046,9529)(12045,9504)
	(12044,9479)(12043,9453)(12042,9428)
	(12041,9402)(12040,9377)(12039,9353)
	(12038,9330)(12037,9308)(12037,9288)
	(12036,9269)(12036,9252)(12035,9236)
	(12035,9222)(12034,9209)(12034,9185)
	(12033,9165)(12033,9150)(12032,9138)
	(12032,9130)(12032,9125)(12032,9121)
	(12032,9118)(12032,9113)(12032,9107)
	(12032,9098)(12032,9088)(12032,9076)
	(12032,9063)(12032,9055)(12032,9045)
	(12032,9034)(12032,9021)(12032,9007)
	(12032,8992)(12032,8976)(12032,8960)
	(12032,8944)(12032,8926)(12032,8915)
	(12032,8903)(12032,8890)(12032,8877)
	(12032,8862)(12032,8847)(12032,8830)
	(12032,8813)(12032,8796)(12032,8778)
	(12032,8759)(12032,8741)(12032,8722)
	(12032,8704)(12032,8685)(12032,8666)
	(12032,8650)(12032,8634)(12032,8617)
	(12032,8600)(12032,8581)(12032,8562)
	(12032,8541)(12032,8520)(12032,8498)
	(12032,8476)(12032,8453)(12032,8430)
	(12032,8406)(12032,8383)(12032,8359)
	(12032,8335)(12032,8312)(12032,8289)
	(12032,8265)(12032,8241)(12032,8220)
	(12032,8197)(12032,8174)(12032,8150)
	(12032,8125)(12032,8100)(12032,8074)
	(12032,8047)(12032,8020)(12032,7992)
	(12032,7964)(12032,7936)(12031,7909)
	(12031,7881)(12031,7855)(12031,7829)
	(12031,7803)(12031,7779)(12030,7755)
	(12030,7732)(12030,7709)(12030,7688)
	(12029,7664)(12029,7641)(12029,7618)
	(12028,7594)(12028,7571)(12027,7547)
	(12026,7523)(12026,7499)(12025,7476)
	(12024,7452)(12023,7428)(12022,7405)
	(12021,7383)(12020,7361)(12019,7340)
	(12018,7319)(12017,7299)(12016,7279)
	(12015,7260)(12014,7241)(12013,7222)
	(12011,7203)(12010,7183)(12009,7163)
	(12007,7143)(12005,7122)(12004,7100)
	(12002,7078)(12000,7056)(11998,7034)
	(11996,7012)(11994,6990)(11992,6968)
	(11990,6946)(11988,6925)(11985,6905)
	(11983,6885)(11981,6865)(11979,6846)
	(11977,6827)(11975,6808)(11973,6789)
	(11970,6769)(11968,6750)(11965,6729)
	(11963,6708)(11960,6687)(11957,6665)
	(11954,6644)(11951,6622)(11948,6600)
	(11945,6578)(11942,6557)(11939,6536)
	(11936,6515)(11934,6495)(11931,6475)
	(11928,6456)(11925,6438)(11922,6419)
	(11919,6399)(11916,6379)(11912,6358)
	(11909,6336)(11905,6314)(11902,6292)
	(11898,6269)(11894,6246)(11890,6223)
	(11886,6200)(11882,6177)(11878,6154)
	(11874,6133)(11871,6111)(11867,6091)
	(11863,6071)(11860,6051)(11856,6032)
	(11853,6013)(11849,5994)(11845,5975)
	(11841,5955)(11838,5935)(11834,5914)
	(11829,5893)(11825,5872)(11821,5850)
	(11817,5829)(11812,5808)(11808,5788)
	(11804,5768)(11800,5749)(11796,5730)
	(11793,5712)(11789,5695)(11785,5678)
	(11782,5661)(11778,5644)(11774,5626)
	(11770,5608)(11766,5589)(11761,5568)
	(11756,5545)(11751,5521)(11745,5496)
	(11739,5470)(11733,5444)(11728,5419)
	(11723,5398)(11719,5381)(11716,5369)
	(11715,5362)(11714,5359)
\blacken\path(11781,5336)(11665,5159)(11645,5370)(11781,5336)
\path(11781,5336)(11665,5159)(11645,5370)(11781,5336)
%  spo->tc 
\path(8348,11633)(8348,11632)(8347,11625)
	(8347,11613)(8345,11598)(8344,11585)
	(8343,11573)(8343,11563)(8342,11553)
	(8341,11544)(8341,11534)(8340,11523)
	(8339,11512)(8338,11501)(8337,11490)
	(8337,11479)(8336,11469)(8335,11460)
	(8335,11449)(8334,11438)(8333,11426)
	(8332,11415)(8331,11404)(8331,11393)
	(8330,11383)(8329,11373)(8329,11362)
	(8328,11351)(8327,11339)(8326,11327)
	(8325,11316)(8325,11305)(8324,11295)
	(8323,11285)(8322,11274)(8321,11263)
	(8321,11251)(8320,11239)(8319,11228)
	(8318,11217)(8317,11207)(8316,11197)
	(8316,11186)(8315,11173)(8314,11157)
	(8313,11141)(8312,11127)(8311,11120)(8311,11119)
\blacken\path(8381,11112)(8297,10918)(8241,11122)(8381,11112)
\path(8381,11112)(8297,10918)(8241,11122)(8381,11112)
%  dt->tr 
\path(4405,10237)(4408,10236)(4415,10234)
	(4427,10231)(4444,10226)(4466,10220)
	(4493,10212)(4522,10204)(4553,10195)
	(4583,10186)(4613,10178)(4641,10170)
	(4668,10162)(4693,10155)(4716,10148)
	(4738,10142)(4759,10136)(4778,10130)
	(4798,10125)(4817,10119)(4837,10114)
	(4857,10108)(4877,10102)(4897,10096)
	(4919,10090)(4941,10084)(4963,10078)
	(4986,10071)(5009,10064)(5033,10058)
	(5056,10051)(5080,10044)(5103,10038)
	(5126,10031)(5148,10025)(5170,10018)
	(5192,10012)(5213,10006)(5234,10000)
	(5254,9994)(5275,9988)(5296,9982)
	(5317,9976)(5339,9970)(5361,9964)
	(5384,9957)(5408,9950)(5432,9943)
	(5456,9936)(5481,9929)(5505,9922)
	(5529,9915)(5554,9909)(5577,9902)
	(5601,9895)(5623,9889)(5645,9882)
	(5667,9876)(5688,9870)(5710,9864)
	(5731,9858)(5752,9852)(5774,9846)
	(5796,9839)(5819,9833)(5842,9826)
	(5866,9819)(5890,9813)(5915,9806)
	(5939,9799)(5964,9792)(5988,9785)
