
THE SALSA PROGRAMMING LANGUAGE
1.0.2 RELEASE TUTORIAL

By

Worldwide Computing Lab.

Rensselaer Polytechnic Institute
Troy, New York

March 2005

c© Copyright 2005

by

Worldwide Computing Lab.

All Rights Reserved

ii

CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

1. Introduction . 1

1.1 The SALSA Distributed Programming Language 1

1.2 Structure of the Tutorial . 1

2. Actor-Oriented Programming . 3

2.1 The Actor Model . 3

2.2 How SALSA Supports the Actor Model 4

2.3 Beyond the Actor Model . 5

3. Writing Concurrent Programs . 6

3.1 SALSA Language Support for Actor State Modification 6

3.2 Actor Creation . 6

3.3 Message Passing . 7

3.4 Coordinating Concurrency . 8

3.4.1 Token passing continuations 8

3.4.2 Join continuations . 9

3.4.3 First-class continuations . 9

3.5 I/O Actor Access . 10

3.6 Writing Your First SALSA Program 13

3.6.1 Steps to compile and execute your SALSA program 13

3.6.2 Hello World example . 13

3.6.3 Compiling and running Hello World 14

4. Writing Distributed Programs . 16

4.1 Worldwide Computing Model . 16

4.1.1 World-wide computer (WWC) architecture 16

4.1.2 Universal naming - UAN and UAL 17

4.1.3 Actor garbage collection . 18

4.2 How SALSA Supports the Worldwide Computing Model 20

iii

4.2.1 Universal actor creation . 20

4.2.2 Referencing actors . 20

4.2.3 Migration . 21

4.2.4 Service . 22

4.3 Run-Time Support for WWC Application 24

4.3.1 Theaters . 24

4.3.2 Universal naming service . 24

4.3.3 Running an application . 25

4.3.4 Local actor garbage collection 25

4.3.5 Optional distributed garbage collection service 25

5. Advanced Concurrency Coordination . 27

5.1 Named Tokens . 27

5.2 Join Continuations . 28

5.3 Message Properties . 30

5.3.1 Property: priority . 30

5.3.2 Property: delay . 30

5.3.3 Property: waitfor . 30

5.3.4 Property: delayWaitfor . 31

LITERATURE CITED . 32

APPENDICES

A. Name Server Options and System Properties 33

A.1 Name Server Options . 33

A.2 System Properties . 33

B. Debugging Tips . 35

C. Learning SALSA by Example Code . 36

C.1 Package examples . 36

C.2 Package tests . 37

D. SALSA GRAMMAR . 38

iv

LIST OF TABLES

3.1 Steps to Compile and Execute Your SALSA Program. 13

4.1 UAL and UAN. 17

v

LIST OF FIGURES

2.1 Actors are reactive entities. In response to a message, an actor can (1)
change its internal state, (2) create new actors, (3) send messages to
peer actors, and/or (4) migrate to another computing host. 4

vi

CHAPTER 1

Introduction

1.1 The SALSA Distributed Programming Language

With the emergence of Internet and mobile computing, a wide range of Internet

applications have placed new demands and challenges such as openness, portabil-

ity, ability to adapt quickly to changing execution environments, and highly dy-

namic reconfiguration. Current programming languages and systems lack support

for dynamic reconfiguration of applications, where application entities get moved to

different processing nodes at run-time.

Java has provided a lot of support to dynamic web content through applets,

network class loading, bytecode verification, security, and multi-platform compat-

ibility. Moreover, Java is a good framework for distributed Internet program-

ming because of its standardized representation of objects and serialization support.

Some of the important libraries that provide support for Internet computing are:

java.rmi for remote method invocation, java.reflection for run-time introspec-

tion, java.io for serialization, and java.net for sockets, datagrams, and URLs.

SALSA (Simple Actor Language, System and Architecture) is an actor-oriented

programming language designed and implemented to introduce the benefits of the

actor model while keeping the advantages of object-oriented programming. Abstrac-

tions include active objects, asynchronous message passing, universal naming, migra-

tion, and advanced coordination constructs for concurrency. SALSA is pre-processed

into Java and hence preserves many of Java’s useful object oriented concepts- mainly,

encapsulation, inheritance, and polymorphism. SALSA abstractions enable the de-

velopment of dynamically reconfigurable applications. A SALSA program consists

of universal actors that can ne migrated to distributed nodes at run-time.

1.2 Structure of the Tutorial

This tutorial covers basic concepts of SALSA and illustrates its concurrency

and distribution models through several examples. Chapter 2 introduces the actor

1

2

model and how SALSA supports it. Chapter 3 introduces concurrent programming

in SALSA, including token-passing continuations, join continuations, and first-class

continuations.Chapter 4 discusses SALSA’s support for distributed computing in-

cluding asynchronous message sending, universal naming, and migration. Chapter 5

introduces several advanced coordination constructs and how they can be coded in

SALSA. Appendix A introduces how to specify name server options and how to run

applications with different system properties. Appendix B provides debugging tips

for SALSA programs. Appendix C provides brief descriptions of SALSA example

programs. Appendix D lists the SALSA grammar.

CHAPTER 2

Actor-Oriented Programming

SALSA is an actor-oriented programming language. This chapter starts first by

giving a brief overview of the actor model. Section 2 illustrates how SALSA supports

the actor model.

2.1 The Actor Model

Actors [1] provide a flexible model of concurrency for open distributed sys-

tems. Actors can be used to model traditional functional, procedural, or object

oriented systems. Actors are independent, concurrent entities that communicate by

exchanging messages asynchronously. Each actor encapsulates a state and a thread

of control that manipulates this state. In response to a message, an actor may

perform one of the following actions (see Figure 2.1):

• Alter its current state, possibly changing its future behavior.

• Send messages to other actors asynchronously.

• Create new actors with a specified behavior.

• Migrate to another computing host.

Actors receive messages not necessarily in the same order that they were sent.

All the received messages are initially buffered in the receiving actor’s message box

before being processed. Communication between actors is weakly fair: an actor

infinitely often ready to receive a message will eventually get it. An actor can in-

teract with another actor only if it has a reference to it. Actor references are first

class entities. They can be communicated in messages to allow for arbitrary actor

communication topologies. Because actors can create arbitrarily new actors, the

model supports unbounded concurrency. Furthermore, because actors only com-

municate through asynchronous message passing, in particular because there is no

shared memory, actor systems are highly reconfigurable.

3

4

Internal variables

Message handlers

State

Message boxMessage

Thread of control

Int a, b;
.......

void m() {
 a=1; b=a+1;
}

(1)

Actor

(2)

(3)

Message

Internal variables

Message handlers

State

Message boxMessage

Thread of control

Int a, b;
.......

void m() {
 a=1; b=a+1;
}

(1)

Actor

(2)
(3)

Internal variables

Message handlers

State

Message boxMessage

Thread of control

Int a, b;
.......

void m() {
 a=1; b=a+1;
}

(1)

Actor

(2)
(3)

(4)

Node 2

Node 1

Figure 2.1: Actors are reactive entities. In response to a message, an ac-
tor can (1) change its internal state, (2) create new actors, (3)
send messages to peer actors, and/or (4) migrate to another
computing host.

