
IMPLEMENTING AND VERIFYING THE SAFETY OF THE
TRANSACTOR MODEL

By

Brian Boodman

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Major Subject: COMPUTER SCIENCE

Approved:

Carlos Varela, Thesis Adviser

Rensselaer Polytechnic Institute
Troy, New York

April 2008
(For Graduation May 2008)

CONTENTS

LIST OF TABLES . iii

LIST OF FIGURES . iv

ABSTRACT . vi

1. Background . 1

1.1 Overview . 1

1.1.1 Types of Failures . 1
1.1.1.1 Permanent Failures 1
1.1.1.2 Transient Failures . 1

1.1.2 Message Loss . 2

1.1.3 Globally Consistent State . 2

1.2 Transactor Model of Reliable Distributed Computing 3

1.2.1 Overview of the Transactor Model 3

1.2.2 Semantic Domains . 3
1.2.2.1 Histories . 3
1.2.2.2 Worldviews . 4
1.2.2.3 State . 5

1.2.3 Operational Semantics . 5
1.2.3.1 Receiving Messages 5
1.2.3.2 Transactor Configuration Transition Rules 6

1.2.4 The τ -Calculus . 7

1.2.5 Example Reference Cell Programs in the τ -calculus 8

1.3 Model Checking and Rewrite Systems with Maude 11

1.4 Proof Verification with Athena . 11

1.5 Programming Actor Systems with SALSA 12

1.6 Roadmap of the Thesis . 12

2. Executable Operational Semantics . 16

2.1 From τ -calculus to Maude Rewrite Systems 16

2.1.1 Lessons Learned . 21

ii

3. Towards Proving the Safety of the Transactor Model 24

3.1 The Safety Invariant and Proof . 24

3.1.1 An Example of Violating Safety 24

3.1.2 The Safety Invariant: High Level Description 25

3.1.3 The Safety Invariant: Formal Definition 27

3.1.4 The Safety Invariant: Proof . 28

3.1.5 Fixing Lack of Safety in the Transactor Model 29

3.2 Translating the Proof into a Machine-Checkable Athena Proof 30

3.2.1 The Safety Invariant (Athena) 30

3.2.2 Machine-Checkable Proof . 31

4. A High-Level Transactor Programming Language 38

4.1 Usage . 38

4.1.1 Commands . 39

4.1.2 Example Program . 39

4.2 Implementation . 41

4.2.1 Salsa Layer . 41

4.2.2 Java Layer . 41

4.3 Issues and Trade-offs . 44

5. Related Work . 46

5.1 Model Checking Transactional Memories 46

5.2 Verifying Invariants of Distributed Systems 46

5.3 Atomos: A Transactional Programming Model 47

5.4 Stabilizers: A Checkpointing Abstraction for Concurrent Functional Pro-
grams . 47

6. Discussion and Conclusions . 49

6.1 Future Work . 49

LITERATURE CITED . 49

APPENDICES

A. Symbol Table . 52

iii

LIST OF TABLES

2.1 Comparison of formal semantics of histories operations and Maude defini-
tions of history operations . 18

4.1 Commands used in transactor implementation 39

iv

LIST OF FIGURES

1.1 Cycle of the histories for a transactor. 4

1.2 Transition rules encoding basic actor semantics. 6

1.3 Transition rules for programmatic rollback and consistency management. . . 7

1.4 The dependence worldview union algorithm: (γ′, δ′, ρ′) = (γt, δt,) ⊕
(γm, δm, ρm) . 8

1.5 History transition rules . 9

1.6 Transition rules encoding basic transactor semantics. 9

1.7 The τ -calculus grammar . 10

1.8 Semantic domains. 10

1.9 Transition rules modeling spontaneous failures. 10

1.10 Defined forms. 13

1.11 An unreliable reference cell . 14

1.12 A persistent reference cell which assumes stable, independent clients 14

1.13 A persistent reliable reference cell . 15

2.1 Layout of the Maude implementation . 16

2.2 Transactor-config module: Maude code for setstate transitions 16

2.3 Basic-transactor module: Maude code for setstate redex 17

2.4 Message module: Maude code for transactor messages 17

2.5 Maude code for history representation. 18

2.6 A basic reference cell in Maude (auto-generated) 19

2.7 Maude message handler grammar . 20

2.8 Example results of sending a message to differing types of reference cells . . 22

3.1 A demonstration of failed safety on the POPL transactors paper [5]. 24

3.2 The safety invariant in Athena . 30

v

3.3 The safety invariant’s antecedent in Athena 30

3.4 The safety invariant’s consequent in Athena 31

3.5 Athena proof that removing a worldview does not violate the safety invariant. 33

3.6 Athena definition of knowledge of stability. 34

3.7 Athena definition of the safety invariant. 35

3.8 Athena definition of the Noop transition. 35

3.9 The immutable past lemma . 37

4.1 Coordination language diagram . 38

4.2 A simple transactor behavior in Java . 40

4.3 Salsa code for transactors . 42

4.4 Java code for transactors . 43

4.5 Java code for transactors(continued) . 44

4.6 A communication between a transactor behavior and the transactor system. . 45

vi

ABSTRACT

The transactor model is an extension of the actor model designed to tolerate failures in

distributed systems. Transactors can provide guarantees about consistency of a distributed

system’s state in the face of message loss and temporary failures of computing nodes. The

model introduces dependency information and a two-phase checkpointing protocol. The

added dependency information enables transactors to track the interdependencies caused

by communications between actors, making it possible to ensure that the state of the

distributed program as a whole remains globally consistent. This thesis discusses the use

of three tools in order to test and prove the safety of the transactor model. We used

Maude rewrite systems as a tool to test the model behavior and to discover problems with

the model. During this stage, we discovered a safety bug and proposed changes to fix

it. We then used the Athena proof verification system to show that the updated model is

safe. Finally, we used the Salsa actor programming language as a basis for a higher-level

transactor-based prototype programming language.

First, we developed a prototype implementation of the transactor model using

Maude. Maude’s underlying rewriting rules system is well-suited towards developing an

executable operational semantics for concurrent programming models. The implemen-

tation was used to test example programs and check the transactor model’s safety. This

prototype was in fact used to discover a safety error.

Subsequently, we wrote a formal proof in the Athena language. As a multi-sorted

first order logic system, Athena provides an effective means of representing the transactor

model’s correctness properties. Because Athena proofs are computer-checkable, they

are more reliable than traditional proofs. Further, Athena permits the use of automated

theorem proving, allowing us to skip tedious steps which would otherwise unnecessarily

complicate the proof’s readability.

Finally, we developed a coordination language using Salsa and Java. The language

provides a practical demonstration of the use of the transactor model and shows some of

the potential issues in creating an effective implementation of the model.

vii

1. Background

1.1 Overview
Distributed computing over the internet allows processing to take place where re-

sources, including memory, processing power, and data may not be available on a single,

local machine. There are many web services and grid systems which make use of dis-

tributed computing in order to leverage the resources and information available on sepa-

rate machines. It is useful to find some way of modeling such distributed systems in order

to create tools to make use of distributed systems. However, modeling such distributed

systems is not always sufficient as real systems may experience failures, resulting in them

being unable to complete their computations. Thus, it is also necessary to provide a model

which accounts for such failures. Using such a model makes it possible to formally ana-

lyze the behavior of systems built on such a model to ensure that they fulfill the important

requirement of being able to somehow recover from failures. A model makes it possible

to provide guarantees that such recoveries are possible within some set of constraints.

1.1.1 Types of Failures

1.1.1.1 Permanent Failures

Permanent failures are failures which result in data being lost forever. The most

intuitive form of permanent failure is an irrecoverable hardware failure such as a a failed

hard drive. However, distributed systems may also experience permanent failures if a

machine is removed from the distributed network and never put back into the network.

By definition, it is not possible to recover state information from machines which have

permanently failed. However, the use of redundancy can make it possible to recover from

permanent failures by loading the lost information from another machine.

1.1.1.2 Transient Failures

After a transient failure, data may be lost, but the machine which generated the data

can simply run the processes again, restoring the lost data. This is not possible after a

permanent failure because the machine will never run the processes again. Temporary

1

2

node failures occur when a particular machine on the distributed system fails. This could

be caused by a computer crash or may be triggered programmatically by the programmer.

Unlike with permanent failures, in a temporary node failure the failed machine will restart,

recovering the most recent backup. Machines which depended on the failed node will also

need to recover from previous backups.

1.1.2 Message Loss

Message losses may be caused by network errors or may be the result of a ma-

chine being disconnected from the network. Unless the machine which sent a message

experiences a transient or permanent failure, a machine can recover from message loss by

resending any lost messages.

1.1.3 Globally Consistent State

Of paramount importance in a distributed system is maintaining a globally consis-

tent state. A global state becomes inconsistent if a machine on the network experiences

a transient failure while some other machine which depends on it does not fail. In this

situation, the machine which did not experience a failure will contain state information

which is based on the assumption that the machine which provided it with related data

did not fail. For example, let us suppose some bank is using a distributed account system

with a machine for accounts for two people, Bob and George. If Bob sends a message

to George saying, “I have sent you 500 dollars” and then experiences a transient failure,

the system will no longer be consistent as George will have received the 500 dollars but

Bob will not have sent it. So, a globally consistent state is one in which none of the in-

terdependencies between machines results in inconsistencies between the states of these

machines. Note also that one can not only consider whether the entire distributed system

is safe but also can consider a subset of the machines on the system as being globally

consistent.

3

1.2 Transactor Model of Reliable Distributed Computing
1.2.1 Overview of the Transactor Model

The transactor model [5] is an extension of the Actor model [1]. The actor model is

a programming model for computing with distributed state. Actor primitives encapsulate

state information and run concurrently both internally and with other actors. Actors are

able to communicate with other actors via asynchronous message-passing (messages may

arrive in any order). Actors may spawn other actors and can migrate to different locations.

The transactor model makes specific guarantees about the global state of the sys-

tem. It is intended to ensure that the distributed system maintains a globally consistent

state in the face of transient failures and message losses. The model does not handle per-

manent failures. Message losses can never result in a globally inconsistent state, since a

machine will not be dependent upon another machine until after it receives the message

that machine sent. While at any given time the state of the distributed system may contain

machines which are not consistent with one another, the transactor model keeps track of

the interdependencies between these machines, ensuring that such machines will roll back

to a previous state if necessary in order to maintain consistency. Thus, the system will

move from globally consistent state to globally consistent state.

Further, the transactor model ensures that the distributed system will be safe. We

define safety as a guarantee that if there is an execution trace going from one global system

state to another, where both are globally consistent, then that the execution trace could be

simulated without the node failures. Because the solution with these failures could have

been reached without failures, users can treat transactors as though node failures do not

happen.

1.2.2 Semantic Domains

1.2.2.1 Histories

Transactors use a two-phase commit protocol. A transactor is either stable or

volatile. A transactor becomes stable via a local operation, and does not lose this sta-

tus unless it fails or checkpoints, at which point it becomes volatile again, as in Figure

1.1. A stable transactor cannot change its state and thus cannot gain new dependencies.

Further, it cannot fail unless a transactor it depends on is volatile. This is according to

4

Volatile Stable

fail, rollback

checkpoint, rollback

stabilize

Figure 1.1: Cycle of the histories for a transactor.

the model; in an implementation of the transactor model, a failure would be hidden as the

transactor would merely reload its state from a backup (which could be created when it

became stable). A stable transactor can checkpoint if every transactor it depends on is also

stable. A transactor history indicates if the transactor is volatile or stable and encodes the

sequence of checkpoints and rollbacks the transactor has gone through. Note that a trans-

actor can only checkpoint if the transactor and all of its direct and indirect dependencies

are stable.