	(6013,9778)(6036,9771)(6060,9764)
	(6082,9758)(6104,9752)(6126,9745)
	(6147,9739)(6168,9733)(6189,9727)
	(6210,9721)(6232,9715)(6254,9709)
	(6276,9703)(6299,9696)(6322,9689)
	(6346,9682)(6370,9676)(6394,9669)
	(6418,9662)(6442,9655)(6466,9648)
	(6489,9642)(6511,9635)(6533,9629)
	(6554,9623)(6575,9617)(6596,9611)
	(6616,9605)(6636,9600)(6656,9594)
	(6677,9588)(6698,9582)(6721,9575)
	(6745,9568)(6770,9561)(6798,9553)
	(6827,9545)(6858,9536)(6890,9527)
	(6922,9518)(6953,9509)(6980,9501)
	(7004,9495)(7022,9489)(7034,9486)
	(7041,9484)(7044,9483)
\blacken\path(7067,9549)(7240,9427)(7029,9414)(7067,9549)
\path(7067,9549)(7240,9427)(7029,9414)(7067,9549)
%  tc->tr 
\path(8272,10186)(8272,10185)(8272,10178)
	(8272,10166)(8272,10151)(8272,10137)
	(8272,10125)(8272,10115)(8272,10105)
	(8272,10096)(8272,10086)(8272,10075)
	(8272,10064)(8272,10053)(8272,10042)
	(8272,10032)(8272,10022)(8272,10013)
	(8272,10002)(8272,9991)(8272,9980)
	(8272,9968)(8272,9957)(8272,9947)
	(8272,9937)(8272,9927)(8272,9916)
	(8272,9905)(8272,9893)(8272,9881)
	(8272,9870)(8272,9859)(8272,9849)
	(8272,9839)(8272,9828)(8272,9817)
	(8272,9805)(8272,9793)(8272,9782)
	(8272,9771)(8272,9761)(8272,9751)
	(8272,9740)(8272,9727)(8272,9712)
	(8272,9696)(8272,9682)(8272,9675)(8272,9674)
\blacken\path(8342,9674)(8272,9474)(8202,9674)(8342,9674)
\path(8342,9674)(8272,9474)(8202,9674)(8342,9674)
%  t->pre 
\path(9972,13187)(9973,13187)(9976,13185)
	(9984,13181)(9997,13175)(10015,13166)
	(10038,13155)(10062,13143)(10087,13131)
	(10111,13119)(10133,13108)(10153,13098)
	(10172,13089)(10190,13080)(10206,13072)
	(10222,13064)(10238,13056)(10254,13048)
	(10271,13040)(10288,13032)(10305,13024)
	(10323,13015)(10342,13005)(10361,12996)
	(10381,12986)(10400,12977)(10420,12967)
	(10439,12958)(10458,12949)(10476,12940)
	(10494,12931)(10512,12922)(10529,12914)
	(10545,12906)(10560,12898)(10576,12891)
	(10593,12882)(10610,12874)(10628,12865)
	(10646,12857)(10664,12848)(10683,12839)
	(10701,12830)(10720,12821)(10738,12812)
	(10756,12803)(10773,12795)(10790,12786)
	(10807,12778)(10823,12770)(10839,12762)
	(10855,12755)(10871,12747)(10888,12739)
	(10905,12730)(10922,12722)(10940,12713)
	(10959,12704)(10978,12695)(10996,12686)
	(11015,12676)(11034,12667)(11052,12658)
	(11070,12649)(11088,12641)(11105,12633)
	(11121,12624)(11137,12616)(11153,12609)
	(11169,12601)(11185,12593)(11202,12585)
	(11219,12577)(11236,12568)(11253,12560)
	(11271,12551)(11289,12542)(11308,12533)
	(11326,12524)(11344,12515)(11362,12506)
	(11379,12498)(11396,12490)(11412,12482)
	(11428,12474)(11443,12466)(11458,12459)
	(11475,12451)(11492,12442)(11510,12434)
	(11529,12424)(11549,12414)(11572,12403)
	(11596,12392)(11622,12379)(11648,12366)
	(11675,12353)(11699,12341)(11719,12331)
	(11733,12324)(11742,12320)(11745,12318)(11746,12318)
\blacken\path(11784,12378)(11932,12227)(11722,12252)(11784,12378)
\path(11784,12378)(11932,12227)(11722,12252)(11784,12378)
%  t->spo 
\path(9281,13129)(9280,13128)(9277,13124)
	(9269,13114)(9258,13101)(9246,13086)
	(9235,13072)(9225,13060)(9216,13049)
	(9208,13039)(9201,13030)(9193,13020)
	(9185,13011)(9177,13000)(9168,12989)
	(9159,12978)(9150,12967)(9141,12956)
	(9132,12945)(9123,12935)(9115,12925)
	(9107,12915)(9099,12905)(9090,12894)
	(9080,12882)(9071,12870)(9061,12858)
	(9052,12847)(9043,12836)(9034,12825)
	(9026,12815)(9019,12806)(9011,12797)
	(9004,12788)(8996,12779)(8988,12769)
	(8980,12759)(8972,12749)(8964,12739)
	(8956,12730)(8948,12720)(8941,12711)
	(8934,12703)(8927,12694)(8920,12685)
	(8912,12676)(8905,12667)(8897,12657)
	(8889,12647)(8880,12636)(8872,12627)
	(8865,12617)(8857,12608)(8850,12599)
	(8843,12590)(8835,12580)(8826,12569)
	(8816,12557)(8805,12544)(8792,12528)
	(8779,12512)(8766,12497)(8758,12486)
	(8754,12481)(8753,12480)
\blacken\path(8807,12435)(8626,12324)(8698,12523)(8807,12435)
\path(8807,12435)(8626,12324)(8698,12523)(8807,12435)
%  tr->mo 
\path(9315,8799)(9316,8799)(9319,8797)
	(9329,8793)(9343,8787)(9363,8779)
	(9385,8769)(9408,8760)(9430,8750)
	(9450,8742)(9468,8734)(9485,8727)
	(9500,8720)(9514,8714)(9528,8707)
	(9542,8701)(9557,8695)(9572,8688)
	(9587,8680)(9603,8673)(9619,8665)
	(9635,8657)(9652,8649)(9668,8641)
	(9684,8633)(9699,8626)(9714,8618)
	(9728,8611)(9742,8604)(9756,8596)
	(9771,8589)(9785,8581)(9800,8573)
	(9816,8564)(9832,8555)(9848,8546)
	(9864,8537)(9880,8528)(9896,8519)
	(9911,8510)(9925,8502)(9939,8493)
	(9953,8485)(9966,8477)(9980,8468)
	(9994,8459)(10009,8450)(10024,8440)