2.2 How SALSA Supports the Actor Model

SALSA programmers write behaviors which include encapsulated state and

message handlers for actor instances:

• New actors get created in SALSA by instantiating particular behaviors (with

the new ketword). Creating a actor returns its reference.

• The message operator (<-) is used to send messages to actors; messages con-

tain a name that refers to the message handler for the message and optionally

5

a list of arguments.

• Actors, once created, process incoming messages, one at a time.

2.3 Beyond the Actor Model

While SALSA supports the actor model, it goes further in prvoding liguistic

abstractions for common coordination patterns in concurrent and distributed appli-

cations. For concurrency, it provides token passing continuations, join continuations,

first-class continuations, named tokens, and message properties. For distribution,

it provides universal naming abstractions, location-transparent remote communica-

tion, and migration support. Furthermore, SALSA provides automatic local and

distributed garbage collection.

CHAPTER 3

Writing Concurrent Programs

This chapter introduces the basic concepts of SALSA programming, mainly about

concurrency coordination. Basic knowledge of Java programming is required.

3.1 SALSA Language Support for Actor State Modification

SALSA is a dialect of Java, and it is intended to reuse as many features of Java

as possible. SALSA actors can contain internal state in the form of Java objects or

primitive types. However, it is important that this internal state must be completely

encapsulated, that is, not shared with other actors. It is also important that the

internal state be serializable. 1

The following piece of code illustrates how the internal state is modified, as

follows:

behavior t e s t {
I n t eg e r a ;
int b ;

void act (S t r ing [] args) {
a=new I n t eg e r (3) ;
b=a . in tValue ()+2;

}
}

3.2 Actor Creation

The actor reference is one of the main new primitive values of SALSA. There

are three approaches to get an actor reference: either by actor creation statement,

the getReferenceByName() function, or passed arguments from messages. This

section only concentrates on actor creation and reference passing.

Writing a constructor and constructing an actor in SALSA programming is

similar to object construction in Java programming. For instance, one can declare

1SALSA, as of version 1.1.0, does not enforce state encapsulation and serializability. This
discipline needs to be followed by programmers, especially for distributed applications.

6

7

the HelloWorld actor as follows:

// An ac tor r e f e r enc e wi th type HelloWorld
HelloWorld myRef ;

To create an actor instance and return a reference to myRef, one can write

code as follows:

// Assume the cons t ruc tor o f Hel loWorld i s :
// pu b l i c Hel loWorld () {}
myRef = new HelloWorld () ;

In SALSA, actor references are passed by reference, while object variables by

value. No shared memory is possible among actors.

3.3 Message Passing

To achieve more parallelism, SALSA uses message passing. A SALSA method

is named a message handler.

Message passing in SALSA is implemented by asynchronous message delivery

with dynamic method invocation. The following example shows how an actor sends

a message to itself. Note that it is not a JAVA method invocation:

handler () ; // e q u i v a l e n t to ” s e l f <− handler () ; ”

Another type of message passing statement requires a target (an actor refer-

ence), a reserved key word <-, and a message handler with arguments to be sent.

For instance, an actor can send a message to the standardOutput actor as follows:

// send a method p r i n t l n () wi th an argument ”He l l o World” ,
// to the ac tor standardOutput .
standardOutput <− p r i n t l n ("Hello World") ;

Note that the following expression is illegal because it is neither a JAVA

method invocation nor a message passing:

// Wrong ! I t does not compi le ! ! !
s e l f <− someObject . someHandler () ;

To avoid unexpected race conditions by accessing the passed arguments, mes-

sages of SALSA enforces pass-by-value for every object, and pass-by-reference for

every actor. Any object passed as an argument is cloned at the moment it is sent,

and the cloned object is then sent to the target actor.

8

3.4 Coordinating Concurrency

SALSA provides three approaches to coordinate behaviors of actors: token

passing continuations, join continuations, and first-class continuations.

3.4.1 Token passing continuations

Token passing continuations are designed for specify the order of message

processing. The reserved keyword ’@’ is used to group messages and assigns the

execution order to each of them. For instance, the following example forces the

standardOutput actor, a predefined system actor for output, to print out ”Hello

World”:

standardOutput <− p r i n t ("Hello ") @
standardOutput <− p r i n t ("World") ;

If a programmer uses ’;’ instead of ’@’, SALSA does not guarantee that the

standardOutput actor can print out ”Hello World”. It is possible to have the result

”WorldHello ”. The following example shows the non-deterministic case:

standardOutput <− p r i n t ("Hello ") ;
standardOutput <− p r i n t ("World") ;

A SALSA message handler can return a value, and the value can be accessed

through a reserved keyword ’token’, specified in one of the arguments of the next

grouped message. For instance, assuming there exists a user-defined message han-

dler, returnHello(), which returns a string ”Hello”. The following example prints

out ”Hello” to the standard output:

// re tu rnHe l l o () i s de f ined as the f o l l ow s :
// S t r ing re tu rnHe l l o () { re turn ”He l l o ” ;}
r e tu rnHe l l o () @ standardOutput <− p r i n t l n (token) ;

Again, assuming another user-defined message handler combineStrings() ac-

cepts two input Strings and returns a combined string of the inputs, the following

example prints out ”Hello World” to the standard ouput:

// combineStr ings () i s de f ined as f o l l ow s :
// S t r ing combineStr ings (S t r ing s tr1 , S t r ing s t r 2)
// { re turn s t r 1+s t r2 ;}
r e tu rnHe l l o () @
combineStr ings (token , " World") @
standardOutput <− p r i n t l n (token) ;

9

Note that the first token refers to the return value of returnHello(), and the

second token refers to that of combineStrings(token, " World").

3.4.2 Join continuations

The previous sub-section has illustrated how token passing continuations work

in message passing. This sub-section introduces join continuations which can specify

the barrier of parallel processing and join the results in the next message following

by @. A join continuation has a scope (or block) starting at ”{join” and ending

with ”}”. Every message inside the block must be executed, and then the next

message, followed by @, can be started for execution. For instance, the following

example shows either ”Hello world SALSA” or ”WorldHello SALSA”:

join {
standardOutput <− p r i n t ("Hello ") ;
standardOutput <− p r i n t ("World") ;

} @ standardOutput <− p r i n t l n (" SALSA") ;

Using the return token of the join block is much more complicated. It is

explained in the Chapter 5.

