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Fairness has been examined from different viewpoints and in 
varied semantic models, for example, CCS, guarded commands, 
Petri nets, and automata. Classification of  fairness notions has 
been proposed in many formalisms, which have often required a 
suitable extension. Surprisingly, there still seems to be no general 
agreement on what fairness means and how it should be dealt 
with. One possible reason for this state o f  affairs is the multipli- 
city of  semantic models used and the dependence of  fairness on 
the intrinsic characteristics of  these models, which makes it 
difficult to establish interrelationships between fairness notions. It 
is not uncommon to encounter criticism of  fairness, and the need 
for the powerful methods that reasoning with fairness constraints 
has called for, for example, transfinite induction, is also ques- 
tioned This situation is clearly undesirable, and ways to provide 
better understanding of  fairness, and perhaps a unified approach, 
should be sought. 

The paper reviews major issues in the area, the purpose being to 
present a taxonomy of  notions of  fairness and to discuss the main 
directions taken and the implications o f  choosing a particular 
approach. The object of  this review is to identify common features 
o f fairness definitions and to examine the adequacy, or, in some 
cases, the failure, o f  standard methods when applied to deal with 
fairness. 

fairness, fairness behaviour, fairness constraints, concurrency, 
nondeterminism 

A system is said to be correct if it satisfies a given 
specification, where the specification is a list of proper- 
ties. To show that the system has a given property, 
typically an abstract model is used together with a set of 
proof rules; ideally, the list of properties should be 
sufficient to pronounce the system correct. The case of 
deterministic systems is considered relatively simple. It 
has long been recognised, however, that this is not the 
case with concurrent (or nondeterministic) systems. Since 
such systems include airline reservation systems, operat- 
ing systems, etc., it is crucial that the list of properties 
prohibits all cases of undesirable behaviour. 

Consider an example of an airline reservation system. 
The system consists of a waiting list of booking requests 
and a passenger list, each list being manipulated by a 
manager process capable of dealing with one customer at 
a time. Customers who make booking requests are first 
registered on the waiting list, from which they enter the 
booking process, in some order, one by one. This book- 
ing process notifies the passenger list manager if a 
booking can be taken, which initiates the transfer of 
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customer details from the waiting list to the passenger 
list. The system exploits concurrency at both hardware 
and software levels, that is, all three processes mentioned 
are, in fact, communicating sequential processes imple- 
mented on separate physical processors. 

A desirable property of such a system would be to 
show that if a customer A requests a service, then this 
service will eventually be provided. It might be thought 
that this would be guaranteed by the truly concurrent 
implementation as the processes do not have to wait for 
their time-slice to proceed. However, the reality is differ- 
ent. Imagine that customers A, B, and C are trying to 
book a flight. Their names are first registered on the 
waiting list, from which the booking process chooses A to 
be served and finds that the booking can be taken. As 
customer A is being transferred to the passenger list, he 
tries to book another flight but is temporarily stopped in 
the waiting list so that the two requests are not confused. 
While A is waiting for an entry to the booking process, 
the system has served customers B and C, who have 
successfully been transferred to the passenger list and try 
to book another flight too. They get as far as the waiting 
list, after which B gains access to the booking process. In 
the meantime, A's transfer to the passenger list has finally 
finished (there was some communications delay), but his 
second request cannot proceed because now the booking 
process is busy dealing with B. Having served B, the 
booking process chooses C's request. In the meantime, B 
decides to book yet another flight. For some reason, B's 
request, rather than A's, is chosen when C has exited the 
booking process. C decides to book yet another flight 
too, however, and gains access to the booking process 
just as B was leaving. If this is allowed repeatedly ad 

infinitum, customer A's request will never be serviced 
because the booking process is busy servicing requests of 
B and C! 

