
Survey of fairness notions
M Z Kwiatkowska

Fairness has been examined from different viewpoints and in
varied semantic models, for example, CCS, guarded commands,
Petri nets, and automata. Classification of fairness notions has
been proposed in many formalisms, which have often required a
suitable extension. Surprisingly, there still seems to be no general
agreement on what fairness means and how it should be dealt
with. One possible reason for this state o f affairs is the multipli-
city of semantic models used and the dependence of fairness on
the intrinsic characteristics of these models, which makes it
difficult to establish interrelationships between fairness notions. It
is not uncommon to encounter criticism of fairness, and the need
for the powerful methods that reasoning with fairness constraints
has called for, for example, transfinite induction, is also ques-
tioned This situation is clearly undesirable, and ways to provide
better understanding of fairness, and perhaps a unified approach,
should be sought.

The paper reviews major issues in the area, the purpose being to
present a taxonomy of notions of fairness and to discuss the main
directions taken and the implications o f choosing a particular
approach. The object of this review is to identify common features
o f fairness definitions and to examine the adequacy, or, in some
cases, the failure, o f standard methods when applied to deal with
fairness.

fairness, fairness behaviour, fairness constraints, concurrency,
nondeterminism

A system is said to be correct if it satisfies a given
specification, where the specification is a list of proper-
ties. To show that the system has a given property,
typically an abstract model is used together with a set of
proof rules; ideally, the list of properties should be
sufficient to pronounce the system correct. The case of
deterministic systems is considered relatively simple. It
has long been recognised, however, that this is not the
case with concurrent (or nondeterministic) systems. Since
such systems include airline reservation systems, operat-
ing systems, etc., it is crucial that the list of properties
prohibits all cases of undesirable behaviour.

Consider an example of an airline reservation system.
The system consists of a waiting list of booking requests
and a passenger list, each list being manipulated by a
manager process capable of dealing with one customer at
a time. Customers who make booking requests are first
registered on the waiting list, from which they enter the
booking process, in some order, one by one. This book-
ing process notifies the passenger list manager if a
booking can be taken, which initiates the transfer of

Department of Computing Studies, University of Leicester, University
Road, Leicester LEI 7RH, UK

customer details from the waiting list to the passenger
list. The system exploits concurrency at both hardware
and software levels, that is, all three processes mentioned
are, in fact, communicating sequential processes imple-
mented on separate physical processors.

A desirable property of such a system would be to
show that if a customer A requests a service, then this
service will eventually be provided. It might be thought
that this would be guaranteed by the truly concurrent
implementation as the processes do not have to wait for
their time-slice to proceed. However, the reality is differ-
ent. Imagine that customers A, B, and C are trying to
book a flight. Their names are first registered on the
waiting list, from which the booking process chooses A to
be served and finds that the booking can be taken. As
customer A is being transferred to the passenger list, he
tries to book another flight but is temporarily stopped in
the waiting list so that the two requests are not confused.
While A is waiting for an entry to the booking process,
the system has served customers B and C, who have
successfully been transferred to the passenger list and try
to book another flight too. They get as far as the waiting
list, after which B gains access to the booking process. In
the meantime, A's transfer to the passenger list has finally
finished (there was some communications delay), but his
second request cannot proceed because now the booking
process is busy dealing with B. Having served B, the
booking process chooses C's request. In the meantime, B
decides to book yet another flight. For some reason, B's
request, rather than A's, is chosen when C has exited the
booking process. C decides to book yet another flight
too, however, and gains access to the booking process
just as B was leaving. If this is allowed repeatedly ad

infinitum, customer A's request will never be serviced
because the booking process is busy servicing requests of
B and C!

Esoteric though it may be, this is an example of an
unfair behaviour of the system--unfair on customer A.
Note that this is not deadlock: the system has not
stopped, nor has any of its processes, when considered
independently, behaved incorrectly. (In fact, the system
could have been proved partially correct using an induc-
tive argument based on invariants.) The only concern is
that customer A has not made satisfactory progress,
although he was continuously ready to do so. It cannot
be shown that A's request is eventually serviced unless
explicit assumptions are made about the way booking
requests are selected (so called 'fairness constraints').
When considering an abstract model and the proof
system necessary to show correctness with respect to

vol 31 no 7 september 1989 0950-5849/89/070371-16 $3.00 © 1989 Butterworth & Co (Publishers) Ltd 371

such properties under fairness constraints, transfinite
induction (see section 'Proving properties under fairness
constraints' for explanation) may be needed. It might be
argued it would be easier simply to suggest a plausible
implementation--a FIFO queue or a priority system
should be adequate here. But should fairness be the
implementor's responsibility ? Note that a cheaper imple-
mentation (that is 'busy waiting' or a 'round-robin'
algorithm in the multiprogramming case) would admit
the behaviour described in the example, so there is no
guarantee that an implementor can recommend a correct
solution unless, at least, a possibility of an unfair situa-
tion is exposed. Of course, the concern should be with
ways that help to eliminate the above, and similar,
undesirable behaviours.

This is the object of the study of fairness. Its aims are to
find adequate formalisms for imposing fairness con-
straints on computations in abstract models for concur-
rent (or, for that matter, nondeterministic) systems. The
work in this area concentrates on building proof systems
for proving properties under fairness constraints (like the
'guaranteed service' mentioned above) and the develop-
ment of proof techniques 1-6. Other major issues include
examining the adequacy of existing formalisms when
expressing fairness and investigating possible
extensions ~-9. In addition, there is some research con-
cerned with the classification (e.g., as a hierarchy) of
fairness properties 9-~3.

To the author's knowledge, there have been few
attempts 9 to provide a formal definition of what a
fairness property is and, what is more, what it is not,
although a variety of (often informally stated) model-
specific notions have been introduced.

Out of necessity, fairness notions shall be discussed
through examples, rather than through a formal compar-
ative study. An informal survey like this should precede
any formal discussion and should provide the necessary
background, encouragement, and direction. A prelimin-
ary version of this paper appeared in Kwiatkowska ~4.

D E F I N I N G F A I R N E S S

Before presenting a taxonomy of specific fairness proper-
ties, the main concerns that guided previous research
when defining fairness, are summarized.

Fairness properties in concurrent and nondeterminis-
tic systems shall be informally discussed. By a system
shall be meant a discrete system, which progresses from
one state to another through actions (or transitions). For
readability, the examples used here are in a variant of the
guarded commands of CSP is. A sequence of states with
associated actions is called, for the purpose of this paper,
a computation, often referred to in literature as a run.
Although runs are represented similarly in almost all
semantic models, there is disagreement on how the runs
should be grouped into a structure (e.g., a set, a computa-
tion tree, or a partially ordered set) to represent the
behaviour of a system, and hence to be considered a
viable semantics. The presentation here will ignore those

differences, as detailed discussion is beyond the scope of
this paper (see Kwiatkowska 9 for more details).

Note that when considering fairness, it is necessary to
include both infinite and finite computations.

Intu i t ive de f in i t ion

The motivation behind any notion of fairness is to
disallow infinite computations in which a system compo-
nent is, for some reason, prevented from proceeding. All
finite computations are fair; when infinite computations
are considered, however, it may be necessary to distingu-
ish between fair and unfair computations. Intuitively,
fairness is a property of computations that can be ex-
pressed as follows: no component of the system that
becomes possible sufficiently often should be delayed
indefinitely.

This is a general statement that brings together many
fairness properties known from literature. To obtain a
specific fairness property it is necessary to say explicitly
what is meant by a 'system component', system compo-
nent 'becoming possible', and 'sufficiently often'. The
first determines what it is that must be allowed to
proceed, or, in other words, the 'granularity level' of
fairness, and the latter defines the conditions under which
the component will proceed, that is, the 'strength' of
fairness.

The notion of a system component becoming possible
usually depends on the kind of component, but it may
be given different meaning depending on the actual
model used. Examples of some kinds of components, and
what it means for each to become possible, are given in
Table 1.

As most models have an underlying state-transition
system structure, the notion of a component becoming
possible shall often be identified with it being enabled.
The notion of a component becoming possible may vary
depending on the semantics chosen. Also some semantic
approaches may automatically exclude some runs as
inadmissible, for example, on the grounds that they do
not correspond to acceptable sequentializations of a
concurrent behaviour 9.16--18

Table 1. Notion of system component becoming possible: some
examples

Component Becomes possible if

(Concurrent) Some action of the process is enabled
process
Event
Synchronization
event
Channel
communication
Guard

Transition

State

Event can occur
Processes can synchronize

Processes can communicate on channel

Some guard in a nondeterministic
program evaluates to true
Transition becomes enabled in a given
state
State is immediately reachable from a
given state

372 information and software technology

Table 2. Most common variations on strength of fairness

Sufficiently often Corresponding strength

Constraint free
Infinitely often
Almost always

Unconditional fairness
Strong fairness
Weak fairness

Table 2 gives the most common variations on the
strength of fairness. The terms in Table 2, although
informal, are widely used and will be explained later.
'Almost always '6'19 means at every step after some point
in time and can also be described as 'continuously from
some point onwards '5'8.

The intuitive definition of fairness can be rephrased in
the following, perhaps more familiar, form: if a system
component becomes possible sufficiently often then it
proceeds infinitely often. Note that the intuitive defini-
tion of fairness as introduced here considers each compo-
nent in isolation, that is, irrespective of the remaining
components of the system, and does not put any specific
bounds on the number of steps executed before each
component makes progress. It is possible to strengthen
fairness by defining it relative to a group of components
that are jointly enabled, in the sense that each member of
the group proceeds equally often 2°. Another interesting
class of fairness properties are probabilistic fairness
properties 4.

