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Abstract—This paper presents an evaluation of three
communication-efficient algorithms implementing the Omega
class of failure detectors, which provides an eventual leader
election functionality, in distributed systems where processes
can crash and recover. Communication efficiency means that
eventually only a correct process, i.e., the elected leader, keeps
sending a message periodically to the rest of processes. The
first algorithm relies on the use of stable storage to store the
identity of the leader and an incarnation number. The second
algorithm does not use stable storage, but requires a majority
of correct processes. Also, it is near-communication-efficient,
since besides the leader, unstable processes, i.e., those that crash
and recover infinitely often, may send messages periodically
before they receive a message from the leader. Finally, the
third algorithm does neither use stable storage nor require a
majority of correct processes, but assumes that each process
has access to a nondecreasing and persistent local clock. Using
the OMNeT++ network simulation framework, we evaluate
the performance and the quality of service provided by these
algorithms, in terms of the number of messages exchanged
among processes and the capability of the failure detector to
provide a single leader, respectively.

Keywords-Omega failure detector; leader election; crash-
recovery; communication efficiency;

I. INTRODUCTION

It is well known that consensus [37], a fundamental

problem in fault-tolerant distributed computing, cannot be

solved deterministically in asynchronous systems prone to

even a single process crash [17]. As a way to circumvent this

impossibility result, Chandra and Toueg proposed in [7] the

use of unreliable failure detectors, which provide (possibly

incorrect) information about process failures. “Unreliable”

means that, at a given instant, the information provided by

most of the failure detectors proposed by Chandra and Toueg

can be incorrect. However, eventually all of them provide

enough information to solve consensus. Indeed, besides

offering an elegant abstraction for solving consensus in a

modular way (i.e., first implement a given failure detector

and then implement a consensus protocol on top of it), the

model of failure detectors allows to study the minimum

properties (also known as “weakest failure detector”) that

must be satisfied in order to solve consensus or other

agreement problems like atomic commitment [10], [18] or,

more recently, set-agreement [11], [12].

In this work, we focus on a failure detector class called

Omega [6] in crash-recovery distributed systems. Informally,

Omega provides an eventual leader election functionality,

i.e., eventually all processes agree on a common and correct

process. The importance of Omega comes from the fact

that it has been proved to be the weakest failure detector

for solving consensus [6]. In this regard, several consensus

algorithms based on such a weak leader election mechanism

have been proposed [19], [21], [23], [34].

A number of distributed algorithms implementing Omega

in the more benign crash model, in which crashed processes

do not recover, have been proposed [2], [3], [4], [5], [9],

[14], [15], [16], [20], [22], [26], [31], [32], [33], [35], [36].

They basically differ in aspects like the assumptions on

link reliability and synchrony, the communication pattern

among processes, and the initial knowledge or not of the

membership. In some of these algorithms, eventually only

the elected leader keeps sending messages periodically to the

rest of processes. Such an algorithm is said communication-

efficient [3].

Failure detectors have also been studied in the crash-

recovery failure model, i.e., in which crashed processes

can recover (even infinitely often). Aguilera et al. define

in [1] an adaptation of the �S failure detector class to

the crash-recovery failure model, proposing an algorithm

implementing it in partially synchronous systems [7], [13].

More recently, [29], [30] propose several algorithms im-

plementing Omega in the crash-recovery failure model that

rely on the use of stable storage to keep the identity of

the current leader and the value of an incarnation number

associated with each process. Alternatively, [27] proposes

an algorithm for Omega which does not use stable storage

but requires a majority of correct processes. In all these

algorithms, every alive process sends messages to the rest

of processes periodically. Consequently, the cost of these

algorithms in terms of the number of messages exchanged is

high. It would be interesting to have efficient algorithms for

Omega in which eventually only one process, i.e., the elected

leader, sends a message periodically to the rest of processes.

