
THE SALSA PROGRAMMING LANGUAGE
2.0.0alpha RELEASE TUTORIAL

By

Carlos A. Varela, Gul Agha, Wei-Jen Wang,
Travis Desell, Kaoutar El Maghraoui, Jason LaPorte, and Abe Stephens

Rensselaer Polytechnic Institute
Troy, New York

November 2009

c© Copyright 2009

by

Carlos A. Varela, Gul Agha, Wei-Jen Wang,

Travis Desell, Kaoutar El Maghraoui, Jason LaPorte, and Abe Stephens

All Rights Reserved

ii

CONTENTS

1. Introduction . 1

1.1 The SALSA Distributed Programming Language 1

1.2 Outline . 2

2. Actor-Oriented Programming . 3

2.1 The Actor Model . 3

2.2 Actors in SALSA . 5

2.3 Concurrency in SALSA 2.0.0alpha . 5

3. Writing Concurrent Programs . 6

3.1 Actor State Modification . 6

3.2 Actor Creation . 7

3.3 Actor Removal . 7

3.4 Message Passing . 8

3.5 Coordinating Concurrency . 8

3.5.1 Token-Passing Continuations 9

3.5.2 Join Blocks . 10

3.5.3 First-Class Continuations . 10

3.6 Using Input/Output (I/O) Actors . 11

3.7 Developing SALSA Programs . 13

3.7.1 Writing SALSA Programs . 13

3.7.2 HelloWorld example . 14

3.7.3 Compiling and Running HelloWorld 15

4. Writing Distributed Programs for the World-Wide Computer (WWC) . . . 16

4.1 SALSA Semantics for World-Wide Computing 16

4.1.1 Universal Naming . 16

4.1.2 Universal Actor Creation . 17

4.1.3 Referencing Universal Actors 18

4.1.4 Migration . 18

4.2 The World-Wide Computer (WWC) Architecture 19

4.2.1 Theaters . 19

iii

4.2.2 UANP and Name Servers . 19

4.3 Running SALSA Applications on the WWC 19

4.3.1 AddressBook Example . 20

5. Advanced Concurrency Coordination . 24

5.1 Named Tokens . 24

5.2 Join Block Continuations . 26

5.3 Message Properties . 28

5.3.1 Property: delay . 28

5.3.2 Property: waitfor . 28

5.3.3 Property: delayWaitfor . 28

LITERATURE CITED . 30

APPENDICES

A. Starting SALSA Applications . 31

B. SALSA Theater Options . 33

B.1 Extending Theaters . 33

C. Name Server Options . 36

D. Debugging Tips . 37

E. Learning SALSA by Example Code . 38

E.1 Package examples . 38

E.2 Package tests . 38

F. History of SALSA . 40

G. SALSA Grammar . 41

iv

CHAPTER 1

Introduction

1.1 The SALSA Distributed Programming Language

With the emergence of Internet and mobile computing, a wide range of In-

ternet applications have introduced new demands for openness, portability, highly

dynamic reconfiguration, and the ability to adapt quickly to changing execution en-

vironments. Current programming languages and systems lack support for dynamic

reconfiguration of applications, where application entities get moved to different

processing nodes at run-time.

Java has provided support for dynamic web content through applets, net-

work class loading, bytecode verification, security, and multi-platform compatibility.

Moreover, Java is a good framework for distributed Internet programming because

of its standardized representation of objects and serialization support. Some of the

important libraries that provide support for Internet computing are: java.rmi for

remote method invocation, java.reflection for run-time introspection, java.io

for serialization, and java.net for sockets, datagrams, and URLs.

SALSA (Simple Actor Language, System and Architecture) [3] is an actor-

oriented programming language designed and implemented to introduce the benefits

of the actor model while keeping the advantages of object-oriented programming.

Abstractions include active objects, asynchronous message passing, universal nam-

ing, migration, and advanced coordination constructs for concurrency. SALSA is

pre-processed into Java and preserves many of Java’s useful object oriented concepts-

mainly, encapsulation, inheritance, and polymorphism. SALSA abstractions enable

the development of dynamically reconfigurable applications. A SALSA program

consists of universal actors that can be migrated around distributed nodes at run-

time.

1

2

1.2 Outline

This tutorial covers basic concepts of SALSA and illustrates its concurrency

and distribution models through several examples. Chapter 2 introduces the actor

model and how SALSA supports it. Chapter 3 introduces concurrent programming

in SALSA, including token-passing continuations, join blocks, and first-class contin-

uations. Chapter 4 discusses SALSA’s support for distributed computing including

asynchronous message sending, universal naming, and migration. Chapter 5 in-

troduces several advanced coordination constructs and how they can be coded in

SALSA. Appendix A describes different options for starting SALSA theaters. Ap-

pendix B discusses advanced options for SALSA theaters and how to extend the

SALSA theater framework. Appendix C introduces how to specify name server

options. Appendix D provides debugging tips for SALSA programs. Appendix E

provides brief descriptions of SALSA example programs. Appendix G presents the

SALSA 2.0.0alpha grammar.

CHAPTER 2

Actor-Oriented Programming

SALSA is an actor-oriented programming language. This chapter starts first by

giving a brief overview of the actor model in Section 2.1. Section 2.2 describes how

SALSA supports and extends the actor model. Section 2.3 discusses the SALSA

2.0 implementation of concurrency for reduced memory usage and improved perfor-

mance.

2.1 The Actor Model

Actors [1, 2] provide a flexible model of concurrency for open distributed sys-

tems. Actors can be used to model traditional functional, procedural, or object

oriented systems. Actors are independent, concurrent entities that communicate by

exchanging messages asynchronously. Each actor encapsulates a state and a thread

of control that manipulates this state. In response to a message, an actor may

perform one of the following actions (see Figure 2.1):

• Alter its current state, possibly changing its future behavior.

• Send messages to other actors asynchronously.

• Create new actors with a specified behavior.

• Migrate to another computing host.

Actors do not necessarily receive messages in the same order that they are

sent. All the received messages are initially buffered in the receiving actor’s mes-

sage box before being processed. Communication between actors is weakly fair: an

actor which is repeatedly ready to process messages from its mailbox will eventually

process all messages sent to it. An actor can interact with another actor only if it

has a reference to it. Actor references are first class entities. They can be passed

in messages to allow for arbitrary actor communication topologies. Because actors

3

4

Figure 2.1: Actors are reactive entities. In response to a message, an ac-
tor can (1) change its internal state, (2) send messages to peer
actors, (3) create new actors, and/or (4) migrate to another
computing host.

5

can create arbitrarily new actors, the model supports unbounded concurrency. Fur-

thermore, because actors only communicate through asynchronous message passing

and because there is no shared memory, actor systems are highly reconfigurable.

2.2 Actors in SALSA

SALSA programmers write behaviors which include encapsulated state and

message handlers for actor instances:

• New actors get created in SALSA by instantiating particular behaviors (with

the new keyword). Creating an actor returns its reference.

• The message sending operator (<-) is used to send messages to actors; mes-

sages contain a name that refers to the message handler for the message and

optionally a list of arguments.

• Actors, once created, process incoming messages, one at a time.

While SALSA supports the actor model, it goes further in providing linguistic

abstractions for common coordination patterns in concurrent and distributed appli-

cations. For concurrency, it provides token passing continuations, join blocks, first-

class continuations, named tokens, and message properties. For distribution, remote

actor creation, and remote referencing, it provides universal naming abstractions,

location-transparent communication, and migration support. Furthermore, SALSA

provides automatic local and distributed garbage collection.