Concurrency fairness versus fairness of choice

It is possible to view fairness either as an issue fundamen-
tally to do with concurrency or nondeterminism. This
leads to a distinction between concurrency fairness and
fairness of choice. Consider the following two programs
P and Q:

A = (do true --~ print('a ') od)
B = (do true --, print('b ') od)
P = (Alia)

Q = (do true ~ print('a ')
[] true ~ print('b ')
od)

Program P is a parallel composition of two sequential
processes A and B, whereas program Q is nondeterminis-
tic. Both P and Q never terminate and print infinite
sequences that consist of a's and b's. If fairness is defined
as a property that states that no concurrent process
should be delayed indefinitely (concurrency fairness),
then a computation that allows an infinite sequence ofa ' s
(denoted a ~') is unfair with respect to this notion because
it ignores process B (and likewise any execution that
allows only a finite number of b's). When considering
program Q, however, a °' must be considered concurrency
fair (and, indeed, any computation that allows only a
finite number of b's); program Q does not contain any
concurrent processes, and hence no concurrent process in
Q has been indefinitely delayed!

Nothing prevents definition of fairness with respect to
the choice of nondeterministic guards (fairness of choice).
Thus an execution is fair with respect to choice if no
nondeterministic guard is ignored forever. Notice that,
for program Q, this means disallowing computations
that lead to either a or b being printed only a finite
number of times. In program P, on the other hand, all
computations are fair with respect to choice because
there is no nondeterministic choice in P, hence no guard
has been discriminated against!

Concurrency fairness and fairness of choice (also called
'fairness in selection 's or 'conflict resolution fairness '2t)
are independent notions, although they are sometimes
identified. This confusion is caused by the fact that
concurrency is often reduced to nondeterministic inter-
leaving, in which case concurrency fairness corresponds
to fairness of choice for a particular scheduler. Note that
to distinguish these two notions of fairness it is necessary
to consider a formalism that allows for a distinction
between concurrency and nondeterminism.

Fairness of choice 3'5 and concurrency fairness 2'6'7 are
discussed elsewhere.

Fairness and granularity level

Fairness properties are severely affected by the choice of
granularity level, that is, the kind of system component
under consideration, e.g., process, event, transition, and
state. For a given system, they typically result in fairness
notions that do not coincide.

P r o c e s s versus event fa irness
It is usually possible to view systems at two semantic
levels: the level of events and the level of processes. This
leads to two different notions of fairness, event fairness, in
the sense that no event should be delayed indefinitely,
and process fairness, in the sense that no process should
be delayed indefinitely. These definitions depend on what
constitutes an event and a process. (Also, it is not always
clear how to decompose the system into processes as a
variety of decompositions that determine different fair-
ness notions are possible.)

Process fairness and event fairness do not, in general,
coincide. The following is a simple example:

A = (do true ~ print('a ')
[] true --* print('b ')

C = (do true ~ print('c') od)
P = (milE)

Process A repeatedly chooses between printing a and b,
while process C engages in forever printing c. If it is
assumed that each print command is an event, then the
only event fair computations of P are the ones that lead
to an infinite number of each of a, b, and c being printed.
Given A and C as the identifiable processes, note that
computations that generate only a finite number of a's
(or a finite number of b's) are process fair. Thus the
computations that contain a finite number of a's are

vol 31 no 7 september 1989 373

process fair, but not event fair. (Note that a different
decomposition into processes is possible here by repre-
senting process A as a nondeterministic composition of
processes A a and Ab; event fairness then coincides with
process fairness.)

The above example suggests that it might be plausible
to redefine the notion of an event so that event fairness
coincides with process fairness (after all, it has been
noted t9 that event fairness depends on what constitutes
an event). A more orthodox view might be taken, how-
ever, that assumes that no information about processes is
available at the level of events, and thus consider process
fairness and event fairness as two different (but perhaps
related) notions.

Event fairness has been defined 19 for a concurrent
'while' language. Process fairness for a (shared-memory)
concurrent programming language 2'8 and for CCS 6'22
has been discussed. The relationship of process and event
fairness in a noninterleaving semantic model has been
considered 9 .

In the context of distributed models that allow inter-
process communication, e.g., over channels, granularity
of fairness can be further refined by defining channel
fairness and process communication fairness 1° (not ne-
cessarily on the same channel). It can be shown that,
together with process fairness, these notions form a strict
hierarchy. (That is, the computations that are fair with
respect to one notion are strictly contained in the set of
computations that are fair with respect to another one.)

Transition versus state fairness
Fairness is also discussed in the context of transition
systems, often used as an abstract model that views a
discrete system as progressing through transitions from
one state to another. Here it is possible to distinguish
between transition fairness 3, in the sense that no transi-
tion that is infinitely often enabled should be ignored
indefinitely, and fair reachability from states 3, in the
sense that no state that is immediately reachable infini-
tely often should be delayed indefinitely.

Consider the following example (adapted from
FrancezS). The states are identified with the values of x,
the transitions are the assignment statements, and the
guards determine if the transitions are enabled in a given
state:

P = (x..= 1;
d o x = l ~ x , = 2
l--Ix > 0 ~ x.'= x -- 1
od)

There is an infinite computation of this program (alter-
nating the first and second guard) that takes both
transitions infinitely often, thus no transition has been
ignored indefinitely (transition fairness). The contents of
the variable x alternates between 1 and 2 in this computa-
tion. However, from the state x = 1, which is visited
infinitely often, it is possible to reach x = 0; hence this
computation would be disallowed under fair reachability
from states. Now, as soon as x becomes 0, both guards
are no longer enabled and the program terminates. Thus

P terminates under fair reachability from states but does
not under transition fairness constraints.

Fair reachability from states and transition fairness are
independent notions. Here their strong versions only
have been introduced, although other strengths may also
be considered 5.

Fairness and liveness

It has long been recognised 23 that fairness affects liveness
properties of programs. Liveness has been defined as a
class of properties that state that something good will
happen during program execution 23. This is in contrast
with safety 23, which is pronounced as nothing bad will
happen. Examples of liveness are program termination
(the 'good thing' is that program terminates) and guar-
anteed response (the 'good thing' is that the request is
handled). Fairness has a major effect on liveness proper-
ties in correctness proofs of nondeterministic or concur-
rent programs; certain programs cannot be proved
correct with respect to a given liveness property unless
explicit assumptions are made about fairness. This can be
shown in the following example:

A = (do true ~ print(0)
[] B ! 1 ~ stop
od)

B --- (do A?x ~ (print(x); stop) od)
P = (A[I B)

Process A repeatedly chooses between printing zero and
sending the value 1 to process B. Process B is always
ready to receive from A, but it must wait to synchronize.
Process P terminates only if A and B eventually synch-
ronize. Note that P does not terminate if no arbitration is
present; if, however, a 'reasonable' scheduling algorithm
is assumed, P will terminate. Termination of P cannot be
formally proved unless the assumption is incorporated in
the proof that process A will eventually choose the
communication (fairness of choice) or that process B
eventually proceeds (process fairness).

The term 'liveness' has also been given a different
meaning, for example: unless a process has terminated, it
will proceed infinitely often 24. The author believes that
this formulation is a fairness notion called process live-
ness, whereas the stated meaning refers to a more general
class of properties.

A topological characterization of liveness has been
presented 2s. A number of proof techniques for liveness
have been introduced, namely, the proof lattice method 26
and the well founded sets method l's. The relationship of
fairness and liveness has also been considered 9.

Negative versus positive approach

The question of how to discriminate between fair and
unfair computations has so far been avoided. Note that
this cannot be achieved (in a finite number of steps) by
examining every finite prefix of some computation. Also,
many existing semantic models do not make any pro-

374 information and software technology

visions for fairness; it is generally accepted that without
fairness the model is more abstract and therefore simpler
to use.

Existing approaches for dealing with fairness can be
split into two classes. The first approach, called negative,
is to consider two semantic levels 2. The lower level
admits all possible computations, whether fair or unfair.
Then, at the higher level, some methods are invoked for
excluding unfair computations. An example of such a
method is to introduce proof rules, one for each fairness
notion, which are then used to prove termination under
the given constraints. Thus unfair computations are
considered irrelevant. Another approach is to extend the
transition system semantics with explicit fairness
constraints s'27. The motivation for the negative ap-
proach is to produce correctness proofs with respect to a
given scheduling policy, which could then be enforced at
the implementation stage.

An alternative approach is to generate only fair com-
putations of a given system, rather than exclude the
unfair ones from all admissible computations. This is the
essence of the positive approach, which deals with one
semantic level. A set of rules generating weakly and
strongly process fair computations for CCS has been
developed 6'22 by extending the CCS calculus to a la-
belled calculus and modifying the proof rules. There are
other positive approaches, based on random
assignment 19'2s. The positive approach could be viewed
as producing a set of guidelines for an acceptable sche-
duler from the point of view of the semantics of the
system.

TAXONOMY OF FAIRNESS NOTIONS
Some of the most widely known fairness notions are now
presented in more detail.

Unconditional fairness

Unconditional fairness (also called impartiality) has ori-
ginally been defined for processes 2. It can be summarized
as follows: every process proceeds infinitely often. In
other words, every unconditionally fair computation
must admit an infinite number of occurrences of the
actions of each process. An example of unconditional
fairness has already been considered in the section 'Con-
currency fairness versus fairness of choice' (the set of
concurrency fair computations of process P is exactly
that of unconditionally process fair computations).