	(10039,8430)(10054,8420)(10070,8409)
	(10085,8399)(10100,8389)(10114,8379)
	(10128,8369)(10141,8360)(10154,8350)
	(10166,8341)(10179,8331)(10192,8321)
	(10206,8310)(10220,8299)(10234,8288)
	(10249,8276)(10263,8265)(10277,8253)
	(10291,8241)(10304,8230)(10316,8219)
	(10328,8209)(10340,8198)(10350,8189)
	(10361,8179)(10371,8169)(10382,8159)
	(10394,8148)(10405,8136)(10418,8123)
	(10430,8110)(10443,8097)(10456,8083)
	(10469,8068)(10482,8053)(10495,8038)
	(10508,8023)(10521,8007)(10535,7991)
	(10546,7977)(10557,7963)(10569,7948)
	(10581,7931)(10594,7914)(10608,7897)
	(10622,7878)(10636,7858)(10651,7838)
	(10666,7817)(10681,7796)(10696,7775)
	(10710,7753)(10725,7732)(10739,7710)
	(10753,7690)(10767,7669)(10780,7648)
	(10793,7628)(10805,7608)(10817,7590)
	(10828,7571)(10839,7552)(10851,7532)
	(10862,7512)(10874,7492)(10886,7471)
	(10898,7449)(10909,7427)(10921,7405)
	(10933,7382)(10945,7360)(10956,7337)
	(10968,7315)(10979,7293)(10989,7271)
	(11000,7250)(11010,7229)(11019,7208)
	(11029,7188)(11038,7168)(11047,7148)
	(11055,7129)(11064,7109)(11073,7088)
	(11082,7067)(11091,7046)(11100,7024)
	(11109,7002)(11118,6979)(11127,6956)
	(11136,6933)(11145,6909)(11154,6886)
	(11163,6862)(11171,6839)(11180,6816)
	(11188,6794)(11196,6772)(11203,6750)
	(11210,6729)(11217,6709)(11224,6688)
	(11231,6668)(11237,6648)(11244,6628)
	(11250,6607)(11257,6586)(11264,6565)
	(11270,6543)(11277,6521)(11284,6498)
	(11291,6475)(11297,6452)(11304,6429)
	(11310,6406)(11317,6383)(11323,6360)
	(11329,6338)(11335,6316)(11341,6294)
	(11346,6273)(11351,6253)(11356,6233)
	(11361,6213)(11366,6194)(11371,6173)
	(11376,6152)(11382,6130)(11387,6108)
	(11392,6085)(11397,6062)(11402,6039)
	(11407,6015)(11413,5991)(11418,5968)
	(11423,5944)(11428,5920)(11432,5897)
	(11437,5875)(11441,5853)(11445,5831)
	(11449,5811)(11453,5791)(11457,5771)
	(11460,5752)(11464,5733)(11467,5714)
	(11470,5694)(11474,5674)(11477,5653)
	(11481,5631)(11485,5607)(11489,5581)
	(11493,5554)(11498,5525)(11502,5496)
	(11507,5467)(11511,5439)(11515,5413)
	(11518,5392)(11521,5376)(11523,5364)
	(11524,5358)(11524,5355)
\blacken\path(11594,5363)(11547,5156)(11455,5347)(11594,5363)
\path(11594,5363)(11547,5156)(11455,5347)(11594,5363)
%  tr->ts 
\path(8272,8746)(8272,8745)(8272,8738)
	(8272,8726)(8272,8711)(8272,8697)
	(8272,8685)(8272,8675)(8272,8665)
	(8272,8656)(8272,8646)(8272,8635)
	(8272,8624)(8272,8613)(8272,8602)
	(8272,8592)(8272,8582)(8272,8573)
	(8272,8562)(8272,8551)(8272,8540)
	(8272,8528)(8272,8517)(8272,8507)
	(8272,8497)(8272,8487)(8272,8476)
	(8272,8465)(8272,8453)(8272,8441)
	(8272,8430)(8272,8419)(8272,8409)
	(8272,8399)(8272,8388)(8272,8377)
	(8272,8365)(8272,8353)(8272,8342)
	(8272,8331)(8272,8321)(8272,8311)
	(8272,8300)(8272,8287)(8272,8272)
	(8272,8256)(8272,8242)(8272,8235)(8272,8234)
\blacken\path(8342,8234)(8272,8034)(8202,8234)(8342,8234)
\path(8342,8234)(8272,8034)(8202,8234)(8342,8234)
%  ts->ioe 
\path(8297,7306)(8297,7305)(8297,7298)
	(8298,7286)(8299,7271)(8300,7257)
	(8301,7245)(8302,7235)(8302,7225)
	(8303,7216)(8304,7206)(8304,7195)
	(8305,7184)(8306,7173)(8307,7162)
	(8307,7152)(8308,7142)(8309,7133)
	(8310,7122)(8311,7111)(8312,7100)
	(8312,7088)(8313,7077)(8314,7067)
	(8315,7057)(8316,7047)(8316,7036)
	(8317,7025)(8318,7013)(8319,7001)
	(8320,6990)(8320,6979)(8321,6969)
	(8322,6959)(8322,6948)(8323,6937)
	(8324,6925)(8325,6913)(8326,6902)
	(8326,6891)(8327,6881)(8328,6871)
	(8328,6860)(8329,6847)(8330,6832)
	(8332,6816)(8332,6802)(8333,6795)(8333,6794)
\blacken\path(8403,6799)(8348,6594)(8263,6789)(8403,6799)
\path(8403,6799)(8348,6594)(8263,6789)(8403,6799)
%  ts->fts 
\path(7373,7346)(7370,7345)(7362,7342)
	(7350,7338)(7331,7332)(7309,7324)
	(7282,7315)(7255,7306)(7227,7296)
	(7200,7287)(7174,7279)(7150,7271)
	(7128,7263)(7108,7256)(7089,7250)
	(7070,7244)(7052,7237)(7035,7231)
	(7017,7225)(6999,7219)(6980,7213)
	(6961,7207)(6942,7200)(6921,7193)
	(6901,7186)(6879,7179)(6858,7172)
	(6837,7164)(6815,7157)(6794,7150)
	(6774,7143)(6753,7136)(6734,7129)
	(6714,7123)(6696,7117)(6677,7110)
	(6658,7104)(6639,7097)(6620,7091)
	(6600,7084)(6579,7077)(6558,7070)
	(6536,7062)(6514,7055)(6492,7047)
	(6470,7040)(6448,7032)(6426,7025)
	(6405,7018)(6384,7011)(6364,7004)
	(6344,6997)(6324,6990)(6305,6984)
	(6286,6977)(6267,6971)(6247,6964)
	(6227,6957)(6206,6950)(6184,6943)
	(6162,6935)(6140,6928)(6118,6920)
	(6095,6912)(6073,6905)(6051,6897)
	(6030,6890)(6009,6883)(5989,6876)
	(5969,6870)(5950,6863)(5931,6856)
	(5911,6850)(5892,6844)(5873,6837)