2.3 Concurrency in SALSA 2.0.0alpha

CHAPTER 3

Writing Concurrent Programs

This chapter introduces concepts about basic concurrency coordination. Basic

knowledge of Java programming is required.

3.1 Actor State Modification

SALSA is a dialect of Java, and it is intended to reuse as many features of Java

as possible. SALSA actors can contain internal state in the form of Java objects or

primitive types. However, it is important that this internal state must be completely

encapsulated, that is, not shared with other actors. It is also important that the

internal state be serializable 1

The following piece of code illustrates how the internal state is modified, as

follows:

behavior Ce l l {
Object contents ;

Ce l l (Object i n i t i a lC on t e n t s){
contents = i n i t i a lC on t e n t s ;

}

Object get (){
return contents ;

}

void s e t (Object newContents){
// update the v a r i a b l e ’ con ten t s ’ wi th
// the new value , newContents
contents = newContents ;

}
}

1SALSA, as of version 2.0.0alpha, does not enforce object serializability. Programmers must
ensure that encapsulated objects are serializable.

6

7

3.2 Actor Creation

The actor reference is a new primitive type in SALSA. As the actor model

enforces state encapuslation, actors can only change their own state and send mes-

sages to references of other actors. There is no primitive for the state of another

actor.

There are two approaches to obtain a new actor reference: by constructing

an actor with the new statement, or referencing an already existing actor with the

reference statement (see Section 4.1.3 for more details). Actor references may

also be passed in the arguments of a message. This section concentrates on actor

creation and reference passing.

Writing a constructor in SALSA programming is similar to object construction

in Java programming. For instance, one can declare the HelloWorld actor as follows:

// An ac tor r e f e r ence wi th type Hel loWorld
HelloWorld myRef ;

To create an actor instance and return a reference to myRef, one can write

code as follows:

// Assume the cons t ruc t o r o f Hel loWorld i s :
// pu b l i c Hel loWorld () {}
myRef = new HelloWorld () ;

In SALSA, actor references are passed by reference and primitives are passed

by value. As SALSA 2.0.0alpha has a focus on performance, objects are also passed

by reference to actors running on the same theater (see Chapter 4 for more on

theaters), but by value to actors running on different theaters (as they are serialized

when passed in a message). This violates state encapsulation, so it is recommended

that a user wrap an object in a Cell actor if it will be used by multiple actors,

especially if they will be on different theaters. It is important to note that in

SALSA, arrays are Java objects, and have the same pass by reference if local, but

pass by value if remote semantics.

3.3 Actor Removal

By default, SALSA 2.0.0alpha applications do not use garbage collection. To

remove an actor, send it a destroy() message. When this message is processed,

8

the actor will be flagged for garbage collection and removed along with all the Java

objects in encapsulated by its state. Java objects which are known by other live

actors will not be garbage collected. Garbage collection for SALSA programs which

do not use remote communication has been implemented in SALSA 2.0.0alpha. To

enable this see Appendix A.

3.4 Message Passing

SALSA actors use asynchronous message passing as their basic form of commu-

nication. A SALSA message handler is similar to a Java method. Message passing

in SALSA is implemented by asynchronous message delivery with dynamic method

invocation. The following example shows how an actor sends a message to itself.

Note that it is not a Java method invocation:

handler () ; // e qu i v a l e n t to ” s e l f <− hand ler () ; ”

Another type of message passing statement requires a target (an actor refer-

ence), a reserved token <-, and a message handler with arguments to be sent. For

instance, an actor can send a message to the standardOutput actor as follows:

// send a message p r i n t l n () wi th an argument ”He l l o World” ,
// to the ac tor standardOutput .
standardOutput <− p r i n t l n ("HelloÃWorld") ;

Note that the following expression is illegal because it is neither a Java method

invocation nor a message passing expression:

// Wrong ! I t does not compi le ! ! !
// Assume ’ a ’ i s an ac tor r e f e r ence .
a <− someObject . someHandler () ;

Message Passing in SALSA is by-value for objects, and by-reference for actors.

Any object passed as an argument is cloned at the moment it is sent, and the cloned

object is then sent to the target actor.

3.5 Coordinating Concurrency

SALSA provides three approaches to coordinate the behavior of actors: token-

passing continuations, join blocks, and first-class continuations.

9

3.5.1 Token-Passing Continuations

Token-passing continuations are designed to specify a partial order of message

processing. The token ’@’ is used to group messages and assigns the execution order

to each of them. For instance, the following example forces the standardOutput

actor, a predefined system actor for output, to print out ”Hello World”:

standardOutput <− pr in t ("HelloÃ") @
standardOutput <− pr in t ("World") ;

If a programmer uses ’;’ instead of ’@’, SALSA does not guarantee that the

standardOutput actor will print out ”Hello World”. It is possible to have the result

”WorldHello ”. The following example shows the non-deterministic case:

standardOutput <− pr in t ("HelloÃ") ;
standardOutput <− pr in t ("World") ;

A SALSA message handler can return a value, and the value can be accessed

through a reserved keyword ’token’, specified in one of the arguments of the next

grouped message. For instance, assuming there exists a user-defined message han-

dler, returnHello(), which returns a string ”Hello”. The following example prints

out ”Hello” to the standard output:

// re tu rnHe l l o () i s de f ined as the f o l l o w s :
// S t r ing r e tu rnHe l l o () { re turn ”He l l o ” ;}
r e tu rnHe l l o () @ standardOutput <− p r i n t l n (token) ;

Again, assuming another user-defined message handler combineStrings() ac-

cepts two input Strings and returns a combined string of the inputs, the following

example prints out ”Hello World” to the standard ouput:

// combineStr ings () i s de f ined as f o l l o w s :
// S t r ing combineStr ings (S t r ing s t r1 , S t r ing s t r 2)
// { re turn s t r 1+s t r 2 ;}
r e tu rnHe l l o () @
combineStr ings (token , "ÃWorld") @
standardOutput <− p r i n t l n (token) ;

Note that the first token refers to the return value of returnHello(), and the

second token refers to that of combineStrings(token, " World").

10

3.5.2 Join Blocks

The previous sub-section has illustrated how token-passing continuations work

in message passing. This sub-section introduces join blocks which can specify a bar-

rier for parallel processing activities and join their results in a subsequent message.

A join continuation has a scope (or block) starting with ”join{ ” and ending with

”}”. Every message inside the block must be executed, and then the continuation

message, following @, can be sent. For instance, the following example prints either

”Hello World SALSA” or ”WorldHello SALSA”:

join {
standardOutput <− pr in t ("HelloÃ") ;
standardOutput <− pr in t ("World") ;

} @ standardOutput <− p r i n t l n ("ÃSALSA") ;

Using the return token of the join block will be explained in Chapter 5.

3.5.3 First-Class Continuations

The purpose of first-class continuations is to delegate computation to a third

party, enabling dynamic replacement or expansion of messages grouped by token-

passing continuations. First-class continuations are very useful for writing recursive

code. In SALSA, the keyword currentContinuation is reserved for first-class con-

tinuations. To explain the effect of first-class continuations, we use two examples

to show the difference. In the first example, statement 1 prints out ”Hello World

SALSA”:

//The f i r s t example o f us ing Firs t−Class Cont inuat ions
. . .
void saySomething1 () {

standardOutput <− pr in t ("HelloÃ") @
standardOutput <− pr in t ("WorldÃ") @
currentContinuation ;

}
. . . .
// sta tement 1 in some method .
saySomething1 () @ standardOutput <− pr in t ("SALSA") ;

In the following (the second) example, statement 2 may generate a different

result from statement 1. It prints out either ”Hello World SALSA”, or ”SALSAHello

World ”.