Unconditional fairness may be too restrictive when
distributed process termination is allowed, for example:

A = (do true ~ print('a ') od)
B = (print('b'); stop)
P = (m I[B)

Process B, unlike process A, terminates after executing its
action. It is unreasonable, therefore, to expect process B
to proceed infinitely often. Intuitively, the set of admissi-
ble computations should include only those computa-

tions that generate an infinite number of a's interleaved
with one b (i.e., a*ba°'). However, this computation is not
unconditionally fair because b does not occur infinitely
often !

Thus unconditional fairness should only be used in the
context of nonterminating processes. (Excluding distri-
buted termination does not reduce the expressive power
of some models, e.g., CSP 29, so unconditional fairness
will often be sufficient.) Likewise, processes that have not
yet terminated but have become disabled, for example, by
waiting to synchronize with another process, will not be
correctly handled by unconditional fairness.

Unconditional process fairness properties in a nonin-
terleaving model for concurrency have been shown to
form a lattice 9. Unconditional fairness may also be
defined with respect to nondeterministic choice 5.

Process liveness 24 is a modification of unconditional
fairness to allow for the fact that processes may termin-
ate. (Process liveness should not be confused with live-
ness as 'something good will happen '23, which is a class
of more general properties.) It can be expressed as
follows: unless a process has terminated, it will proceed
infinitely often.

Now, in the program P above, process liveness will
admit only the computations a*ba% However, process
liveness is still a very crude property. Note that the above
definition can be rephrased to state that if in a computa-
tion a process has proceeded finitely often then it must
have terminated. If there are other reasons for which a
process proceeds only finitely often, then process liveness
is not applicable. Unfortunately, this is the case with
systems that allow synchronization; it is possible for a
process to become (temporarily or permanently) disabled
because it is waiting to synchronize with another process
that refuses to do so.

Unconditional fairness is known in formal languages
as 'fairmerge', which was introduced for og-regular lan-
guages (i.e., extensions of regular languages, by means of
the co-iteration operator, onto languages of finite or
infinite sequences over a given alphabet) 2s. Fairmerge of
two such languages A and B is a language AIIB that
contains only those sequences that are interleavings of
pairs of possibly infinite sequences from A and B in such
a way that all of any infinite sequence is absorbed.

Fairmerge is a fairness notion that was introduced as
an abstraction of concurrency fairness. It applies to
noncommunicating, nonsynchronizing concurrency, that
is, systems that consist of concurrent processes whose
actions are totally independent. Some aspects of fair-
merge have been considered for process algebras 3°. Fair-
merge is not adequate to express synchronization
fairness, but it can be suitably extended 31.

Weak fairness

Weak process fairness (also called 'justice') 2"s is a prop-
erty that takes into account the fact that processes may
become disabled. A process becomes possible (or ena-
bled) if at least one of its actions is enabled, and disabled

vol 31 no 7 september 1989 375

otherwise. Weak process fairness can now be summar-
ized as follows: if a process is enabled continuously from
some point onwards then it eventually proceeds.

This definition excludes all computations in which a
process is enabled continuously and never proceeds after
some point in time. Note that it follows that if some
process is actually enabled continuously from some point
on then it proceeds infinitely often.

As termination is a reason for a process not to become
continuously enabled, weak process fairness implies pro-
cess liveness (that is, if a computation is weakly process
fair, it satisfies process liveness). If a process may become
disabled only when it terminates, weak process fairness
coincides with process liveness. If processes are contin-
uously enabled and never terminate, weak process fair-
ness, process liveness, and unconditional fairness
coincide.

Consider the following example:

A = (B!O ~ stop)
B = (x.'= 1;

do A?x ~ (print(x); stop)
[] x > 0 ~ print(x)
od)

P = (AIIB)

Process A is continuously enabled to synchronize, where-
as process B can repeatedly choose between synchroniza-
tion with A and the internal action. P terminates only if A
and B synchronize (the second guard then becomes false).
If weak process fairness is assumed then process A
eventually proceeds, hence P terminates under weak
process fairness. Every weakly process fair computation
leads to a finite number of l 's followed by a single 0 (that
is, a sequence of the form I*0).

Considering weak process fairness as a separate notion
is sometimes motivated by the cost of a possible
implementationS; it is automatically guaranteed on a
truly concurrent system, whereas for multiprogramming
concurrency a simple round-robin scheduler will enforce
it. A 'busy waiting' implementation of a semaphore is
weakly fair. Stronger fairness notions require queueing
mechanisms.

Several other weak fairness properties have also been
introduced. One example is weak fairness of choice of
nondeterministic guards, which may be phrased as 'any
guard that evaluates to true from some point on will
eventually be chosen'. Consider the following program:

Q = (x..= 1;
do x > O~x . .=O
• x > O ~ x . . = x + 1
od)

The above program terminates only if the first guard,
which is continuously enabled, is ever chosen (both
guards then evaluate to false). Thus Q terminates under

weak fairness of choice of guards. Weak fairness of choice
of guards is independent of weak process fairness.

Weak process fairness for CCS has been considered 6
Weak process fairness properties have been defined for
noninterleaving concurrency 9. Weak process, channel
communication, and process communication fairness for
CSP have been discussed 1° and an overview of weak
fairness of choice presented s. Weak fairness can also be
defined at the level of events 19, transitions 3, and states 3.

Strong fairness

It may not always be desirable to satisfy the assumption
of weak fairness, which requires that once a process has
become enabled, it may not become disabled, even tem-
porarily, if it is to proceed. Therefore the assumption of a
process becoming enabled continuously from some point
on is relaxed to becoming enabled infinitely often. Thus a
notion of strong process fairness (also called fairness 2) is
arrived at that can be paraphrased as follows: if a process
is enabled infinitely often then it proceeds infinitely often.

This definition disallows all, and only those, computa-
tions in which a process is enabled infinitely often but
proceeds only a finite number of times, Note that strong
process fairness implies weak process fairness (that is, if a
computation is strongly process fair then it is weakly
process fair). Obviously, if a process never becomes
enabled once it has becomes disabled, strong process
fairness coincides with weak process fairness.

Consider the following example:

A = (B !0 ~ stop)
B = (x. .= I;

do (x mod 2 = 1) and A?x ~ (print(x); stop)
[] x > 0 ~ (print(x); x .'= x + 1)
od)

p = (AJlB)

Process A is continuously ready to synchronize with B,
but B can accept the synchronization only at alternate
steps (in fact, every time x contains an odd number).
Thus process A is not enabled continuously, but it is
enabled infinitely often. P terminates only if A and B
synchronize. An infinite computation that allows only
process B to proceed is weakly process fair. On the other
hand, this computation is not admissible under strong
process fairness, hence P terminates under strong process
fairness.

Strong fairness is usually strictly stronger than the
corresponding weak fairness notion. Although weak fair-
ness is not sufficient in most cases, the distinction is again
motivated by implementation considerations. To imple-
ment strong fairness, queues of pending requests or
priority systems are needed. An example of a strongly fair
semaphore is an implementation with FIFO scheduling
policy.

It is also possible to define strong fairness of choice of
nondeterministic guards, which may be described as any
guard that evaluates to true infinitely often will be chosen

376 information and software technology

infinitely often. As an example, consider:

Q = (x : = l ;
do x mod 2 = 1 ~ x. '=0
E] x > 0 --* x..= x + 1
od)

Note that Q terminates under strong fairness of choice of
guards, but not under weak fairness of choice of guards
(the first guard is not continuously enabled, but it is
enabled infinitely often). Strong fairness of choice of
guards is independent of strong process fairness.

Strong process fairness for CCS has been considered 6.
Strong process fairness properties have been defined for
noninterleaving concurrency 9. Strong process, channel
communication, and process communication fairness in
CSP have been discussed ~° and an overview of strong
fairness of choice given 5. Strong fairness may also be
defined at the level of events ~9, transitions 3, and states 3.

Generalizations of fairness

Equifairness
The notions of fairness introduced so far were concerned
with the independent progress of system components. It
is possible to strengthen weak, strong, and unconditional
fairness by taking into account the relative number of
times the components proceed. Thus it is possible to
arrive at a notion of equifairness 5'2°, the motivation for
which is to give each group of jointly enabled guards an
equal chance to proceed. Strong equifairness can be
summarized as follows: if a group of guards is enabled
infinitely often, then there exist infinitely many time
instants where all members of the group have been
chosen the same number of times.

Weak and unconditional equifairness are correspond-
ingly defined. Consider the following example (adapted
from Francez5):

Q = (x, y := 0; z..= 1;
d o z > 0 --* x : = x + 1
[] z > 0 ~ y.'= y + 1
[] z > 0 a n d x = y ~ z . . = z - 1
od)

This program does not terminate under the assumption
of strong fairness of choice of nondeterministic guards:
the computation taking the first guard and then alternat-
ing the first and the second guard is infinite (the third
guard is only enabled in the initial state). However, it
does terminate under strong equifairness because then x
eventually becomes equal to y.

Strong equifairness is strictly stronger than strong
fairness of choice of nondeterministic guards. (In other
words, the set of equifair computations is strictly con-
tained in the set of computations that are fair with
respect to strong fairness of choice.) The same holds for
weak and unconditional equifairness 5. Equifairness is
usually applied to nondeterministic guards, although it

seems feasible to apply it in other situations as well, for
example, process synchronization.