	(5853,6830)(5832,6823)(5811,6816)
	(5789,6809)(5768,6801)(5746,6794)
	(5724,6786)(5702,6779)(5681,6772)
	(5660,6765)(5640,6758)(5620,6751)
	(5601,6745)(5583,6738)(5564,6732)
	(5546,6726)(5528,6720)(5509,6713)
	(5489,6707)(5468,6699)(5445,6692)
	(5420,6683)(5393,6674)(5365,6665)
	(5336,6655)(5307,6645)(5280,6636)
	(5256,6628)(5237,6621)(5224,6617)
	(5217,6614)(5213,6613)
\blacken\path(5233,6545)(5021,6547)(5188,6678)(5233,6545)
\path(5233,6545)(5021,6547)(5188,6678)(5233,6545)
%  ioe->ioef 
\path(8004,5873)(8003,5872)(7999,5868)
	(7989,5859)(7976,5847)(7961,5833)
	(7947,5820)(7934,5809)(7923,5799)
	(7914,5790)(7904,5781)(7895,5773)
	(7885,5764)(7875,5754)(7864,5744)
	(7853,5734)(7842,5724)(7831,5713)
	(7820,5704)(7810,5694)(7801,5685)
	(7792,5678)(7784,5670)(7775,5662)
	(7766,5654)(7757,5645)(7747,5636)
	(7738,5628)(7728,5619)(7719,5610)
	(7710,5602)(7702,5594)(7694,5587)
	(7685,5579)(7677,5571)(7668,5563)
	(7658,5555)(7649,5546)(7639,5537)
	(7629,5528)(7620,5519)(7610,5511)
	(7601,5502)(7593,5495)(7584,5487)
	(7576,5479)(7567,5471)(7559,5463)
	(7549,5454)(7540,5446)(7530,5437)
	(7520,5428)(7511,5419)(7502,5410)
	(7493,5402)(7484,5394)(7476,5387)
	(7468,5379)(7459,5371)(7450,5363)
	(7440,5354)(7428,5343)(7416,5331)
	(7402,5319)(7390,5308)(7379,5298)
	(7372,5292)(7369,5289)
\blacken\path(7411,5232)(7217,5148)(7316,5335)(7411,5232)
\path(7411,5232)(7217,5148)(7316,5335)(7411,5232)
%  fts->ioef 
\path(4765,5894)(4766,5894)(4769,5892)
	(4778,5888)(4791,5880)(4809,5871)
	(4830,5860)(4851,5849)(4872,5839)
	(4890,5829)(4907,5820)(4923,5812)
	(4937,5805)(4951,5798)(4964,5791)
	(4978,5784)(4991,5777)(5006,5769)
	(5020,5762)(5036,5754)(5051,5746)
	(5068,5737)(5084,5729)(5100,5721)
	(5115,5713)(5130,5705)(5145,5697)
	(5159,5690)(5174,5682)(5188,5675)
	(5202,5668)(5217,5660)(5233,5652)
	(5249,5644)(5265,5635)(5282,5626)
	(5298,5618)(5315,5609)(5331,5601)
	(5347,5593)(5362,5585)(5377,5577)
	(5391,5570)(5406,5562)(5421,5555)
	(5436,5547)(5452,5538)(5468,5530)
	(5485,5521)(5501,5512)(5518,5504)
	(5535,5495)(5551,5487)(5567,5478)
	(5582,5470)(5597,5463)(5612,5455)
	(5626,5448)(5641,5440)(5656,5432)
	(5671,5424)(5688,5416)(5704,5407)
	(5721,5399)(5737,5390)(5754,5381)
	(5770,5373)(5785,5365)(5800,5357)
	(5815,5350)(5829,5342)(5843,5335)
	(5857,5328)(5872,5320)(5889,5311)
	(5907,5302)(5927,5291)(5949,5280)
	(5971,5268)(5994,5257)(6013,5247)
	(6028,5239)(6037,5234)(6040,5232)(6041,5232)
\blacken\path(6078,5292)(6223,5138)(6013,5168)(6078,5292)
\path(6078,5292)(6223,5138)(6013,5168)(6078,5292)
%  s->m 
\path(1065,18826)(1066,18825)(1070,18818)
	(1078,18805)(1087,18789)(1096,18775)
	(1104,18762)(1110,18751)(1117,18741)
	(1121,18733)(1126,18725)(1132,18716)
	(1137,18707)(1143,18698)(1149,18688)
	(1155,18679)(1160,18670)(1165,18662)
	(1170,18653)(1175,18645)(1181,18636)
	(1186,18627)(1192,18618)(1198,18608)
	(1204,18598)(1210,18588)(1216,18579)
	(1221,18570)(1226,18562)(1231,18554)
	(1237,18545)(1242,18535)(1248,18526)
	(1255,18516)(1261,18506)(1267,18496)
	(1272,18487)(1278,18478)(1283,18470)
	(1288,18461)(1294,18452)(1299,18443)
	(1305,18433)(1311,18424)(1318,18414)
	(1324,18404)(1329,18395)(1335,18386)
	(1340,18377)(1345,18369)(1351,18360)
	(1357,18350)(1364,18339)(1372,18326)
	(1380,18312)(1388,18300)(1393,18291)
	(1396,18287)(1396,18286)
\blacken\path(1457,18321)(1502,18114)(1338,18248)(1457,18321)
\path(1457,18321)(1502,18114)(1338,18248)(1457,18321)
%  ioef->pr 
\path(6852,4426)(6852,4425)(6852,4418)
	(6852,4406)(6852,4391)(6852,4377)
	(6852,4365)(6852,4355)(6852,4345)
	(6852,4336)(6852,4326)(6852,4315)
	(6852,4304)(6852,4293)(6852,4282)
	(6852,4272)(6852,4262)(6852,4253)
	(6852,4242)(6852,4231)(6852,4220)
	(6852,4208)(6852,4197)(6852,4187)
	(6852,4177)(6852,4167)(6852,4156)
	(6852,4145)(6852,4133)(6852,4121)
	(6852,4110)(6852,4099)(6852,4089)
	(6852,4079)(6852,4068)(6852,4057)
	(6852,4045)(6852,4033)(6852,4022)
	(6852,4011)(6852,4001)(6852,3991)
	(6852,3980)(6852,3967)(6852,3952)
	(6852,3936)(6852,3922)(6852,3915)(6852,3914)
%  i->m 
\path(2359,18826)(2358,18825)(2354,18818)
	(2346,18805)(2337,18789)(2328,18775)
	(2320,18762)(2314,18751)(2308,18741)
	(2303,18733)(2298,18725)(2292,18716)
	(2287,18707)(2281,18698)(2275,18688)
	(2269,18679)(2264,18670)(2259,18662)
	(2254,18653)(2249,18645)(2243,18636)
	(2238,18627)(2232,18618)(2226,18608)
	(2220,18598)(2214,18588)(2208,18579)
	(2203,18570)(2198,18562)(2193,18554)
	(2187,18545)(2182,18535)(2176,18526)
	(2169,18516)(2163,18506)(2157,18496)