1.2.2.2 Worldviews

The transactor model is a specialization of actors and inherits all the constructs from

the actor model, however, it explicitly represents state to enable fine-grained dependen-

cies. In addition, transactors and messages have an additional dependency component,

called a worldview. The worldview is a 3-tuple (γ, δ, ρ). It is composed of a history map

γ, dependence graph δ, and a root set ρ. The dependence graph is a directed graph of

dependencies and may be unconnected. The dependence graph stores only the transactor

names, but these names are associated with the histories stored in the history map compo-

nent. The root set is a set of transactor names which is also associated with the histories

stored in the history map component. A transactor’s root set can be interpreted as being

potential dependencies. Transactors are added to the root set when new messages are

received. If a transactor changes its volatile state in response to a received message, the

transactors within the root set will become actual dependencies and will be connected to

the transactor’s own name within its dependency graph. In this way, a transactor gains

new dependencies when it changes state in response to received messages.

5

An illustrative example is a stateless proxy transactor. Let us suppose some proxy

transactor TProxy handles received messages by sending out new messages, but has no

state. Because it would never set its own state, it would never gain any new dependencies.

Transactors receiving messages from the stateless transactor and then setting their state

would be dependent upon the proxy transactor, since a transactor always introduces itself

as a dependency when sending a message. However, such dependencies would never

prevent a transactor from checkpointing, since the proxy does not depend on anything

and has no state. Note that this assumes that when the proxy transactor is created, it is

initialized by becoming stable, which provides an explicit guarantee that it will not change

its state (and that it cannot roll back).

Note that the transactor model discussed in the POPL paper [5] did not make use of

worldviews as they are presented here. The previous model was updated to account for a

safety error as discussed in Chapter 3.

1.2.2.3 State

The dependence graph and history map are maintained between messages and are

used to track existing dependencies. As transactors retain this information between mes-

sages, a transactor may know about some dependencies of other transactors, even if it

does not itself depend on them. The root set, on the other hand, is used to introduce new

dependencies. Thus, a message’s root set would indicate which transactors the message

itself depends on. If a transactor performed a setstate operation after receiving a mes-

sage, these dependencies would be added as new dependencies. Because dependencies

are used to indicate that a transactor’s state depends on other transactors’ states, a transac-

tor will not add these new dependencies if it does not set its state. Further, it will remove

them upon receiving a new message.

1.2.3 Operational Semantics

1.2.3.1 Receiving Messages

Messages include the worldview of the transactor which sent the message. The

recipient of a message may roll back if the message’s worldview shows that something the

recipient depends on has rolled back. If this does not occur, then the transactor may reject

6

[pure] Evaluate pure redex.
e −→λ e

′ e ∈ ErdxP

µ ‖ θ[t 7→ 〈b, s√ ; R[e], s ; γ, δ, ρ〉] t−→
[pure]

µ ‖ θ[t 7→ 〈b, s√ ; R[e′], s ; γ, δ, ρ〉]

[new] Create new transactor.
µ ‖ θ[t 7→ 〈b, s√ ; R[trans b′ init s′ snart], s ; γ, δ, ρ〉]

t−→
[new]

µ ‖ θ[t 7→ 〈b, s√ ; R[t′], s ; γ′, δ ∪ δ′, ρ ∪ {t′}〉]

[t′ 7→ 〈b′, nil ; ready, s′ ; γ′, δ′ ∪ δ, ∅〉]

t′fresh
γ′ = γ[t′ 7→ H0]
δ′ = t′ ← (ρ ∪ {t})

[snd] Send message. Include transactor in message dependencies.
µ ‖ θ[t 7→ 〈b, s√ ; R[send vm to t′], s ; γ, δ, ρ〉]

t−→
[snd]

µ] {t′ ⇐ 〈vm ; γ, δ, ρ ∪ {t}〉} ‖ θ[t 7→ 〈b, s√ ; R[nil], s ; γ, δ, ρ〉]

[rcv1] Message dependences not invalidated by transactor, and viceversa: process message normally.
¬((γm ↓ ρm) o γ′) ¬(γ(t)# γ′(t))

(µ] {t⇐ 〈vm ; γm, δm, ρm〉}) ‖ θ[t 7→ 〈b, s√ ; ready, s ; γ, δ, 〉]
t−→

[rcv1]
µ ‖ θ[t 7→ 〈b, s√ ; (b vm), s ; γ′, δ′, ρ′〉]

(γ′, δ′, ρ′) = (γ, δ,)⊕ (γm, δm, ρm)

[get] Retrieve state.

µ ‖ θ[t 7→ 〈b, s√ ; R[getstate], s ; γ, δ, ρ〉] t−→
[get]

µ ‖ θ[t 7→ 〈b, s√ ; R[s], s ; γ, δ, ρ〉]

[set1] Transactor is volatile: setting state succeeds.
¬♦(γ(t))

µ ‖ θ[t 7→ 〈b, s√ ; R[setstate(s)], ; γ, δ, ρ〉] t−→
[set1]

µ ‖ θ[t 7→ 〈b, s√ ; R[true], s ; γ, δ ∪ (t← ρ), ρ〉]

[self] Yields reference to own name.

µ ‖ θ[t 7→ 〈b, s√ ; R[self], s ; γ, δ, ρ〉] t−→
[self]

µ ‖ θ[t 7→ 〈b, s√ ; R[t], s ; γ, δ, ρ〉]

Figure 1.2: Transition rules encoding basic actor semantics.

the message without rolling back if the worldview within the message and the worldview

of the transactor show that the message was generated by a transactor which has since

rolled back. Otherwise, the message will be accepted. In that case, the transactor will

update its worldview based on the message’s worldview.

1.2.3.2 Transactor Configuration Transition Rules

The operational semantics of the transactor model is defined as a labeled transi-

tion sytem between transactor configurations based on the actor model. The transition

rules inherited from the actor model are shown in Figure 1.2. The transitions introduced

in the transactor model are shown in Figures 1.6, 1.3, and 1.9, with the last modeling

spontaneous message loss and node failures.

7

[rol2] Transactor is volatile and persistent: rollback reverts state to contents of persistent state saved by last checkpoint.√
(γ(t)) ¬♦(γ(t)) γ(t)# h′

µ ‖ θ[t 7→ 〈b, s√ ; rollback, ; γ, , 〉] t−→
[rol2]

µ ‖ θ[t 7→ 〈b, s√ ; ready, s√ ; [t 7→ h′], ∅, ∅〉]

[rol3] Transactor is volatile and ephemeral: rollback causes transactor to be annihilated.
¬
√

(γ(t)) ¬♦(γ(t))

µ ‖ θ[t 7→ 〈 , ; rollback, ; γ, , 〉] t−→
[rol3]

µ ‖ (θ \ t)

[rcv2] Message dependences invalidated by those of transactor but not vice-versa: discard message.
((γm ↓ ρm) o γ′) ¬(γ(t)# γ′(t))

(µ] {t⇐ 〈 ; γm, δm, ρm〉}) ‖ θ[t 7→ 〈b, s√ ; ready, s ; γ, δ, 〉]
t−→

[rcv2]
µ ‖ θ[t 7→ 〈b, s√ ; ready, s ; γ′, δ′, ∅〉]

(γ′, δ′,) = (γ, δ,)⊕ (γm, δm, ρm)

[rcv3] Transactor dependences invalidated by message and transactor is persistent: transactor rolls back, message remains.
γ(t)# γ′(t)

√
(γ(t))

(µ] {t⇐ 〈vm ; γm, δm, ρm〉}) ‖ θ[t 7→ 〈b, s√ ; ready, ; γ, δ, 〉]
t−→

[rcv3]
(µ] {t⇐ 〈vm ; γm, δm, ρm〉}) ‖ θ[t 7→ 〈b, s√ ; ready, s√ ; [t 7→ γ′(t)], ∅, ∅〉]

(γ′, ,) = (γ, δ,)⊕ (γm, δm, ρm)

[rcv4] Transactor dependences invalidated by message and transactor is ephemeral: transactor is annihilated.
γ(t)# γ′(t) ¬

√
(γ(t))

(µ] {t⇐ 〈 ; γm, δm, ρm〉}) ‖ θ[t 7→ 〈 , ; ready, ; γ, δ, 〉] t−→
[rcv4]

µ ‖ (θ \ t)

(γ′, ,) = (γ, δ,)⊕ (γm, δm, ρm)

Figure 1.3: Transition rules for programmatic rollback and consistency manage-
ment.

1.2.4 The τ -Calculus

The τ -calculus shown in Figure 1.7 is used in order to represent the persistent be-

havior of individual transactors. A transactor’s persistent behavior is a list of message

handlers used in order to respond to individual messages. Syntactic sugar is introduced in

Figure 1.10.

The msgcase construct yields a lambda abstraction whose body processes incom-

ing messages. Messages are assumed to take the form of a vector of parameters, the

first of which is an atom that constitutes a message name. The msgcase body tests the

value of the incoming message and processes the other message arguments appropriately;

messages that are not understood are ignored.

The declstate construct declares names for a transactor’s state, which is presumed

to consist of a vector of elements. This construct does not “expand” into a core τ -calculus

expression, instead, it simply defines a static name scope for subsequent references of the

8

Input: (γt, δt,), (γm, δm, ρm)
Output: (γ′, δ′, ρ′)

Step 1: let G = (V,E), where
V = {〈t, h〉 | γt(t) = h ∨ γm(t) = h}
E = {〈t1, h1〉 ← 〈t2, h2〉 | (t1 ← t2 ∈ δt ∧ γt(t1) = h1 ∧ γt(t2) = h2)

∨(t1 ← t2 ∈ δm∧ γm(t1) = h1 ∧ γm(t2) = h2)}

Step 2: while ∃〈t, h1〉, 〈t, h2〉 ∈ V , s.t., h1 < h2 do
if h1 →♦ h2 then
E = E ∪ {〈t, h2〉 ← 〈t′, h′〉|〈t, h1〉 ← 〈t′, h′〉 ∈ E}

∪ {〈t′, h′〉 ← 〈t, h2〉|〈t′, h′〉 ← 〈t, h1〉 ∈ E}
else if h1 o h2 then

∀t′|〈t′, h′〉 ← 〈t, h1〉 ∈ E, do
V = V ∪ {〈t′, h′′〉}, where h′ # h′′.

else if h1 a h2 then
∀t′|〈t, h1〉�E 〈t′, h′〉, do

V = V ∪ {〈t′, h′′〉}, where h′ →♦ h′′.
V = V − {〈t, h1〉}
E = E − {〈t, h1〉 ← } − { ← 〈t, h1〉}

Step 3: let (γ′, δ′, ρ′) be defined as
γ′(t) = h iff ∃〈t, h〉 ∈ V .
t1 ← t2 ∈ δ′ iff 〈t1, 〉 ← 〈t2, 〉 ∈ E.
ρ′ = ρm − {t | γm(t) a γ′(t)}

Figure 1.4: The dependence worldview union algorithm: (γ′, δ′, ρ′) = (γt, δt,) ⊕
(γm, δm, ρm)

form !u and u := e, which expand into appropriate operations on the transactor’s state

vector.