3.4.3 First-class continuations

The purpose of the first-class continuations is to delegate computation to a

third party, enabling dynamic replacement or expansion of messages grouped by

token passing continuations. First-class continuations are very useful for writing

a recursive continuation code. In SALSA, the keyword currentContinuation is

reserved for first-class continuations. To explain the effect of first-class continua-

tions, we use two examples, with and without it, to show the difference. In the first

example, statement 1 prints out ”Hello World SALSA”:

//The f i r s t example o f usning Firs t−Class Continuation
. . .
void saySomething () {

standardOutput <− p r i n t ("Hello ") @
standardOutput <− p r i n t ("World ") @
currentContinuation ;

}
. . . .
// s tatement 1 in some method .

10

saySomething () @ standardOutput <− p r i n t ("SALSA") ;

In the following (the second) example, statement 2 may generate a different

result from statement 1. It prints out either ”Hello World SALSA”, or ”SALSAHello

World ”.

// The second example − without Firs t−Class Continuation
// s tatement 2 may produce a d i f f e r e n t r e s u l t from
// tha t o f s ta tement 1 .
. . .
void saySomething () {

standardOutput <− p r i n t ("Hello ") @
standardOutput <− p r i n t ("World ") ;

}
. . . .
// s tatement 2 i n s i d e some method :
saySomething () @ standardOutput <− p r i n t ("SALSA") ;

The keyword currentContinuation has another impact on message passing

- the control of execution returns immediately after processing it. Any code after

it is meaningless. For instance, the following piece of code always prints out ”Hello

World”, but ”SALSA” never gets printed:

// The t h i r d example − with Firs t−Class Continuation
// One shou ld see ”He l l o World” in the standard output
// a f t e r s tatement 3 i s t o t a l l y executed .
. . .
void saySomething () {

boolean alwaysTrue=true ;
i f (alwaysTrue) {

standardOutput <− p r i n t ("Hello ") @
standardOutput <− p r i n t ("World ") @
currentContinuation ;

}
standardOutput<−p r i n t l n ("SALSA") ;

}
. . . .
// s tatement 3 i n s i d e some method :
saySomething () @ standardOutput <− p r i n t l n () ;

3.5 I/O Actor Access

SALSA provides three kinds of I/O actors to support asynchronous I/O ac-

cesses. One of them is an input service (standardInput), and two are output

11

services (standardOutput and standardError). Since they are actors, only asyn-

chronous accesses are possible.

standardOutput provides the following message handlers:

• print(boolean p)

• print(byte p)

• print(char p)

• print(double p)

• print(float p)

• print(int p)

• print(long p)

• print(Object p)

• print(short p)

• println(boolean p)

• println(byte p)

• println(char p)

• println(double p)

• println(float p)

• println(int p)

• println(long p)

• println(Object p)

• println(short p)

• println()

12

standardError provides the following message handlers:

• print(boolean p)

• print(byte p)

• print(char p)

• print(double p)

• print(float p)

• print(int p)

• print(long p)

• print(Object p)

• print(short p)

• println(boolean p)

• println(byte p)

• println(char p)

• println(double p)

• println(float p)

• println(int p)

• println(long p)

• println(Object p)

• println(short p)

• println()

standardInput provides only one message handler in current SALSA release:

• String readLine()

13

Table 3.1: Steps to Compile and Execute Your SALSA Program.

Step What to DO Actual Action Taken

1 Create a SALSA program: Write your SALSA code
myProgram.salsa

2 Use the SALSA compiler to salsac.SalsaCompiler
generate a Java source file: myProgram.salsa
myProgram.java

3 Use a Java compiler to javac myProgram.java
generate the Java bytecode:
myProgram.class

4 Run your program using the java myProgram
Java Virtual Machine

3.6 Writing Your First SALSA Program

This section demonstrates how to write, compile, and execute your SALSA

program

3.6.1 Steps to compile and execute your SALSA program

SALSA hides many of the details involved in developing distributed open sys-

tems. SALSA programs are preprocessed into Java source code. The generated

Java code uses a library that supports all the actor’s primitives- mainly creation,

migration, and communication. Any java compiler can then be used to convert the

generated code into java byte code ready to be executed on any virtual machine

implementation (see Table 3.1).

3.6.2 Hello World example

The following piece of code is the SALSA version of Hello World program:

1 . /∗ HelloWorld . s a l s a ∗/
2 . module examples ;
3 . behavior HelloWorld {
4 . void act (S t r ing [] arguments) {
5 . standardOutput<−p r i n t ("Hello")@
6 . standardOutput<−p r i n t ("World!") ;
7 . }
8 . }

14

Let us go step by step through the code of the HelloWorld.salsa program:

The first line is a comment. SALSA is very similar to Java and you will notice

it uses the style of java programming. The module keyword is similar to the package

keyword in java. A module is a collection of related actor behaviors. A module can

group several actor interfaces and behaviors. Line 4 starts the definition of the

act message handler. In fact, every SALSA application must contain the following

signature if it does have an act message handler:

void act (S t r ing [] arguments)

When a SALSA application is executed, an actor with the specified behavior

is created and an act message is sent to it by the runtime environment. The act

message is used as a bootstrap mechanism for SALSA programs. It is analogous to

the java main method invocation.

In lines 5 and 6, two messages are sent to the standardOutput actor. The

arrow (<-) indicated message sending to an actor (in this case, the standardOutput

actor). To guarantee that the messages are received in the same order they were

sent, the @ sign is used to enforce the world message to be sent only after the hello

message has been processed. This is referred to as token-passing continuation.

3.6.3 Compiling and running Hello World

• Download the latest version of SALSA. You will find the latest release in this

URL: http://www.cs.rpi.edu/wwc/salsa/index.html

• Create a directory called examples and save the HelloWorld.salsa program

inside it. You can use any simple text editor or java editor to write your

SALSA programs. Note that SALSA modules are similar to java packages.

So you have to respect the directory structure when working with modules as

you do when working with packages in Java.

• Compile the SALSA source file into a java source file using the SALSA com-

piler. It is recommended to include SALSA jar file in your class path. Al-

ternatively you can use -cp to specify its path in the command line. If you

are using MS Windows use semi-colon (;) as a class path delimiter, if you are

15

using just about anything else, use colon (:).

java -cp salsa<version>.jar:. salsac.SalsaCompiler examples/*.salsa

• Use any java compiler to compile the generated java file. Make sure to specify

the SALSA class path using -classpath if you have not included already in

your path.

javac -classpath salsa<version>.jar:. examples/*.java

• Execute your program

java -cp salsa<version>.jar:. examples.HelloWorld

CHAPTER 4

Writing Distributed Programs

Distributed SALSA programming involves universal naming, theaters, service ac-

tors, migration, and concurrency control. This chapter introduces how to write and

run a distributed SALSA program.