	(2152,18487)(2146,18478)(2141,18470)
	(2136,18461)(2130,18452)(2125,18443)
	(2119,18433)(2113,18424)(2106,18414)
	(2100,18404)(2095,18395)(2089,18386)
	(2084,18377)(2079,18369)(2073,18360)
	(2067,18350)(2060,18339)(2052,18326)
	(2044,18312)(2036,18300)(2031,18291)
	(2028,18287)(2028,18286)
\blacken\path(2086,18248)(1922,18114)(1967,18321)(2086,18248)
\path(2086,18248)(1922,18114)(1967,18321)(2086,18248)
\blacken\path(6922,3914)(6852,3714)(6782,3914)(6922,3914)
\path(6922,3914)(6852,3714)(6782,3914)(6922,3914)
%  m->am 
\path(1954,17386)(1954,17385)(1957,17382)
	(1963,17373)(1971,17362)(1980,17349)
	(1989,17337)(1996,17326)(2003,17317)
	(2009,17308)(2014,17300)(2020,17292)
	(2026,17284)(2032,17275)(2038,17266)
	(2045,17256)(2052,17247)(2058,17237)
	(2065,17228)(2071,17220)(2077,17211)
	(2082,17203)(2088,17194)(2095,17185)
	(2102,17175)(2109,17165)(2116,17155)
	(2122,17146)(2129,17136)(2135,17128)
	(2141,17119)(2147,17110)(2153,17102)
	(2160,17092)(2167,17082)(2174,17072)
	(2181,17062)(2187,17053)(2194,17043)
	(2200,17034)(2206,17026)(2212,17017)
	(2218,17008)(2225,16999)(2232,16989)
	(2239,16979)(2246,16969)(2253,16959)
	(2259,16950)(2266,16941)(2272,16932)
	(2278,16924)(2284,16915)(2291,16905)
	(2299,16893)(2308,16880)(2318,16866)
	(2326,16854)(2333,16845)(2336,16841)(2336,16840)
\blacken\path(2395,16878)(2453,16674)(2280,16798)(2395,16878)
\path(2395,16878)(2453,16674)(2280,16798)(2395,16878)
%  pr->rs 
\path(7558,3134)(7561,3133)(7568,3131)
	(7581,3128)(7599,3123)(7622,3116)
	(7650,3108)(7681,3100)(7713,3091)
	(7746,3082)(7777,3073)(7807,3064)
	(7836,3057)(7862,3049)(7886,3042)
	(7910,3036)(7932,3030)(7953,3024)
	(7974,3018)(7995,3012)(8014,3007)
	(8034,3001)(8054,2996)(8074,2990)
	(8095,2984)(8116,2978)(8139,2972)
	(8161,2966)(8184,2959)(8208,2952)
	(8231,2946)(8255,2939)(8279,2933)
	(8302,2926)(8326,2919)(8349,2913)
	(8371,2907)(8394,2900)(8415,2894)
	(8437,2888)(8458,2882)(8479,2876)
	(8500,2870)(8522,2864)(8544,2858)
	(8566,2852)(8589,2846)(8612,2839)
	(8636,2832)(8661,2825)(8686,2818)
	(8711,2811)(8737,2804)(8762,2797)
	(8788,2790)(8813,2783)(8838,2776)
	(8862,2769)(8886,2762)(8910,2756)
	(8933,2749)(8956,2743)(8978,2737)
	(9000,2730)(9023,2724)(9045,2718)
	(9068,2711)(9091,2705)(9115,2698)
	(9139,2691)(9164,2684)(9190,2677)
	(9215,2670)(9241,2663)(9268,2655)
	(9294,2648)(9320,2641)(9346,2634)
	(9371,2626)(9396,2619)(9421,2613)
	(9445,2606)(9468,2599)(9491,2593)
	(9513,2587)(9536,2580)(9558,2574)
	(9581,2568)(9604,2561)(9627,2555)
	(9651,2548)(9675,2541)(9700,2534)
	(9725,2527)(9750,2520)(9776,2513)
	(9802,2506)(9828,2499)(9854,2491)
	(9879,2484)(9904,2477)(9928,2470)
	(9952,2464)(9976,2457)(9998,2451)
	(10021,2445)(10042,2439)(10064,2432)
	(10086,2426)(10107,2420)(10129,2414)
	(10152,2408)(10176,2401)(10201,2394)
	(10227,2387)(10256,2379)(10286,2371)
	(10318,2362)(10351,2352)(10386,2343)
	(10420,2333)(10453,2324)(10484,2315)
	(10511,2308)(10534,2301)(10551,2297)
	(10562,2294)(10568,2292)(10571,2291)
%  c->am 
\path(3445,17386)(3445,17385)(3442,17382)
	(3436,17373)(3427,17362)(3418,17349)
	(3410,17337)(3402,17326)(3395,17317)
	(3389,17308)(3384,17300)(3378,17292)
	(3372,17284)(3365,17275)(3359,17266)
	(3352,17256)(3345,17247)(3338,17237)
	(3332,17228)(3326,17220)(3320,17211)
	(3314,17203)(3307,17194)(3301,17185)
	(3294,17175)(3287,17165)(3280,17155)
	(3273,17146)(3266,17136)(3260,17128)
	(3254,17119)(3248,17110)(3242,17102)
	(3235,17092)(3228,17082)(3221,17072)
	(3214,17062)(3207,17053)(3200,17043)
	(3194,17034)(3188,17026)(3182,17017)
	(3175,17008)(3169,16999)(3162,16989)
	(3154,16979)(3147,16969)(3140,16959)
	(3134,16950)(3127,16941)(3121,16932)
	(3115,16924)(3109,16915)(3101,16905)
	(3093,16893)(3084,16880)(3074,16866)
	(3065,16854)(3058,16845)(3055,16841)(3055,16840)
\blacken\path(3110,16796)(2936,16674)(2996,16878)(3110,16796)
\path(3110,16796)(2936,16674)(2996,16878)(3110,16796)
%  am->cf 
\path(2692,15946)(2692,15945)(2692,15938)
	(2692,15926)(2692,15911)(2692,15897)
	(2692,15885)(2692,15875)(2692,15865)
	(2692,15856)(2692,15846)(2692,15835)
	(2692,15824)(2692,15813)(2692,15802)
	(2692,15792)(2692,15782)(2692,15773)
	(2692,15762)(2692,15751)(2692,15740)
	(2692,15728)(2692,15717)(2692,15707)
	(2692,15697)(2692,15687)(2692,15676)
	(2692,15665)(2692,15653)(2692,15641)
	(2692,15630)(2692,15619)(2692,15609)
	(2692,15599)(2692,15588)(2692,15577)
	(2692,15565)(2692,15553)(2692,15542)
	(2692,15531)(2692,15521)(2692,15511)
	(2692,15500)(2692,15487)(2692,15472)