In this regard, three efficient Omega algorithms for crash-

recovery systems have been proposed very recently [24],

[25], [28]. In the line of the previously proposed algorithms
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that were not communication-efficient, the first algorithm

relies on the use of stable storage, and the second algo-

rithm requires a majority of correct processes. Concerning

the third algorithm, it does neither use stable storage nor

require a majority of correct processes, but alternatively

assumes that each process is equipped with a nondecreasing

local clock that keeps running despite the crash of the

process. Regarding the degree of efficiency of these three

algorithms, two of them are fully communication-efficient,

i.e., eventually only one process (the elected leader) keeps

sending a message periodically to the rest of processes.

The other algorithm is near-communication-efficient, since

besides the leader, unstable processes, i.e., those that crash

and recover infinitely often, may send messages periodically

before they receive a message from the leader. To the best

of our knowledge, no other communication-efficient Omega

algorithm for crash-recovery systems has been proposed.

Note that depending on the use or not of stable storage,

the property that the algorithms satisfy regarding unstable

processes varies. When stable storage is used, unstable

processes can agree with correct processes by reading the

identity of the leader from stable storage upon recovery. On

the other hand, when stable storage is not used, unstable

processes must learn from the leader itself the identity of

the leader upon recovery. The algorithms make processes to

be aware of being in this learning period by outputting a

special “no-leader” value upon recovery.

In this paper, we present an evaluation of the mentioned

three efficient Omega algorithms. Using the OMNeT++

network simulation framework (http://www.omnetpp.org/),

we first evaluate the performance of the algorithms in terms

of the number of messages exchanged among processes.

Then, we evaluate the quality of service (QoS) provided

by the algorithms [8], measured as the time percentage

during which the failure detector provides a single leader

to the upper layer, e.g., a leader-based consensus protocol.

The evaluation shows that all the three algorithms perform

reasonably well, although the third algorithm gives the best

results due to its faster convergence on a single leader in

the system. On the other side, the second algorithm has a

higher message complexity than the other two.

The rest of the paper is organized as follows. In Section II,

we describe the system model and the three specific crash-

recovery systems S1, S2 and S3 considered in this work.

In Section III, we present the three efficient algorithms

implementing Omega in systems S1, S2 and S3 respectively.

In Section IV, we evaluate by simulation the performance

and QoS of the algorithms. Finally, Section V concludes the

paper.

II. SYSTEM MODEL

We consider a distributed system model composed of a

finite and totally ordered set Π = {p1, p2, . . . , pn} of n > 1
processes that communicate only by sending and receiving

messages. We also use p, q, r, etc. to denote processes.

Every pair of processes is connected by two unidirectional

communication links, one in each direction.

Processes can crash and may subsequently recover. In

every execution of the system, Π is composed of the

following three disjoint subsets:

• Eventually up, i.e., processes that eventually remain up

forever.

• Eventually down, i.e., processes that eventually remain

crashed forever.

• Unstable, i.e., processes that crash and recover an

infinite number of times.

By definition, eventually up processes are correct, while

eventually down and unstable processes are incorrect. By

default, we assume that the number of correct processes in

the system in any execution is at least one.

Each process has a local clock that can accurately measure

intervals of time. The clocks of the processes are not

synchronized. Processes are synchronous, i.e., there is an

upper bound on the time required to execute an instruction.

For simplicity, and without loss of generality, we assume that

local processing time is negligible with respect to message

communication delays.

Communication links cannot create or alter messages, and

are not assumed to be FIFO. Concerning timeliness or loss

properties, we consider the following three types of links:

• Eventually timely links, where there is an unknown

bound δ on message delays and an unknown (system-

wide) global stabilization time T , such that if a message

is sent at a time t ≥ T , then this message is received

by time t+δ. Note that if the message is sent before T ,

then it is eventually lost or received at its destination.

• Lossy asynchronous links, where there is no bound

on message delay, and the link can lose an arbitrary

number of messages (possibly all). Note however that

every message that is not lost is eventually received at

its destination.

• (Typed) Fair lossy links, where assuming that each

message has a type, if for every type infinitely many

messages are sent, then infinitely many messages of

each type are received (if the receiver process is cor-

rect).