4.1 Worldwide Computing Model

Worldwide computing is an emerging discipline with the goal of turning the

web into a unified distributed computing infrastructure. Worldwide computing tries

to harness underutilized resources in the web by providing to various internet users, a

unified interface that allows them to distribute their computation in a global fashion

without having to worry about where resources are located and what platforms

are being used. Worldwide computing is based on the actor model of concurrent

computation and implements several strategies for distributed computation such

as universal naming, message passing, and migration. This section introduces the

Worldwide computing model and how it is supported by SALSA.

4.1.1 World-wide computer (WWC) architecture

The world-wide computer is a set of virtual machines, or theaters that host one

to many concurrently running universal actors. Theaters provide a layer beneath

actors for message passing and remote communication. Every theater consists of a

RMSP (Remote Message Sending Protocol) server, a local cache that maps between

actors’ names and their current locations, a registry that maps between local actor

references their names, and a runtime environment. The RMSP server runs forever

listening for incoming requests from remote actors and starting multiples threads to

handle incoming requests simultaneously.

The world-wide computer (WWC) consists of the following key components:

• Universal naming

16

17

Table 4.1: UAL and UAN.

TYPE EXAMPLE

URL http://www.cs.rpi.edu/wwc/
UAN uan://io.wcl.cs.rpi.edu:3000/myName
UAL rmsp://io.wcl.cs.rpi.edu:4000/myLocator

• Run-time environment.

• Remote communication Protocol

• Migration support

• Actor garbage collection

4.1.2 Universal naming - UAN and UAL

Universal naming allows actors to become universal actors. Universal actors

have the ability of migration, while anonymous actors don’t. Service actors are a

special kind of universal actors, which grant universally accessing privileges to every

actor and never get collected by actor garbage collector.

Every universal actor has a Universal Actor Name (UAN), and a Universal

Actor Locator (UAL). The UAN is a unique name that identifies the actor through

its lifetime. The UAL represents the location where the actor is currently running.

While the UAN never changes throughout the lifetime of a universal actor, its UAL

changes as it migrates from one location to another. The format of UAN and UAL

follow the URI syntax. They are similar in format to a URL (see Table 4.1).

UAN: The first item of the UAN specifies the name of the protocol used; the

second item specifies the name and port number of the machine where the Naming

Server resides. This name is usually a name that can be decoded by a domain name

server. You can also use the IP of the machine. But this is a practice that should

be avoided. The last item specifies the name of the actor. If a port number is not

specified, the default port number (3030) of the name server is used.

UAL: The first item specifies the protocol used for remote message sending.

The second item indicates the theater’s machine name and port number. If no port

18

is indicated, a random port is used. The last part specifies the location name of the

actor in the given theater.

SALSA naming scheme has been designed in such a way to satisfy the following

requirements:

• Platform independence: names should appear coherent on all nodes indepen-

dent of the underlying architecture.

• Scalability of name space management

• Transparent actor migration

• Openness by allowing unanticipated actor reference creation and protocols

that provide access through names

• Both human and computer readability.

4.1.3 Actor garbage collection

Actor garbage collection is the mechanism to reclaim useless actors. A system

eventually fails because of the memory leakage, resulted by useless actors. Manual

management of actor garbage collection is error-prone and always reduces program-

mers’ throughput, which introduces the idea of automatic garbage collection.

Many object-oriented programming languages support automatic garbage col-

lection, such as Smalltalk, Scheme, Java, ... etc. Unfortunately, these garbage

collection algorithms cannot be used for actor garbage collection directly, because

each actor has a thread of control encapsulated in it. An actor can create or delete

references to other actors, while an object cannot. The thread of control results in

the essential difference of actor garbage collection and object garbage collection.

To formally define garbage actors, we have to clarify the concept of the root

set of actors. The root set of actors cannot be reclaimed due to its nature. The root

set of actors are:

• human beings (communicated by I/O channels),

• I/O devices such as sensors, disks, ...etc, or

19

• user-defined services which never terminate or use manual actor management.

The root set of actors are definately live. Live actors are those which can

potentially communicate with the root set of actors. A garbage actor is one which

has all the following properties:

• It does not belong to the root set.

• It cannot potentially send messages to the root set.

• It cannot potentially receive messages from any of the root set.

The difficulty of local actor garbage collection is to get a consistent global state

and minimize the penalty of actor garbage collection. The easiest approach for actor

garbage collection is stop-the-world: no computation is allowed during actor garbage

collection. There are two major drawbacks of this approach, the waiting time for

message clearance and parallelism degrading (only the garbage collector is running

and all actors are waiting).

A better solution for local actor garbage collection is to use a snapshot-based

algorithm, which can alleviate parallelism degrading and does not require the wait-

ing time for message clearance. SALSA uses a snapshot based algorithm, together

with the SALSA two-pahse reference exchanging protocol and the SALSA asyn-

chronous message acknowledgement protocol, in order to get a meaningful global

state. The above two protocols are together named the SALSA garbage detection

protocol. A SALSA local garbage collector uses the meaningful global snapshot to

identify garbage actors.

Distributed actor garbage collection is much more complicated because of the

mobility of actors, the difficulty of recording a meaningful global state of the dis-

tributed system, and the independent execution of the distributed and local garbage

collection. The SALSA garbage detection protocol and the local actor garbage col-

lectors help simplify the problem - they can handle acyclic distributed garbage and

all local garbage.

The current SALSA distributed actor garbage collector is implemented as a

logically centralized service. It is not a required service. When it is triggered to

20

manage several hosts, it coordinates the local collectors to get a meaningful global

snapshot. Actors referenced by those outside the selected hosts are never collected.

The task of identifying garbage is done in the logically centralized service. Once

garbage is identified, a garbage list is then sent to every participated hosts.

The next version of SALSA will provide two different types of distributed

garbage collectors: the hierarchical centralized service, and the distributed garbage-

identifying collector.

4.2 How SALSA Supports the Worldwide Computing Model

This section demonstrates how to write a distributed SALSA program and run

it in the world-wide computer.

4.2.1 Universal actor creation

A universal actor can be created at any desired theater by specifying its UAL

and UAN. 2 For instance, one can create a universal actor at current host as follows:

HelloWorld hel loWorld = new HelloWorld ()
at (new UAN("uan://nameserver/id") , null) ;

A universal actor can be created at the remote theater, hosting at host1:4040,

by the following statement:

HelloWorld hel loWorld = new HelloWorld ()
at (new UAN("uan://nameserver/id") ,

new UAL("rmsp://host1:4040/id")) ;

An anonymous actor can be created as follows:

HelloWorld hel loWorld = new HelloWorld ()
at (null , null) ;

4.2.2 Referencing actors

Actor references can be used as the target of message sending or arguments

of messages. There are three ways to get actor references. Two of them, the return

value of actor creation and references from message, are available in both distributed

and concurrent SALSA programming. The last one, getReferenceByName(), is an

2Remember to start the naming server if UANs are involved in the computing.