	(2692,15456)(2692,15442)(2692,15435)(2692,15434)
\blacken\path(2762,15434)(2692,15234)(2622,15434)(2762,15434)
\path(2762,15434)(2692,15234)(2622,15434)(2762,15434)
%  cf->ac 
\path(2692,14506)(2692,14505)(2692,14498)
	(2692,14486)(2692,14471)(2692,14457)
	(2692,14445)(2692,14435)(2692,14425)
	(2692,14416)(2692,14406)(2692,14395)
	(2692,14384)(2692,14373)(2692,14362)
	(2692,14352)(2692,14342)(2692,14333)
	(2692,14322)(2692,14311)(2692,14300)
	(2692,14288)(2692,14277)(2692,14267)
	(2692,14257)(2692,14247)(2692,14236)
	(2692,14225)(2692,14213)(2692,14201)
	(2692,14190)(2692,14179)(2692,14169)
	(2692,14159)(2692,14148)(2692,14137)
	(2692,14125)(2692,14113)(2692,14102)
	(2692,14091)(2692,14081)(2692,14071)
	(2692,14060)(2692,14047)(2692,14032)
	(2692,14016)(2692,14002)(2692,13995)(2692,13994)
\blacken\path(2762,13994)(2692,13794)(2622,13994)(2762,13994)
\path(2762,13994)(2692,13794)(2622,13994)(2762,13994)
%  ac->tt 
\path(2816,13066)(2816,13065)(2819,13058)
	(2823,13046)(2829,13031)(2834,13016)
	(2838,13004)(2842,12994)(2845,12984)
	(2849,12974)(2852,12964)(2856,12953)
	(2860,12942)(2864,12930)(2868,12919)
	(2872,12909)(2875,12899)(2879,12889)
	(2883,12878)(2887,12867)(2891,12855)
	(2895,12843)(2899,12832)(2903,12821)
	(2907,12811)(2911,12800)(2915,12789)
	(2919,12778)(2923,12766)(2927,12754)
	(2931,12742)(2935,12732)(2939,12721)
	(2943,12711)(2947,12700)(2951,12688)
	(2955,12677)(2959,12665)(2963,12653)
	(2967,12642)(2971,12632)(2974,12622)
	(2978,12610)(2983,12597)(2988,12582)
	(2994,12565)(2999,12551)(3002,12544)(3002,12543)
\blacken\path(3068,12566)(3070,12354)(2937,12519)(3068,12566)
\path(3068,12566)(3070,12354)(2937,12519)(3068,12566)
%  tt->dt 
\path(3236,11626)(3236,11625)(3237,11618)
	(3239,11606)(3241,11591)(3243,11577)
	(3244,11565)(3246,11555)(3247,11545)
	(3248,11536)(3249,11526)(3251,11515)
	(3252,11504)(3253,11493)(3255,11482)
	(3256,11472)(3257,11462)(3259,11453)
	(3260,11442)(3261,11431)(3263,11420)
	(3265,11408)(3266,11397)(3267,11387)
	(3269,11377)(3270,11367)(3272,11356)
	(3273,11345)(3274,11333)(3276,11321)
	(3277,11310)(3279,11299)(3280,11289)
	(3281,11279)(3283,11268)(3284,11257)
	(3286,11245)(3287,11233)(3288,11222)
	(3290,11211)(3291,11201)(3292,11191)
	(3294,11180)(3295,11167)(3297,11152)
	(3299,11136)(3301,11122)(3302,11115)(3302,11114)
\blacken\path(3372,11121)(3328,10914)(3233,11104)(3372,11121)
\path(3372,11121)(3328,10914)(3233,11104)(3372,11121)
\blacken\path(10590,2358)(10764,2237)(10552,2223)(10590,2358)
\path(10590,2358)(10764,2237)(10552,2223)(10590,2358)
%  pr->ss 
\path(6832,2986)(6832,2985)(6832,2978)
	(6831,2966)(6830,2951)(6830,2937)
	(6829,2925)(6828,2915)(6828,2905)
	(6827,2896)(6827,2886)(6826,2875)
	(6825,2864)(6825,2853)(6824,2842)
	(6824,2832)(6823,2822)(6822,2813)
	(6822,2802)(6821,2791)(6821,2780)
	(6820,2768)(6819,2757)(6819,2747)
	(6818,2737)(6817,2727)(6817,2716)
	(6816,2705)(6816,2693)(6815,2681)
	(6814,2670)(6814,2659)(6813,2649)
	(6812,2639)(6812,2628)(6811,2617)
	(6811,2605)(6810,2593)(6809,2582)
	(6809,2571)(6808,2561)(6807,2551)
	(6807,2540)(6806,2527)(6805,2512)
	(6804,2496)(6803,2482)(6803,2475)(6803,2474)
%  br->r 
\path(10063,14605)(10064,14605)(10067,14603)
	(10076,14599)(10090,14593)(10110,14584)
	(10134,14573)(10161,14561)(10188,14549)
	(10214,14537)(10238,14526)(10260,14516)
	(10281,14507)(10300,14498)(10318,14490)
	(10335,14482)(10352,14475)(10368,14468)
	(10383,14461)(10399,14453)(10416,14446)
	(10433,14438)(10451,14430)(10469,14422)
	(10487,14414)(10506,14406)(10525,14397)
	(10544,14389)(10562,14380)(10580,14372)
	(10598,14364)(10616,14356)(10633,14349)
	(10649,14341)(10666,14334)(10682,14326)
	(10699,14319)(10717,14311)(10734,14303)
	(10753,14295)(10771,14287)(10791,14278)
	(10810,14269)(10830,14260)(10850,14251)
	(10869,14243)(10889,14234)(10908,14225)
	(10926,14217)(10945,14209)(10962,14201)
	(10980,14193)(10997,14186)(11014,14178)
	(11031,14170)(11049,14162)(11067,14154)
	(11086,14146)(11105,14137)(11124,14128)
	(11144,14120)(11164,14111)(11184,14102)
	(11204,14093)(11224,14084)(11243,14075)
	(11261,14067)(11279,14059)(11297,14051)
	(11314,14043)(11331,14036)(11348,14028)
	(11365,14021)(11382,14013)(11400,14005)
	(11418,13997)(11437,13988)(11456,13980)
	(11475,13971)(11495,13962)(11514,13954)
	(11533,13945)(11552,13937)(11570,13929)
	(11588,13921)(11605,13913)(11622,13905)
	(11638,13898)(11654,13891)(11670,13884)
	(11686,13876)(11702,13869)(11720,13861)
	(11738,13853)(11758,13844)(11779,13834)