Esoteric though it may be, this is an example of an 
unfair behaviour of the system--unfair on customer A. 
Note that this is not deadlock: the system has not 
stopped, nor has any of its processes, when considered 
independently, behaved incorrectly. (In fact, the system 
could have been proved partially correct using an induc- 
tive argument based on invariants.) The only concern is 
that customer A has not made satisfactory progress, 
although he was continuously ready to do so. It cannot 
be shown that A's request is eventually serviced unless 
explicit assumptions are made about the way booking 
requests are selected (so called 'fairness constraints'). 
When considering an abstract model and the proof 
system necessary to show correctness with respect to 
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such properties under fairness constraints, transfinite 
induction (see section 'Proving properties under fairness 
constraints' for explanation) may be needed. It might be 
argued it would be easier simply to suggest a plausible 
implementation--a FIFO queue or a priority system 
should be adequate here. But should fairness be the 
implementor's responsibility ? Note that a cheaper imple- 
mentation (that is 'busy waiting' or a 'round-robin' 
algorithm in the multiprogramming case) would admit 
the behaviour described in the example, so there is no 
guarantee that an implementor can recommend a correct 
solution unless, at least, a possibility of an unfair situa- 
tion is exposed. Of course, the concern should be with 
ways that help to eliminate the above, and similar, 
undesirable behaviours. 

This is the object of the study of fairness. Its aims are to 
find adequate formalisms for imposing fairness con- 
straints on computations in abstract models for concur- 
rent (or, for that matter, nondeterministic) systems. The 
work in this area concentrates on building proof systems 
for proving properties under fairness constraints (like the 
'guaranteed service' mentioned above) and the develop- 
ment of proof techniques 1-6. Other major issues include 
examining the adequacy of existing formalisms when 
expressing fairness and investigating possible 
extensions ~-9. In addition, there is some research con- 
cerned with the classification (e.g., as a hierarchy) of 
fairness properties 9-~3. 

To the author's knowledge, there have been few 
attempts 9 to provide a formal definition of what a 
fairness property is and, what is more, what it is not, 
although a variety of (often informally stated) model- 
specific notions have been introduced. 

Out of necessity, fairness notions shall be discussed 
through examples, rather than through a formal compar- 
ative study. An informal survey like this should precede 
any formal discussion and should provide the necessary 
background, encouragement, and direction. A prelimin- 
ary version of this paper appeared in Kwiatkowska ~4. 

D E F I N I N G  F A I R N E S S  

Before presenting a taxonomy of specific fairness proper- 
ties, the main concerns that guided previous research 
when defining fairness, are summarized. 

Fairness properties in concurrent and nondeterminis- 
tic systems shall be informally discussed. By a system 
shall be meant a discrete system, which progresses from 
one state to another through actions (or transitions). For 
readability, the examples used here are in a variant of the 
guarded commands of CSP is. A sequence of states with 
associated actions is called, for the purpose of this paper, 
a computation, often referred to in literature as a run. 
Although runs are represented similarly in almost all 
semantic models, there is disagreement on how the runs 
should be grouped into a structure (e.g., a set, a computa- 
tion tree, or a partially ordered set) to represent the 
behaviour of a system, and hence to be considered a 
viable semantics. The presentation here will ignore those 

differences, as detailed discussion is beyond the scope of 
this paper (see Kwiatkowska 9 for more details). 

Note that when considering fairness, it is necessary to 
include both infinite and finite computations. 

Intu i t ive  de f in i t ion  

The motivation behind any notion of fairness is to 
disallow infinite computations in which a system compo- 
nent is, for some reason, prevented from proceeding. All 
finite computations are fair; when infinite computations 
are considered, however, it may be necessary to distingu- 
ish between fair and unfair computations. Intuitively, 
fairness is a property of computations that can be ex- 
pressed as follows: no component of the system that 
becomes possible sufficiently often should be delayed 
indefinitely. 

This is a general statement that brings together many 
fairness properties known from literature. To obtain a 
specific fairness property it is necessary to say explicitly 
what is meant by a 'system component', system compo- 
nent 'becoming possible', and 'sufficiently often'. The 
first determines what it is that must be allowed to 
proceed, or, in other words, the 'granularity level' of 
fairness, and the latter defines the conditions under which 
the component will proceed, that is, the 'strength' of 
fairness. 

The notion of a system component becoming possible 
usually depends on the kind of component, but it may 
be given different meaning depending on the actual 
model used. Examples of some kinds of components, and 
what it means for each to become possible, are given in 
Table 1. 