Probabilistic fairness
Fairness has also been defined as a probabilistic
property TM. A computational model, based on a state-
transition system with probabilities, is assumed attached
to transitions. A determinate transition (i.e., nonproba-
bilistic) is a simple edge that connects two states; it has
the probability 1. A probabilistic transition ~ is a split
edge: it is an edge split into k edges, each with probability
~/attached; every ri is called a mode of the transition r. It
is required that ~1 + ~i + ' " + ~k = 1. A state predicate
is a predicate whose truth values are solely determined by
the state, and a state formula is built from those by means
of a first-order predicate calculus. A ~b-state is a state that
satisfies formula qk

Then extreme fairness can be defined as follows: for
any state formula q~, and a probabilistic transition z such
that ~ is taken infinitely many times from ~b-states, each
m o d e 27 i of ~" is also taken infinitely many times from
q~-states.

It has been shown 32 that to prove that a temporal
property ~ holds with probability 1 on all computations,
it is sufficient to prove that it holds on all extremely fair
computations. This formalism has been used 4 to verify
multiprocess protocols.

Other notions
Many more extensions or generalizations of fairness have
been introduced. Generalized fairness 5 is an attempt to
abstract notions like equifairness and fairness of choice
into a class of fairness notions determined by sets of pairs
of state predicates. Fair reachability of predicates
introduced 3 as a replacement for state and transition
fairness is a similar notion; a computation is considered
unfair if there is a predicate over states that is reachable
infinitely often but states satisfying this predicate are
taken only finitely often. Relativized fairness 3 is a further
refinement of fair reachability of predicates.

Conspiracy is where a number of processes monopo-
lize a resource, effectively preventing some process from
proceeding at all 33,34. Hyper_fairness35 is a conspiracy-
resistant notion adequate for multiparty operations (the
reason for this distinction is that some fairness notions
allow only pairwise communication; multiparty com-
munication can be found in some models, e.g., T C S P 36
and programming languages like ADA).

Related notions

Several notions have been introduced that can be in some
way related to fairness; in fact, in many cases, the author
believes they are fairness properties.

Finite delay
Finite delay property was originally formulated by Karp
and Miller 16, where a formalism of state-transition sys-
tems as models for parallel computations was intro-
duced. In this formalism, computations, represented by

vol 3l no 7 september 1989 377

sequences of primitive steps (transitions), correspond to
admissible sequentializations of a concurrent behaviour.
A sequence of transitions is a computation if it is either
finite, in which case no more transitions may remain
enabled, or infinite, in which case it is required to satisfy
finite delay property. The finite delay property can be
described informally as: if some transition is permanently
enabled from some point on then it is eventually taken.

The author believes the intention of this definition was
to impose finite delay for independent, that is, concur-
rent, actions, rather than nondeterministic choices. In
fact, a subclass of systems (determinate systems) that are
concurrent but disallow nondeterminism has been
characterized16; for such systems, finite delay corre-
sponds to concurrency fairness. When adapting this
property to the more general class of nondeterminate
systems, it seems necessary to distinguish whether a
transition remains enabled in the context of concurrency
or nondeterminism; otherwise, the resulting property
may be considered too strong 9, as it would impose
concurrency fairness together with fairness of choice.

The finite delay property is a fairness property that
reflects the minimum constraint on sequences of transi-
tions/states to be admissible as sequentializations of a
concurrent behaviour, and it is too weak to model
synchronization fairness. Finite delay only excludes cer-
tain infinite computations; hence, as such, it affects
properties like termination and equivalence but bears no
relation to partial correctness. It is present, as maximality
of computations, in many noninterleaving models for
concurrency based on causality 9'1 ~,18,21,3 v.3 s. The inter-
leaving models, like C C S 39 o r TCSP 36, have often been
criticised for not having a finite delay property. A finite
delay operator has been proposed 4°, but it is not clear
how this approach relates to that of Karp and Miller 16.

Livelocks
The term 'livelock' was coined by Ashcroft 41, who
extended the Floyd assertion method onto parallel pro-
grams. Ashcroft observed that, although, using induc-
tion, he could prove systems partially correct, his method
could not be claimed to guarantee correctness with
respect to properties like 'guaranteed response', and that
finite delay property did not provide a satisfactory sol-
ution. Using an example of a situation in an airline
reservation system, somewhat similar to the example
used in the introduction, he showed that certain events in
the system can be permanently blocked by a 'continually
changing pattern of constraints'. This is named livelock,
as opposed to deadlock, because the system is not
stopped.

The motivation for introducing the notion of a livelock
was to impose fairness constraints. Livelocks can also be
viewed as a liveness property 23 (the 'good thing' would
be the customer making progress). Livelocks have been
examined in a Petri-net setting 42.

Unbounded nondeterminism
Fairness is often discussed in the context of unbounded
nondeterminism, which was first raised by Dijkstra 43.

This phenomenon arises in the context of guarded com-
mands:

P = (x. .= 0;
do x>~0 ~ x . ' = x + l
[] x/> 0 ~(pr in t (x) ; s top)
od)

Under the assumption of (weak) fairness of choice, P
would always terminate and yet produce any, that is,
unbounded, natural number. This seems to contradict
the intuition about programming, in the sense that no
feasible implementation can produce an unbounded
number.

Unbounded nondeterminism has been reconsidered by
Park 7, who observed that the above contradiction could
be explained on the grounds of the existence of two
interpretations of nondeterminism: loose nondetermin-
ism and tight nondeterminism. In tight nondeterminism,
nondeterminism in the language describes more than one
result, but a possible implementation does not have to
produce all the results; it must merely guarantee that the
results produced are described by the semantics. In loose
nondeterminism, a possible implementation may or may
not produce more than one result; the only constraint is
that every result produced is one of those prescribed by
the semantics. The usual interpretation of the nondeter-
minism of a scheduler of concurrent operations is a loose
one.

Unbounded nondeterminism arises in the context of
infinitely branching transition systemsa4; infinitely
branching systems have been considered as a model for
TCSP 36 '

EXISTING FORMALISMS AND
FAIRNESS

Temporal logic

Fairness properties are expressed most elegantly in tem-
poral logic. There is a variety of temporal logics used to
analyse program properties, which depend on the repre-
sentation of the behaviour of the program in terms of its
runs (i.e., sequences of states). The two main approaches
here are linear, which groups runs into a set, and
branching, represented as a computation tree.

As an example, consider linear temporal logic l'a'4s,
which is interpreted over (finite or infinite) sequences of
program states. The exposition here is based on Pneuli 8.
A state formula is any well formed first-order formula; its
truth value at instant i in a sequence s = sis2--.si--- is
found by evaluating it on s;. A temporal formula is
constructed from state formulas p, q, to which the
following (basic) operators are applied, and interpreted
in state si of some sequence as follows:

• X: strong next instant operator (Xp is true at i if S~+ :
exists and p is a state formula true at i + 1)

378 information and software technology

• U: until operator (pUq is true at i if there existsj s.t. q
is true at j and for all k, i < k <j , p is true at k)

• P: strong previous instant operator (Pp is true at i if
i > 0 a n d p i s t r u e a t i - 1)

• S: strong since operator (pSq is true at i if for some j,
0 < j < i, q is true at j and for all k, j < k < i, p is true
at k)

Some of the derived operators are:

• F: sometime in the future (Fp = trueUp), often de-
noted as diamond

• G: always in the future (Gp = --q F-qp), often denoted
as box

Examples of temporal formulas are:

• p ~ F q :
• G(p ~ Fq):
• F(Gp):
• G(Fp):

p now implies eventually q
every p is followed by a q
eventually permanently p
infinitely often p (for infinite sequences
only)

A formula p is said to be satisfiable if there exists a
sequence s and a positionj such that p holds a t j (denoted
sjCp). A formula p is valid if for all sequences and
positions j < len(s), s~p.

A formula p is valid over program R if for every
sequence (computation of R) s a n d j < len(s), sj~p.

Temporal logic distinguishes between safety and live-
ness properties. A safety property is characterized as

Gp

where p is some past formula, that is, p holds over all
finite prefixes. Any formula constructed out of past
formulas, the logical operators ^ and v , and the future
temporal operators G and U is a safety property.

A (basic) liveness property complements a safety prop-
erty by requiring that certain finite prefix properties hold
at least once, infinitely many times, or continuously from
some point on, that is, correspondingly:

Fp, G(Fp), F(Gp)

for some past formula p.
The following are examples of fairness properties in

temporal logic, assuming p stands for 'process enabled'
and q stands for 'process taken':

• Gp ~ Fq, i.e., F (~ p v q) = weak fairness
• G(Fp) ~ Fq, i.e., F(G(-qp) v q) = strong fairness

Other properties useful to express scheduling constraints
include (consider p, Pi as 'request', and q, qi as 're-
sponse'):

• Pr(p,q) -~ (Fq ~ (~qUp)) = p precedes q
• Pr(pl,P2) --* Pr(ql,q2) = if pl precedes P2 then

ql precedes q2 (FIFO)

This has given an overview of a language L(X,U,P,S),
also called TL (linear temporal logic). Its subclasses TLF
and TLP correspond to future and past temporal logics
L(X,U) and L(P,S), which have equivalent power to TL.
It is known that L(U) has the same expressive power as
L(F,X,U), but L(X,F) is not expressively complete1; for
example, the fairness and responsiveness properties
shown above could not have been expressed without U.
Another point is that linear temporal logic, being a
noncounting formalism s does not have the same expres-
sive power as regular expressions.