Specific Crash-Recovery Systems S1, S2 and S3

We consider the following three specific crash-recovery

systems, denoted S1, S2 and S3 respectively:

• System S1 assumes that processes have access to sta-

ble storage. Regarding communication reliability and

synchrony, S1 satisfies the following assumption:

i) For every correct process p, there is an eventually

timely link from p to every correct and every

unstable process.
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The rest of links of S1, i.e., the links from/to eventually

down processes and the links from unstable processes,

can be lossy asynchronous.

• System S2 assumes that processes do not have access to

any form of stable storage. Alternatively, it is assumed

that a majority of processes are correct. Regarding

communication reliability and synchrony, S2 satisfies

the following assumptions:

i) For every correct process p, there is an eventually

timely link from p to every correct and every

unstable process.

ii) For every unstable process u, there is a fair lossy

link from u to every correct process.

The rest of links of S2, i.e., the links from/to even-

tually down processes and the links between unstable

processes, can be lossy asynchronous.

• Finally, system S3 does neither assume stable storage

nor a majority of correct processes. Alternatively, it as-

sumes that local clocks of processes are nondecreasing

and continue running despite the crash of processes.

Regarding communication reliability and synchrony, S3

satisfies the same assumption as S1:

i) For every correct process p, there is an eventually

timely link from p to every correct and every

unstable process.

The Omega Failure Detector Class
Chandra et al. defined in [6] a failure detector class for the

crash failure model called Omega, and proved that it is the

weakest failure detector for solving consensus. The output

of the failure detector module of Omega at a process p is

a single process q that p currently considers to be correct

(it is said that p trusts q). The Omega failure detector class

satisfies the following property: there is a time after which
every correct process always trusts the same correct process.
Since this definition was made for the crash failure model,

it does not say anything about unstable processes. Hence,

if we keep it as is for the crash-recovery failure model,

unstable processes are allowed to disagree at any time with

correct processes, which can be a drawback, e.g., making an

attempt to solve consensus fail due to the existence of several

leaders. In practice, it could be interesting that eventually all

the processes that are up, either correct or unstable, agree on

a common (correct) leader process. In this regard, the quality

of the agreement of unstable processes with correct ones will

depend on the use or not of stable storage. Intuitively, the

use of stable storage allows unstable processes to agree from

the beginning of their execution (by reading the identity of

the leader from stable storage), while the absence of stable

storage forces unstable processes to communicate with some

correct process(es) in order to learn the identity of the leader.

Hence, we consider the following two definitions for Omega

in the crash-recovery failure model, for systems with and

without stable storage, respectively [27], [29]:

Property 1 (Omega-crash-recovery, stable storage):
There is a time after which every process that is up, either

correct or unstable, always trusts the same correct process.

Property 2 (Omega-crash-recovery, no stable storage):
There is a time after which (1) every correct process always

trusts the same correct process �, and (2) every unstable

process, when up, always trusts either ⊥ (i.e., it does not

trust any process) or �. More precisely, upon recovery it

trusts first ⊥, and —if it remains up for sufficiently long—

then � until it crashes.

Communication Efficiency Definitions

We present now the concepts of communication-efficient

and near-communication-efficient implementations of the

Omega failure detector class in crash-recovery systems [25]:

Definition 1: An algorithm implementing the Omega fail-

ure detector class in the crash-recovery failure model is

communication-efficient if there is a time after which only

one process sends messages forever.

Definition 2: An algorithm implementing the Omega fail-

ure detector class in the crash-recovery failure model is

near-communication-efficient if there is a time after which,

among correct processes, only one sends messages forever.

Intuitively, since the (correct) leader process in an Omega

algorithm must send messages forever in order to keep

being trusted by the rest of processes, we can derive that

a communication-efficient Omega algorithm is also near-

communication-efficient. The small difference between both

definitions is that in a near-communication-efficient Omega

algorithm, besides the leader, unstable processes can send

messages forever.