21

explicit approach that translates a string or a UAN into a reference. In SALSA,

only references of service actors should be obtained from this function. Otherwise,

SALSA does not guarantee the safety property of actor garbage collection, which

means one can get a phantom reference (a reference pointing to nothing). The way

to get a reference by getReferenceByName() is shown as follows:

AddressBook remoteSVC= (AddressBook)
AddressBook . getReferenceByName ("uan://nameserver1/id") ;

The other approach to get a reference by getReferenceByName() is to use

ActorReference:

ActorReference remoteSVC= ActorReference . getReferenceByName (
"uan://nameserver1/id") ;

Sometimes an actor wants to know who or where it is. An actor can get its

UAL (where) by the function getUAL() and UAN (who) by getUAN().

4.2.3 Migration

As mentioned before, only universal actors can migrate. Sending the message

”migrate” to an universal actor causes it to migrate seamlessly to the designated

location. Its UAL will be changed and the Naming server will be notified to update

its entry.

The following example defines the behavior MigrateSelf, that migrates the

MigrateSelf actor to location UAL1 and then to UAL2. The migrate message

takes as argument a string specifying the target UAL or it can take the object

UAL("UAL string").

module examples ;

behavior MigrateSe l f {
void act (S t r ing args []) {

i f (args . l ength != 2) {
standardOutput<−p r i n t l n (
"Usage:" +
"java -Duan=<UAN> examples.MigrateSelf <UAL1> <UAL2>") ;
return ;

}
se l f<−migrate (args [0]) @
se l f<−migrate (args [1]) ;

}

22

}

4.2.4 Service

There are many kinds of practical distributed applications: some are designed

for scientific computation, which may produce a lot of temporary actors for parallel

processing; some are developed for services, such as the web server, the web search

engine, ... etc. Useless actors should be reclaimed for memory reuse, while service-

oriented actors must remain available under any circumstance.

The most important reason for reclamation of useless actors is to avoid memory

leakage. For example, by running the HelloWorld actor (shown in Section 3.6) in

the world-wide computer, the world-wide computer must be able to reclaim this

actor after it prints out ”Hello World”. Reclamation of actors is formally named

actor garbage collection.

Reclamation of useless actors introduces a new problem: how to support non-

collectable service-oriented actors in language level. This is important because a

service-oriented actor cannot be reclaimed even if it is idle. For instance, a web

service should always wait for requests. Reclamation of an idle service is wrong.

A service written by C or Java programming language uses loops to listen re-

quests, preventing termination of it. A SALSA service should not use this approach

because loops preclude an actor from executing messages. The way SALSA keeps

a service actor alive is by specifying it in language level - a SALSA service actor

must implement the interface ActorService to tell the actor garbage collector not

to collect it.

The following example illustrates how a service actor is implemented and how

message passing is used in SALSA. The example implements a simple address book.

The AddressBook actor provides the functionality of creating new <name, email>

entities, and responding to end users’ requests. The example defines the AddUser

behavior, which communicates with the AddressBook to add new entries in the

database.

module examples ;

import java . u t i l . Hashtable ;

23

import java . u t i l . Enumeration ;

behavior AddressBook implements ActorServ ice {
private Hashtable name2email ;

AddressBook () {
// Create a new hash t ab l e to s t o r e name & emai l
name2email = new Hashtable () ;

}

// Add a new user to the system , re tu rns succe s s
boolean addUser (S t r ing name , S t r ing emai l) {

// I s the user a l r eady l i s t e d
i f (name2email . containsKey (name) | |

name2email . con ta in s (emai l)) {
return fa l se ;

}
// Add to our hash t a b l e
name2email . put (name , emai l) ;
return true ;

}

void act (S t r ing args []) {
try{

i f (args . l ength != 0) {
standardOutput<−p r i n t l n (
"Usage:" +
"java -Duan=<UAN> -Dual=<UAL> examples.AddressBook") ;
return ;

}
} catch (Exception e) {

standardOutput<−p r i n t l n ("AddressBook at: ") @
standardOutput<−p r i n t l n ("uan: " + getUAN ()) @
standardOutput<−p r i n t l n ("ual: " + getUAL ()) ;

}
}

}

The AddressBook actor is bound to the UAN and UAL pair. This will result in

placing the AddressBook actor in the designated location and notifying the Naming

server.

To be able to contact the AddressBook actor, a client actor first needs to

get the remote reference of the service. The only way to get the reference is by the

message handler getReferenceByName(). The example we are going to demonstrate

24

is the AddUser actor, which communicates with the AddressBook actor to add new

entries. Note that the AddUser actor can be started anywhere.

module examples ;

behavior AddUser {
void act (S t r ing args []) {

i f (args . l ength != 3) {
standardOutput<−p r i n t l n (
"Usage:" +
"java examples.AddUser <targetUAN> <Name> <Email>") ;
return ;

}
AddressBook book =

(AddressBook) AddressBook . getReferenceByName (
new UAN(args [0])) ;

book<−addUser (args [1] , args [2]) ;
}

}

4.3 Run-Time Support for WWC Application

The section demonstrates how to start theaters, the naming service, and the

optional distributed actor garbage collection service. It also demonstrates how to

observe and stop the local actor garbage collection.

4.3.1 Theaters

One can start a theater as follows:

java -cp salsa<version>.jar:. wwc.messaging.Theater

The above command starts a theater on the default RMSP port 4040. You

can specify another port as follows:

java -cp salsa<version>.jar:. wwc.messaging.Theater 4060

4.3.2 Universal naming service

The UANP is a protocol that defines how to interact with the WWC naming

service. Similar to HTTP, UANP is text-based and defines methods that allow ac-

tors’ names lookup, updates, and deletions. UANP operates over TCP connections,

usually the port 3030. This port can be overwritten by another port number.

25

Every theater maintains a local registry where actors’ locations are cached for

faster future access. One can start a naming service as follows:

java -cp salsa<version>.jar:. wwc.naming.WWCNamingServer

The above command starts a naming service on the default port 3030. You

can specify another port as follows:

java -cp salsa<version>.jar:. wwc.naming.WWCNamingServer -p

1256

4.3.3 Running an application

Assuming a theater is running at host1:4040, and a naming service at host2:5555.

One can run the HelloWorld example shown in Section 3.6) at host1:4040 as fol-

lows:

java -cp salsa<version>.jar:. -Duan=uan://host2:5555/myhelloworld

-Dual=rmsp://host1:4040/myaddr examples.HelloWorld

As one can see, the standard output of host1 prints out ”Hello World”. One

may also find that the application does not terminate. In fact, the reason for non-

termination at the original host is that the application creates a theater and the

theater joins the world-wide computer environment. Formally speaking, the appli-

cation does terminate but the host to begin with becomes a part of the world-wide

computer.