Linear temporal logic provides temporal operators
that describe events along a single computation path. In
branching-time logic, the temporal operators quantify
over all the paths that are possible from a given state.

It is an interesting question to compare the expressive
power of linear and branching-time temporal logic. A
temporal logic language CTL*, which combines both
linear-time and branching-time operators, has been
introduced 46, thus making it possible to obtain the
results of such a comparison. It is shown that CTL*
strictly subsumes B(L(F,X,U)). The expressive power of
branching-time logic B(L(F)) is different from that of its
linear counterpart L(F).

A u t o m a t a and infinitary languages

For fairness properties to be included in an analysis of
system behaviours, it is necessary to allow both finite and
infinite sequences. This implies extending formal lan-
guages to infinitary languages, which, in turn, requires
reconsidering finite state automata as acceptors of lan-
guages.

Infinitary languages have been investigated by a
number of authors 2s'4v. co-regular languages are a na-
tural extension of regular languages with co-iteration
operator, that is, iteration an infinite number of times.
co-automata 2s are formed from standard finite automata
by the addition of a structure for accepting infinite
sequences. Two (equivalent in the nondeterministic case)
varieties are B-automaton, due to Biichi, with an addi-
tional set of 'green' states that must be visited infinitely
often, and M-automaton, first introduced by Muller,
where a set of accepting states with a similar requirement
is specified. The class of co-regular languages is recogn-
ised by B-automata.

The relationship of co-regular languages and a concur-
rency operator (fairmerge) is dealt with by Park 2s.
Fairmerge of infinitary languages is a function that
interleaves pairs of sequences in such a way that the
whole of an infinite sequence is taken. The class of co-
regular languages is shown to be closed under fairmerge.
Fairmerge corresponds to concurrency fairness for non-
communicating concurrency, but it may be extended to a
communication merge TM.

Fairness in (labelled) finite state automata has been
discussed, considering only the case of strong fairness x3.
The notions of edge- and letter-fairness (that is, transition
fairness and fairness with respect to transition labels) are

vol 31 no 7 september 1989 379

distinguished. These notions are generalized onto (finite)
paths (i.e., sequences of edges) and words (i.e., sequences
of letters), and the hierarchy of languages that are fair
with respect to a given notion is discussed. The relation-
ship with Biichi and Muller automata is also considered.

Infinitary languages have been generalized to allow for
concurrent behaviours 9. Infinitary trace languages are
developed, and a topological characterization of beha-
vioural properties that includes fairness properties is
presented. The notions of process and event fairness are
distinguished, but the formalism is general enough to
express notions such as equifairness and fair reachability
from states.

Process algebras

Process algebras are algebraic languages for the specifi-
cation of concurrent processes and the formulation of the
properties of such processes. They are usually introduced
together with the rules of algebraic calculus. Process
algebras should not be treated as models for concurrency
but as abstract representations of classes of such models.

C C S 39 is a calculus whose closed expressions corre-
spond to processes. The behaviour of processes is deter-
mined by the (transition) rules of the calculus. The
language allows: prefixing a process E with an action
(aE), nondeterminism (+) , concurrency (I), recursion
(fix), and restriction (\) . Synchronization of actions a ~ A
with co-actions ~ e A is enforced only under restriction;
otherwise processes may choose to proceed autono-
mously or synchronize. The following is an example of a
CCS process:

(E I E) \b

where E = fix X.(aX + bNIL), F = 13NIL. This process
terminates only if E and F eventually synchronize.

Fairness in (pure) CCS without restriction has been
examined 22 and viewed as an issue to do with concurrent
processes. No distinction between weak and strong fair-
ness was needed there because processes never become
locally disabled while waiting to synchronize with other
processes. Pure CCS with restriction has been
investigated 6, where weak process fairness is defined in
the sense that no process that is almost always enabled
can be delayed indefinitely, and strong fairness is defined
correspondingly.

The main concern of Costa and Stirling 6 is to provide
a positive treatment of fairness, i.e., generate only the
derivations that are fair. The calculus of CCS has been
extended to a labelled calculus by adding labels that
identify the path to a component of an expression. These
labels have then been used to identify uniquely autono-
mous actions and processes in a given expression. A
subclass of live processes, that is, the set of processes that
became active and have not engaged in a transition yet, is
distinguished.

In this setting, the set of rules for Weak Fair CCS and
Strong Fair CCS have been developed. Both sets of rules

are finite and do not involve random assignment. Weak
Fair CCS is based on a local characterization of admissi-
bility. On the other hand, Strong Fair CCS cannot be
similarly characterized and involves predictive choice 39,
that is, the definition needs to be based on an infinite tail
of the derivation in question.

A metric characterization of weak and strong fairness
in CCS has been presented 67. The conclusion there is
that fair infinite derivations of a given expression can be
characterized as limits of infinite chains of finite deriva-
tions. Although a generalization of the results onto the
class of all expressions is proposed, it does not seem
abstract enough as it is based on pairs composed of
expressions and their derivations. Fairmerge has been
discussed in a CCS setting 3°.

C S P 36'49 (also known as TCSP) is a process algebra
that distinguishes between internal and external choice
and allows hiding (abstraction). Interprocess communi-
cation is based on (n-communicat ing) joint actions
rather than on binary synchronization in the sense of
CCS. The usual semantic model for CSP is the failures
model, which is a transition system extended with addi-
tional failure and ready sets to model the interaction of
processes with their environment. Fairness is not expres-
sible within CSP 49. Extending the failures semantics has
been proposed 44 so that unbounded nondeterminism is
allowed. It is not known if fairness issues have been
considered in this setting.

ACP 4s, the Algebra of Communicating Processes, is
not tied to a particular model. It is based on bisimulation
semantics 2s. The primitives include, apart from the usual
ones, a 'left merge' operator, in terms of which a parallel
composition is defined. Communications are generalized
to multisets of actions that can happen simultaneously.
ACP has been extended with abstraction and encapsula-
tion operators 5°. A process is fair if for any improbable
path (i.e., one that contains infinitely many exits) the
probability that it will be executed is zero. Fair abstrac-
tion rule, which states that any invisible infinite path may
be discarded, is shown to be satisfied in this algebra. It is
not clear how this approach relates to the rest of the
research.

Infinitary process algebra has been discussed 31. It is
influenced by CCS, restricted to regular behaviours (that
is, corresponding to finite-state machines). Fairness
properties are introduced as operators, which define
restrictions that affect only infinite behaviours. This is
achieved by introducing an infinitary agent A((L)), where
A is an agent is the sense of CCS and L is an ~o-regular
language that contains no finite sequences. A((L)) be-
haves as the agent L, except that its infinite behaviours
must be members of L. Equivalences can then be proved
under such constraints. This process algebra is applied to
protocol verification.

Net theory

A number of papers have been published on fairness in
Petri nets. Net theory revolves around the idea of a Petri

380 information and software technology

net, which is commonly recognised as one of the first
models for concurrency based on causality, rather than
interleaving. A Petri net 51 is a triple N = (S, T, F), where
S is the set of places, T is the set of transitions, and
F ~_ S × T w T × S is the flow relation. A marking is a
function M: S ~ Nat that defines the number of tokens in
a given place. A transition is enabled (may fire) if all its
input places contain at least one token. As a result of a
transition firing, one token is added to each output place.
The behaviour of a net is often represented as an alternat-
ing sequence of markings and transitions: Mob M lt2
Petri nets can be viewed as transition systems, with
markings forming the states.

Transition fairness has been investigated 33' 34 and an
infinite hierarchy of notions of fairness, motivated by the
need to exclude conspiracy, introduced. This hierarchy
collapses to a single notion for a simpler class of nets
(confusion-free). Another approach a~ defines notions of
fairness for three granularity levels in terms of subclasses
of infinitary languages: markings, (bounded) places, and
transitions. Transition fairness corresponds to fairness of
choice of transitions, and marking fairness to fair reacha-
bility of states. The hierarchies of classes of fair languages
have been investigated ~ 1 and some decidability questions
answered 52.

It is not clear how processes should be defined for Petri
nets; a variety of decompositions are possible. A notion
of a process based on occurrence nets has been intro-
duced, and transition fairness and marking fairness
discussed ~2; these notions are shown to be independent.
The hierarchy of marking fairness is proved to collapse.

Livelocks have been investigated in parallel programs
modelled by Petri nets and a technique for verifying the
absence of livelocks introduced 42.

Transition systems

Transition systems, with a countable set of states, seem to
be the underlying structure of all models for discrete
systems. A number of fairness notions related directly to
transition systems as models for nondeterministic or
concurrent programs have been introduced. Most com-
monly, they correspond to fairness at the granularity
level of transitions or states, although some generaliza-
tions have also been proposed. Transition fairness is too
general as a fairness notion, because it depends on what
constitutes a state and what a transition represents.

Labelled transition systems have been used as models
for nondeterministic programs 3. A state is a vector of
program variables, while transitions correspond to
guarded commands and are enabled in a given state if the
corresponding guard evaluates to true. In this formalism,
fairness with respect to transitions, fair choice of states,
and fair reachability of predicates over states (all in their
strong form only) are criticised for a number of anoma-
lies, including not being preserved under syntactical
transformations. Relativized fairness is introduced in-
stead, and a branching-time temporal logic is formalized
to prove properties under fairness assumptions.