	(11802,13824)(11827,13813)(11852,13802)
	(11877,13791)(11900,13780)(11921,13771)
	(11937,13763)(11948,13758)(11955,13755)(11958,13754)
\blacken\path(11995,13815)(12148,13669)(11937,13687)(11995,13815)
\path(11995,13815)(12148,13669)(11937,13687)(11995,13815)
\blacken\path(6873,2470)(6792,2274)(6733,2478)(6873,2470)
\path(6873,2470)(6792,2274)(6733,2478)(6873,2470)
%  br->ir 
\path(8951,14608)(8948,14607)(8942,14604)
	(8930,14599)(8914,14592)(8894,14583)
	(8871,14573)(8846,14563)(8821,14552)
	(8797,14541)(8775,14531)(8754,14522)
	(8734,14514)(8716,14506)(8699,14498)
	(8682,14491)(8666,14484)(8651,14477)
	(8635,14471)(8618,14463)(8602,14456)
	(8584,14449)(8567,14441)(8548,14433)
	(8529,14425)(8510,14416)(8491,14408)
	(8471,14399)(8452,14391)(8433,14383)
	(8414,14374)(8395,14366)(8377,14359)
	(8360,14351)(8342,14343)(8325,14336)
	(8308,14328)(8290,14321)(8272,14313)
	(8254,14305)(8235,14297)(8215,14288)
	(8195,14280)(8175,14271)(8155,14262)
	(8134,14253)(8114,14244)(8093,14235)
	(8074,14227)(8054,14218)(8036,14210)
	(8017,14202)(7999,14194)(7982,14187)
	(7964,14179)(7946,14171)(7927,14163)
	(7909,14155)(7889,14147)(7869,14138)
	(7849,14129)(7828,14120)(7808,14111)
	(7787,14102)(7766,14093)(7746,14084)
	(7726,14076)(7707,14067)(7688,14059)
	(7670,14051)(7652,14043)(7635,14036)
	(7617,14028)(7600,14021)(7582,14013)
	(7563,14005)(7544,13996)(7525,13988)
	(7505,13979)(7485,13971)(7465,13962)
	(7445,13953)(7425,13945)(7406,13936)
	(7387,13928)(7368,13920)(7350,13912)
	(7333,13904)(7316,13897)(7299,13890)
	(7283,13883)(7266,13875)(7249,13868)
	(7231,13860)(7212,13852)(7191,13843)
	(7169,13833)(7145,13823)(7120,13812)
	(7094,13800)(7068,13789)(7043,13778)
	(7022,13769)(7005,13762)(6993,13756)
	(6986,13753)(6983,13752)
\blacken\path(7005,13686)(6794,13670)(6949,13814)(7005,13686)
\path(7005,13686)(6794,13670)(6949,13814)(7005,13686)
%  rs->fi 
\path(11250,1560)(11249,1560)(11246,1558)
	(11238,1553)(11225,1546)(11208,1537)
	(11188,1526)(11168,1515)(11148,1504)
	(11130,1494)(11114,1486)(11099,1477)
	(11086,1470)(11073,1463)(11060,1456)
	(11047,1449)(11034,1442)(11021,1434)
	(11007,1426)(10992,1418)(10977,1410)
	(10962,1402)(10947,1393)(10932,1385)
	(10917,1377)(10902,1369)(10889,1361)
	(10875,1354)(10862,1346)(10848,1339)
	(10835,1331)(10821,1324)(10806,1316)
	(10791,1307)(10775,1299)(10759,1290)
	(10743,1281)(10728,1273)(10713,1264)
	(10698,1256)(10683,1248)(10669,1240)
	(10656,1233)(10642,1225)(10628,1218)
	(10614,1210)(10599,1201)(10584,1193)
	(10568,1184)(10552,1176)(10536,1167)
	(10520,1158)(10505,1150)(10490,1141)
	(10476,1133)(10462,1126)(10449,1118)
	(10435,1111)(10421,1103)(10407,1095)
	(10392,1087)(10377,1079)(10361,1070)
	(10346,1062)(10330,1053)(10315,1045)
	(10300,1036)(10285,1028)(10271,1021)
	(10258,1013)(10245,1006)(10231,999)
	(10218,991)(10204,983)(10188,975)
	(10172,966)(10153,955)(10133,944)
	(10112,933)(10091,921)(10073,911)
	(10059,904)(10051,899)(10048,897)(10047,897)
%  br->t 
\path(9512,14506)(9512,14505)(9512,14498)
	(9512,14486)(9512,14471)(9512,14457)
	(9512,14445)(9512,14435)(9512,14425)
	(9512,14416)(9512,14406)(9512,14395)
	(9512,14384)(9512,14373)(9512,14362)
	(9512,14352)(9512,14342)(9512,14333)
	(9512,14322)(9512,14311)(9512,14300)
	(9512,14288)(9512,14277)(9512,14267)
	(9512,14257)(9512,14247)(9512,14236)
	(9512,14225)(9512,14213)(9512,14201)
	(9512,14190)(9512,14179)(9512,14169)
	(9512,14159)(9512,14148)(9512,14137)
	(9512,14125)(9512,14113)(9512,14102)
	(9512,14091)(9512,14081)(9512,14071)
	(9512,14060)(9512,14047)(9512,14032)
	(9512,14016)(9512,14002)(9512,13995)(9512,13994)
\blacken\path(9582,13994)(9512,13794)(9442,13994)(9582,13994)
\path(9582,13994)(9512,13794)(9442,13994)(9582,13994)
%  mo->rs 
\path(11606,4429)(11606,4428)(11606,4425)
	(11607,4417)(11609,4403)(11610,4384)
	(11613,4360)(11615,4335)(11618,4309)
	(11620,4284)(11623,4261)(11625,4239)
	(11627,4219)(11629,4200)(11630,4183)
	(11632,4166)(11634,4149)(11635,4132)
	(11637,4114)(11639,4096)(11641,4077)
	(11643,4058)(11645,4037)(11647,4016)
	(11649,3995)(11651,3974)(11653,3953)
	(11655,3931)(11657,3911)(11659,3891)
	(11661,3871)(11663,3851)(11665,3832)
	(11666,3815)(11668,3798)(11670,3780)
	(11671,3762)(11673,3743)(11675,3723)
	(11677,3703)(11679,3683)(11681,3662)
	(11683,3642)(11685,3621)(11687,3601)
	(11689,3581)(11691,3561)(11693,3542)
	(11695,3524)(11697,3506)(11698,3488)
	(11700,3470)(11702,3452)(11704,3433)
	(11706,3414)(11708,3394)(11710,3374)