4.3.4 Local actor garbage collection

One can observe the behavior of the local actor garbage collector by specifying

the runtime environment options -Dgcverbose -Dnodie as follows:

java -cp salsa<version>.jar:. -Dgcverbose -Dnodie examples.HelloWorld

To start a theater without running the local actor garbage collection, one can

use the option -Dnogc as follows:

java -cp salsa<version>.jar:. -Dnogc examples.HelloWorld

4.3.5 Optional distributed garbage collection service

A distributed garbage collection service collects garbage for selected hosts

(theaters). It can collect distributed acyclic garbage much faster than local collectors

26

do. Furthermore, It can collect distributed cyclic garbage in the selected hosts, while

local collectors cannot. To run the distributed garbage collection once, one can use

the command as follows:

java -cp salsa<version>.jar:. gc.serverGC.SServerPRID -1 <host1>

<host2>

To run it every n seconds, use:

java -cp salsa<version>.jar:. java gc.serverGC.SServerPRID <n>

<host1> <host2>

Note that n must be large enough because the distributed collector is poorly

implemented. The performance will be improved in the next version of SALSA.

CHAPTER 5

Advanced Concurrency Coordination

This chapter introduces concepts of coordination by using named tokens, token

continuations of join blocks, and message properties.

5.1 Named Tokens

Chapter 3 has introduced token continuations with the reserved keyword token.

In this section, we will focus on the other type of token continuations, the named

tokens.

In SALSA, the return value of the asynchronous message can be declared as

a variable with type token. The variable is called the named token. Named tokens

are designed to tell the SALSA run-time environment that how the continuations

work.

Named tokens may be assigned to non-primitive type values, message sending

expressions, or other named tokens. Examples are shown as follows:

1 . token y = a<−m1() ;
2 .
3 . token z = y ;
4 .
5 . y = b<−m2(y) ;
6 . se l f<−m()@c<−m3(token , z , y) ;

The following example shows how to use named tokens. Lines 1-2 are equiva-

lent to lines 3-5, and lines 1-2 uses a few token declarations, as follows:

// l i n e s 1−2 are e q u i v a l e n t to l i n e s 3−5
1 . token x = a<−m1() ;
2 . x = b<−m2(x) ;

3 . token x = a<−m1() ;
4 . token y = b<−m2(x) ;
5 . x = y ;

The following example demonstrates how named tokens are used in loops, as

follows:

27

28

1 . token x = a<−m1() ;
2 . for (int i = 0 ; i < 10 ; i++) x = b<−m2(x , i) ;

The above example is equivalent to the following example:

a<−m1() @
b<−m2(token , 0) @
b<−m2(token , 1) @
b<−m2(token , 2) @
b<−m2(token , 3) @
b<−m2(token , 4) @
b<−m2(token , 5) @
b<−m2(token , 6) @
b<−m2(token , 7) @
b<−m2(token , 8) @
x = b<−m2(token , 9) ;

To learn more about the named tokens, we use the following example to illus-

trate how the named token declaration works and how some confusion could arise:

1 . token x = a<−m1() ;
2 .
3 . for (int j = 0 ; j < 10 ; j++) {
4 . b<−m2(x) ;
5 . x = c<−m3(x) ;
6 . d<−m4(x) ;
7 . }

As the token is updated as soon as the code is processed, this leads to some

interesting occurrences. In the for loop on lines 3-7, for each iteration of the loop,

the value of token x in b<-m2 and c<-m3 is the same. However, the value of token

x in d<-m4 is the token returned by c<-m3, and thus equal to the value of token

x in the message sends on lines 4 and 5 in the next iteration of the loop.

5.2 Join Continuations

Chapter 3 skips some important issues of join block continuations. In this

section, we are going to introduce how to use the join block return values and how

to implement the join block reception handler.

A join block always returns an object array if it does join several messages to

a reserved keyword token, or a named token. If those message handlers to be joined

do not return (void type return), or the return values are ignored, the join block

29

functions like a barrier for parallel message processing.

The named token can be applied to the join block as follows:

1 . token x = join {
2 . a<−m1() ;
3 . b<−m2() ;
4 . } ;

The return value of the join block is received by the join block reception

handler. Every join block reception handler must have only one argument with

the type of the object array. The following example illustrates how to access the

join block return values through tokens. In lines 16-20, the message multiply will

not be processed until the three messages add(2,3), add(3,4), and add(2,4) are

processed. The token passed to multiply is an array of Integers generated by the

three adds messages. The message handler multiply(Object numbers[]) in lines

3-7 is the join block reception handler.

1 . behavior JoinCont inuat ion {
2 .
3 . int mult ip ly (Object numbers []) {
4 . return ((I n t eg e r) numbers [0]) . in tValue () ∗
5 . ((I n t eg e r) numbers [1]) . in tValue () ∗
6 . ((I n t eg e r) numbers [2]) . in tValue () ;
7 . }
8 .
9 . int add (int n1 , int n2) {
10 . return n1 + n2 ;
11 . }
12 .
13 . void act (S t r ing args []) {
14 .
15 . standardOutput<−p r i n t ("Value: ") @
16 . join {
17 . add (2 , 3) ;
18 . add (3 , 4) ;
19 . add (2 , 4) ;
20 . } @ mult ip ly (token) @ standardOutput<−p r i n t l n (token) ;
21 . }
22 .
23 .}

30

5.3 Message Properties

SALSA provides three message properties that could be used with message

sending: priority, delay, and waitfor. The syntax used to assign to a message a

given property is the following, where <property name> can be either priority,

delay, or waitfor:

actor<-myMessage:<property name>

5.3.1 Property: priority

The priority property is used to send a message with high priority. For

instance, the following statement will result in sending the message addUser to the

actor, book, with the highest property. This is achieved by placing the message at

the beginning of the actor’s mailbox’s queue.

book<−addUser (args [1] , args [2]) : p r i o r i t y ;

5.3.2 Property: delay

The delay property is used to send a message with a given delay. It takes as

arguments the delay duration in milliseconds. For instance, the following message

addUser will be sent to the actor, book, after a delay of 1s.

book<−addUser (args [1] , args [2]) : de lay (new I n t eg e r (1 0 0 0)) ;

5.3.3 Property: waitfor

The waitfor property is used to wait for the reception of a token before

sending a message.

token emai l = book<−emai l (new Str ing ("kaoutar")) ;
book<−addUser (email , new Str ing ("kaoutar")) : wa i t f o r (emai l) ;

Note that the addUser message will be sent after the reception of the token

email. The above example is equivalent to the following example:

book<−emai l (new Str ing ("kaoutar")) @
book<−addUser (email , new Str ing ("kaoutar")) ;

31

5.3.4 Property: delayWaitfor

The delayWaitfor property is used to send a message with a given delay and

to wait for the reception of a token. It takes the first argument as the delay duration

in milliseconds, and the remainder as tokens. For instance, the following message

addUser will be sent to the actor, book, after a delay of 1s, and the message can be

processed until the target actor has received token email and token ready2go.

token emai l = book<−emai l (new Str ing ("kaoutar")) ;
token ready2go = standardInput<−readLine () ;
book<−addUser (email , new Str ing ("kaoutar"))

: de layWait for (new I n t eg e r (1000) , ready2go) ;

LITERATURE CITED

[1] G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems,
MIT Press, Cambridge, Massachusetts, 1986.