1.2.5 Example Reference Cell Programs in the τ -calculus

Figure 1.11, Figure 1.12, and Figure 1.13 shows three examples of a reference cell

in the τ -calculus. A reference cell is a simple data container which holds a value. It

accepts two types of messages, set(val) and get(customer), which are used to

set and get the contents of the reference cell, respectively. Figure 1.11 shows an unreliable

reference cell. This equivalent to a reference cell written using actors and does not handle

9

; , (# ∪ →♦ ∪ →√) (“is succeeded by”)
o , [→♦]·# ·;∗ (“is invalidated by”)
a , [→♦]· →√ ·;∗ (“is validated by”)

Figure 1.5: History transition rules

[set2] Transactor is stable: attempt to set state fails.
♦(γ(t))

µ ‖ θ[t 7→ 〈b, s√ ; R[setstate()], s ; γ, δ, ρ〉] t−→
[set2]

µ ‖ θ[t 7→ 〈b, s√ ; R[false], s ; γ, δ, ρ〉]

[sta1] Transactor is volatile: stabilization causes it to become stable.
γ(t)→♦ h′

µ ‖ θ[t 7→ 〈b, s√ ; R[stabilize], s ; γ, δ, ρ〉] t−→
[sta1]

µ ‖ θ[t 7→ 〈b, s√ ; R[nil], s ; γ[t 7→ h′], δ, ρ〉]

[sta2] Transactor currently stable: stabilize is a no-op.
♦(γ(t))

µ ‖ θ[t 7→ 〈b, s√ ; R[stabilize], s ; γ, δ, ρ〉] t−→
[sta2]

µ ‖ θ[t 7→ 〈b, s√ ; R[nil], s ; γ, δ, ρ〉]

[chk1] Transactor is independent: checkpoint succeeds.
♦(t, γ, δ) γ(t)→√ h′

µ ‖ θ[t 7→ 〈b, ; checkpoint, s ; γ, δ, 〉] t−→
[chk1]

µ ‖ θ[t 7→ 〈b, s ; ready, s ; [t 7→ h′], ∅, ∅〉]

[chk2] Transactor is dependent or volatile: checkpoint simply behaves like ready.
¬♦(t, γ, δ)

µ ‖ θ[t 7→ 〈b, s√ ; checkpoint, s ; γ, δ, 〉] t−→
[chk2]

µ ‖ θ[t 7→ 〈b, s√ ; ready, s ; γ, δ, ∅〉]

[rol1] Transactor is stable: rollback simply behaves like ready.
♦(γ(t))

µ ‖ θ[t 7→ 〈b, s√ ; rollback, s ; γ, δ, 〉] t−→
[rol1]

µ ‖ θ[t 7→ 〈b, s√ ; ready, s ; γ, δ, ∅〉]

[dep1] Transactor is weakly independent: yields false.
♦̃(t, γ, δ)

µ ‖ θ[t 7→ 〈b, s√ ; R[dependent?], s ; γ, δ, ρ〉] t−→
[dep1]

µ ‖ θ[t 7→ 〈b, s√ ; R[false], s ; γ, δ, ρ〉]

[dep2] Transactor is dependent: yields true.
¬♦̃(t, γ, δ)

µ ‖ θ[t 7→ 〈b, s√ ; R[dependent?], s ; γ, δ, ρ〉] t−→
[dep1]

µ ‖ θ[t 7→ 〈b, s√ ; R[true], s ; γ, δ, ρ〉]

[lose] Message loss.
(µ] {m}) ‖ θ m−→

[lose]
µ ‖ θ

Figure 1.6: Transition rules encoding basic transactor semantics.

10

A = {true, false, nil, . . .} Atoms
N = {0, 1, 2, . . .} Natural numbers
T = {t1, t2, t3, . . .} Transactor names
X = {x1, x2, x3, . . .} Variable names
F = {=,+, . . .} Primitive operators
V ::= Values

A | N | T | X
| λX . E Lambda abstraction
| 〈V,V〉 Pair constructor

EP ::= Pure expressions
V

| (E E) Lambda application
| fst(E) First element of pair
| snd(E) Second element of pair
| if E then E else E fi Conditional
| letrec X = E in E ni Recursive definition
| F(E, . . . , E) Primitive operator

EA ::= Traditional actor constructs
EP

| trans E init E snart New transactor
| send E to E Message send
| ready Ready to receive message
| self Reference to own name
| setstate(E) Set transactor state
| getstate Retrieve transactor state

E ::= Transactor expressions
EA

| checkpoint Make failure-resilient
| rollback Revert to prev. checkpt.
| stabilize Prevent state changes
| dependent? Test dependence

Figure 1.7: The τ -calculus grammar

W ::= V(N) | S(N) Volatility value
Y ::= 〈W, [N]〉 Transactor history

H = T f→ Y History map
D ::= T ← T Dependency
G = {D} Dependence graph
R = {T } Root set
S ::= 〈V,V ; E,V ; H,G,R〉 Transactor
M ::= T ⇐ 〈V ; H,G,R〉 Message

Θ = T f→ S Name service
Ω = {{M}} Network
K ::= Ω ‖ Θ Transactor configuration

Figure 1.8: Semantic domains.

[fl1] Spontaneous failure of volatile, persistent transactor causes rollback.√
(h) ¬♦(h) h# h′

µ ‖ θ[t 7→ 〈b, s√ ; , ; δ[t 7→ h], δc, ρ〉]
t−→

[fl1]
µ ‖ θ[t 7→ 〈b, s√ ; ready, s√ ; [t 7→ 〈h′, 〉], ∅, ∅〉]

[fl2] Spontaneous failure of volatile, ephemeral transactor causes it to be annihilated.
¬
√

(h) ¬♦(h)

µ ‖ θ[t 7→ 〈 , nil ; , ; δ[t 7→ h], , 〉] t−→
[fl2]

µ ‖ θ

Figure 1.9: Transition rules modeling spontaneous failures.

11

failures. The persistent reference cell shown in Figure 1.12 is assumed to be handling

stable, independent clients. It will stop being able to make progress if a dependent client

sets its state, until it is informed that the client has become independent or has rolled back.

Figure 1.13 shows a persistent reliable reference cell. It rolls back any time it receives a

message from a transactor which is not stable and independent, thus never changing state

in response to such messages.

1.3 Model Checking and Rewrite Systems with Maude
Maude [8] is a language which provides support for rewriting systems. The Maude

language is used to create an executable implementation of the transactor semantics. The

Maude language is an effective way to produce simple prototypes of the transactor model.

Because of the way Maude’s rewrite system works, transactor programs running under

the Maude transactor implementation display all information, making it easy to examine

exactly what the model is doing and to ensure that it is behaving as expected. Prototypes

written in the Maude language were used to discover and illustrate safety bugs in previous

versions of the model.

1.4 Proof Verification with Athena
Athena [3] is a multi-sorted first-order logic proof system which supports Fitch

style natural deductions. This style of deduction is similar to the way people reason

naturally (as opposed to sequent-oriented proof systems), making Athena proofs easier to

read and write by those familiar with informal computer science proofs such as those that

were initially used in the transactors POPL paper [5]. Support for multiple sorts makes

Athena well-suited towards representing the semantic domains of transactors. Athena

supports not only checking proofs but also supports automated theorem proving, useful

in automating simple steps within a proof, thereby making such proofs far easier to read

by avoiding tedious steps.

Athena is used to provide a more formal proof of the safety invariant. Because

Athena proofs are computer-readable, it is not possible to inadvertently skip steps within

a proof. This ensures that proofs do not contain underlying assumptions, something which

was an issue in previous versions of safety proofs of the transactor model. As a result,

12

such proofs provide more confidence than proofs written without Athena.

1.5 Programming Actor Systems with SALSA
The Salsa language [9] is built on top of Java and is written as an implementation

of the actor model. Using Salsa as part of an implementation of transactors removes

the need to re-implement the actor model, making it possible to produce a transactor

language by coding only the new features of transactors, i.e. the dependency tracking and

checkpointing systems. Further, because the Salsa language compiles to Java, integrating

Salsa and Java code is very easy. Since keeping track of dependency information is done

using sequential code, that part of the transactor language is implemented in Java rather

than Salsa.

1.6 Roadmap of the Thesis
In Chapter 2, we introduce the Maude rewrite system. We discuss Maude’s role

as a tool for developing an implementation of the transactor model and Maude’s role in

discovering a bug in the safety of the transactor model as defined in the POPL paper [5].

In Chapter 3, we show the use of the Athena proof language in formalizing a proof

that the updated transactor model presented in this chapter follows the safety invariant.

In Chapter 4, we discuss the use of Salsa and Java to develop a higher-level trans-

actor programming language.

Finally, we conclude in Chapters 5 and 6 highlighting related work and describing

potential future directions.

13

[vec1] 〈e1, . . . , en〉 , 〈e1, 〈. . . , 〈en, nil〉〉 . . .〉, n > 0

[vec2] 〈〉 , nil

[vec3] ~x , 〈x1, . . . , xn〉 for some n ≥ 0

[seq] e1; e2 , ((λx. e2) e1), x /∈ fv(e2)

[if1] if e1 then e2 fi , if e1 then e2 else nil fi

[let1] let x = e1 in e2 ni , ((λx. e2) e1)
[let2] let 〈x1, . . . , xn〉 = e1 in

e2
ni

, let x1 = fst(e1) in
. . .

let xn = fst(snd(. . . snd(e1) . . .)) in
e2

ni
. . .

ni
[vabs] λ~x. e

, λx′. let ~x = x′ in e ni, x′ /∈ fv(e)

[msg1] msg ~x , 〈msg, ~x〉
[msg2] msgcase

msg1 ~x1 ⇒ e1
| . . .
| msgn ~xn ⇒ en
esac

, λ〈m, z′〉. (
if m = msg1 then

let ~x1 = z′ in e1 ni
else
. . .
if m = msgn then

let ~xn = z′ in en ni
else

ready
fi
. . .

fi;
ready)

[sta1] declstate 〈u1, . . . , un〉 in e etats

, declaration of names for n elements of state
[sta2] !ui

, let 〈x1, . . . , xi, ~z〉 = getstate in xi ni
ui is the ith name declared in the closest
statically-enclosing declstate scope, of length n, n ≥ i > 0

[sta3] ui := e

, setstate(〈!u1, . . . , !ui−1, e, !ui+1, . . . , !un〉)
where ui is the ith name declared in the closest
statically-enclosing declstate scope, of length n, n ≥ i > 0

Figure 1.10: Defined forms.

14

let cell = trans
declstate 〈contents〉 in

msgcase
set〈val〉 =>

contents := val
| get〈customer〉 =>

(send data〈!contents〉 to customer)
esac

etats
init
〈0〉

snart

Figure 1.11: An unreliable reference cell

let pcell1 = trans
declstate 〈contents〉 in

msgcase
initialize〈〉 ⇒

stabilize;
checkpoint

| set〈val〉 ⇒
contents := val ;
stabilize;
checkpoint

| get〈customer〉 ⇒
stabilize;
(send data〈!contents〉

to customer);
checkpoint

esac
etats

init
〈0〉

snart

Figure 1.12: A persistent reference cell which assumes stable, independent clients

15

let pcell2 = trans
declstate 〈contents〉 in

msgcase
initialize〈〉 ⇒

stabilize;
checkpoint

| set〈val〉 ⇒
contents := val ;
if dependent? then

rollback
else

stabilize;
checkpoint

fi
| get〈customer〉 ⇒

stabilize;
(send data〈!contents〉

to customer);
checkpoint

esac
etats

init
〈0〉

snart

Figure 1.13: A persistent reliable reference cell

2. Executable Operational Semantics

2.1 From τ -calculus to Maude Rewrite Systems

IOTRANSACTOR-CONFIG – Extends the transactors to support simple I/O for debugging and testing.

TRANSACTOR-CONFIG – Representation of the transactor 7-tuple. Encodes all transition rules excepting
pure reductions.

BASIC-TRANSACTOR – Encodes representation of transactor pure redex operations. Does not have
access to the transactor 7-tuple.

DEPENDENCE-MAP – Encodes
operations on worldviews for use
when receiving messages.

DEPENDENCE-GRAPH –
Representation of dependence
graph and history map.

DEPENDENCE-EDGE

NSERVICE – Naming
Service. Generates names
for new transactors.

MESSAGE – Representation
of a message.

DEPENDENCE-MAP

Figure 2.1: Layout of the Maude implementation

Rewriting logic is particularly effective at representing concurrent changes and thus

works well in representing models of distributed computing. Further, Maude’s power as

a logical language makes it effective at representing semantic domains through the use

of sorts and logical functions. So, Maude is well-suited towards representing transac-

tors. For example, consider the differences between the formal definition of relations on

*** Transactor is volatile: setting state succeeds.
crl[set1] : Universe(SetM |NS , t |− > Transactor(b,P1 ; R1 [setstate(S2)], S1 ; (lk1 , t |− > h), ds1 , db1)) =>
Universe(SetM |NS , t |− > Transactor(b,P1 ; R1 [eval(b, true)], S2 ; (lk1 , t |− > h), (ds1 , rootlink(t , db1)), db1))
if isVolatile(h) .