III. THE ALGORITHMS

In this section, we present the three efficient Omega

algorithms object of our study, namely a communication-

efficient Omega (Property 1) algorithm for system S1,

a near-communication-efficient Omega (Property 2) algo-

rithm for system S2, and a communication-efficient Omega

(Property 2) algorithm for system S3 respectively. Detailed

descriptions and the formal correctness proofs of the algo-

rithms can be found in [25], [28].

A Communication-Efficient Omega for System S1

Figure 1 presents the first Omega algorithm, which as-

sumes that processes have access to stable storage. The

process chosen as leader by a process p, i.e., trusted by

p, is held in a variable leaderp. Every process p uses

stable storage to keep the value of two local variables:

leaderp, initially set to p, and an incarnation number

incarnationp, initially set to 0, which is incremented during

initialization and every time p recovers from a crash. Both

incarnationp and leaderp are read from stable storage

(from the INCARNATIONp and LEADERp stable storage

variables, respectively) by p during initialization. Also, p has
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a time-out T imeoutp[q] with respect to every other process

q (initialized to η+incarnationp, being η a constant value),

and a Recoveredp vector to count the number of times that

each process has recovered (initialized to 0 for every other

process, and to incarnationp for p itself).

Every process p executes the following:

Initialization:
if INCARNATIONp and LEADERp do not exist in stable storage then
incarnationp ← 0
leaderp ← p
write incarnationp into INCARNATIONp in stable storage
write leaderp into LEADERp in stable storage

end if
incarnationp ← read INCARNATIONp from stable storage
incarnationp ← incarnationp + 1
write incarnationp into INCARNATIONp in stable storage
leaderp ← read LEADERp from stable storage
for all q ∈ Π except p:
T imeoutp[q]← η + incarnationp

Recoveredp[q]← 0
Recoveredp[p]← incarnationp

if leaderp �= p then
reset timerp to T imeoutp[leaderp]

end if
start tasks 1, 2 and 3

Task 1:
wait (η + incarnationp) time units
write leaderp into LEADERp in stable storage
repeat forever every η time units

if leaderp = p then
send (LEADER, p, Recoveredp) to all processes except p

end if

Task 2:
upon reception of message (LEADER, q, Recoveredq) do

for all r ∈ Π:
Recoveredp[r]← max(Recoveredp[r], Recoveredq [r])

if 〈Recoveredp[q], q〉 ≤ 〈Recoveredp[leaderp], leaderp〉 then
leaderp ← q
reset timerp to T imeoutp[q]

end if
if 〈Recoveredp[p], p〉 < 〈Recoveredp[leaderp], leaderp〉 then
leaderp ← p
stop timerp

end if

Task 3:
upon expiration of timerp do
T imeoutp[leaderp]← T imeoutp[leaderp] + 1
leaderp ← p

Figure 1. Communication-efficient Omega algorithm for system S1.

The algorithm works as follows. After the initializations,

if process p does not trust itself, then it resets a timer with re-

spect to leaderp. After that, p starts the three tasks of the al-

gorithm. In Task 1, p first waits η+incarnationp time units,

after which it writes leaderp in stable storage. Then, every η
time units p checks if it trusts itself, in which case p sends a

LEADER message containing Recoveredp to the rest of pro-

cesses. Task 2 is activated whenever p receives a LEADER
message from another process q: p updates Recoveredp
with Recoveredq , taking the highest value for each com-

ponent of the vector. After that, p checks if q is a better

candidate than leaderp to become p’s leader, which is the

case if either (1) Recoveredp[q] < Recoveredp[leaderp],
or (2) Recoveredp[q] = Recoveredp[leaderp] and q ≤
leaderp. In that case, p sets q as its leader and resets

timerp to T imeoutp[q] in order to monitor q (i.e., leaderp)

again. Finally, p also checks if it deserves to be leader

comparing Recoveredp[p] with Recoveredp[leaderp]. If it

is the case leaderp is set to p and timerp is stopped.

This way, leaderp will be the process with the smallest

associated recovery value in Recoveredp among leaderp,

q and p. In Task 3, which is activated whenever timerp
expires, p increments T imeoutp[leaderp] in order to avoid

new premature suspicions on leaderp, and resets leaderp to

p.