32

APPENDIX A

Name Server Options and System Properties

A.1 Name Server Options

The name server can be run with several arguments. Running the name server

with the command -h provides all the possible options.

java wwc.naming.NamingServer -h

usage:

java ...WWCNamingServer

java ...WWCNamingServer -h

java ...WWCNamingServer -v

java ...WWCNamingServer -p portNumber

options:

-h: Print this message.

-v: Print version number.

-p portNumber: Set the listening port to portNumber. Default port

number is 3030.

A.2 System Properties

SALSA programs can be executed with a set of system properties:

-Dport=<port number>: To specify the port number that the automatically

started theater will listen to.

-Didentifier=<id>: To specify the ID portion of the actor’s ual

-Duan = <uan>: To specify the UAN of the actor

-Dual= <ual>: To specify the UAL of the actor

33

34

-Dnogc: The local garbage collecotr will not be triggered

-Dgcverbose: To show the behavior of local GC

-Dnodie: Making a dynamically created theater alive

Here comes the example:

java -Dport = 5050 -Dindentifier = actor/hello HelloWorld

If the theater is started at the host: europa.wcl.cs.rpi.edu, the theater is

listening on port 5050 and the HelloWorld actor has the UAL:

rmsp://europa.wcl.cs.rpi.edu:5050/actor/hello

APPENDIX B

Debugging Tips

• Make sure you really understand message passing and the concurrency co-

ordination model in SALSA. Most people have troubles dealing with token

continuations.

• Since the SALSA compiler does not support type checking in this version,

you may need to go through the Java source code. The code related to your

program is on the bottom of the generated java source code. Do not try to

modify other parts irrelevant to your SALSA source code.

• Please note that a typo in a message sending statement does not generate

Java or SALSA compile-time errors. You have to be very careful with that.

A runtime error will be generated instead.

• Message passing and remote procedure calls are totally different. The token

continuation does not have the result immediately. It has the result only after

the message gets executed.

• Objects in messages are pass-by-value. This means the object arguments are

sent with the cloned objects. A latter modification on these object arguments

does not change the values which had been sent.

• Most people confused self with this. this means ”this actor”, while self

”the actor reference” pointing to itself. self can only be used as a target of

messages, or an argument to be passed around. this can be used for object

method invocation. Using this as an argument must cause troubles.

35

APPENDIX C

Learning SALSA by Example Code

One can download the SALSA source code at

http://wcl.cs.rpi.edu/salsa/,

which includes several good examples.

C.1 Package examples

Package examples are useful for learning SALSA. Examples consist of:

• examples.addressbook: The addressbook example shown in Section 4.2.

• examples.cell: It implements a cell actor that has two message habdlers: set to

set the value, and get to get the value of the cell. Both versions of distributed

and single host examples are provide.

• examples.chat: Two Speake actors run as services and start a chat session

which is triggered by the Chat actor.

• examples.fibonacci: A SALSA version of the fibonacci application.

• examples.Heat: A simple simulation of heat flow. Both distributed and single

host versions are provided.

• examples.helloworld: The HelloWorld example.

• examples.messenger: An example showing message delivery.

• examples.migration: An example to show how to migrate an actor.

• examples.multicast: A group of examples showing how to implement multi-

casts.

• examples.nqueens: A SALSA program that tries to solve the famous N-Queens

problem.

36

37

• examples.numbers: Examples of actor inheritance and concurrency coordina-

tion.

• examples.ping: An example showing the echo server and the ping client.

• examples.ticker: A ticker example.

• examples.trap: The application approximates the integral of a function over

an interval [a, b] by using the trapezoidal approximation.

C.2 Package tests

Package tests is used for testing SALSA, including language and run-time

environment tests.

• tests.language: Tests for SALSA language.

• tests.language.babyfood: Tests for inheritance.

• tests.gclocal: One is the fibonacci application implemented by actor chains,

and the other computes 1 + 2 + ... + n.

• tests.distributed: Containing only one application, the distributed N-Queens

solution number.

APPENDIX D

SALSA GRAMMAR

The SALSA grammar is listed as follows:

CompilationUnit : :=
[ModuleDeclarat ion]
(ImportDec larat ion)∗
Behav io rDec la rat i onAtt r ibu te s
(Behav iorDec larat ion | I n t e r f a c eDe c l a r a t i o n)
<EOF>

ModuleDeclarat ion : :=
"module" Name ";"

ImportDec larat ion : :=
"import" <IDENTIFIER> ("." (<IDENTIFIER> | "*"))∗ ";"

Behav io rDec la rat i onAtt r ibu te s : :=
("abstract" | "public" | "final")∗

I n t e r f a c eDe c l a r a t i o n : :=
"interface" <IDENTIFIER> ["extends" Name] Inter faceBody

Name : :=
<IDENTIFIER> ("." <IDENTIFIER>)∗

Inter faceBody : :=
("{"

(S tateVar iab l eDec l a ra t i on | MethodLookahead ";")∗
"}"

)∗

BehaviorDec larat ion : :=
"behavior" <IDENTIFIER>

["extends" Name]
["implements" Name ("," Name) ∗]
BehaviorBody

MethodLookahead : :=
MethodAttributes (Type | "void")
<IDENTIFIER> FormalParameters
["throws" Exceptions]

38

39

BehaviorBody : :=
"{"

(I n i t i a l i z e r | NestedBehav iorDec larat ion |
StateVar iab l eDec la ra t i on | MethodDeclaration |
Cons t ructorDec la rat i on

)∗
"}"

NestedBehav iorAttr ibutes : :=
("abstract" | "public" | "final" | "protected" |
"private" | "static"

)∗

NestedBehav iorDec larat ion : :=
NestedBehav iorAttr ibutes Behav iorDec larat ion

I n i t i a l i z e r : :=
["static"] Block

S tateVar iab l eAt t r i bu te s : :=
("public" | "protected" | "private" | "volatile" |
"static" | "final" | "transient"

)∗

StateVar iab l eDec l a rat i on : :=
StateVar iab l eAt t r i bu te s
Type
Var iab l eDec la rat i on
("," Var iab l eDec la rat i on)∗ ";"

PrimitiveType : :=
"boolean" | "char" | "byte" | "short" | "int" |
"long" | "float" | "double"