*** Transactor is stable: setting state fails.
crl[set2] : Universe(SetM |NS , t |− > Transactor(b,P1 ; R1 [setstate(S2)], S1 ; (lk1 , t |− > h), ds1 , db1)) =>

Universe(SetM |NS , t |− > Transactor(b,P1 ; R1 [eval(b, false)], S1 ; (lk1 , t |− > h), ds1 , db1))
if isStable(h).

Figure 2.2: Transactor-config module: Maude code for setstate transitions

16

17

op setstate() : TState− > Redex [ctor format(ys os d d d)].
op setstate() : Redex− > Redex [ctor].
op didset : − > Handler [ctor].
op setstate(R) = drawstate(R, didset).
op eval(T , draw(didset , I)) = setstate(declstate(T2 I)).

Figure 2.3: Basic-transactor module: Maude code for setstate redex

pr DEPENDENCE−MAP.
pr QID.
sorts Message Data.
var T : Qid.
var M : DMap.
var D : Data.
op M : Nat− > Data [ctor].
op < − < ; , , >: Qid Data DMap DGraph Set{Qid}− > Message [ctor].

Figure 2.4: Message module: Maude code for transactor messages

histories and the Maude definition of relations on histories shown on Table 2.1. There

are only minor differences between the representations of the histories, such as using sN

(successor of N) rather than N + 1.

The Maude implementation uses multiple modules to represent the different com-

ponents of the transactor model. Figure 2.1 shows a diagram of how these modules

are organized. At the highest level is the representation of the transactor configu-

rations themselves. The TRANSACTOR-CONFIG module encodes the program as a

whole. By design, the pure redex operations are encoded in a separate module, which

the TRANSACTOR-CONFIG modules makes use of. For example, consider the the

setstate command in Figure 2.2 and Figure 2.3. Whereas TRANSACTOR-CONFIG

encodes the transition rules for the setstate command, BASIC-TRANSACTOR en-

codes the redex itself. This redex is used within the code for the transition rules. Because

the BASIC-TRANSACTOR module, is separate, it is not possible for standard redexes to

access the transactor configuration. In the same way, a programming language realization

of the transactor model would not enable access to the transactor configurations, since

these are handled by the language itself. Contained within the BASIC-TRANSACTOR

module is a module for representing worldviews (DEPENDENCE-MAP), a module for

representing the naming service(NSERVICE), and a module for representing mes-

18

Relation History Operations (Semantics) History Operations (Maude)
(“rolls back to”) 〈V(n), lh〉 # 〈V(n+ 1), lh〉 < v(N), L > => < v(sN), L >
(“rolls back to”) 〈S(n), lh〉 # 〈V(n+ 1), lh〉 < s(N), L > => < v(sN), L >
(“stabilizes to”) 〈V(n), lh〉 →♦ 〈S(n), lh〉 < v(N), L > => < s(N), L >
(“checkpoints to”) 〈S(n), lh〉 →√ 〈V(0), n :: lh〉 < s(N), L > => < v(0), N.L >

Table 2.1: Comparison of formal semantics of histories operations and Maude defi-
nitions of history operations

fmod DEPENDENCE − INFO is
pr NAT .
pr NAT − LIST .

sort DepInfo.

op < v(), >: Nat NatList− > DepInfo.
op < s(), >: Nat NatList− > DepInfo.

Figure 2.5: Maude code for history representation.

sages(MESSAGE). The code for the messages is shown in 2.4. Since messages contain

worldviews, the latter module is also composed of the DEPENDENCE-MAP module. Fi-

nally, the IOTRANSACTOR-CONFIG module is a wrapper which adds input and output

functionality.

Differences between the Maude implementation of the model and the formal def-

inition of the model are hidden through the use of Lex/Yacc, which are used to convert

persistent behaviors (i.e., programs) into the format understood by Maude. For example,

compare Figure 2.6 to Figure 1.11. The Maude representation makes use of a functional

module to represent the behavior. Individual message handlers are defined through the use

of equations for each type of message. Of special note is that the Maude implementation

treats each individual message handler as a separate equation with the behavior name as

an argument, as opposed to the model which treats the behavior as having a set of message

cases. This is done for implementation reasons, but can also be used to model behaviors

which share some methods through inheritance (e.g., if a particular message handler is a

specialization of another). Finally, the Maude implementation provides a TRcell opera-

tion which can be used to generate a transactor which has the behavior defined within the

module. Note that in Figure 2.6, the TRcell(Q1,true) function is not really useable

as no default ’initialize message handler is defined. Otherwise, it would be useful

as a way to create a transactor instance that would be initialized as though it had just

19

fmod TRcell is
pr BASIC − TRANSACTOR .
pr INT .
op contents : − > Int .
eq contents = 0 .

eq ready [eval(′cell,msg(′set.val))] =
(V contents := (val)).

eq ready [eval(′cell,msg(′get.customer))] =
(send msg(′data.(!V contents)) to customer).

var val : Impure .
var customer : Impure .
var Q1 : Qid .

op TRcell(,) : Qid Bool − > NSEntry .
eq TRcell(Q1 , false) = Q1 |− >

Transactor(
′cell,nill;
ready,declstate(T2 0)
Q1 |− > h0 @ Empty,Gempty,Gempty).

eq TRcell(Q1 , true) = Q1 |− >
Transactor(
′cell,nill;
ready[eval(′cell,msg(′initialize))],declstate(T2 0)
Q1 |− > h0 @ Empty,Gempty,Gempty).

endfm

Figure 2.6: A basic reference cell in Maude (auto-generated)

received an ’initialize message 1.

One can easily look at the Maude code in sections. In the first section, modules

for making use of transactors and integers are loaded. This allows the TRcell module

to make use of transactors and integer semantics. Immediately below this, a contents

function is defined. In the τ -calculus, state is defined as a vector of elements2. The

program assigns a number to each element of the vector, starting with 0. This enables

code within the behavior to access the transactor state (i.e., the contents of the reference

cell) using the contents, rather than using the number 0. Internally there is no actual

contents variable; the state is a vector with no named elements. So, this representation

could also be considered syntactic sugar, but it is used to make the generated code easier

to read rather than to make code easier to write; the original code written by the user

1A ’ mark is used in Maude to indicate quoted identifiers, which are similar to character strings.
2The state variable is actually syntactic sugar for a lambda expression.

20

M = eq ready[eval(A,msg(L))] = E Message Handler
L = A | V.L List of Values

Figure 2.7: Maude message handler grammar

makes use of variable names, which the generated code could have discarded.

The next section of the code represents the actual message handlers. Each type of

message has an individual handler using the syntax described in Figure 2.7 to define the

message handler function prototype and Figure 1.7 to define the message handler function

itself.

In the case of the reference cell example in Figure 2.6, there are two message han-

dlers, one being used for set messages and one being used for get messages. Unlike

the semantics defined in the τ -calculus, this representation has the side effect that name

collisions can occur between same-named behaviors; it is the responsibility of the user to

give individual behaviors different names.

The final section of the code contains a special operator for generating transactor

instances from transactor behaviors. Two versions of the operator are generated, one

being for uninitialized transactors and the other being used for initialized transactors.

The Q1 argument is used as the name for the transactor instances. As the behavior code

indicates that reference cells are initialized to zero, the initial state of the transactors

is declstate(T2 0) in both cases. T2 is prefixed before all elements of the state

vector (e.g., declstate(T2 1 T2 3)) and acts as a wrapper to enable users to define

arbitrary types of state data.

The Maude implementation can be used to test transactor behaviors. Let us consider

the differences between three types of reference cells: The standard reference cell, the

persistent reference cell, and the persistent reliable reference cell. The reliable reference

cell behaves similarly to the traditional reference cell, but maintains a promise not to

rollback by stabilizing and checkpointing after processing each set message. Further,

it stabilizes before responding to get messages and checkpoints afterwards, ensuring

that transactors which send requests to the cell will not gain any new dependencies which

could potentially rollback. However, it becomes unusable if it receives a message with any

new dependencies as this compromises its ability to checkpoint. The persistent, reliable

21

reference cell rejects such messages by rolling back upon receiving them.

Consider the differences in behavior of the three reference cells upon receiving set

messages which include or do not include volatile dependencies. The standard reference

cell will set its state in response to either message, but will not checkpoint (i.e. a message

with volatile dependencies, as shown in the 3rd item in Figure 2.8). Because the standard

reference cell does not checkpoint, any transactors which send it get messages in the

future will lose the ability to checkpoint if the responses are used to alter state. Thus,

a failure of such a reference cell will result in a failure of any transactors which depend

on it. The persistent reference cell also accepts either type of message. However, mes-

sages which introduce new dependencies will freeze the state of the transactor until these

dependencies become independent or rollback. Further, transactors requesting state in-

formation will gain these new dependencies. The persistent, reliable reference cell rejects

messages with new dependencies.

Figure 2.8 illustrates the results of sending such messages, and is copied from the

output of the Maude program (but written in the transactors semantics to promote read-

ability). Note that the starred persistent, reliable reference cells start out with a persistent

state and a checkpointed history; this is necessary to prevent it from being annihilated if

it receives a message which causes it to roll back. In the first two examples, the volatile

state of the transactor changes and new dependencies are introduced, but the third exam-

ple, which is a reliable reference cell, rejects the message by rolling back. The fourth

example behaves the same as the first: it accepts the message and sets it state, but does

not checkpoint. Both the fifth and sixth examples checkpoint upon receiving the message.

2.1.1 Lessons Learned

We were not able to use the Maude implementation of the operational semantics

for model checking. Because any transactor configuration within an execution trace can

experience spontaneous failures (i.e., node failures and message loss) at any time, in-

cluding consecutively, the branching factor of the execution trace made model-checking

impossible with spontaneous node failures as part of the model. Thus, it was not possible

to perform model-checking on the complete model. One solution to this problem would

be to use PMaude [2] in order to probabilistically execute the model, rather than exhaus-

22

Reference Cell receiving a message with volatile dependencies:
Message: 1⇐ 〈set(11) ; 2

f→ 〈V(0), ∅〉, ∅, 2〉
Transactor: 1

f→ 〈Cell, ∅ ; ready, 2 ; [1
f→ 〈V(0), ∅〉], ∅, ∅〉

⇒
Result: 1

f→ 〈Cell, ∅ ; ready, 11 ; [1
f→ 〈V(0), ∅〉, 2 f→ 〈V(0), ∅〉], [1← 2], [1, 2]〉

Persistent Reference Cell receiving a message with volatile dependencies:
Message: 1⇐ 〈set(11) ; 2

f→ 〈V(0), ∅〉, ∅, 2〉
Transactor: 1

f→ 〈PCell, ∅ ; ready, 2 ; [1
f→ 〈V(0), ∅〉], ∅, ∅〉

⇒
Result: 1

f→ 〈PCell, ∅ ; ready, 11 ; [1
f→ 〈V(0), ∅〉, 2 f→ 〈V(0), ∅〉], [1← 2], ∅〉

Persistent Reliable Reference Cell receiving a message with volatile dependen-
cies:
Message: 1⇐ 〈set(11) ; 2

f→ 〈V(0), ∅〉, ∅, 2〉
*Transactor: 1

f→ 〈PRCell, 3 ; ready, 3 ; [1
f→ 〈V(0), 0〉], ∅, ∅〉

⇒
Result: 1

f→ 〈PRCell, 3 ; ready, 3 ; [1
f→ 〈V(1), 0〉], ∅], ∅〉

Reference Cell receiving a message with stable dependencies:
Message: 1⇐ 〈set(11) ; 2

f→ 〈S(0), ∅〉, ∅, 2〉
Transactor: 1

f→ 〈Cell, ∅ ; ready, 2 ; [1
f→ 〈V(0), ∅〉], ∅, ∅〉

⇒
Result: 1

f→ 〈Cell, ∅ ; ready, 11 ; [1
f→ 〈V(0), ∅〉, 2 f→ 〈S(0), ∅〉], [1← 2], [1, 2]〉

Persistent Reference Cell receiving a message with stable dependencies:
Message: 1⇐ 〈set(11) ; 2

f→ 〈S(0), ∅〉, ∅, 2〉
Transactor: 1

f→ 〈PCell, ∅ ; ready, 2 ; [1
f→ 〈V(0), ∅〉], ∅, ∅〉

⇒
Result: 1

f→ 〈PCell, 11 ; ready, 11 ; [1
f→ 〈V(0), 0〉], ∅, ∅〉

Persistent Reliable Reference Cell receiving a message with stable dependencies:
Message: 1⇐ 〈set(11) ; 2

f→ 〈S(0), ∅〉, ∅, 2〉
*Transactor: 1

f→ 〈PRCell, 3 ; ready, 3 ; [1
f→ 〈V(0), 0〉], ∅, ∅〉

⇒
Result: 1

f→ 〈PRCell, 11 ; ready, 11 ; [1
f→ 〈V(0), 0〉], ∅], ∅〉

Figure 2.8: Example results of sending a message to differing types of reference cells

23

tively testing every branch using standard Maude. The Maude implementation did act as

an effective simulation of the transactor model, allowing execution traces for programs to

be examined by hand to see what the model is doing. In the course of examining these ex-

ecution traces for correctness, the execution trace shown in Section 3.1.1 was discovered,

thus showing that the model contained a safety error.