	(11712,3354)(11714,3333)(11716,3312)
	(11718,3291)(11720,3270)(11722,3249)
	(11724,3229)(11726,3209)(11728,3190)
	(11730,3172)(11732,3154)(11734,3136)
	(11735,3118)(11737,3100)(11739,3082)
	(11741,3063)(11743,3044)(11744,3024)
	(11746,3004)(11748,2984)(11750,2964)
	(11752,2943)(11754,2923)(11756,2903)
	(11758,2884)(11760,2866)(11762,2848)
	(11763,2830)(11765,2813)(11767,2796)
	(11769,2778)(11770,2759)(11772,2739)
	(11774,2718)(11777,2696)(11779,2671)
	(11782,2645)(11784,2616)(11787,2587)
	(11790,2558)(11793,2532)(11795,2510)
	(11797,2494)(11798,2484)(11798,2481)(11798,2480)
\blacken\path(11868,2482)(11818,2276)(11729,2468)(11868,2482)
\path(11868,2482)(11818,2276)(11729,2468)(11868,2482)
%  mo->ss 
\path(11021,4446)(11019,4445)(11014,4442)
	(11005,4437)(10992,4429)(10974,4418)
	(10951,4405)(10925,4389)(10897,4372)
	(10866,4354)(10835,4336)(10803,4317)
	(10773,4299)(10743,4282)(10715,4265)
	(10689,4249)(10664,4234)(10640,4220)
	(10617,4207)(10595,4194)(10574,4181)
	(10553,4169)(10533,4157)(10512,4145)
	(10492,4133)(10471,4120)(10449,4107)
	(10427,4094)(10405,4081)(10381,4067)
	(10358,4053)(10333,4039)(10308,4024)
	(10283,4009)(10257,3994)(10231,3979)
	(10205,3963)(10179,3948)(10153,3932)
	(10127,3917)(10102,3902)(10076,3887)
	(10052,3872)(10027,3858)(10003,3844)
	(9979,3830)(9956,3816)(9933,3802)
	(9911,3789)(9889,3776)(9867,3763)
	(9844,3750)(9821,3736)(9798,3722)
	(9774,3708)(9749,3694)(9724,3679)
	(9699,3664)(9673,3648)(9647,3633)
	(9621,3618)(9595,3602)(9569,3587)
	(9543,3571)(9517,3556)(9492,3541)
	(9467,3526)(9442,3512)(9418,3498)
	(9394,3483)(9371,3470)(9348,3456)
	(9325,3443)(9303,3429)(9280,3416)
	(9257,3402)(9234,3389)(9211,3375)
	(9187,3361)(9162,3346)(9138,3332)
	(9112,3317)(9087,3302)(9061,3286)
	(9034,3271)(9008,3255)(8982,3239)
	(8955,3224)(8929,3208)(8903,3193)
	(8877,3177)(8851,3162)(8826,3147)
	(8802,3133)(8778,3119)(8754,3105)
	(8731,3091)(8708,3078)(8686,3064)
	(8664,3051)(8641,3038)(8619,3025)
	(8596,3012)(8574,2998)(8551,2984)
	(8527,2970)(8503,2956)(8479,2942)
	(8454,2927)(8429,2913)(8404,2898)
	(8379,2883)(8354,2868)(8329,2853)
	(8304,2838)(8279,2824)(8255,2809)
	(8231,2795)(8208,2782)(8185,2768)
	(8163,2755)(8141,2742)(8120,2729)
	(8099,2717)(8078,2705)(8058,2693)
	(8036,2680)(8014,2667)(7992,2654)
	(7969,2640)(7946,2626)(7921,2612)
	(7896,2597)(7869,2581)(7840,2564)
	(7810,2546)(7778,2527)(7745,2507)
	(7711,2487)(7677,2467)(7644,2448)
	(7613,2429)(7585,2413)(7560,2398)
	(7541,2387)(7526,2378)(7517,2373)
	(7511,2369)(7509,2368)
\blacken\path(7539,2304)(7331,2263)(7467,2425)(7539,2304)
\path(7539,2304)(7331,2263)(7467,2425)(7539,2304)
\blacken\path(10075,833)(9866,797)(10008,955)(10075,833)
\path(10075,833)(9866,797)(10008,955)(10075,833)
%  r->pre 
\path(12572,13087)(12572,13086)(12570,13079)
	(12568,13066)(12565,13050)(12562,13035)
	(12560,13022)(12558,13011)(12556,13001)
	(12554,12991)(12552,12980)(12550,12969)
	(12547,12957)(12545,12945)(12543,12933)
	(12541,12922)(12539,12911)(12537,12901)
	(12535,12890)(12533,12878)(12530,12865)
	(12528,12853)(12526,12841)(12524,12829)
	(12522,12818)(12520,12808)(12518,12796)
	(12515,12784)(12513,12771)(12511,12758)
	(12508,12746)(12506,12734)(12504,12723)
	(12502,12712)(12500,12701)(12497,12688)
	(12495,12676)(12493,12663)(12490,12651)
	(12488,12639)(12486,12628)(12484,12617)
	(12482,12605)(12479,12591)(12476,12575)
	(12473,12557)(12471,12543)(12469,12535)(12469,12534)
%  ss->fi 
\path(7368,1564)(7369,1564)(7372,1562)
	(7380,1557)(7393,1550)(7411,1540)
	(7431,1529)(7451,1518)(7471,1507)
	(7489,1497)(7505,1488)(7520,1480)
	(7534,1472)(7547,1465)(7560,1458)
	(7573,1451)(7586,1443)(7600,1436)
	(7614,1428)(7629,1420)(7644,1411)
	(7659,1403)(7675,1394)(7690,1386)
	(7705,1377)(7720,1369)(7734,1362)
	(7748,1354)(7761,1346)(7775,1339)
	(7789,1331)(7803,1324)(7818,1315)
	(7833,1307)(7849,1298)(7865,1289)
	(7881,1281)(7897,1272)(7912,1263)
	(7927,1255)(7941,1247)(7956,1239)
	(7969,1232)(7983,1224)(7997,1216)
	(8012,1208)(8027,1200)(8042,1192)
	(8058,1183)(8074,1174)(8091,1165)
	(8107,1156)(8122,1148)(8137,1140)
	(8152,1132)(8166,1124)(8180,1116)
	(8193,1109)(8207,1101)(8222,1093)
	(8237,1085)(8252,1076)(8268,1067)
	(8284,1059)(8300,1050)(8315,1041)
	(8330,1033)(8345,1025)(8359,1017)
	(8373,1009)(8387,1002)(8400,995)
	(8413,987)(8428,979)(8443,971)
	(8461,961)(8479,951)(8500,940)
	(8521,928)(8542,917)(8560,907)
	(8574,899)(8583,894)(8586,892)(8587,892)
\end{picture}
}
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