Transition fairness 3 corresponds to fairness of choice.
When concurrency is represented as nondeterministic
interleaving, however, transition systems may be used to
model parallel composition of processes 45. According to
this approach, states correspond to vectors of variables
together with control information about each process
(that is, the location of control of each process at a
particular instant). Here (weak, strong, or unconditional)
transition fairness corresponds to (weak, strong, or un-
conditional) process fairness. Transition systems have
been extended to fair transition systems by adding res-
trictions on justice and fairness (i.e., weak and strong
fairness) 8 .

Fairness for a concurrent while language modelled as a
transition systems has also been examined 19.

Asynchronous transition systems, namely, extensions
of labelled transition systems with an independency
relation, have been considered 9. A notion of process
structure is introduced; a variety of process structures for
a given system are possible. Process structures give rise to
a lattice of process fairness properties.

Denotationai semantics

The issue of fairness raises a few important questions in
denotational semantics 53, especially in relation to con-
tinuity and the Scott hypothesis. Denotational semantics
defines program constructs in terms of functions over
domains, usually complete partial orders. It is commonly
accepted that all computable functions can be expressed
in terms of continuous functions over domains. It is also
recognised that the powerdomain construction 19 is
needed to provide denotations of nondeterministic or
concurrent programs.

The notion of continuity, in the sense of preserving
least upper bounds of infinite chains, has been extended
onto uncountable chains 7. A relational approach to
denotational semantics of nondeterministic programs is
proposed. The problem of (concurrency) fairness and
unbounded nondeterminism is reconsidered, and it is
shown that the intuitively acceptable fixpoint solution to
the fairmerge of languages 0 ~' and 1 '~ is neither the
minimal nor the maximal fixpoint. The latter suggests
that generalized fixpoints may be needed to deal with
fairness 7 .

A powerdomain semantics for a concurrent while
language (without internal nondeterminism) has been
discussed 19. Weak and strong event fairness are distin-
guished, and fair parallel operators I]~ and If, which put
an explicit bound on the number of moves the process on
the corresponding side can make, are defined.

The question of the relationship of the operational
semantics and denotational semantics (in terms of infin-
ite streams) for a process algebra has been addressed 54.
The issue of fairness is not dealt with there, but an
observation is made that fairness properties correspond
to behaviours that are not closed in the topological sense.
The topology considered is one with respect to the metric
space determined by the usual distance over sequences

vol 31 no 7 september !989 381

defined as 2 -~n+l), where n is the length of the longest
common prefix. A suitable example would be the lan-
guage {a'b}, representing computations that are fair
with respect to communication b. This language is not
closed, but {a'b} u {a°'}, containing an unfair computa-
tion a ~', is.

P R O V I N G P R O P E R T I E S U N D E R
F A I R N E S S C O N S T R A I N T S

Properties of programs can be split into two classes:
safety and liveness properties. This is motivated by the
different proof techniques required in each case: for
safety, structural induction based on invariants suffices,
while liveness is based on the method of well founded
sets. A number of axiomatic systems that originate from
the Floyd assertion method have been introduced to
reason about the correctness of concurrent
programsS. 41, 45, 55. Each axiom corresponds to a syn-
tactic construct in the language.

Partial correctness and mutual exclusion are examples
of safety properties. Termination and guaranteed re-
sponse are liveness properties. Safety properties, as
opposed to liveness, are not usually affected by fairness
properties.

W e l l founded sets

The main proof technique used to show termination (and
liveness properties) of programs is based on well founded
sets. A well founded set (A, <) is a partially ordered set in
which no infinite strictly decreasing sequence exists.
Elements of such a set may be used to define a ranking
function 2 p: S ~ A 2, where S denotes the set of states of a
given program. The ranking function should be defined
so that as the computation proceeds through state transi-
tions, the value of the ranking function for the visited
states decreases. As no infinite ranking sequence is possi-
ble, the program must terminate. The program termin-
ates if, and only if, such a ranking function exists 2.

For deterministic programs, it is sufficient to require
that the ranking function decreases at every step. When
concurrent, or nondeterministic, programs are consid-
ered, however, this requirement may be too strong.
Often, infinite sequences are not admissible under a
fairness constraint, which suggests that, in many cases,
the ranking function could be defined only for the fair
sequences. Consider the following example:

A = (b .'= false)
B = (do true ~ skip od)

P = (b..= true; AIIB)

As long as only process B is taken, nothing changes in the
state, so no ranking sequence exists. If (weak process)
fairness is assumed, however, the program terminates.

The solution suggested 2 is to define ranking sequences,
which only decrease eventually. Thus distinguish be-

tween a helpful direction, i.e., one that decreases the
ranking function ('b ..= false' in the example above), and
an indifferent one, i.e., one that does not increase it. Now,
using a proof rule that incorporates the required fairness
constraint, it can be shown that as the computation
proceeds, the ranking function does not increase and, by
the fairness constraint, the helpful direction is eventually
chosen. Thus for program P, assuming weak process
fairness, the well founded set would be {0, 1}, with
p(true) = 1, p(faise) = 0, as the states could be identified
with the value of b.

A complication of this method, when used to verify
concurrent or nondeterministic programs, is that arbi-
trary (not just countable) well founded sets are required.
A ranking sequence would typically include transfinite
ordinals, rather than just natural numbers, hence trans-
finite induction may also be required. Ordinal numbers
are an extension of the concept of natural numbers
beyond co and are defined as follows: 0 = ~ , n + 1 =
n u {n}. Now proceed by taking co = {0, 1 }, 09 + 1 =
co u {co}, etc. Ordinals are strictly ordered by the set
membership and form a well founded class.

Consider the following example:

A = (x := 0; comm := true;
do comm ---, x .'= x + 1
[] comm -~ (B!x; comm ..= false)
od)

B = (A?y; C!y; stop)
C = (B ? z ; d o z > 0 - - . z , = z - lod)

P = (AIIBIIC)

Clearly, C is terminating, so as long as AIIB terminates, P
will terminate. Note that AIIB always terminates under
the assumption of weak process fairness. Process A
produces an unbounded natural number, which is then
sent to C, who decrements it until it reaches zero. The
well founded set in this case is co, the second guard in A is
helpful and the first one indifferent. The ranking function
defined on the states identified with the contents of the
variable comm is: p(true) = 09, p(faise) = x; comm has
been included to indicate that communication between A
and B has occurred. (Note that taking a bounded value
here was impossible because indifferent directions must
not increase the ranking function.)

The well founded sets method also applies to other
liveness properties 8, not just termination. In this ap-
proach, fairness is incorporated as a constraint within a
proof rule; a variety of proof rules can be formulated,
depending on the actual notion of fairness.

A compositional approach is also possible, which
allows for modules to be specified and verified, indepen-
dent of their environment. This is achieved by the intro-
duction of a notion of an interface. A compositional
approach to temporal logic hasbeen discussed 56, but it is
not clear how fairness constraints are dealt with.

Well founded sets are also used to prove termination of
nondeterministic programs 5. Two inter-reducible meth-

382 information and software technology

ods seem to be used in this case: the state-directed choice
(essentially the ranking function with helpful directions
as described above), and the ordinal-directed choice
(based on the existence of a parametrized invariant). A
variety of proof rules, one for each fairness notion, are
considered together with their soundness and semantic
completeness 5. Termination proofs are considered suffi-
cient since other liveness properties can be reduced to
termination 5~ .

Transformational approach

An alternative method for tackling termination of non-
deterministic programs is the method of explicit
scheduler 5. It is based on the transformation of the
original program into a derived program that uses ran-
dom assignment. This way it is possible to find a ranking
sequence in the derived program that decreases at every
computation step. Thus a simpler rule can be used to
reason about the termination of the original program.
Random assignment is a statement of the form x : = ?,
where? stands for any natural number. The method of
explicit scheduler has been analysed, where soundness
and completeness are also considered 5.

Positive approach

The methods discussed so far were essentially negative
approaches based on two-level semantics. At the lower
level, all computations, whether fair or unfair, were
allowed. The proof rules incorporated a variety of fair-
ness constraints, thus making it possible for the proof to
reason only about computations that are fair. Computa-
tions that are not admissible under a given scheduling
policy were considered irrelevant.

The positive approach is concerned with generating
the fair computations only. A positive approach to
fairness in CCS has been considered 6. This was achieved
by introducing two sets of rules, namely Weak Fair CCS
and Strong Fair CCS, which are mathematically more
complex than the standard rules for CCS. Any property
verified by means of those rules automatically holds for
all, and only, fair computations. Such an approach may
be criticised for being inflexible, as any other notion of
fairness would require a new set of rules.

Automatic verification

The obvious disadvantages of manual verification of
program properties may be overcome by a mechaniza-
tion of the verification process. In temporal logic, so
called model checking 27 provides such facilities. This
method relies on the representation of finite-state pro-
grams as labelled state-transition graphs (called Kripke
structures). The algorithm developed for CTL 27, which
determines if a formula fo is true in the state s, has
complexity O(len(fo)*(I S] + I R])), where S denotes the set
of states and R is the reachability relation.

Incorporating fairness constraints involves extending
the state-transition graph with a set of fairness predicates,
each of which is required to hold infinitely often along a
computation path. The temporal operators now quantify
over fair computation paths. The complexity of the
model checking in this case increases by the factor IF[,
where F denotes the set of fairness predicates. A potential
problem of this method is that the number of states
grows exponentially.

Other model checking systems that allow for fairness
have been reported 58'59.

APPLICATIONS

The techniques developed for program verification under
fairness constraints have been used, in isolated cases, in
some practical applications. The work understandably
concentrates on mutual-exclusion algorithms and proto-
col verification, as fairness properties become important
when modelling synchronization or data transfer over an
unreliable medium.