3. Towards Proving the Safety of the Transactor Model

3.1 The Safety Invariant and Proof
In this section we discuss the safety invariant. We first show that the POPL 2005

version of the transactor model [5] is not safe. The updated version is shown in Section

1.2. We first show an example execution trace for the POPL 2005 model which fails to

maintain safety. In the next section, we discuss what constitutes a safe execution trace.

We then define the safety invariant and show that it is necessary for the safety invariant to

be an actual invariant for the safety property to hold.

3.1.1 An Example of Violating Safety

T
1

T
2

T
3

Q

getstate

setstate

(T
1
 depends on T

2
)

getstate

setstate

stabilize

(T
2
 depends on T

3
, is

stable)

Enters ready
state

(T
1
 depends on T

2,

T
1
 knows T

2
 is

stable)

stabilize
checkpoint

Rolls back due to
message

rollback

Figure 3.1: A demonstration of failed safety on the POPL transactors paper [5].

Figure 3.1 shows a simple example of communications between three transactors

T1, T2, and T3. Take note that the POPL version of the transactor model [5] did not

track indirect dependencies. Instead, each transactor tracked only its direct dependencies.

In the case that a transactor is permanent, messages it sends contain only its behavioral

dependencies (analogous to the root set described in Section 1.2.2.2) and its own history.

Initially, T2 sends a message to T1, causing T1 to set its state and become dependent on

24

25

T2. T2 receives a message from T3 and sets its state, making it dependent on T3. T2 also

stabilizes. Next, T2 sends a message to Q, which ignores the message. However, Q now

knows that T2 is stable. When Q sends a message to T1, T1 learns that T2 is stable but

does not learn about T2’s dependencies. It is important to note that this is a violation of

the safety invariant. Thus, T1 will be able to stabilize and checkpoint. However, T2 may

roll back in the future, as it is dependent on T3 which may programmatically rollback or

fail. In this case, the sequence of operations in Figure 3.1 could not be simulated without

rollbacks, because T1 now has a state which depends upon T2 having sent it a message.

This in turn depends upon the state of T2 when that message was sent. However, T3 rolled

back (as did T2), so T2 has a state that would not have caused T2 to send a message to T1

whereas T1 has a state which depends upon T2 having sent T1 a message. Note that this

error was discovered by examining the results of simulated transactor programs under the

Maude implementation of transactors.

3.1.2 The Safety Invariant: High Level Description

We define the transactor model as safe if it is possible to simulate an execution trace

without including node failures. For example, suppose we had a transactor configuration

k containing two transactors T1 and T2, both of which had just checkpointed. Thus, T1

and T2 are both volatile, have no dependencies, and have persistent states equal to their

volatile states. Now, suppose T1 applies a get state operation, then sends a message to

T2, which then sets its state as part of handling the message. Then, T1 rolls back, and T2

eventually rolled back as well (as it depends on T1). Let us call this new configuration k′.

This could be simulated by starting at k, but not sending the message. So, configuration

k′ is reachable without having failures. This property is important because it means that

transactor failures are transparent to the programmer.

For illustrative purposes, we show an example of an execution trace that may exist

which would violate safety, similar to the example in Figure 3.1. As with the previous

example, we start with two just checkpointed transactors T1 and T2 in some configuration

C. Both initially have state “0.” T1 receives a message from some volatile transactor T3,

then sets its state to “T3-INFO” in response. T1 gets its state and sends a message to T2

with contents, “set your state to T3-INFO.” Upon receiving this message, T2 stabilizes and

26

checkpoints, but T1 rolls back. At this point, T1 has state “0” but T2 has state “T3-INFO.”

We cannot simulate this without failures, because T2 setting its state to “T3-INFO” re-

quires T1 to get its state and then send a message with this data, which is only possible

if its state is actually “T3-INFO.” Thus, a failure-free execution trace is not possible in

this case because the state of T1 and T2 are inconsistent, due to T2 checkpointing when

dependent upon a transactor which rolled back. We can say that this specific example is

not possible if we guarantee that no transactor will checkpoint if it depends (directly or

transitively) upon a transactor which may potentially rollback.

The safety of the transactor model can be shown to be true by construction. A fail-

ure causes a transactor’s state to roll back to the last time it checkpointed, so we construct

a failure free trace by removing all transitions between transactor configurations which

occurred between a checkpoint and a rollback. A transition which involves sending a

message must be treated as a special case, because after such a transition is removed, the

state of the direct or indirect recipients of that message may have changed. So, construc-

tion of a failure free trace will fail unless the recipients of such a message also roll back,

thus removing the transitions which were caused by the altered state of these transactors.

We focus on proving that such recipients cannot checkpoint.

We introduce two new definitions. We recursively define a transactor as being glob-

ally independent if it is stable and all direct dependencies of the transactor are also glob-

ally independent. Equivalently, we can define a transactor as globally independent if it

would become independent if it had access to every transactor’s worldview. We define

the safety invariant as follows: For all worldviews w, for all stable transactors t with

history h in the history map of w, there exists a configuration s where h is equal to the

actual history of t and all direct dependencies in the worldview of t which have never

been globally independent during any current or previous configuration with history in t’s

history map are contained in the history graph of w. Less formally, the safety invariant

states that if a worldview shows a transactor as being stable, that worldview knows all of

that transactor’s direct dependencies, except those which are globally independent.

The goal is to show that if the safety invariant is actually an invariant, then a re-

cipient r of a message (where the message causes the state of the recipient to change)

from a transactor t which later rolled back cannot possibly checkpoint. We know that t is

27

not globally independent as t later rolled back. Globally independent transactors cannot

rollback, as such transactors are stable and all of their dependencies are also stable. We

can further state the history map of t contains at least one volatile dependency by apply-

ing induction on the definition of global independence and on the safety invariant. That

is, at least one of the direct dependencies of t is not globally independent, and if it is

stable then all of its direct dependencies that are not globally independent are known to

the worldview of t. When r receives the message, it will also receive t’s worldview and

thus will not be able to checkpoint due to this dependency.

3.1.3 The Safety Invariant: Formal Definition

Let (γg, δg,) be the global worldview of the configuration k, defined as the union

over ⊕ of all worldviews of all transactors within the configuration, as described in

Figure 1.4.

We define a global independence predicate, independenth(t, k). If a worldview knows

about t having history h, then independenth(t, k) is defined as being true if t is now or

was in the past independent with that same history. We formally define it as a call to

independenth(t, k, ∅), where independenth(t, k, S) is defined as follows:

If h a γg(t), true.

If h = γg(t), h is stable, and ∀t′(t, t′) ∈ δg: (t′ ∈ S or independentδg(t′)(t
′, K, S ∪{t′})),

true.

Otherwise false.

We say that a worldview (γ, δ,) in k follows the safety invariant if:

∀t ∈ dom(γ), if γ(t) is stable, then

∀(t, t′) ∈ δg : if ¬independentγg(t′)(t
′, k), then

((t, t′) ∈ δ and (γ(t′) = γg(t
′) or (γ(t′)→♦ γg(t′)))

A transactor configuration follows the safety invariant if all worldwiews in the con-

figuration follow the safety invariant.

28

3.1.4 The Safety Invariant: Proof

Lemma 3.1.1 (Deleted Worldview). If a transactor configuration k follows the safety

invariant, a transactor configuration k′ which is missing a worldview will also follow the

safety invariant.

Proof. Suppose some transactor configuration k follows the safety invariant. Then con-

sider configuration k′ for which a worldview from k has been deleted. Suppose some

worldview (γ, δ,) in k′ now does not follow the safety invariant. Let (γ′g, δ
′
g,) be

the global worldview of k′. Then there exist transactors t and t′ for which γ(t) is

stable, (t, t′) ∈ δ′g,¬independentγ′g(t′)(t
′, k′) but ¬((t, t′) ∈ δ and (γ(t′) = γg(t

′) or

(γ(t′) →♦ γg(t′))) However, the final conjunct is only possible in the case that (γ, δ,)

is the worldview which was removed (and is a transactor’s worldview, rather than a mes-

sage’s worldview), as k followed the invariant. But in this case, γ(t) is not stable, as

t /∈ dom(γ(t)). By reductio ad absurdum, if a transactor configuration k follows the

safety invariant, a transactor configuration k′ which is missing a worldview will also fol-

low the safety invariant.

Theorem 3.1.2 (The Safety Invariant). We prove that the safety invariant is actually an

invariant by structural induction. Supposing all worldviews in some transactor configu-

ration k follow the safety invariant. Then, we consider all possible transition rules.

Proof. (1) Trivially, the invariant holds if a transition rule does not change the worldviews

or only makes a copy of a worldview. Thus, the safety invariant holds after the transitions:

pure, get, self, set2, sta2, chk2, rol1, dep1, dep2, snd.

(2) By Lemma 3.1.1, the safety invariant holds after message loss or transactor

annihilation: lose, fl2, rol3, rcv2, rcv4.

(3) Consider the case where a transactor t will roll back or checkpoint. By Lemma

3.1.1, deleting the worldview of t is safe. The new worldview also follows the invariant,

as it contains no dependencies and t is volatile: rcv3, rol2, fl1, ck1.

(4) In the case where a transactor adds new dependencies on a volatile transactor to

a worldview, the safety invariant holds since there are no new transactors and all stable

transactors did not lose their existing dependencies: new, set1.

(5) In the case where a transactor t stabilizes, the invariant holds. Worldviews other

than the worldview of t do not know that t is stable. t1 trivially continues to follow the

29

safety invariant because a transactor always knows all of its own direct dependencies:

sta.

(6) Consider the case where a transactor t with worldview (γt1 , δt1 ,) receives a

message with worldview (γm, δm,). By Lemma 3.1.1, deleting both of these worldviews

is safe. The new worldview (γtm, δtm,) = (γt1 , δt1 ,) ⊕ (γm, δm,) must also follow

the safety invariant. Consider each stable transactor t2 ∈ γtm. Without loss of gener-

ality, assume γ(t1) = γtm or γ(t1) →♦ γtm. By the safety invariant, ∀(t1, t2) ∈ δg :

if ¬independentγg(t2)(t2, k), then ((t1, t2) ∈ δt1 . For (t1, t2) ∈ δt but (t1, t2) /∈ δtm, it

must be the case that t1 or t2 were validated or invalidated by δm. In the case that either

was invalidated, neither is globally independent (or even stable) with the history from δt

so (t1, t2) /∈ δ′k (or the histories are different in γ′g). In the case that t1 or t2 were val-

idated, they must be globally independent with respect to their previous history, since a

checkpointed form of that history exists in γm. So receiving messages follows the safety

invariant: rcv1.

Of special note is step (6) of the proof, as this step did not follow the safety invariant

in [5]. In particular, a transactor would not always update its dependency information to

account for transitive dependencies. As a result, a transactor might be missing some

dependency information on other transactors after receiving a message. This was due

to the fact that the POPL transactor model only encoded direct dependencies rather than

making use of a dependence graph.