A Near-Communication-Efficient Omega for System S2

Figure 2 presents the second Omega algorithm, which

does not use stable storage but requires a majority of the pro-

cesses in the system to be correct. Contrary to the previous

algorithm, where the variable leaderp was initialized from

stable storage, leaderp is now initialized to the “no-leader”

⊥ value. Also, since processes do not have an incarnation

counter in stable storage, T imeoutp[q] is initialized to η for

every other process q, and Recoveredp[p] is initialized to 1.

The algorithm works as follows. During initialization

(and upon recovery), p sends a RECOVERED message to

the rest of processes, in order to inform them that it has

recovered. After that, p starts the three tasks of the algorithm.

In Task 1, which is periodically activated every η time

units, if p trusts itself, then it sends a LEADER message

containing Recoveredp to the rest of processes. Otherwise,

if leaderp = ⊥ then p sends an ALIVE message to the rest of

processes in order to help choosing an initial leader. Task 2

is activated whenever p receives either a RECOVERED, an

ALIVE or a LEADER message from another process q. If

p receives a RECOVERED message from q, p increments

Recoveredp[q]. Otherwise, if p receives an ALIVE message

from q, then if leaderp = ⊥ and p has received so far

ALIVE from �n/2� different processes, p considers itself

the leader, setting leaderp to p. Finally, if p receives a

LEADER message from q, then p updates Recoveredp
with Recoveredq as in the previous algorithm (i.e., tak-

ing the highest value for each component of the vector),

as well as its time-out with respect to q, T imeoutp[q],
taking the highest value between its current value and

Recoveredp[p]. After that, p checks if q deserves to become

p’s leader, which is the case if either (1) leaderp = ⊥
and Recoveredp[q] ≤ Recoveredp[p], or (2) leaderp �= ⊥
and Recoveredp[q] ≤ Recoveredp[leaderp] (using process

identifiers to break ties). In that case, p sets q as its leader

and resets timerp to T imeoutp[q] in order to monitor q
(i.e., leaderp) again. Finally, p also checks if it deserves to

become the leader, which is the case if leaderp continues
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Every process p executes the following:

Initialization:
leaderp ← ⊥
for all q ∈ Π except p:
T imeoutp[q]← η
Recoveredp[q]← 0

Recoveredp[p]← 1
send (RECOVERED, p) to all processes except p
start tasks 1, 2 and 3

Task 1:
repeat forever every η time units

if leaderp = p then
send (LEADER, p, Recoveredp) to all processes except p

else if leaderp = ⊥ then
send (ALIVE, p) to all processes except p

end if

Task 2:
upon reception of message (RECOVERED, q) or (ALIVE, q) or

(LEADER, q, Recoveredq) do
if message is of type RECOVERED then
Recoveredp[q]← Recoveredp[q] + 1

else if message is of type ALIVE then
if (leaderp = ⊥) and (p has received so far ALIVE from

	n/2
 different processes) then
leaderp ← p

end if
else if message is of type LEADER then

for all r ∈ Π:
Recoveredp[r]← max(Recoveredp[r], Recoveredq [r])

T imeoutp[q]← max(T imeoutp[q], Recoveredp[p])
if ((leaderp = ⊥) and

(〈Recoveredp[q], q〉 < 〈Recoveredp[p], p〉)) or
((leaderp �= ⊥) and
(〈Recoveredp[q], q〉 ≤ 〈Recoveredp[leaderp], leaderp〉))

then
leaderp ← q
reset timerp to T imeoutp[q]

end if
if (leaderp = ⊥) or

(〈Recoveredp[p], p〉 < 〈Recoveredp[leaderp], leaderp〉)
then
leaderp ← p
stop timerp

end if
end if

Task 3:
upon expiration of timerp do
T imeoutp[leaderp]← T imeoutp[leaderp] + 1
leaderp ← ⊥
empty the set of ALIVE messages received so far

Figure 2. Near-communication-efficient Omega algorithm for system S2.

being ⊥ or Recoveredp[p] ≤ Recoveredp[leaderp] (using

process identifiers to break ties). If it is the case, then p sets

leaderp to p and stops timerp.