11

// The second example − wi thout a Firs t−Class Continuat ion
// Statement 2 may produce a d i f f e r e n t r e s u l t from
// t ha t o f Statement 1 .
. . .
void saySomething2 () {

standardOutput <− pr in t ("HelloÃ") @
standardOutput <− pr in t ("WorldÃ") ;

}
. . . .
// sta tement 2 i n s i d e some method :
saySomething2 () @ standardOutput <− pr in t ("SALSA") ;

The keyword currentContinuation has another impact on message passing

— the control of execution returns immediately after processing it. Any code after

it will not be reached. For instance, the following piece of code always prints out

”Hello World”, but ”SALSA” never gets printed:

// The t h i r d example − with a Firs t−Class Continuat ion
// One shou ld see ”He l l o World” in the s tandard output
// a f t e r s ta tement 3 i s executed .
. . .
void saySomething3 () {

boolean alwaysTrue=true ;
i f (alwaysTrue) {

standardOutput <− pr in t ("HelloÃ") @
standardOutput <− pr in t ("WorldÃ") @
currentContinuation ;

}
standardOutput<−p r i n t l n ("SALSA") ;

}
. . . .
// sta tement 3 i n s i d e some method :
saySomething3 () @ standardOutput <− p r i n t l n () ;

3.6 Using Input/Output (I/O) Actors

SALSA provides three actors supporting asynchronous I/O. One is an input

service (standardInput), and the other two are output services (standardOutput

and standardError). Since they are actors, they are used with message passing.

standardOutput provides the following message handlers:

12

• print(boolean p)

• print(byte p)

• print(char p)

• print(double p)

• print(float p)

• print(int p)

• print(long p)

• print(Object p)

• print(short p)

• println(boolean p)

• println(byte p)

• println(char p)

• println(double p)

• println(float p)

• println(int p)

• println(long p)

• println(Object p)

• println(short p)

• println()

standardError provides the following message handlers:

• print(boolean p)

• print(byte p)

• print(char p)

• print(double p)

• print(float p)

13

• print(int p)

• print(long p)

• print(Object p)

• print(short p)

• println(boolean p)

• println(byte p)

• println(char p)

• println(double p)

• println(float p)

• println(int p)

• println(long p)

• println(Object p)

• println(short p)

• println()

standardInput provides only one message handler in current SALSA release:

• String readLine()

3.7 Developing SALSA Programs

This section demonstrates how to write, compile, and execute SALSA pro-

grams.

3.7.1 Writing SALSA Programs

SALSA abstracts away many of the difficulties involved in developing dis-

tributed open systems. SALSA programs are preprocessed into Java source code.

The generated Java code uses a library that supports all the actor’s primitives —

mainly creation, migration, and communication. Any Java compiler can then be

used to convert the generated code into Java bytecode ready to be executed on any

virtual machine implementation (see Table 3.1).

14

Table 3.1: Steps to Compile and Execute a SALSA Program.

Step What To Do Action Taken

1 Create a SALSA program: Write your SALSA code
Program.salsa

2 Use the SALSA compiler to java salsa lite.core.compiler.SalsaCompiler
generate a Java source file: Program.salsa
Program.java

3 Use a Java compiler to javac Program.java
generate the Java bytecode:
Program.class

4 Run your program using the java Program
Java Virtual Machine

3.7.2 HelloWorld example

The following piece of code is the SALSA version of HelloWorld program:

1 . /∗ HelloWorld . s a l s a ∗/
2 . module examples ;
3 . behavior HelloWorld {
4 . void act (S t r ing [] arguments) {
5 . standardOutput<−pr in t ("Hello")@
6 . standardOutput<−pr in t ("World!") ;
7 . }
8 . }

Let us go step by step through the code of the HelloWorld.salsa program:

The first line is a comment. SALSA syntax is very similar to Java and you

will notice it uses the style of Java programming. The module keyword is similar to

the package keyword in Java. A module is a collection of related actor behaviors. A

module can group several actor interfaces and behaviors. Line 4 starts the definition

of the act message handler. In fact, every SALSA application must contain the

following signature if it does have an act message handler:

void act (S t r ing [] arguments)

When a SALSA application is executed, an actor with the specified behavior

is created and an act message is sent to it by the run-time environment. The act

message is used as a bootstrapping mechanism for SALSA programs. It is analogous

to the Java main method invocation.

15

In lines 5 and 6, two messages are sent to the standardOutput actor. The

arrow (<-) indicates message sending to an actor (in this case, the standardOutput

actor). To guarantee that the messages are received in the same order they were

sent, the @ sign is used to enforce the second message to be sent only after the first

message has been processed. This is referred to as a token-passing continuation (see

Section 3.5.1).

3.7.3 Compiling and Running HelloWorld

• Download the latest version of SALSA. You will find the latest release in this

URL: http://wcl.cs.rpi.edu/salsa/

• Create a directory called examples and save the HelloWorld.salsa program

inside it. You can use any simple text editor or Java editor to write your

SALSA programs. SALSA modules are similar to Java packages. This means

you have to follow the same directory structure conventions when working

with modules as you do when working with packages in Java.

• Compile the SALSA source file into a Java source file using the SALSA com-

piler. It is recommended to include the SALSA JAR file in your class path.

Alternatively you can use -cp to specify its path in the command line. If you

are using MS Windows use semi-colon (;) as a class path delimiter, if you are

using just about anything else, use colon (:). For example:

java -cp salsa<version>.jar:. salsa lite.core.compiler.SalsaCompiler

examples/*.salsa

• Use any Java compiler to compile the generated Java file. Make sure to specify

the SALSA class path using -classpath if you have not included it already

in your path:

javac -classpath salsa<version>.jar:. examples/*.java

• Execute your program:

java -cp salsa<version>.jar:. examples.HelloWorld

CHAPTER 4

Writing Distributed Programs for the World-Wide

Computer (WWC)

Worldwide computing is an emerging discipline with the goal of turning the Internet

into a unified distributed computing infrastructure. Worldwide computing tries to

harness underutilized resources in the Internet by providing various Internet users a

unified interface that allows them to distribute their computation in a global fashion

without having to worry about where resources are located and what platforms are

being used. This chapter first describes semantic support world-wide computing

is described in Section 4.1. Following this, the WWC architecture is described

and instructions on starting WWC daemons are given in Section 4.2. The chapter

concludes with examples of running different SALSA applications on the WWC.

4.1 SALSA Semantics for World-Wide Computing

SALSA supports distributed computing on the WWC with semantics for uni-

versal actor naming, universal actor creation, remote actor referencing and actor

migration. Remote message passing is done transparently, using the same semantics

as in non-distributed SALSA programs.

4.1.1 Universal Naming

The Universal Actor Naming Protocol (UANP) is a protocol that supports

universal actor naming and discovery. It defines how SALSA applications and the-

aters communicate with Name Servers. Similar to HTTP, UANP is text-based and

defines methods that allow lookup, updates, and deletions of actors’ names. UANP

operates over TCP connections, usually the port 3030. Every theater maintains a

local registry where actors’ locations are cached for faster future access, however

lookup of new actors, as well as actors whose locations have changed and have

become unknown, must go through a name server.