3.1.5 Fixing Lack of Safety in the Transactor Model

Of paramount importance to the transactor model is that it be safe. One clear

requirement for the safety of the transactor model is thus: If a transactor t1 depends on a

transactor t2, it is not permissible for t1 to checkpoint and t2 to roll back, as this would

enable t1 to reach a state which was based on a non-existent state of t2, thus resulting

in an inconsistent global state. In fact, a significant portion of the transactor model

is tracking dependency information to ensure that this does not happen. A previous

iteration of the transactor model, as reported in [5], stored only direct dependencies,

making the scenario in Figure 3.1 possible. The safety invariant is a requirement that

no worldview will ever show a transactor as being independent if that transactor is not

30

1 (define DefFollowsInvariant
2 (forall ?Configuration
3 (iff
4 (FollowsInvariant ?Configuration)
5 (forall?Name ?NameOld ?Worldview
6 (if
7 (NameinConfigFollowsInvariantAntecedent

?Configuration ?Name ?NameOld ?Worldview)
8 (NameinConfigFollowsInvariantConsequent ?Configuration ?NameOld ?Worldview)
9)))))

Figure 3.2: The safety invariant in Athena

1 (define
2 (NameinConfigFollowsInvariantAntecedentConfiguration Name NameOld Worldview)
3 (and
4 (or
5 (InT(Transactor Name Worldview)Configuration)
6 (InM(Message Name Worldview)Configuration)
7)
8 (exists ?History(= (GetHistory WorldviewNameOld)(Stabilize ?History)))
9))

Figure 3.3: The safety invariant’s antecedent in Athena

globally independent with respect to its history in that worldview. Thus, a transactor’s

worldview which showed some of the transactor’s dependencies were stable would also

show all of the direct dependencies of these stable dependencies, in direct contrast to

Figure 3.1, in which the transactor does not know these dependencies (and thus can

checkpoint).

3.2 Translating the Proof into a Machine-Checkable Athena Proof
3.2.1 The Safety Invariant (Athena)

The safety invariant is defined in Athena at several levels of abstraction. At the most

general level, the safety invariant is defined as shown in Figure 3.2, with the antecedent

NameinConfigFollowsInvariantAntecedent expanded in Figure 3.3 and the

consequent NameinConfigFollowsInvariantConsequent expanded in Figure

3.4.

Informally, this states that any configuration follows the safety in-

variant if and only if for all worldviews fulfilling the requirements within

31

1 (define
2 (NameinConfigFollowsInvariantConsequent Configuration NameOld Worldview)
3 (exists ?WorldviewOld ?ConfigurationOld
4 (and
5 (ConfigurationSucceeds∗?ConfigurationOld Configuration)
6 (InT(Transactor NameOld ?WorldviewOld) ?ConfigurationOld)
7 (= (GetHistory ?WorldviewOld NameOld)(GetHistory Worldview NameOld))
8 (forall ?Dependency
9 (if
10 (DependsOn ?WorldviewOld NameOld ?Dependency)
11 (NameOldKnowsADependency Configuration Worldview NameOld

?WorldviewOld ?Dependency)
12)))))

Figure 3.4: The safety invariant’s consequent in Athena

NameinConfigFollowsInvariantAntecedent they also fulfill the require-

ments within NameinConfigFollowsInvariantConsequent.

NameinConfigFollowsInvariantAntecedent is defined as

having Worldview within Configuration. This could be either a

transactor with name Name (line 5) or a message with destination Name

(line 6). Further, NameOld is stable according to Worldview. Thus,

NameinConfigFollowsInvariantAntecedent represents that the safety

invariant’s requirements apply specifically to transactors which are stable within a

worldview.

3.2.2 Machine-Checkable Proof

A proof for Lemma 3.1.1 is shown in Figure 3.5. We start by defining two consecu-

tive configurations x and y, where every message and transactor in y is in x. Thus, there

are no new worldviews, but some worldviews may have been lost. We also select a trans-

actor a2 which is known to be stable according to b2 (using the KnowsNIisStable

function), and thus must have its direct dependencies known. We can then select an

arbitrary one of these dependencies z. Thus, (DependsOn (D b2) a2 z) may be

interpretted to mean, “According to worldview b2, a2 depends on z”. Lines As0 through

As6 are used to separate and reorder the conjuncts in our initial definition (i.e. that there

are two consecutive configurations etc.). Line As7 states that because a2 was known to

be stable according to b2 in transactor configuration y, it was also known in transactor

32

configuration x, since that same worldview existed in x. Finally, line As8 makes use

of the immutable past lemma, described in Figure 3.9, in order to show that since the

worldview followed the safety invariant before, it can still follow it now by making use

of the worldviews that existed in the past, even if they do not exist now. This relates to

the fact that the Athena proof defines the direct dependencies of a transactor as being the

dependencies it had in the past, rather than making use of the global worldview, as is used

by the safety invariant definition. Note that the latter definition is stronger, since such

direct dependencies must originate from the past on the transactor that has them, but may

have been eliminated in the future due to rollbacks or checkpoints.

With the exception of the rule for receiving messages, most steps within the trans-

actor proof are very simple when making use of the lemmas described in Figure 3.5 and

Figure 3.9, as the transactor’s dependency maps do not significantly change during other

transition rules. However, the receive rule makes use of the ⊕ operation, which is not

easily represented or used in Athena, as it is somewhat akin to an imperative algorithm

rather than being a purely logical definition. Unfortunately, we were unable to provide a

machine-checkable proof of this rule’s correctness for this reason.

Because safety is defined in terms of dependency information, we eschew the usage

of behavior and state within our representations of transactors. Instead, we define transac-

tors as having a name and a 3-tuple dependency component. Similarly, messages have a

destination and a 3-tuple dependency component. Of particular note for the Athena proof

is that last known histories as being associated with particular transactor configurations.

That is to say, it is not possible to say a particular transactor or message has a specific de-

pendency component without also indicating which transactor configuration it applies to.

Intuitively, this means that a transactor’s dependencies are mutable and only exist during

specific transactor configurations.

In order to provide a proof of safety, it is necessary to provide a formal definition of

safety. We define the safety invariant as follows: If the last known history component of a

transactor or message indicates that some transactor t is stable, then the dependency graph

component of that transactor or message includes any direct dependencies of t which

are not independent. The safety invariant is used to guarantee that if some transactor t

depends on some other transactor t’, it is not possible for t to checkpoint while t’ rolls

33

(define (LemmaLoss x y z a1 b1 a2 b2)
(assume

(and
(FollowsInvariant x)
(ConfigurationSucceeds x y)
(forall ?z (if (InT (Transactor a1 b1)y)(InT (Transactor a1 b1)x)))
(forall ?z (if (InM (Message a1 b1)y)(InM (Message a1 b1)x)))
(KnowsNIisStable a1 b1 a2 b2 y)

)
(assume (DependsOn (D b2)a2 z)

(dlet
(

(As0(!claim (and
(FollowsInvariant x)
(ConfigurationSucceeds x y)
(forall ?z (if (InT (Transactor a1 b1)y)(InT (Transactor a1 b1)x)))
(forall ?z (if (InM (Message a1 b1)y)(InM (Message a1 b1)x)))
(KnowsNIisStable a1 b1 a2 b2 y)

)))
(As1 (!derive (FollowsInvariant x)[As0]))
(As2 (!derive (ConfigurationSucceeds x y)[As0]))
(As3 (!derive (forall ?z (if (InT (Transactor a1 b1)y)(InT (Transactor a1 b1)x)))

[As0]))
(As4 (!derive (forall ?z (if (InM (Message a1 b1)y)(InM (Message a1 b1)x)))[As0]))
(As5 (!derive (KnowsNIisStable a1 b1 a2 b2 x)[As0]))
(As6 (!derive (or(InT (Transactor a1 b1)x)(InM (Message a1 b1)x))[As3 As4 As5]))
(As7 (!derive (KnowsNIisStable a1 b1 a2 b2 x)[As6 As5 DefESS∗]))

)
(!derive (and(FollowsInvariant x)(ConfigurationSucceeds x y)

(KnowsNIisStable a1 b1 a2 b2 x))[(KnowsNIisStable a1 b1 a2 b2 x)As1 As2])))
(!mp(!LemmaInvariant1, x y z a1 b1 a2 b2)A0)

)
)))))

Figure 3.5: Athena proof that removing a worldview does not violate the safety
invariant.

back. For t’ to roll back, it must not be independent, so t would have to know about some

volatile transactor which t’ was dependent upon, so t could not checkpoint. We define

safety as follows: If a transactor configuration follows the safety invariant, all subsequent

transactor configurations follow the safety invariant.

The antecedent of the informal definition of the safety invariant only states that a

transact t was dependent upon some not independent transactor t’. This is insufficient in

a formal definition. A formal definition must further state that this dependency occured

in some transactor configuration k and that t′ has never been independent in any early

34

(define (KnowsNIisStable t1 d1 t2 d2 K)
(and

(or
(InT (Transactor t1 d1)K)
(InM (Message t1 d1)K)

)
(exists?y?K2

(and
(ConfigurationSucceeds ∗ ?K2 K)
(InT (Transactor t2 d2)?K2)
(= (HistoryMap(H d1)t2)(HistoryMap(Hd2)t2))
(= (HistoryMap(H d1) t2)(Stabilize?y))

))))

Figure 3.6: Athena definition of knowledge of stability.

configuration kold.

Figure 3.6 represents this antecedent. d1 is the last known history component of

some message or transactor. The InM and InT relations indicate a particular transactor

or message with a dependency 3-tuple are within configuration k. Transactor t2 with de-

pendency information d2 is in configuration k2, which succeeds k. d2 is the last known

history component of another transactor in some other configuration k2. So, this defini-

tion indicates that some dependency component d1 in configuration k indicates that d2

was stable, and in some configuration equal to or earlier than k t2 had a history which

matched the history in d1. The fact that the history matches a real history in some older

configuration K2 means that the history is referring to a specific version of the transactor

which existed earlier. It may have since checkpointed or stabilized and have a different

history.

The safety invariant defined in Figure 3.7 requires that for any dependency com-

ponent d1 which knows that t2 is stable, every transactor t2 is dependent upon is either

known to d1 or is independent. As with the antecedent, the consequent must make use if

existential quantifiers to match the the transactor z which d2 is referring to with an actual

transactor z. Thus, there must be some previous configuration in which these histories

matched. Unlike within informal proofs, it is necessary to explicitly define an association

between the stable transactor and the transactor configuration which the history corre-

sponds to.

It is necessary to prove that each individual rule transition is safe. Because the

35

(defineDefFollowsInvariant
(forall K

(iff
(FollowsInvariant K)
(forall t1 d1 t2 d2

(if
(KnowsNIisStable t1 d1 t2 d2 K)
(forall ?z

(if
(DependsOn (D d2)t2 ?z)
(exists?u

(and
(InT (Transactor ?z ?r)?u)
(ConfigurationSucceeds ∗ ?u K)
(= (HistoryMap(H ?r)?z)(HistoryMap(H d1)?z))
(or

(Independent?u?z)
(DependsOn (D d1)t2 ?z)

))))))))))

Figure 3.7: Athena definition of the safety invariant.

(define DefNoop
(forall ?x?y

(if
(ConfigurationSucceedsRule ?x ?y Noop)
(and

(forall ?z
(iff(InT ?z ?x)(InT ?z ?y))

)
(forall ?z

(iff(InM ?z ?x)(InM ?z ?y))
)))))

Figure 3.8: Athena definition of the Noop transition.

Athena representation of transactors leaves both the behavior and the state of the trans-

actors undefined, several basic rules are essentially Noop operations: Evaluating a pure

redex, determining a transactor’s own name, determining if a transactor is independent,

stabilizing a transactor that is stable, and checkpointing a transactor that is not indepen-

dent. Although such Noop operations appear to be trivially safe, proving their safety is

important not only for completeness but also because all transition rules involve making

changes to only one transactor, one message, or both. Thus, proofs of other rules will

make use of similar assumptions for the remaining worldviews.