Type : :=
(PrimitiveType | Name) ("[" "]")∗

Var iab l eDec la rat i on : :=
<IDENTIFIER> ("[" "]")∗
["=" (Express ion | Ar r a y I n i t i a l i z e r)]

A r r a y I n i t i a l i z e r : :=
"{"

[(Express ion | Ar r a y I n i t i a l i z e r)
("," (Express ion | Ar r a y I n i t i a l i z e r))∗

]

40

"}"

AssignmentOperator : :=
"=" | "*=" | "/=" | "%=" | "+=" | "-=" |
"<<=" | ">>=" | ">>>=" | "&=" | "^=" | "|="

Express ion : :=
Value
(
((Operator | AssignmentOperator) Value) |
("?" Express ion ":" Value)

)∗

Operator : :=
"||" | "&&" | "|" | "^" | "&" | "==" | "!=" |
">" | "<" | "<=" | ">=" | "<<" | ">>" | ">>>" |
"+" | "-" | "*" | "/" | "%" | "instanceof"

Value : :=
[P r e f i x] Var iab le [S u f f i x] (Pr imarySuf f ix)∗

Pr e f i x : :=
"++" | "--" | "~" | "!" | "-"

Su f f i x : :=
"++" | "--"

Var iab le : :=
["(" Type ")"]
(

L i t e r a l | Name | "this" | "super" |
Al locat i onExpres s i on | "(" Express ion ")"

)

Pr imarySuf f ix : :=
"." "this" | "." Al locat i onExpres s i on |
"[" Express ion "]" | "." <IDENTIFIER> |
Arguments

ResultType : :=
Type | "void"

L i t e r a l : :=
I n t e g e r L i t e r a l | Floa t i n gPo in tL i t e r a l |
Char ac t e rL i t e r a l | S t r i n gL i t e r a l |
Boo l eanL i t e r a l | Nu l l L i t e r a l |

41

TokenLitera l

Arguments : :=
"(" [Express ion ("," Express ion)∗] ")"

Al locat i onExpres s i on : :=
"new" PrimitiveType ArrayDimsAndInits |
"new" Name

(ArrayDimsAndInits | (Arguments [BehaviorBody]))
[BindDec larat ion]

BindDec larat ion : :=
"at" "(" Express ion ["," Express ion] ")"

ArrayDimsAndInits : :=
("[" Express ion "]")+ ("[" "]")∗ |
("[" "]")+ A r r a y I n i t i a l i z e r

FormalParameters : :=
"("

[["final"] Type <IDENTIFIER> ("[" "]")∗
("," ["final"] Type <IDENTIFIER> ("[" "]")∗)∗

]
")"

Exp l i c i tCon s t ruc t o r Invoca t i on : :=
"super" Arguments ";"

Cons t ructorDec la rat i on : :=
MethodAttributes <IDENTIFIER> FormalParameters
["throws" Exceptions]
"{"

[Exp l i c i tCon s t r uct o r I nvoca t i on] (Statement)∗
"}"

Cons t ructorAtt r ibu te s : :=
("public" | "protected" | "private")∗

MethodDeclaration : :=
MethodAttributes
(Type | "void") <IDENTIFIER> FormalParameters
["throws" Exceptions] Block

MethodAttributes : :=
("public" | "protected" | "private" | "static" |
"abstract" | "final" | "native"

42

)∗

Exceptions : :=
Name ("," Name)∗

Statement : :=
ContinuationStatement |
TokenDeclarat ionStatement |
Loca lVar iab l eDec la rat i on ";" |
Block |
EmptyStatement |
StatementExpress ion ";" |
LabeledStatement |
SynchronizedStatement |
SwitchStatement |
I fS tatement |
WhileStatement |
DoStatement |
ForStatement |
BreakStatement |
ContinueStatement |
ReturnStatement |
ThrowStatement |
TryStatement |
MethodDeclaration |
NestedBehav iorDec larat ion

Block : :=
"{" (Statement)∗ "}"

Loca lVar iab l eDec la rat i on : :=
["final"] Type
Var iab l eDec la rat i on ("," Var iab l eDec la rat i on)∗

EmptyStatement : :=
";"

StatementExpress ion : :=
Value [AssignmentOperator Express ion]

LabeledStatement : :=
<IDENTIFIER> ":" Statement

SwitchStatement : :=
"switch" "(" Express ion ")"

"{" (SwitchLabel (Statement)∗)∗ "}"

43

SwitchLabel : :=
"case" Express ion ":" | "default" ":"

I fS tatement : :=
"if" "(" Express ion ")" Statement ["else" Statement]

WhileStatement : :=
"while" "(" Express ion ")" Statement

DoStatement : :=
"do" Statement "while" "(" Express ion ")" ";"

For In i t : :=
[Loca lVar iab l eDec la rat i on |

(StatementExpress ion
("," StatementExpress ion)∗

)
]

ForCondition : :=
[Express ion]

ForIncrement : :=
[StatementExpress ion

("," StatementExpress ion)∗
]

ForStatement : :=
"for"

"(" For In i t ";" ForCondition ";" ForIncrement ")"

Statement

BreakStatement : :=
"break" [<IDENTIFIER>] ";"

ContinueStatement : :=
"continue" [<IDENTIFIER>] ";"

ReturnStatement : :=
"return" [Express ion] ";"

ThrowStatement : :=
"throw" Express ion ";"

SynchronizedStatement : :=

44

"synchronized" "(" Express ion ")" Block

TryStatement : :=
"try" Block
(

"catch" "(" ["final"] Type <IDENTIFIER> ")" Block
)∗
["finally" Block]

ContinuationStatement : :=
(MessageStatement "@")∗
(MessageStatement | "currentContinuation") ";"

MessageStatement : :=
[NamedTokenStatement] (MessageSend | JoinBlock)

JoinBlock : :=
"join" Block

NamedTokenStatement : :=
(<IDENTIFIER> | "token" <IDENTIFIER>) "="

MessageSend : :=
[Value "<-"] <IDENTIFIER> MessageArguments
[":" MessageProperty]

MessageProperty : :=
<IDENTIFIER> [Arguments]

MessageArguments : :=
"(" [Express ion ("," Express ion)∗] ")"

TokenDeclarat ionStatement : :=
"token" <IDENTIFIER> "=" Express ion ";"

I n t e g e r L i t e r a l : :=
<INTEGER LITERAL>

Floa t i n gPo in tL i t e r a l : :=
<FLOATING POINT LITERAL>

Char ac t e rL i t e r a l : :=
<CHARACTER LITERAL>

S t r i n gL i t e r a l : :=
<STRING LITERAL>

45

Boo l eanL i t e r a l : :=
"true" | "false"

Nu l l L i t e r a l : :=
"null"

TokenLitera l : :=
"token"

<IDENTIFIER> : :=
<LETTER> (<LETTER>|<DIGIT>)∗