To enable remote communication between actors, actors need some way of

16

17

Table 4.1: UAN Format

Type Example

URL http://wcl.cs.rpi.edu/salsa/
UAN uan://io.wcl.cs.rpi.edu:3000/myName

uniquely referencing each other. This is doing through Universal Actor Names

(UANs). UANs are unique names that identify actors throughout their lifetime.

UANs follow the URI syntax and are similar in format to a URL (see Table 4.1).

Universal naming allows an actor to register its UAN at a name server, becom-

ing a universal actor. Name servers keep up to date information about the location

of each universal actor that has been registered with them. This allows actors run-

ning in different SALSA programs and on different theaters to look each other up

and communicate. When an actor has a UAN, it can also migrate between theaters.

The first item of the UAN specifies the name of the protocol used; the second

item specifies the name and port number of the machine where the Naming Server

resides. This name is usually a name that can be decoded by a domain name server.

You can also use the IP of the machine, however this is a practice that should be

avoided. The last item specifies the relative name of the actor. If a port number is

not specified, the default port number (3030) for the name server is used.

4.1.2 Universal Actor Creation

A universal actor can be created at any desired theater by specifying its UAN

using the at statement2. For instance, one can create a universal actor at the current

host as follows:

HelloWorld hel loWorld = new HelloWorld ()
at (new UAN("uan://nameserver/id")) ;

A universal actor can be created at a remote theater, hosted at ”host1” and

port 4040, by the following statement:

HelloWorld hel loWorld = new HelloWorld ()
at (new UAN("uan://nameserver/id") , "host1" , 4 040) ;

2Remember to start the naming server if using UANs in the computation.

18

4.1.3 Referencing Universal Actors

Actor references can be used as the target of message sending expressions or as

arguments of messages. There are three ways to get an actor reference. Two of them,

the return value of actor construction with the new statement and references from

messages, are available in both distributed and concurrent SALSA programming.

A reference to an actor can also be obtained by using the reference statement by

contacting a name server with a known UAN as follows:

AddressBook remoteServ ice =
r e f e r e n c e AddressBook (new UAN("uan://nameserver1/id")) ;

Sometimes an actor wants to know its name or location. An actor can get its

UAN by the method getUAN() and location with the getHost() and getPort()

methods. For example:

UAN selfUAN = this . getUAN () ;
S t r ing s e l fHo s t = this . getHost () ;
int s e l f P o r t = this . getPort () ;

4.1.4 Migration

As mentioned before, only universal actors can migrate. Sending the message

migrate(<host>, <port>) to an universal actor causes it to migrate seamlessly

to the designated location. The name server will be notified to update its entry.

The following example defines the behavior MigrateSelf, that migrates the

MigrateSelf actor to location host1:port1 and then to host2:port2. The migrate

message takes as argument a String specifying the target host and an int specifying

the target port.

module examples ;

behavior Migra t eSe l f {
void act (S t r ing args []) {

i f (args . l ength != 4) {
standardOutput<−p r i n t l n (
"Usage:" +
"javaÃ-Duan=<UAN>Ãexamples.MigrateSelfÃ" +
"<host1>Ã<port1>Ã<host2>Ã<port2>") ;
return ;

}
se l f<−migrate (args [0] , I n t eg e r . pa r s e In t (args [1])) @

19

se l f<−migrate (args [2] , I n t eg e r . pa r s e In t (args [3])) ;
}

}

4.2 The World-Wide Computer (WWC) Architecture

The World-Wide Computer (WWC) consists of instances of two different dae-

mons – theaters and name servers. Theaters are actor execution environments and

that host one to many concurrently running actors. They provide services for actor

migration and remote communication. Name servers handle discovery and lookup

of actors between different theaters.

4.2.1 Theaters

A theater is a daemon that waits for incoming actors and messages and pro-

vides various services for their execution such as remote message passing, migration.

One can start a theater as follows:

java -cp salsa<version>.jar:. salsa lite.wwc.Theater

The above command starts a theater on the default RMSP port 4040. You

can specify another port as follows:

java -cp salsa<version>.jar:. -Dport=4060 salsa lite.wwc.Theater

4.2.2 UANP and Name Servers

One can start a name server as follows:

java -cp salsa<version>.jar:. salsa lite.core.naming.NameServer

The above command starts a name server on the default port 3030. You can

specify another port as follows:

java -cp salsa<version>.jar:. salsa lite.core.naming.NameServer -p

1256

4.3 Running SALSA Applications on the WWC

Whenever a WWC application is executed, a theater is dynamically created

to host the bootstrapping actor of the application and a random port is assigned to

20

the dynamically created theater. A dynamically created theater will be destroyed

if no application actor is hosted at it and no incoming message will be delivered to

the theater.

Now let us consider a WWC application example. Assuming a theater is

running at host1:4040, and a naming service at host2:5555. One can run the

HelloWorld example shown in Section 3.7 at host1:4040 as follows:

java -cp salsa<version>.jar:. -Dactor uan=uan://host2:5555/myhelloworld

-Dactor host=host1 -Dactor port=4040 examples.HelloWorld

As one can see, the standard output of host1 displays ”Hello World”. One

may also find that the application does not terminate. In fact, the reason for non-

termination at the original host is that the application creates a theater and the

theater joins the World-Wide Computer environment. Formally speaking, the ap-

plication does terminate but the initial host becomes a part of the World-Wide

Computer.

4.3.1 AddressBook Example

There are many kinds of practical distributed applications: some are designed

for scientific computation, which may produce a lot of temporary actors for parallel

processing; some are developed for network services, such as a web server, a web

search engine, etc. Useless actors should be reclaimed for memory reuse, while

service-oriented actors must remain available under any circumstance.

Services written in the C or Java programming languages use infinite loops to

listen for requests. A SALSA service can not use this approach because loops inside

a message handler preclude an actor from executing messages in its message box.

Actors with UANs are by default services actors and not reclaimed by the SALSA

runtime, as they can be looked up at any time from remote hosts by their UAN.

The following example illustrates how a service actor is implemented in SALSA.

The example implements a simple address book service. The AddressBook actor

provides the functionality of creating new <name, email> entities, and responding

to end users’ requests. The example defines the addUser message handler which

adds new entries in the database. The example also defines the getEmail message

21

handler which returns an email string providing the user name.

module examples . addressbook ;

import java . u t i l . Hashtable ;
import java . u t i l . Enumeration ;

// Address book implementat ion taken from CORBA examples
// in Sun ’ s Java CORBA Tutor i a l .
//
//
// AddressBook
//
// This behav ior i s r e s p on s i b l e f o r implementing
// th r ee message hand l e r s
//
// ∗ S t r ing getEmai l (S t r ing emai l) ;
// ∗ S t r ing getName (S t r ing name) ;
// ∗ boo lean addUser (S t r ing name , S t r ing emai l) ;
//
//

behavior AddressBook {
private Hashtable name2email ;

AddressBook () {
// Create a new ha sh t a b l e to s t o r e name & emai l
name2email = new Hashtable () ;

}

// Get the name o f t h i s emai l user
St r ing getName (St r ing emai l) {

System . e r r . p r i n t l n ("gettingÃnameÃbyÃemail:Ã" + emai l) ;

i f (name2email . conta in s (emai l)) {
// Begin search f o r t ha t name
Enumeration e = name2email . keys () ;

while (e . hasMoreElements ()) {
St r ing name = (St r ing) e . nextElement () ;
S t r ing e ma i l = (St r ing) name2email . get (name) ;