Concurrent algorithms

When designing and implementing mutual-exclusion al-
gorithms, some reasoning about fairness is needed to
ensure that a process that requests access to the critical
section will eventually be allowed to enter. Mutual-
exclusion algorithms are often verified to exemplify the
proof technique under consideration. Peterson's algor-
ithm has been shown to be correct (the proof is based on
linear temporal logic) TM. Mutual exclusion using the
'proof lattice' technique has been proved 26. Peterson's
algorithm has been automatically verified by the model
checking algorithm for the CTL temporal logic 2~. A
version of n-process mutual exclusion has been verified
using the notion of extreme fairness (that is, probabilistic
fairness)4; the algorithm is based on symmetric protocols
that do not share a writable storage, but other processes
are allowed to read the value of the private variable of a
given processes. Algorithms with the same constraint,
deemed necessary in distributed systems, have been
analysed 6°. Apart from fairness, some fault-tolerance
properties are also considered there.

Fairness of synchronization primitives has been
characterized 6~. Unbounded communication primitives
and two versions of semaphore operations are axioma-
tized. Monitors that guarantee fairness have been imple-
mented as an extension of PASCAL with concurrency 62.

Protocol verification

The verification of network communication protocols is
of increasing importance. The alternating bit protocol is
verified under fairness constraints using many tech-
niques, e.g., a manual proof in terms of an infinitary
process algebra 31 and an automatic verification in

vol 31 no 7 september 1989 383

CTL 27. The CSMA/CD protocol has also been verified
using an infinitary process algebra 31 .

Verification of multiprocess probabilistic protocols
has been discussed 4, where the notion of extreme fairness
is employed. The protocol used there is based on an n-
process mutual-exclusion algorithm that assumes no
writable storage for communication.

Automatic verification using a model checking system
written in PROLOG has also been discussed 58. More
detailed information on the subject of protocol verifica-
tion is given elsewhere 31.

Programming languages
It is an interesting question whether fairness constraints
formulated, at the stage of the language design or imple-
mentation, for existing programming languages are ade-
quate. Criteria for appraisal of fairness notions have been
introduced 63 . These are:

• feasibility, that is, whether some computation of a
program remains once all computations that are un-
fair with respect to the given notion have been ex-
cluded

• equivalence robustness, that is, if fairness respects the
equivalence induced by the model

• liveness enhancement, which requires that additional
liveness properties hold for some program.

When fairness notions for CSP ~5 have been analysed,
only strong process fairness (see the section 'Taxonomy
of fairness notions') is shown to satisfy all three criteria.
Several fairness notions for communication in ADA have
also been considered.

Other work concerning programming languages re-
volves around synchronization primitives, for example,
semaphores 61 or monitors 62.

C O N C L U S I O N S

Fairness and fairness-related notions stem from the ob-
servation that a certain undesirable phenomenon, often
present in infinite computations admissible under a given
semantics, and usually relating to the lack of progress of
some component of a system, must be disallowed. When
first introduced 2'16'28'41 , fairness was defined as an issue
to do with concurrency. The motivation for the introduc-
tion of fairness was to make the admissible behaviour
realistic from the point of view of a concurrent implemen-
tation on a multiprocessor system. The definitions of
fairness were often elusive, informal, and heavily depen-
dent on the particular model used. This situation has led
to the emergence of the multiplicity of model-specific
fairness notions, guided by concerns other than concur-
rency, for example, fairness of choice. As a result, the
originally intended intuition of fairness has been obs-
cured,

It should be recognised that fairness is not a mono-
lithic notion; rather, in its present form, it is a collection
of (mostly independent) properties, which are dependent

on the choice of the granularity level and the strength
required. Nevertheless, fairness properties exhibit certain
features that distinguish them from other properties. All
fairness notions known to the author exclude some
infinite behaviours, while all finite behaviours are consid-
ered fair. Also, fairness usually requires that some system
component makes progress infinitely often, without put-
ting an explicit bound on the delay (the only constraint is
that this delay is finite). Notions like infinitely often,
component becomes possible, and progress has been
made need to be formalized to express fairness.

It has been maintained that fairness has no effect on
partial correctness and, in general, safety properties. It
does, however, affect liveness properties, for example,
program termination. This observation relies on the fact
that, when some infinite computations have been ex-
cluded, it is often the case that no infinite computations
are admissible hence the program will be terminating.
Fairness is introduced in most formalisms as a
constraint 8, that is, an assumption incorporated at the
verification stage, for example, as a premise of a proof
rule, which is used to prove properties other than fair-
ness. On the other hand, fairness may be treated as a
property TM of programs, that is, it may be added to the
list of properties that form a specification for that pro-
gram. Given notations expressive enough, statements
about fairness of a given program can be made and
verified, although this may have some effect on the
complexity of the proof 27.

It became apparent that some existing formalisms
could not adequately incorporate fairness as a property
expressible within the formalism. Many models had to be
extended with infinite computations. In temporal logic, it
has been observed that some properties could not be
expressed without certain powerful temporal
operators TM. In verification techniques, incorporating
fairness has called for transfinite induction 2'5. In denota-
tional semantics, continuity had to be reconsidered 27.

Further difficulty arises when different behavioural
structures are used as models, for example, when nonde-
terministic interleaving is used to represent concurrency.
At this high level of abstraction, no restrictions are
usually imposed on admissible sequentializations of con-
current computations (such as the finite delay
property16). For such approaches, fairness with respect
to concurrent processes may be reduced to fairness of
choice for a particular scheduler. When transferring
fairness onto other behavioural structures, for example,
those based on causality, certain anomalies could come
to view 9'64 .

Owing to the number of different guises fairness takes
in different models, it is not clear at this stage how best to
approach fairness. Doubts have often been expressed as
to whether powerful formalisms like transfinite induction
are really needed to deal with a property so easy, on the
face of it, to implement in practice. Also, some quantita-
tive methods, rather than the qualitative ones that have
been applied until now, would be beneficial to model the
bounded delays necessary in realtime systems.

Recently, some criticism was raised 65 as to whether

384 information and software technology

fairness is a 'workable notion' as no finite experiment can
be set up to prove or disprove it. The author would argue
with this statement and tend towards thinking that
fairness is a useful abstraction 66, especially when related
to concurrency, and, as such, although undetectable by
finite experiments, it is nevertheless a property that can
be formally stated 9. Further research is needed, however,
to provide a comparative study of fairness properties
independent of the intricacies of the models used. This
seems a worthwhile goal, considering the pleasing fact
that the research in concurrency has begun to converge.

R E F E R E N C E S

1 Gabbay, D, Pnueli, A, Shelah, S and Stavi, J 'On the
temporal analysis of fairness' in Proc. 7th ACM Symp.
Principles of Programming Languages (1980)

2 Lehman, D, Pnueli, A and Stavi, J 'Impartiality,
justice and fairness: the ethics of concurrent termina-
tion' in Even, S and Kariv, O (eds) Proc. Automata,
Languages and Programming. (Lecture Notes in
Computer Science Vol 115) Springer-Verlag, Berlin,
FRG (1981)

3 Queille, J P and Sifakis, J 'Fairness and related
properties in transition systems-a temporal logic to
deal with fairness' Acta Inf. Vol 19 (1983) pp 195-220

4 Pnueli, A and Zuck, L 'Verification of multi-process
probabilistic protocols' Distrib. Comput. Vol 1 (1986)
pp 53 72

5 Francez, N Fairness Springer-Verlag, New York, NY,
USA (1986)

6 Costa, G and Stirling, C 'Weak and strong fairness in
CCS' Inf. Computation Vol 73 (1987) pp 207-244

7 Park, D 'On the semantics of fair parallelism' in
Bjorner, D (ed) Abstract Software Specifications,
Proc. (Lecture Notes in Computer Science Vol 86)
Springer-Verlag, Berlin, FRG (1980)

8 Pnueli, A 'Applications of temporal logic to the
specification and verification of reactive systems: a
survey of current trends' in de Bakker, J W, de
Roever, W P and Rozenberg, G (eds) Current trends in
concurrency (Lecture Notes in Computer Science Vol
224) Springer-Verlag, Berlin, FRG (1986)

9 Kwiatkowska, M Z 'Fairness for non-interleaving
concurrency' PhD Thesis University of Leicester,
Leicester, UK (1989)

10 Kuiper, R and de Roever, W P 'Fairness assumptions
for CSP in a temporal logic framework' in Bjorner, D
(ed) Proc. TC.2 Working Conf. Description of Pro-
gramming Concepts North-Holland, Amsterdam, The
Netherlands (1983)

I1 Carstensen, H and Vaik, R 'Infinite behaviour and
fairness in Petri nets' in Rozenberg, G (ed) Advances
in Petri Nets 84 (Lecture Notes in Computer Science
Vol 188) Springer-Verlag, Berlin, FRG (1984)

12 Mereeron, A 'Fair processes' in Proc. 7th European
Workshop on Applications and Theory of Petri Nets
(Oxford, UK, 1986)

13 Priese, L, Rehrmann, R and Willecke-Klemme, U 'An
introduction to the regular theory of fairness'

Theoret. Comput. Sci. Vol 54 (1987) pp 139-163
14 Kwiatkowska, M Z 'A survey of fairness notions'

Technical Report No 14 University of Leicester,
Leicester, UK (1988)