In Task 3, whenever timerp expires, as in the previous

algorithm p increments T imeoutp[leaderp] in order to avoid

new premature suspicions on leaderp. But differently, now p
resets leaderp to ⊥ and empties the set of ALIVE messages

received so far. Observe that resetting leaderp to ⊥ leads

p to start sending again ALIVE messages periodically by

Task 1.

A Communication-Efficient Omega for System S3

Figure 3 presents the third Omega algorithm, which does

neither use stable storage nor require a majority of correct

processes, but assumes that processes are equipped with

nondecreasing and persistent local clocks. As in the second

algorithm, leaderp is initialized to the special value ⊥,

indicating that no process is trusted by p yet. Every process

p also has a T imeoutp variable used to set a timer with

respect to its current leader, initialized to the value returned

by the local clock clock(), as well as two timestamps tsp
and tsmin, initialized to clock() and to tsp, respectively.

Every process p executes the following:

Initialization:
leaderp ← ⊥
T imeoutp ← clock()
tsp ← clock()
tsmin ← tsp
start tasks 1, 2 and 3

Task 1:
wait (T imeoutp) time units
if leaderp = ⊥ then
leaderp ← p

else
reset timerp to T imeoutp

end if
repeat forever every η time units

if leaderp = p then
send (LEADER, p, tsp) to all processes except p

end if

Task 2:
upon reception of (LEADER, q, tsq) do

if (tsq < tsmin)
or [(tsq = tsmin) and (leaderp = ⊥) and (q < p)]
or [(tsq = tsmin) and (leaderp �= ⊥) and (q ≤ leaderp)] then
leaderp ← q
tsmin ← tsq
reset timerp to T imeoutp

end if

Task 3:
upon expiration of timerp do
T imeoutp ← T imeoutp + 1
leaderp ← p
tsmin ← tsp

Figure 3. Communication-efficient Omega algorithm for system S3.

The algorithm works as follows. In Task 1, p first waits

T imeoutp time units, after which if p still has no leader,

i.e., leaderp = ⊥, then p sets leaderp to p. Otherwise, p
resets timerp to T imeoutp in order to monitor its current

leader. Then, p enters a permanent loop in which every η
time units it checks if it is the leader, i.e., leaderp = p, in

which case p sends a (LEADER, p, tsp) message to the rest

of processes.

Task 2 is activated whenever p receives a (LEADER, q,

tsq) message from another process q. The received message
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is taken into account if either (1) tsq < tsmin, i.e., q has

recovered earlier than p’s current leader, (2) (tsq = tsmin)
and (leaderp = ⊥) and (q < p), i.e., p has no leader yet and

q is a good candidate, or (3) (tsq = tsmin) and (leaderp �=
⊥) and (q ≤ leaderp), i.e., q is a better candidate than

leaderp (or q = leaderp). In all these cases p adopts q as

its current leader, setting leaderp to q and tsmin to tsq , and

resets timerp to T imeoutp.

In Task 3, which is activated whenever timerp expires,

p “suspects” its current leader: it increments T imeoutp in

order to avoid premature erroneous suspicions in the future,

and considers itself as the new leader, setting leaderp to p
and tsmin to tsp.

IV. EVALUATION

In this section, we present an evaluation by simulation

of the three efficient Omega algorithms presented in the

previous section. For that, we have used the OMNeT++

network simulation framework (http://www.omnetpp.org/).

We first evaluate the performance of the algorithms in terms

of the number of messages exchanged among processes.

Then, we evaluate the quality of service provided by the

algorithms, measured as the time percentage during which

the failure detector provides a single leader to the upper

layer, e.g., a leader-based consensus protocol.

We have evaluated the algorithms in the following three

scenarios:

• Small: composed of 5 processes, out of which 3 are

eventually up, 1 is eventually down, and 1 is unstable.