// Match on emai l ?
i f (emai l . compareTo (e ma i l) == 0) {

return name ;
}

}

22

}
return new St r ing ("UnknownÃuser") ;

}

// Get the emai l o f t h i s person
St r ing getEmail (S t r ing name) {

System . e r r . p r i n t l n ("GettingÃemailÃbyÃname:Ã" + name) ;

// I f user e x i s t s
i f (name2email . containsKey (name)) {

// Return emai l address
return (S t r ing) name2email . get (name) ;

}

// User doesn ’ t e x i s t
return new St r ing ("UnknownÃuser") ;

}

// Add a new user to the system , re turns succe s s
boolean addUser (S t r ing name , S t r ing emai l) {

System . e r r . p r i n t l n ("addedÃuser:Ã" + name + ",Ã" + emai l) ;

// I s the user a l r eady l i s t e d
i f (name2email . containsKey (name) | |

name2email . conta in s (emai l)) {
// I f so , re turn f a l s e
return fa l se ;

}

// Add to our hash t a b l e
name2email . put (name , emai l) ;
return true ;

}

void act (S t r ing args []) {
i f (args . l ength != 0) {

standardOutput<−p r i n t l n ("Usage:ÃjavaÃ-Dactor_uan=<UAN>Ã" +
"-Dactor_host=<host>Ã" +
"-Dactor_port=<port>Ãexamples.addressbook.AddressBook") ;
return ;

}

standardOutput<−p r i n t l n ("AddressBookÃat:Ã") @
standardOutput<−p r i n t l n ("\tuan:Ã" + getUAN()) @
standardOutput<−p r i n t l n ("\thost:Ã" + getHost () + ",Ã" +

"port:Ã" + getPort ()) ;

23

}
}

The AddressBook actor is bound to the UAN, host and port specified in the

command line. This will result in placing the AddressBook actor in the designated

location and notifying the name server.

To be able to contact the AddressBook actor, a client actor first needs to get

the remote reference of the service. The only way to get the reference is using the

reference statement. The example we are going to demonstrate is the AddUser

actor, which communicates with the AddressBook actor to add new entries. Note

that the AddUser actor can be started anywhere on the Internet.

module examples . addressbook ;

behavior AddUser {

void act (S t r ing args []) {
i f (args . l ength != 3) {

standardOutput<−p r i n t l n ("Usage:ÃjavaÃexamples." +
"addressbook.AddUser" +
"Ã<AddressBookUAN >Ã<Name>Ã<Email>") ;
return ;

}
try {

AddressBook book = r e f e r e n c e AddressBook (new UAN(args [0])) ;
book<−addUser (args [1] , a rgs [2]) ;

} catch (Exception e) {
System . e r r . p r i n t l n ("errorÃcreatingÃuan:Ã" + args [0]) ;
System . e r r . p r i n t l n ("\texception:Ã" + e) ;
e . pr intStackTrace () ;
System . e x i t (0) ;

}
}

}

CHAPTER 5

Advanced Concurrency Coordination

This chapter introduces advanced constructs for coordination by using named to-

kens, join block continuations, and message properties.

5.1 Named Tokens

Chapter 3 has introduced token-passing continuations with the reserved key-

word token. This section focuses on another type of continuations, named tokens.

In SALSA, the return value of an asynchronous message can be declared as a

variable of type token. The variable is called a named token. Named tokens allow

token passing continuations greater expressive power, through explicit definition

of token passing. For example, a token-passing continuation statement can be re-

written using named tokens:

// l i n e 1 i s e q u i v a l e n t to l i n e s 2−3
1 . h e l l o () @ standardOutput<−pr in t (token) ;

2 . token x = he l l o () ;
3 . standardOutput<−pr in t (x) ;

Named tokens can be used to construct a non-linear partial order for compu-

tation, which cannot be expressed by token-passing continuations. The following

example cannot be written using only token-passing continuations:

token x = a<−m() ;
token y = b<−o () ;
token z = c<−p () ;

d<−p(x , y) ;
e<−q (y , z) ;
f<−r (x , z) ;

The following example uses name tokens to implement a concurrent, recursive

Fibonacci calculation:

module examples ;

behavior Fibonacc i {

24

25

int n ;

Fibonacc i (int n) { this . n = n ;}

int add (int x , int y) {return x + y ;}

int compute () {
i f (n == 0) return 0 ;
else i f (n <= 2) return 1 ;
else {

Fibonacc i f i b 1 = new Fibonacc i (n−1);
F ibonacc i f i b 2 = new Fibonacc i (n−2);
token x = f ib1<−compute () ;
token y = f ib2<−compute () ;
// us ing name tokens and f i r s t −c l a s s con t inua t i ons
add (x , y) @ currentContinuation ;

}
}

void act (S t r ing args []) {
n = In t eg e r . pa r s e In t (args [0]) ;
// us ing token pass ing con t inua t i ons
compute () @ standardOutput<−p r i n t l n (token) ;

}
}

Named tokens may be assigned to non-primitive type values, message sending

expressions, or other named tokens. Examples are shown as follows:

1 . token y = a<−m1() ;
2 .
3 . token z = y ;
4 .
5 . y = b<−m2(y) ;
6 . se l f<−m() @ c<−m3(token , z , y) ;

The following example shows how to use named tokens. Lines 1-2 are equiva-

lent to lines 3-5 using fewer token declarations:

// l i n e s 1−2 are e q u i v a l e n t to l i n e s 3−5
1 . token x = a<−m1() ;
2 . x = b<−m2(x) ;

3 . token x = a<−m1() ;
4 . token y = b<−m2(x) ;
5 . x = y ;

26

The following example demonstrates how named tokens are used in loops:

1 . token x = a<−m1() ;
2 . for (int i = 0 ; i < 10 ; i++) x = b<−m2(x , i) ;

The previous example is equivalent to the following example:

a<−m1() @
b<−m2(token , 0) @
b<−m2(token , 1) @
b<−m2(token , 2) @
b<−m2(token , 3) @
b<−m2(token , 4) @
b<−m2(token , 5) @
b<−m2(token , 6) @
b<−m2(token , 7) @
b<−m2(token , 8) @
x = b<−m2(token , 9) ;

To learn more about named tokens, we use the following example to illustrate

how the named token declaration works and to prevent confusion:

1 . token x = a<−m1() ;
2 .
3 . for (int j = 0 ; j < 10 ; j++) {
4 . b<−m2(x) ;
5 . x = c<−m3(x) ;
6 . d<−m4(x) ;
7 . }

The token is updated as soon as the code is processed. In the for loop on

lines 3-7, for each iteration of the loop, the value of token x in b<-m2 and c<-m3 is

the same. However, the value of token x in d<-m4 is the token returned by c<-m3,

and thus equal to the value of token x in the message sends on lines 4 and 5 in the

next iteration of the loop.

5.2 Join Block Continuations

Chapter 3 skips some details of join blocks. This section introduces how to

use the return values of statements inside a join block and by implementing message

handlers which can receive the result of a join block.

A join block always returns an Object array if it joins several messages to a

reserved keyword token, or a named token. If those message handlers do not return

27

(ie., they are all a void type return) or the return values are ignored, the join block

functions like a barrier for parallel message processing.