36

We can define a no-op operation as a transition between two transactor configura-

tions such a message is in the initial transactor configuration if and only if it is in the

successive transactor configuration. The Athena representation of this is shown in 3.8.

Supposing some configuration y is the result of applying the Noop operations to x. In

that case, every transactor z in x is in y. Further, every message z in x is in y.

Proving that the Noop operation is safe can be done by showing that any transactor

known in the new transactor configuration to have been stable was previously known to

be stable. Intuitively, this must be true because the dependency components of the dif-

ferent transactors and messages is unchanged. The safety invariant (i.e. a dependency

component knows all of the direct dependencies of any stable transactor excepting the in-

dependent dependencies) is true of the previous transactor configuration. So, any transac-

tor known to have been stable in that configuration will have known dependencies in that

configuration. A dependency component which showed such dependencies in a previous

configuration will still show them in that previous configuration; the past is immutable,

shown in Figure 3.9.

We define LemmaInvariant1 to show that if a configuration x follows the safety

invariant and a particular dependency b1 shows that transactor a2 is stable, then all depen-

dencies of that transactor will still be known in subsequent configuration y. It is important

to note that this knowledge refers to knowledge from the past configuration. Thus, this

invariant does not require that the transactor still exists within the new configuration,

though this will be the case for no-op operations. The initial steps within the proof are

to separate out the assumptions using conjunction elimination. The statements within the

dlet clause are used to conclude the consequent of the safety invariant. That is, they

are used to show that all not independent dependencies of stable transactor a2 are known.

The conclusion is similar, but take note that the conclusion allows for these dependen-

cies to be known in some configuration up to and including configuration y whereas the

dlet clause derived it as being known in a subset of this: up to and including y’s pre-

decessor, x. Thus, the conclusion contains (ConfigurationSucceeds* ?u y)

whereas what was given was (ConfigurationSucceeds* ?u x). The automated

theorem prover is used to prove this based on the earlier assumptions and based on the

definition of ConfigurationSucceeds*: (DefESS*).

37

(define (LemmaInvariant1 x y z a1 b1 a2 b2)
(assume (and(FollowsInvariant x)(ConfigurationSucceeds x y)

(KnowsNIisStable a1 b1 a2 b2 x))
(dlet

(
(As1 (!left− and(and(FollowsInvariant x)

(ConfigurationSucceeds x y)(KnowsNIisStable a1 b1 a2 b2 x))))
(As2 (!left− and(!right− and(and(FollowsInvariant x)

(ConfigurationSucceeds x y)(KnowsNIisStable a1 b1 a2 b2 x)))))
(As3 (!right− and(!right− and(and(FollowsInvariant x)

(ConfigurationSucceeds x y)(KnowsNIisStable a1 b1 a2 b2 x)))))
(P1 (!left− iff(!uspecDefFollowsInvariantx)))
(P2 (!mp P1 As1))
(DD (!uspec(!uspec(!uspec(!uspecP2 a1)b1)a2)b2))
(FOO1 (!mpDD As3))
)
(assume (DependsOn (D b2)a2 z)

(!derive
(exists ?r ?u

(and
(InT (Transactor z?r)?u)
(ConfigurationSucceeds ∗ ?uy)
(= (HistoryMap(H ?r) z)(HistoryMap (H b1)z))
(or

(Independent ?u z)
(DependsOn (D b1)a2 z)

)))
[(DependsOn (D b2)a2 z)FOO1 As2 DefESS∗]

)))))

Figure 3.9: The immutable past lemma

4. A High-Level Transactor Programming Language

6

Implementation Diagram

Program

stdin

stdout

Any Language

Java (OutsideBox.java)

Salsa (Outside.salsa)

Transactor transition rules.

Message passing.

composition

reference

Figure 4.1: Coordination language diagram

Clearly, one goal in producing the transactor model should be the potential for

programmers to write production languages which make use of transactors. Since the

model is in fact an extension of actors, it makes sense to extend an existing actor language

such as Salsa in order to support transactors. We propose a coordination language which

makes use of Salsa and Java to enable the production of transactor programs written in

any language.

4.1 Usage
Transactor behaviors can be written in any language, and are not run directly. In-

stead, the user runs the coordination language, which executes a process that runs the

transactor behavior language each time a message is received. These languages may be

used as normal, but it is worth noting that functions which produce side effects such as

file input and output may result in state information which survives rollbacks, thus com-

promising the dependency system. Program outputs can be stored as state information

rather than in files to avoid this, but this may be inefficient. Standard input and output

can be used to allow the program to indirectly access transactor commands in order to

38

39

Stabilize Causes actor to stabilize
Getstate Gets state. Program state is received on standard input.
Setstate <state> Sets state (Unlike the model, no acknowledgement is

currently received)
SendTo <destination> <message> Sends a message. <Destination> should be a UAN.
Rollback Attempts a programatic rollback.
Checkpoint Attempts to checkpoint.
Dependent? Program receives independent/dependent status on

standard input.
Self Program’s UAN is received

on standard input.
Ready Causes transactor to enter the ready state.
New <behavior> <state> Creates a new actor. The new actor’s UAN is received

on standard input.
Echo <output> The theater running the transactor displays <output> on

its standard output.

Table 4.1: Commands used in transactor implementation

perform tasks such as message-passing and checkpointing.

4.1.1 Commands

Programs can send signals along standard output to access transactor functionality.

Note that the commands are case sensitive. Arguments are in capitals and are terminated

by an end line. The available commands are listed in Table 4.1.

4.1.2 Example Program

Figure 4.2 demonstrates the use of several common transactor commands. Take

note that the program itself is purely written in Java. Messages are received as plain text

strings. In this case, the program is written to interact with a theoretical program which

can send three messages: Crash., set <argument>, and get. It echoes messages

it does not understand to the console of the theater running it by making use of the Echo

command. Crash. merely quits out of the program without indicating that the program

is ready to receive new messages. Crash. is functionally equivalent to a programmatic

rollback, and is transparent to the user if the transactor is stable, since it will merely reload

its state upon restarting. Because it is running in a separate process, such a crash will not

result in crashing the coordination language itself. Of special note is the fact that the be-

havior makes use of a while loop rather than an if statement in order to receive messages.

Because the program is rebooted any time it receives a new message, the while loop will

40

String fromServer ;
while((fromServer = stdIn.readLine())! = null){

if(fromServer .equals(“Crash.”)){
return;
}, else if(fromServer .length() > 4 && fromServer .substring(0, 4).equals(“set”)){

System.out.println(“Setstate” + fromServer .substring(4));
System.out.println(“Stabilize”);
System.out.println(“Checkpoint”);
}, else if(fromServer .length() >= 3 && fromServer .substring(0, 3).equals(“get”)){

System.out.println(“Getstate”);
String state = stdIn.readLine();
System.out.println(“Echo My state is: ” + state);
System.out.println(“Ready”);
}, else if(fromServer .equals(“Self”)){

System.out.println(“Self”);
System.out.println(“Echo I am ” + stdIn.readLine());
System.out.println(“Ready”);
}, else{

System.out.println(“Echo ” + fromServer);
System.out.println(“Ready”);
}
}

Figure 4.2: A simple transactor behavior in Java

never actually repeat, though from a user perspective it does repeat since the program as a

whole is executed over and over again as new messages are received. The BoxProgram

class is intended for use as a destination for final results rather than as a mechanism for

data storage. Unlike traditional reference cells, it cannot communicate its contents to

other transactors and instead outputs its results to the console if it receives a get message.

Using a special output transactor is superior to allowing arbitrary transactors to read and

write to files in that it reduces the likelihood that state information will incorrectly survive

in between messages. As written, the BoxProgram class is not safe for use in output

as it could receive a set message from a dependent transactor, causing the stabilize and

checkpoint steps to fail but still allowing it to temporarily set its own state to a value that

may be rolled back. Because output will not be rolled back with the transactor, this is a

potential concern.

41

4.2 Implementation
We make use of the existing actors implementation within Salsa in order to support

transactor semantics which are inherited from actors such as message-passing. However,

we use Java in order to implement dependency information, checkpointing, and rollbacks

because the algorithms used to track this functionality are implemented sequentially. Ac-

tor behaviors can be implemented by users in any language. Users programs can commu-

nicate with the Java layer of the transactors implementation through the use of standard

input/output. The system prevents programs from improperly saving state information

between runs by rebooting.

4.2.1 Salsa Layer

The outermost layer of the implementation is a Salsa actor. The Salsa layer of the

transactor program handles sending messages, receiving messages, and making new ac-

tors. It also provides the ability to discover an actor’s name within the actor name service,

which is used as an identifier for sending messages to actors. The Salsa layer contains

an instance of the Java class used to hold and manipulate the transactor information.

The facilities for making new transactors, sending messages, and getting the transactor’s

name act as wrapper functions which are called by the Java layer of the program at need.

An initialization function is called at startup to start the program if needed. Finally, the

function for receiving messages is called directly by Salsa in order to process messages

sent via the send message function wrapper, sndMessage. Message sending is in the

form of plain text Strings paired with dependency information. Upon receiving a new

message, the Salsa layer forwards the message to the Java layer, which processes the mes-

sage. The code for receiving messages, sending messages, making new transactors, and

finding a transactor’s name is displayed in Figure 4.3. Notice the use of the Java class,

OutsideBox, to contain messages.

4.2.2 Java Layer

The Java layer of the actors implementation acts to facilitate communication be-

tween the transactor behavior (i.e., the program) and the transactor system. The Java layer

does not act as an API. Instead, each time a message is received, this layer executes a new

42

void rcvMessage(String mymessage , deptup d){
single = new OutsideBox(this);
int result = single.run(mymessage, d ,OutsideBox.READY);
if (result == OutsideBox.CRASH){

System.out.println(“The program crashed.”);
}, else if (result == OutsideBox.ROLLBACK){

System.out.println(“The program rolledback.”);
}
if (single.dep.h.get(getUAN().toString()).isEphemeral()&&
!single.dep.h.get(getUAN().toString()).isStable()){

System.out.println(“Ephemeral. Quitting”);
return ;
}
}
void sndMessage(String mymessage,String recipient , deptup d){

try{
Outside remoteSVC = (Outside)Outside.getReferenceByName(recipient);
remoteSVC < −rcvMessage(mymessage, d);
}, catch(Exceptione){

e.printStackTrace();
}
}
StringmakeNew(String type,String state, deptup d){

String appendo = “/” + String .valueOf(+ + count);
String newUan = getUAN().toString() + appendo;
String newUal = getUAL().toString() + appendo;
Outside actor = new Outside(type, state, d) at (newUAN(newUan),newUAL(newUal));
return newUan;
}
String getmyself(){

return getUAN().toString();
}

Figure 4.3: Salsa code for transactors

instance of the relevant message handler. The message handler may be written using any

language and communicates with the Java layer using standard input and output. The Java

layer maintains the transactor worldview and contains code for each transition rule used

by transactors. When a message is forwarded to this layer by the Salsa layer, the message

handler program is executed and a loop is entered which continually reads from the han-

dler’s standard output for any further instructions. The code for the Java layer redexes is

shown in Figure 4.4 and 4.5. The loop ends when the message handler finishes parsing the

message, which ends either by sending Ready, Checkpoint, or Rollback to stan-

dard output. Thus, a message handler for a reference cell could respond to a request to

43

while ((inputLine = InnerBR.readLine())! = null){
System.out.println(“Client: ” + inputLine);
if (inputLine.equals(“Stabilize”)){

System.out.println(“Server: Received Stabilize, stabilizing”);
dep.h.get(getSelf()).stabilize();
backup();
}, else if (inputLine.equals(“Getstate”)){

System.out.println(“Server: Received Getstate, sending state:” + state);
dep.b.add(getSelf());
innerOut .println(state);
}, else if (inputLine.length() > 9 &&
inputLine.substring(0, 9).equals(“Setstate ”)){ if (!dep.h.get(getSelf()).isStable()){