The eventually up processes crash and recover 3, 0 and

1 times respectively, while the eventually down process

does not recover after its 4th crash.

• Medium: composed of 10 processes, out of which 6 are

eventually up, 1 is eventually down, and 3 are unstable.

The eventually up processes crash and recover 3, 3, 0,

1, 4 and 1 times respectively, while the eventually down

process does not recover after its 5th crash.

• Large: composed of 20 processes, out of which 11

are eventually up, 2 are eventually down, and 7 are

unstable. The eventually up processes crash and recover

4, 4, 1, 4, 5, 0, 4, 5, 3, 5 and 3 times respectively, while

the 2 eventually down processes do not recover after

their 5th crash.

For each scenario, five executions have been simulated.

In order to make a fair comparison of the results, in all

the executions processes crash and recover at the same time

instants, which are randomly calculated in advance (with

the last crash and/or recovery over half of the execution

duration). Nevertheless, the use of uniformly distributed

message delays gives us different executions in terms of

timeout expirations and leader changes. The duration of

the executions has been of 4000 seconds in all cases (for

evaluating the quality of service, additional executions of

8000 and 12000 seconds have been simulated too). The

value chosen for η, i.e., the periodicity for sending heartbeat

messages by the elected leader, has been 20 seconds. These

values have been empirically proved to be sufficient for

comparative purposes.

Performance

Figure 4 presents the average number of messages sent

per link by each algorithm (note that the number of links

for each scenario is n(n − 1), i.e., 20, 90 and 380 for

small, medium and large, respectively). It can be observed

that in all cases the number decreases for larger scenarios,

which is clearly due to the fact that the algorithms are

communication-efficient, i.e., eventually only the elected

leader keeps sending messages periodically, and hence many

links are not used any more by the algorithms. Note also that

the second algorithm uses more messages than the rest, due

to the fact that it has three types of messages (RECOVERED,

ALIVE and LEADER), and that the third algorithm uses less

messages than the first, which is due to the fact that it has

longer waiting times upon recovery (since it uses the local

clock instead of a counter stored in stable storage).

Figure 4. Average number of messages sent per link.

Table I presents the total number of messages sent.

1st algorithm 2nd algorithm 3rd algorithm
(Figure 1) (Figure 2) (Figure 3)

5 proc. 725 messages 904 messages 694 messages
10 proc. 2002 messages 3030 messages 1784 messages
20 proc. 5008 messages 10078 messages 4065 messages

Table I
TOTAL NUMBER OF MESSAGES SENT.

Figure 5 presents the average number of messages of each

type (RECOVERED, ALIVE and LEADER) sent per link by

the second algorithm. Note that the number of RECOVERED
and ALIVE messages per link grows very smoothly for larger

scenarios, while the number of LEADER messages per link

logically decreases due to the communication efficiency of

the algorithm.
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Figure 5. Average number of messages of each type sent per link by the
second algorithm.

RECOVERED ALIVE LEADER
5 proc. 59 messages 201 messages 644 messages

10 proc. 338 messages 1069 messages 1624 messages
20 proc. 1744 messages 4639 messages 3696 messages

Table II
TOTAL NUMBER OF MESSAGES OF EACH TYPE SENT BY THE SECOND

ALGORITHM.

Table II presents the total number of messages of each

type sent by the second algorithm.

Finally, Figure 6 presents the minimum, maximum and

average number of ALIVE messages sent in the second

algorithm by a process while it does not have a leader

yet, i.e., its leader is set to ⊥. Observe that, for a large

scenario, the value ranges from a minimum value of 6 ALIVE
messages to a maximum value of 52 messages, with an

average value of 15 messages. Also, the maximum values

for small and medium scenarios are 9 and 20 messages,

respectively.

Figure 6. Number of ALIVE messages sent in the second algorithm.