The named token can be applied to the join block as follows:

1 . token x = join {
2 . a<−m1() ;
3 . b<−m2() ;
4 . } ;

The following example illustrates how to access the join block return values

through tokens. In lines 16-20, the message multiply will not be processed until

the three messages add(2,3), add(3,4), and add(2,4) are processed. The token

passed to multiply is an array of Integers generated by the three adds messages.

The message handler multiply(Object numbers[]) in lines 3-7 receives the result

of the join block.

1 . behavior JoinCont inuat ion {
2 .
3 . int mult ip ly (Object numbers []) {
4 . return ((I n t eg e r) numbers [0]) . intValue () ∗
5 . ((I n t eg e r) numbers [1]) . intValue () ∗
6 . ((I n t eg e r) numbers [2]) . intValue () ;
7 . }
8 .
9 . int add (int n1 , int n2) {
10 . return n1 + n2 ;
11 . }
12 .
13 . void act (S t r ing args []) {
14 .
15 . standardOutput<−pr in t ("Value:Ã") @
16 . join {
17 . add (2 , 3) ;
18 . add (3 , 4) ;
19 . add (2 , 4) ;
20 . } @ mult ip ly (token) @ standardOutput<−p r i n t l n (token) ;
21 . }
22 .
23 .}

28

5.3 Message Properties

SALSA 2.0.0alpha provides three message properties that can be used with

message sending: delay, waitfor, and delayWaitfor. The syntax used to assign

to a message a given property is the following, where <property name> can be

either priority, delay, waitfor, and delayWaitfor:

actor<-myMessage:<property name>

5.3.1 Property: delay

The delay property is used to send a message with a given delay. It takes

the delay duration in milliseconds as an argument. The property is usually used as

a loose timer. For instance, the following message awaken will be sent to the book

actor after a delay of 1s.

// The message awaken () w i l l be sen t to Actor book
// a f t e r a de lay o f 1 second .
book<−awaken () : de lay (1000) ;

5.3.2 Property: waitfor

The waitfor property is used to wait for the reception of a token before

sending a message. The property can add variable continuation restrictions dy-

namically, enabling a flexible and-barrier for concurrent execution. The following

example shows that the message compare(b) can be processed by Actor a after

Actors a and b have migrated to the same theater:

token x = a<−migrate ("europa.cs.rpi.edu" , 4 040) ;
token y = b<−migrate ("europa.cs.rpi.edu" , 4 040) ;
a<−compare (b) : wa i t f o r (x , y) ;

5.3.3 Property: delayWaitfor

SALSA 2.0.0alpha does not support multiple properties. delayWaitfor is

a temporary solution to support delay and waitfor in the same message. The

delayWaitfor property takes the first argument as the delay duration in millisec-

onds, and the remainder as tokens. For instance, the message compare(b) can only

be processed by Actor a after Actors a and b have migrated to the same theater

and after a delay of 1 second:

29

// The message compare (b) w i l l be d e l i v e r e d to Actor a
// i f Actors a and b has migrated to the t a r g e t t h e a t e r
// and a f t e r a de lay o f 1 second .
token x = a<−migrate ("europa.cs.rpi.edu" , 4 040) ;
token y = b<−migrate ("europa.cs.rpi.edu" , 4 040) ;
a<−compare (b) : de layWait for (1000 , x , y) ;

LITERATURE CITED

[1] Gul Agha. Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[2] Hewitt, C. Viewing control structures as patterns of passing messages. Journal
of Artificial Intelligence, 8(3):323–364, June 1977.

[3] Carlos A. Varela and Gul Agha. Programming dynamically reconfigurable
open systems with SALSA. ACM SIGPLAN Notices. OOPSLA’2001 ACM
Conference on Object-Oriented Systems, Languages and Applications,
36(12):20–34, December 2001.

30

APPENDIX A

Starting SALSA Applications

In SALSA 2.0.0alpha, theaters have been redesigned to be highly extensible. Cur-

rently, three seperate theater implementations are available depending on the needs

of the application. By default, SALSA applications are run within a WWC Theater,

which enables incoming and outgoing communication to other theaters. However,

if a SALSA application will not be using any remote communication, it can be

run within a local theater (one without any remote communication services) for

improved performance. Additionally, garbage collection via reference counting has

been implemented for local theaters and can be turned on if the SALSA actors

have been compiled using the "-Denable gc" flag. For example, to compile the

HelloWorld actor for use in a local theater with garbage collection:

java -Denable gc salsa lite.core.compiler.SalsaCompiler HelloWorld.java

Remote garbage collection has not yet been implemented in SALSA 2.0.0alpha.

The following system properties can be used when running a SALSA program:

-Dlocal: This will run the program in a local theater without any remote com-

munication services enabled.

-Dlocal gc: If the SALSA actors have been compiled using the "-Denable gc"

flag, they will be run in a local theater with garbage collection.

-Dwwc: This will run the program in a WWC theater (this is the default theater).

-Dport=<port>: This will start a WWC theater listening on the specified port

-Dactor uan=<actor uan>: This will start the SALSA actor with the specified

UAN.

-Dactor host=<host>: This will start the SALSA actor at a theater with the

specified host (if -Dactor port is not specified, 4040 is the default).

31

32

-Dactor port=<port>: This will start the SALSA actor at a theater with the

specified port (-Dactor host must be specified).

System properties are set between the java command and the actor class, for

example:

java -Dwwc -Dport=4141 -Dactor uan="uan://nameserver:3131/helloworld"

examples.helloworld.HelloWorld

Will start a HelloWorld actor in a WWC theater listening on port 4141, and

register the actor with the UAN, "uan://nameserver:3131/helloworld".

APPENDIX B

SALSA Theater Options

There are also many options for running and extending SALSA theaters. In SALSA

2.0.0alpha, the concurrency of a theater is fixed at runtime and is independent of

the number of actors running on it. This allows SALSA programmers to improve

performance of applications by setting the number of threads in a theater to a

quantity suitable to the hardware the theater is running on. Additionally, SALSA

2.0.0alpha uses a set number of ID generation objects to reduce the overhead in

generating unique actor IDs. The following system properties can be set when

running either a SALSA program or a theater:

-Dtsthreads<number of transport service threads>: This specifies the num-

ber of threads used by the transport service to send messages to remote the-

aters. Connections are left open between remote theaters, however only a

number of actors or messages equal to the number of service threads can be in

transit at any one time. Increasing this value may improve the performance

of applications that send many messages or actors simultaneously.

-Dnstages=<number of stages>: This specifies the number of threads used to

process messages by actors. Actors run on a stage, with only one actor pro-

cessing a message on a stage at a time. Typically setting this value large

than the number of processors or cores available on a computer will improve

performance.

-Dnidgens=<number of ID generators>: This specifies the number of ID gener-

ation objects used (the default is 50). Increasing this number may improve

performance with applications that generate large amounts of actors.

B.1 Extending Theaters

SALSA developers may also extend the current SALSA theaters with their

own services. SALSA theaters use the following services:

33

34

ErrorService: This service specifies the standardError actor, which should write

error messages.

OutputService: This service specifies the standardOutput actor, which should

write output messages.

ReceptionService: This service handles incoming communication from other the-

aters.

TransportService: This service handles outgoing communication to other the-

aters.

NamingService: This service handles communication with name servers.

StageService: This service handles the execution of actors and message process-

ing.

GarbageService: This service handles garbage collection.