System.out.println(“Server: Am volatile, State set to \”” + inputLine.substring(9) + ”\””);
state = inputLine.substring(9);
Iterator < String > newstuff = dep.b.Iterator();
if (dep.d.get(getSelf()) == null){

dep.d.put(getSelf(), newHashSet < String > ());
}
while (newstuff.hasNext()){

dep.d.get(getSelf()).add(newstuff.next());
}
}, else {

System.out.println(“Server: Am stable, unable to set State to ”+
inputLine.substring(9) + “\””);

}
}, else if (inputLine.length() > 7 && inputLine.substring(0, 7).equals(“SendTo ”)){

String more = inputLine.substring(7);
int i ;
for (i = 0; i ! = more.length(); + + i){

if (more.substring(i , i + 1).equals(“ ”)){
break;
}
}
System.out.println(“Server: Told to send \”” + more.substring(i + 1)

+”\”to” + more.substring(0, i));
parent .sndMessage(more.substring(i + 1),more.substring(0, i), dep);
}, else if (inputLine.equals(“Rollback”)){

if (!dep.h.get(getSelf()).isStable()){
System.out.println(“Server: Received Rollback, rolling back.”);
return ROLLBACK;
}, else {

System.out.println(“Server: Received Rollback but not volatile.”);
return READY;
}

Figure 4.4: Java code for transactors

44

}, else if (inputLine.equals(“Checkpoint”)){
if (independent()){

System.out.println(“Server: Received Checkpoint, am independent, checkpointing”);
history tmp = dep.h.get(getSelf());
dep = newdeptup();
tmp.checkpoint();
dep.h.put(getSelf(), tmp);
backup();
return READY;
}, else {

System.out.println(“Server: Received checkpoint but am not independent.”);
}
}, else if (inputLine.equals(“Dependent?”)){

if (independent()){
System.out.println(“Server: Received Dependent?, false.”);
innerOut .println(false);
}, else {

System.out.println(“Server: Received Dependent?, true.”);
innerOut .println(true);
}
}, else if (inputLine.equals(“Self”)){

System.out.println(“Server: Received Self”);
innerOut .println(parent .getmyself());
}, else if (inputLine.equals(“Ready”)){

System.out.println(“Server: Received Ready. Creating new instance of program”);
return READY;
}, else if (inputLine.length() > 4 && inputLine.substring(0, 4).equals(“New ”)){

String type = inputLine.substring(4);
String state = InnerBR.readLine();
innerOut .println(parent .makeNew(type, state, dep));
}, else if (inputLine.length() > 5 && inputLine.substring(0, 5).equals(“Echo ”)){

System.out.println(“Server: Echo ” + inputLine.substring(5));
}, else {

System.out.println(“Server: Unsupported message:” + inputLine);
}
}

Figure 4.5: Java code for transactors(continued)

send its state to a transactor “uan://200.200.133.133:3030/agent” as shown

in Figure 4.6.

4.3 Issues and Trade-offs
In a practical implementation of the actor model, there are two conflicting goals:

safety and efficiency. In the event that the implementation prioritizes safety, it is necessary

45

output(“Getstate”)
input(foo)
output(“SendTo uan://200.200.133.133:3030/agent ” + foo)
output(“Ready”)

Figure 4.6: A communication between a transactor behavior and the transactor
system.

to ensure that the algorithm avoids allowing the program state to carry between message

handlers. For example, this implementation actually starts a new instance of the program

each time a message is received. On the other hand, the most efficient way to handle

state is to keep state between program runs but roll back any new state information that

has inadvertently been embedded into the handler. Of course, all such data can be kept

between runs in the event that a setstate operation has been performed. Such an

implementation avoids the high cost of initializing the message handler from scratch each

time it is used, but it is impossible to prevent the user from maintaining the data from

the message handler in between messages unless the transactor language is implemented

as an independent language, rather than as a library or API. This is because there are

numerous ways to hide such data in the form of file input/output or variables. Rebooting

the handler between messages prevents some such techniques, but is very inefficient.

5. Related Work

5.1 Model Checking Transactional Memories
In the Guerraoui, Henzinger, Jobstmann, and Singh paper [7], the mechanisms

needed to perform model checking on transactional memories are discussed. This model

checking is difficult because the number and length of the transactions is unbounded, as

is the size of the memory. Of importance is proving the safety of the transactional mem-

ories, which requires that there is consistency between transactions upon aborts and that

the transactions themselves behave such that they can be treated as though they had been

executed serially. Similarly, it is necessary to prove that liveness properties hold.

Firstly the paper proves that if a model violates these safety and liveness properties,

then it is possible to violate these properties using distributed systems containing only

two threads and two variables. This model can be tested using model checking to verify

that the execution trace of the software transactional memory algorithm can be matched

with reference algorithm which is known to be safe (i.e. because it only performs one

transaction at a time and thus never aborts). This model is further altered to be a finite

state machine.

5.2 Verifying Invariants of Distributed Systems
Graf and Sadi discuss the use of theorem proving in order to show that invariants

of a distributed system hold [6]. They propose that rather than attempting to prove an

invariant represented by predicate P holds directly, some other property represented by

predicate P ′ should be computed. P ′ must be stronger than P but weaker than the init

invariant. The init invariant holds for all reachable states. Thus, this algorithm seeks a

predicate which is between P ′ and init. This is equivalent to saying that all states which

are reachable must also follow the invariant.

This form of theorem proving is similar to model-checking, and can be automated

just as is done with model-checking. There is a convergence between the init invariant and

P wherein states are removed from init and added to P ′ (states are removed and added by

changing the predicate definitions) until the two sets of states converge.

46

47

5.3 Atomos: A Transactional Programming Model
Atomos [4] is a programming language for use in programs with multiple threads

which share resources. A traditional approach to making use of shared resources is to

utilize some form of locking mechanism to ensure that particular elements of data are

not accessed from multiple threads simultaneously. However, locking mechanisms are

more prone to error and require extra work on the part of the programmer. An alternative

approach is to make operations which access shared resources atomic. Such atomic oper-

ations are called transactions. Whereas transactors go from checkpoint to checkpoint, the

Atomos uses ’checkpoints’ only at the end of an atomic operation, as Atomos programs

can only experience failures if mutual exclusion is broken.

The Atomos language replaces the use of code blocks which are locked based on

particular resources with the ability for the programmer to produce a block of code which

is atomic. This still ensures that there will not be an interleaving of code from two threads

which are making use of the same resources, but avoids the requirement for the program-

mer to explicitly indicate which resources are being protected. It is worth noting that

multiple atomic blocks can be interleaved by the language implementation so long as the

atomic blocks do not share resources. However, the intermediate results of the transaction

will be hidden until the transaction is committed. Thus, transactions are not necessar-

ily executed independently, though the intermediate results are not visible outside of the

atomic block itself.

In contrast to transactors which will (in an actual implementation) make a backup

upon becoming immutable (stable), Atomos makes a backup upon starting an atomic

operation which may include changes in state. Thus, Atomos is intended to handle failures

caused by state changes happening at the same time. However, the transactions in Atomos

which go from the start to the end of an atomic operation, which may or may not fail, are

analogous to transactors, which go from checkpoint to checkpoint.

5.4 Stabilizers: A Checkpointing Abstraction for Concurrent Func-

tional Programs
Stabilizers [10] is a linguistic abstraction which allows individual threads to be

monitored and restored to globally consistent checkpoints after experiencing transient

48

failures. The authors implement stabilizers with Concurrent ML and demonstrate that

the overhead costs associated with stabilizers are about five percent, excepting in cases

where threads are given a time quantum of less than 5ms. Stabilizers encapsulate three

operations. First, code is monitored for communication and thread creation. Local check-

points are performed when such code is evaluated. Stable sections are monitored

sections of code which will be reverted as a single unit. Thus, checkpoints are directly

associated with specific sets of performed actions. The second operation rolls back the

state to a previous, safe global checkpoint. This checkpoint is determined dynamically.

The third operation is used to delete checkpoints. The deleted checkpoints are thus un-

reachable, raising exceptions if a thread attempts to rollback to a state earlier than such a

checkpoint.

6. Discussion and Conclusions

This thesis discussed three methods to progressively test and proof the safety of the trans-

actor model. Firstly, we wrote an executable operational semantics using the Maude lan-

guage. This allowed us to view step by step execution traces of programs written using

the transactor model. The model discussed in this thesis incorporates the changes made

to fix this error. Secondly, we formally proved that the new model follows the safety

invariant using Athena. Finally, we developed a coordination language using Salsa and

Java. This acts as a practical demonstration of a language following the transactor model.

By examining the transactor model through the use of these tools, we were able to correct

an error in the model and have greater confidence that the new model is safe.

6.1 Future Work
Future work possibilities include directly associating the Maude implementation

of the model with the proof. This would mean using one proof document for the dual

purposes of being an executable model of transactors and a set of assumptions for use in

a proof. This has the clear advantage that the proof will be a proof that Maude program is

safe rather than a proof that the Athena definition of the model is safe. Doing this would

require the production of a separate modeling language to coordinate the two languages

together. Such a language could make use of temporal logic in order to represent an

execution trace between consecutive transactor configurations. Potentially, it could also

use knowledge logic in order to represent worldviews, thus making it more practical to

discuss how worldview information propagates using modal logic.

49

LITERATURE CITED

[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, 1986.

[2] G. Agha, J. Meseguer, and K. Sen. Pmaude: Rewrite-based specification language

for probabilistic object systems. Electronic Notes in Theoretical Computer Science,

153(2):213–239, May 2006.

[3] K. Arkoudas. Denotational proof languages. PhD thesis, Massachusetts Institute

of Technology, 2000. Supervisor-Olin Shivers.

[4] B. D. Carlstrom et al. The ATOMOS transactional programming language. In

PLDI, Ottawa, Canada, June 2006.

[5] J. Field and C. Varela. Transactors: A programming model for maintaining

globally consistent distributed state in unreliable environments. In ACM

Conference on Principles of Programming Languages (POPL 2005), pages

195–208, Long Beach, CA, January 2005.

[6] S. Graf and H. Saı̈di. Verifying invariants using theorem proving. In CAV ’96:

Proceedings of the 8th International Conference on Computer Aided Verification,

pages 196–207, London, UK, 1996. Springer-Verlag.

[7] R. Guerraoui, T. Henzinger, and V. Singh. Model Checking Transactional

Memories. In ACM SIGPLAN 2008 Conference on Programming Language

Design and Implementation (PLDI), 2008.

[8] P. L. M. Clavel, S. Eker and J. Meseguer. Principles of maude. In J. Meseguer,

editor, Electronic Notes in Theoretical Computer Science, volume 4. Elsevier

Science Publishers, 2000.

[9] C. Varela and G. Agha. Programming dynamically reconfigurable open systems

with SALSA. ACM SIGPLAN Notices. OOPSLA’2001 Intriguing Technology

50

51

Track Proceedings, 36(12):20–34, Dec. 2001.

http://www.cs.rpi.edu/˜cvarela/oopsla2001.pdf.

[10] L. Ziarek, P. Schatz, and S. Jagannathan. Stabilizers: a modular checkpointing

abstraction for concurrent functional programs. SIGPLAN Not., 41(9):136–147,

2006.

APPENDIX A
Symbol Table

h1 →♦ h2 h1 stabilizes to h2

♦(h) h is stable
√

(h) h has checkpointed

t← ρ t directly depends on ρ

t�δ t
′ t = t′ or according to δ, t transitively depends on t′

h1 # h2 h1 rolls back to h2

h1 →√ h2 h1 checkpoints to h2

h1 ; h2 h1 is succeeded by h2

h1 ;∗ h2 h1 occurs at or before h2

♦(t, γ, δ) t is independent according to the worldview (γ, δ,)

h1 a h2 h1 is validated by h2

h1 o h2 h1 is invalidated by h2

(γ1, δ1, ρ1)⊕ (γ2, δ2,) The union of (γ1, δ1, ρ1) and (γ2, δ2,)

52