Quality of Service

Figure 7 presents the time percentage during which the

failure detector has provided a single leader, for executions

lasting 4000 seconds. Additionally, Table III presents the

percentages for executions lasting 8000 and 12000 seconds

respectively. In general, the three algorithms exhibit good

quality of service, although it can be observed that the

3rd algorithm gives the best result, due to the fact that it

converges faster than the other two towards a single leader.

Figure 7. Time percentage during which the failure detector provides a
single leader.

As a complementary result, Figure 8 presents the average

number of simultaneous leaders provided by the algorithms

(whenever they do not provide a single leader), which gives

an idea of their degree of divergence. Note that only non-⊥
values are considered in the second and third algorithms.

Logically, for larger scenarios the average number of si-

multaneous leaders increases. The bigger value for the third

algorithm is due to the fact that it is very sensitive to

the growth of the local clock, which grows faster than the

counter used in the first algorithm. As a consequence, the

third algorithm sends less messages and has less leader

changes, which involves a bigger number of simultaneous

leaders.

Figure 8. Average number of simultaneous leaders.

Finally, Figure 9 presents an example of execution history

for the small scenario composed of 5 processes. It can be

observed how the third algorithm converges faster than the
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8000 seconds 12000 seconds
5 processes 10 processes 20 processes 5 processes 10 processes 20 processes

1st algorithm (Figure 1) 86,44% 81,79% 79,06% 90,04% 89,10% 85,70%
2nd algorithm (Figure 2) 94,13% 92,63% 91,19% 95,05% 94,22% 90,62%
3rd algorithm (Figure 3) 94,86% 94,33% 91,33% 96,58% 96,22% 94,21%

Table III
TIME PERCENTAGE DURING WHICH THE FAILURE DETECTOR PROVIDES A SINGLE LEADER.

other two, among which the second converges faster than

the first. Note also that the third algorithm has a bigger

average number of simultaneous leaders when there is no

single leader.

Figure 9. Example of execution history for the small scenario. The vertical
axis stands for the number of concurrent leaders.

V. CONCLUSION

In this paper, we have evaluated by simulation both the

performance and the quality of service of three efficient

algorithms implementing the Omega failure detector class

in crash-recovery systems. All the algorithms avoid the dis-

agreement among unstable processes and correct processes,

although depending on the use or not of stable storage, the

property satisfied by unstable processes varies. The first al-

gorithm, which is communication-efficient, uses stable stor-

age. The second algorithm, which is near-communication-

efficient, assumes a majority of correct processes. The third

algorithm, which is communication-efficient, assumes that

processes are equipped with a monotonically increasing local

clock that continues running upon process crashes. In the

second and third Omega algorithms, since stable storage is

not used to keep the identity of the leader in order to read

it upon recovery, unstable processes, i.e., those that crash

and recover infinitely often, output a special ⊥ value upon

recovery, and then agree with correct processes on the leader

after receiving a first message from it.

The evaluation shows that all the three algorithms perform

reasonably well, although the third algorithm gives the best

results due to its faster convergence towards a single leader

in the system. On the other side, the second algorithm

uses more messages than the rest. All in all, one has to

consider carefully the requirement of each algorithm before

choosing one of them as a candidate for a real deployment,

namely (1) the use of stable storage, (2) a majority of correct

processes, and (3) the use of a nondecreasing and persistent

local clock.
The experiments carried out so far, even being rather

limited and specific (i.e., number of processes of each

type, number and instants of crashes and recoveries of pro-

cesses. . . ), have allowed us to compare the behavior of the

three algorithms under the same conditions. Nevertheless, in

order to better understand the absolute values obtained, we

plan to carry out more exhaustive experiments. Additionally,

we envisage the realization of experiments in a real scenario

such as PlanetLab (http://www.planet-lab.org/), which will

allow to compare the results obtained by simulation with

those of a real deployment.
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failure detector in the crash-recovery failure model. Journal of
Computer and System Sciences, 75(3):178–189, May 2009.
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[32] A. Mostéfaoui, E. Mourgaya, M. Raynal, and C. Travers. A time-free
assumption to implement eventual leadership. Parallel Processing
Letters, 16(2):189–208, June 2006.
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