The interfaces for these services can be found in the salsa/core/services/

directory. For examples of their implementation, local theaters use the following

implementations of these services, which can be set as a group using the "-Dlocal"

or "-Dlocal gc" system properties when running a SALSA actor, and then over-

written individually by changing the given system properties with a new class.

• -Derror="salsa lite.local.LocalErrorService"

• -Doutput="salsa lite.local.LocalOutputService"

• -Dreception="salsa lite.local.LocalReceptionService"

• -Dtransport=null

• -Dnaming=null

• -Dstage="salsa lite.local.LocalStageService"

• -Dgarbage="salsa lite.local gc.LocalGarbageService" – Only if "-Dlocal gc"

is specified, null otherwise.

35

And WWC theaters use the following implementations of the theater services,

which are used by a SALSA actor or WWC theater by default. These can also be

set as a group using the "-Dwwc" system property when running a SALSA actor and

then overwritten individually.

• -Derror="salsa lite.wwc.io.WWCErrorService"

• -Doutput="salsa lite.wwc.io.WWCOutputService"

• -Dreception="salsa lite.wwc.reception.WWCReceptionService"

• -Dtransport="salsa lite.wwc.transport.WWCTransportService"

• -Dnaming="salsa lite.wwc.naming.WWCNamingService"

• -Dstage="salsa lite.wwc.stage.WWCStageService"

• -Dgarbage=null

APPENDIX C

Name Server Options

The name server can be run with several arguments. Running the name server with

the command -h provides all the possible options.

usage:

java salsa lite.core.naming.NameServer

java salsa lite.core.naming.NameServer -h

java salsa lite.core.naming.NameServer -v

java salsa lite.core.naming.NameServer -p portNumber

options:

-h: Print this message.

-v: Print version number.

-p portNumber: Set the listening port to portNumber. Default port

number is 3030.

36

APPENDIX D

Debugging Tips

• Make sure you really understand the actor model, its message passing seman-

tics, and the concurrency coordination abstractions built in SALSA.

• Message passing and remote procedure calls are totally different. A named

token variable does not have the result immediately. It has the result only

after the message gets executed.

• Objects in messages have pass-by-value semantics. This means that object

arguments are cloned and then sent. A latter modification on these object

arguments does not change the objects which were originally sent.

• Since the SALSA compiler does not support type checking in this version,

you may need to go through the Java source code. The code related to your

program is on the bottom of the generated Java source code. Do not try to

modify other parts irrelevant to your SALSA source code.

• Please note that a typo in a message sending statement does not generate

Java or SALSA compile-time errors. You have to be very careful with that.

A run-time error will be generated instead.

• Most people confuse self with this. this means ”this actor”, while self

”the actor reference” pointing to itself. self can only be used as a target of

messages, or an argument to be passed around. this can be used for object

method invocation. To send your references to other actors, use self. Using

this is wrong.

37

APPENDIX E

Learning SALSA by Example Code

One can download the SALSA source code at

http://wcl.cs.rpi.edu/salsa/,

which includes several good examples.

E.1 Package examples

Package examples are useful for learning SALSA. Examples consist of:

• examples.addressbook: The address book example shown in Section 4.3.

• examples.fibonacci: The recursive fibonacci application.

• examples.helloworld: The HelloWorld example.

• examples.migration: An example to show how to migrate an actor.

• examples.trap: This numerical application approximates the integral of a

function over an interval [a, b] by using the trapezoidal approximation.

• examples.matrixmultiply: A matrix maultiply example in SALSA.

• examples.mergesort: An implementation of merge sort algorithm in SALSA.

E.2 Package tests

Package tests is used for testing SALSA, including language and run-time

environment tests.

• tests.language: Tests for SALSA language constructs.

• tests.language.babyfood: Tests for inheritance.

• tests.localgc: Correctness tests for local actor garbage collection.

38

39

• tests.distributed: Correctness tests for distributed actor garbage collec-

tion.

APPENDIX F

History of SALSA

SALSA has been developed since 1998 by Carlos A. Varela, who was a Ph.D. student

directed by Gul Agha at University of Illinois at Urbana-Champaign (UIUC). Dur-

ing the UIUC period, Gregory Haik, a student of Gul Agha, has contributions to the

naming service of the very early SALSA. Carlos A. Varela founded the Worldwide

Computing Laboratory and continued the development of SALSA when he became

a faculty member at Rensselaer Polytechnic Institute in 2001. Many of his stu-

dents have participated in the SALSA project since then, including Wei-Jen Wang,

Travis Desell, Kaoutar El Maghraoui, Jason LaPorte, Abe Stephens, and Robin Toll.

Abe Stephens and Travis Desell were the major contributors of the early version of

SALSA at RPI. They worked together from 2001 until Abe Stephens graduated.

Robin Toll has helped the early SALSA compiler during this period of time. From

2003 to 2004, Travis Desell has committed a thorough change on the early SALSA,

which then became the foundation of the current version of SALSA. Advanced fea-

tures such as message properties, name tokens, and join block continuations were

introduced at that time. Wei-Jen Wang and Kaoutar El Maghraoui joined the

SALSA project since 2003. Kaoutar El Maghraoui has major contributions to the

development of the communication layer of the latest SALSA. Wei-Jen Wang has

been a major developer since 2004. He made another major change on SALSA in

2004 and released it in 2005. He introduced actor garbage collection, fault-tolerance

communication using persistent sockets and messages, actor name deletion support

for naming services, and passing-by-value message delivery. Jason LaPorte joined

the SALSA project in 2006. His contributions relate to the interface between SALSA

and the OverView project. In 2008, Travis Desell completely rewrote SALSA, for

version 2.0. This rewrite focused on improving the performance and lowering the

overhead of SALSA applications, while eliminating deadlocks and allowing for more

flexibility in extending SALSA theaters.

40

APPENDIX G

SALSA Grammar

The SALSA grammar is listed as follows:

CompilationUnit : :=
[ModuleDeclarat ion]
(ImportDec larat ion)∗
Behav io rDec la ra t i onAtt r ibute s
(Behav iorDec larat ion | I n t e r f a c eDe c l a r a t i o n)
<EOF>

ModuleDeclarat ion : :=
"module" Name ";"

ImportDec larat ion : :=
"import" <IDENTIFIER> ("." (<IDENTIFIER> | "*"))∗ ";"

Behav io rDec la ra t i onAtt r ibute s : :=
("abstract" | "public" | "final")∗

I n t e r f a c eDe c l a r a t i o n : :=
"interface" <IDENTIFIER> ["extends" Name] Inter faceBody

Name : :=
<IDENTIFIER> ("." <IDENTIFIER>)∗

Inter faceBody : :=
("{"

(S ta t eVar i ab l eDec l a ra t i on | MethodLookahead ";")∗
"}"

)∗

Behav iorDec larat ion : :=
"behavior" <IDENTIFIER>

["extends" Name]
["implements" Name ("," Name) ∗]
BehaviorBody

MethodLookahead : :=
MethodAttributes (Type | "void")
<IDENTIFIER> FormalParameters
["throws" Except ions]

41

42

BehaviorBody : :=
"{"

(I n i t i a l i z e r | NestedBehaviorDec larat ion |
Sta t eVar i ab l eDec l a ra t i on | MethodDeclaration |
Const ructorDec la rat ion

)∗
"}"

NestedBehaviorAttr ibutes : :=
("abstract" | "public" | "final" | "protected" |
"private" | "static"

)∗

NestedBehaviorDec larat ion : :=
NestedBehaviorAttr ibutes Behav iorDec larat ion