15 l-loare, C A R 'Communicating sequential processes'
Commun. ACM Vol 21 No 9 (1978) pp 666-677

16 Karp, R M and Miller, R E 'Parallel program sche-
mata' J. Comput. Syst. Sci. Vol 3 (1969) pp 147-195

17 Shields, M W 'Behavioural presentations' in de
Bakker, J W, de Roever, W-P and Rozenberg, G (eds)
Linear time, branching time and partial order in logics
and models for concurrency (Lectures Notes in Com-
puter Science Vol 354) Springer-Verlag, Berlin, FRG
(1989)

18 Shields, M W Elements of a theory of parallelism to be
published

19 Plotkin, G 'A powerdomain for countable non-deter-
minism' in Proc. Automata Languages and Program-
ming, 9th Coil (Lecture Notes in Computer Science
Vol 140) Springer-Verlag, Berlin, FRG (1982)

20 Grumberg, O, Francez, N and Katz, S 'A complete
rule for equifair termination' J. Comput. Syst. Sci. Vol
33 (1986) pp 313-332

21 Mazurkiewicz, A, Ochmanski, E and Penczek, W
'Concurrent systems and inevitability' Theoret. Com-
put. Sci. Vol 64 (1989) pp 281-304

22 Costa, G and Stifling, C 'A fair calculus of communi-
cating systems' Acta lnformatica Vol 21 (1984) pp
417-441

23 Lamport, L 'Proving the correctness of multiprocess
programs' IEEE Trans. Soft. Eng. Vol 3 No 2 (1977)
pp 125-143

24 Apt, K R and Olderog, E-R 'Transformations realiz-
ing fairness assumptions for parallel programs' in
Proc. Symp. Theoretical Aspects of Computer Science
(Lecture Notes in Computer Science Vol 166) Spr-
inger-Verlag, Berlin, FRG (1984)

25 Alpern, B and Schneider F B 'Defining liveness' Inf.
Process. Lett. Vol 21 (1985) pp 181-185

26 Owicki, S and Lamport, L 'Proving liveness proper-
ties of concurrent programs' A CM Trans. Programm.
Lang. Syst. Vol 4 No 3 (1982) pp 455-495

27 Clarke, E M and Grumberg, O 'Research on auto-
matic verification of finite-state concurrent systems'
Ann. Rev. Comput. Sci Vol 2 (1987) pp 269-290

28 Park, D 'Concurrency and automata on infinite
sequences' in Deussen, P (ed) Proc. 5th GI Conf.
Theoretical Computer Science (Lecture Notes in
Computer Science Vol 104) Springer-Verlag, Berlin,
FRG (1981)

29 Apt, K R and Francez, N 'Modelling the distributed
termination convention in CSP' ACM Trans. Pro-
gram. Lang. Syst. Vol 6 No 3 (1984) pp 370-379

30 Hennessy, M 'An algebraic theory of fair asynchron-
ous communicating processes' Theoret. Comput. Sci.
Vol 49 (1987) pp 121-143

31 Parrow, J 'Fairness properties in process algebra
with applications in communication protocol verifi-
cation' PhD Thesis Uppsala University, Sweden
(1985)

vol 31 no 7 september 1989 385

32 Pnueli, A 'On the extremely fair treatment of proba-
bilistic algorithms' in Proc. 15th ACM Syrup. Theory
of Computing (1983) pp 278-290

33 Best, E 'Fairness and conspiracies' Inf. Process. Lett.
Vol 18 (1984) pp 215-220

34 Best, E 'Erratum' Inf. Process. Lett. Vol 19 (1984) p
162

35 Attie, P, Franeez, N and Grumberg, O 'Fairness and
hyperfairness in multi-party interactions' submitted
to Distributed Comput.

36 Brookes, S D, Hoare, C A R and Roscoe W 'A theory
of communicating sequential processes' J. ACM Vol
31 No 3 (1984) pp 560-599

37 Lauer, P E, Shields, M W and Best, E 'Design and
analysis of highly parallel and distributed systems' in
Bjorner, D (ed) Abstract Software Specifications Proc.
(Lecture Notes in Computer Science Vol 86)
Springer-Verlag, Berlin, FRG (1980)

38 Kwiatkowska, M Z 'Modelling concurrency using
ambiguous asynchronous transition systems' Techni-
cal Report No 9 University of Leicester, Leicester, UK
(1988)

39 Miiner, R A calculus for communicating system
(Lecture Notes in Computer Science Vol 92)
Springer-Verlag, Berlin, FRG (1980)

40 Hennessy, M 'Modelling finite delay operators'
Technical Report CSR-153-83 University of Edin-
burgh, Edinburgh, UK (1983)

41 Asheroft, E A 'Proving assertions about parallel
programs' J. Comput. Syst. Sci. Vol 10 (1975) pp
110 135

42 Kwong, Y S 'On the absence of livelocks in parallel
programs' in Kahn, G (ed) Semantics of Concurrent
Computation Proc. (Lecture Notes in Computer Sci-
ence Vol 70) Springer-Verlag, Berlin, FRG (1979)

43 Dijkstra, E W A discipline of programming Prentice-
Hall, Englewood Cliffs, NJ, USA (1976)

44 Roscoe, A W 'Two papers on CSP' Technical mono-
graph PRG-67 University of Oxford, UK (1988)

45 Manna, Z and Pnueli, A 'Temporal verification of
concurrent programs' in Boyer, R S and Strother
Moore, J (eds) The correctness problem in computer
science Academic Press, New York, NY, USA (1981)
pp 215-273

46 Emerson, E A and Halpern, J Y 'Sometimes' and 'not
never' revisited: on branching versus linear time
temporal logic' J. ACM Vol 33 No 1 (1986) pp
151 178

47 Boasson, L and Nivat, M 'Adherences of languages' J.
Comput. Syst. Sci. Vol 20 (1980) pp 285-309

48 Bergstra, J A and Klop, J W 'Algebra of communicat-
ing processes' in de Bakker, J W, Hazenwinkel, M
and Lenstra, J K (eds) Proc. CWI Symp. Math. &
Comp. Sci. Amsterdam, The Netherlands (1986)

49 Hoare, C A R Communicating sequential processes
Prentice-Hall, Englewood Cliffs, N J, USA (1984)

50 van Giaabbek, R J 'Bounded non-determinism and
induction principle in process algebra' Technical

Report CS-R8634 Centrum foor Wiskunde en Infor-
matica, Amsterdam, The Netherlands (1986)

51 Rozenberg, C and Thiagarajan, P S 'Petri nets: basic
notions, structure, behaviour' in de Bakker, J W de
Roever, W P and Rozenberg G (eds) Current trends in
concurrency (Lecture Notes in Computer Science Vol
224) Springer-Verlag, Berlin FRG (1986)

52 Carstensen, H in Brandenburg, F J, Vidai-Naquet, G
and Wirsing, M (eds) Proc. STACS 87 (Lecture Notes
in Computer Science Vol 247) Springer-Verlag, Ber-
lin, FRG (1987)

53 Stoy, J E Denotational semantics: the Scott-Strachey
approach to programming language theory MIT Press,
Cambridge, MA, USA (1977)

54 de Bakker, J W, Meyer, J-J C and Olderog, E-R
'Infinite streams and finite observations in the
semantics of uniform concurrency' Theoret. Comput.
Sci. Vol 49 (1987) pp 87-112

55 Owieki, S and Gries, D 'An axiomatic proof tech-
nique for parallel programs' Acta Inf. Vol 6 (1976) pp
319 340

56 Barringer, H, Kuiper, R and Pnueli, A 'Now ybu may
compose temporal logic specifications' in Proc. 16th
Symp. Theory of Computing (1984) pp 51-63

57 Grumberg, O, Franeez, N, Makowsky, J A and de
Roever, W-P 'A proof rule for fair termination of
guarded commands' Inf. Contr. Vol 66 (1985)
pp 83-t02

58 Cavalli, A R and Horn, F 'Proof of specification
properties by using finite state machines and tempo-
ral logic' in Proc. IFIP WG 6.1 7th Int. Conf. (1987)

59 Emerson, E A and Lei, C-L 'Modalites for model
checking: branching time logic strikes back' Sci.
Comput. Program. Vol 8 No 3 (1987) pp 275-306

60 Lamport, L 'The mutual exclusion problem. II. State-
ment and solutions' J. ACM Voi 33 (1986) pp
327 348

61 Martin, A J 'An axiomatic definition of synchronisa-
tion primitives' Acta Informatica Vol 16 No 2 (1981)
pp 219 235

62 Karp, R A and Luckham, D C 'Verification of fairness
in an implementation of monitors' in 2nd Int Conf.
Software Engineering IEEE, Los Alamos, CA, USA
(1976)

63 Apt, K R, Franeez, N and Katz, S 'Appraising fairness
in languages for distributed programming' in Proc.
14th ACM Syrup. Principles of Programming Lan-
guages (1987)

64 Kwiatkowska, M Z 'Event fairness in asynchronous
transition systems' Technical Report No 10 Univer-
sity of Leicester, Leicester, UK (1988)

65 Dijkstra, E W 'Position paper on fairness' Soft. Eng,
Notes Vol 13 No 3 (April 1988) pp 18-20

66 Chandy, K M and Misra, J 'Another view of fairness'
Soft. Eng. Notes Vol 13 No 3 (July 1988) p 20

67 Costa, G 'A metric characterization of fair computa-
tions in CCS' Internal report CSR-169-84 University
of Edinburgh, UK (1984)

386 information and software technology