I n i t i a l i z e r : :=
["static"] Block

S ta t eVar i ab l eAt t r i bu t e s : :=
("public" | "protected" | "private" | "volatile" |
"static" | "final" | "transient"

)∗

Sta t eVar i ab l eDec l a ra t i on : :=
Sta t eVar i ab l eAt t r i bu t e s
Type
Var i ab l eDec l a ra t i on
("," Var iab l eDec l a ra t i on)∗ ";"

PrimitiveType : :=
"boolean" | "char" | "byte" | "short" | "int" |
"long" | "float" | "double"

Type : :=
(PrimitiveType | Name) ("[" "]")∗

Var iab l eDec l a ra t i on : :=
<IDENTIFIER> ("[" "]")∗
["=" (Express ion | A r r a y I n i t i a l i z e r)]

A r r a y I n i t i a l i z e r : :=
"{"

[(Express ion | A r r a y I n i t i a l i z e r)
("," (Express ion | A r r a y I n i t i a l i z e r))∗

]

43

"}"

AssignmentOperator : :=
"=" | "*=" | "/=" | "%=" | "+=" | "-=" |
"<<=" | ">>=" | ">>>=" | "&=" | "^=" | "|="

Express ion : :=
Value
(
((Operator | AssignmentOperator) Value) |
("?" Express ion ":" Value)

)∗

Operator : :=
"||" | "&&" | "|" | "^" | "&" | "==" | "!=" |
">" | "<" | "<=" | ">=" | "<<" | ">>" | ">>>" |
"+" | "-" | "*" | "/" | "%" | "instanceof"

Value : :=
[Pr e f i x] Var iab le [S u f f i x] (Pr imarySuf f ix)∗

Pre f i x : :=
"++" | "--" | "~" | "!" | "-"

Su f f i x : :=
"++" | "--"

Var iab le : :=
["(" Type ")"]
(

L i t e r a l | Name | "this" | "super" |
Al loca t i onExpre s s i on | "(" Express ion ")"

)

Pr imarySuf f ix : :=
"." "this" | "." Al loca t i onExpre s s i on |
"[" Express ion "]" | "." <IDENTIFIER> |
Arguments

ResultType : :=
Type | "void"

L i t e r a l : :=
I n t e g e r L i t e r a l | F loa t i n gPo in tL i t e r a l |
Charac t e rL i t e r a l | S t r i n gL i t e r a l |
Boo l eanL i t e ra l | Nu l l L i t e r a l |

44

TokenLitera l

Arguments : :=
"(" [Express ion ("," Express ion) ∗] ")"

Al loca t i onExpre s s i on : :=
"new" PrimitiveType ArrayDimsAndInits |
"new" Name

(ArrayDimsAndInits | (Arguments [BehaviorBody]))
[BindDec larat ion]

BindDec larat ion : :=
"at" "(" Express ion ["," Express ion] ")"

ArrayDimsAndInits : :=
("[" Express ion "]")+ ("[" "]")∗ |
("[" "]")+ A r r a y I n i t i a l i z e r

FormalParameters : :=
"("

[["final"] Type <IDENTIFIER> ("[" "]")∗
("," ["final"] Type <IDENTIFIER> ("[" "]")∗)∗

]
")"

Exp l i c i tCons t ruc to r Invoca t i on : :=
"super" Arguments ";"

Const ructorDec la rat ion : :=
MethodAttributes <IDENTIFIER> FormalParameters
["throws" Except ions]
"{"

[Exp l i c i tCons t ruc to r Invoca t i on] (Statement)∗
"}"

Const ruc to rAtt r ibute s : :=
("public" | "protected" | "private")∗

MethodDeclaration : :=
MethodAttributes
(Type | "void") <IDENTIFIER> FormalParameters
["throws" Except ions] Block

MethodAttributes : :=
("public" | "protected" | "private" | "static" |
"abstract" | "final" | "native"

45

)∗

Except ions : :=
Name ("," Name)∗

Statement : :=
ContinuationStatement |
TokenDeclarationStatement |
Loca lVar i ab l eDec l a ra t i on ";" |
Block |
EmptyStatement |
StatementExpress ion ";" |
LabeledStatement |
SynchronizedStatement |
SwitchStatement |
I fStatement |
WhileStatement |
DoStatement |
ForStatement |
BreakStatement |
ContinueStatement |
ReturnStatement |
ThrowStatement |
TryStatement |
MethodDeclaration |
NestedBehaviorDec larat ion

Block : :=
"{" (Statement)∗ "}"

Loca lVar i ab l eDec l a ra t i on : :=
["final"] Type
Var i ab l eDec l a ra t i on ("," Var iab l eDec l a ra t i on)∗

EmptyStatement : :=
";"

StatementExpress ion : :=
Value [AssignmentOperator Express ion]

LabeledStatement : :=
<IDENTIFIER> ":" Statement

SwitchStatement : :=
"switch" "(" Express ion ")"

"{" (SwitchLabel (Statement)∗)∗ "}"

46

SwitchLabel : :=
"case" Express ion ":" | "default" ":"

I fStatement : :=
"if" "(" Express ion ")" Statement ["else" Statement]

WhileStatement : :=
"while" "(" Express ion ")" Statement

DoStatement : :=
"do" Statement "while" "(" Express ion ")" ";"

For In i t : :=
[Loca lVar i ab l eDec l a ra t i on |

(StatementExpress ion
("," StatementExpress ion)∗

)
]

ForCondition : :=
[Express ion]

ForIncrement : :=
[StatementExpress ion

("," StatementExpress ion)∗
]

ForStatement : :=
"for"

"(" For In i t ";" ForCondition ";" ForIncrement ")"

Statement

BreakStatement : :=
"break" [<IDENTIFIER>] ";"

ContinueStatement : :=
"continue" [<IDENTIFIER>] ";"

ReturnStatement : :=
"return" [Express ion] ";"

ThrowStatement : :=
"throw" Express ion ";"

SynchronizedStatement : :=

47

"synchronized" "(" Express ion ")" Block

TryStatement : :=
"try" Block
(

"catch" "(" ["final"] Type <IDENTIFIER> ")" Block
)∗
["finally" Block]

ContinuationStatement : :=
(MessageStatement "@")∗
(MessageStatement | "currentContinuation") ";"

MessageStatement : :=
[NamedTokenStatement] (MessageSend | JoinBlock)

JoinBlock : :=
"join" Block

NamedTokenStatement : :=
(<IDENTIFIER> | "token" <IDENTIFIER>) "="

MessageSend : :=
[Value "<-"] <IDENTIFIER> MessageArguments
[":" MessageProperty]

MessageProperty : :=
<IDENTIFIER> [Arguments]

MessageArguments : :=
"(" [Express ion ("," Express ion) ∗] ")"

TokenDeclarationStatement : :=
"token" <IDENTIFIER> "=" Express ion ";"

I n t e g e r L i t e r a l : :=
<INTEGER LITERAL>

F loa t i n gPo in tL i t e r a l : :=
<FLOATING POINT LITERAL>

Charac t e rL i t e r a l : :=
<CHARACTER LITERAL>

S t r i n gL i t e r a l : :=
<STRING LITERAL>

48

Boo l eanL i t e ra l : :=
"true" | "false"

Nu l l L i t e r a l : :=
"null"

TokenLitera l : :=
"token"

<IDENTIFIER> : :=
<LETTER> (<LETTER>|<DIGIT>)∗