As most models have an underlying state-transition 
system structure, the notion of a component becoming 
possible shall often be identified with it being enabled. 
The notion of a component becoming possible may vary 
depending on the semantics chosen. Also some semantic 
approaches may automatically exclude some runs as 
inadmissible, for example, on the grounds that they do 
not correspond to acceptable sequentializations of a 
concurrent behaviour 9.16--18 

Table 1. Notion of system component becoming possible: some 
examples 

Component Becomes possible if 

(Concurrent) Some action of the process is enabled 
process 
Event 
Synchronization 
event 
Channel 
communication 
Guard 

Transition 

State 

Event can occur 
Processes can synchronize 

Processes can communicate on channel 

Some guard in a nondeterministic 
program evaluates to true 
Transition becomes enabled in a given 
state 
State is immediately reachable from a 
given state 
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Table 2. Most common variations on strength of fairness 

Sufficiently often Corresponding strength 

Constraint free 
Infinitely often 
Almost always 

Unconditional fairness 
Strong fairness 
Weak fairness 

Table 2 gives the most common variations on the 
strength of fairness. The terms in Table 2, although 
informal, are widely used and will be explained later. 
'Almost always '6'19 means at every step after some point 
in time and can also be described as 'continuously from 
some point onwards '5'8. 

The intuitive definition of fairness can be rephrased in 
the following, perhaps more familiar, form: if a system 
component becomes possible sufficiently often then it 
proceeds infinitely often. Note that the intuitive defini- 
tion of fairness as introduced here considers each compo- 
nent in isolation, that is, irrespective of the remaining 
components of the system, and does not put any specific 
bounds on the number of steps executed before each 
component makes progress. It is possible to strengthen 
fairness by defining it relative to a group of components 
that are jointly enabled, in the sense that each member of 
the group proceeds equally often 2°. Another interesting 
class of fairness properties are probabilistic fairness 
properties 4. 

Concurrency fairness versus fairness of choice 

It is possible to view fairness either as an issue fundamen- 
tally to do with concurrency or nondeterminism. This 
leads to a distinction between concurrency fairness and 
fairness of choice. Consider the following two programs 
P and Q: 

A = (do true --~ print( 'a ') od) 
B = (do true --, print( 'b ')  od) 
P = (Alia) 

Q = (do true ~ print( 'a ') 
[] true ~ print( 'b ')  
od) 

Program P is a parallel composition of two sequential 
processes A and B, whereas program Q is nondeterminis- 
tic. Both P and Q never terminate and print infinite 
sequences that consist of a's and b's. If fairness is defined 
as a property that states that no concurrent process 
should be delayed indefinitely (concurrency fairness), 
then a computation that allows an infinite sequence ofa ' s  
(denoted a ~') is unfair with respect to this notion because 
it ignores process B (and likewise any execution that 
allows only a finite number of b's). When considering 
program Q, however, a °' must be considered concurrency 
fair (and, indeed, any computation that allows only a 
finite number of b's); program Q does not contain any 
concurrent processes, and hence no concurrent process in 
Q has been indefinitely delayed! 

Nothing prevents definition of fairness with respect to 
the choice of nondeterministic guards (fairness of choice). 
Thus an execution is fair with respect to choice if no 
nondeterministic guard is ignored forever. Notice that, 
for program Q, this means disallowing computations 
that lead to either a or b being printed only a finite 
number of times. In program P, on the other hand, all 
computations are fair with respect to choice because 
there is no nondeterministic choice in P, hence no guard 
has been discriminated against! 

Concurrency fairness and fairness of choice (also called 
'fairness in selection 's or 'conflict resolution fairness '2t) 
are independent notions, although they are sometimes 
identified. This confusion is caused by the fact that 
concurrency is often reduced to nondeterministic inter- 
leaving, in which case concurrency fairness corresponds 
to fairness of choice for a particular scheduler. Note that 
to distinguish these two notions of fairness it is necessary 
to consider a formalism that allows for a distinction 
between concurrency and nondeterminism. 

Fairness of choice 3'5 and concurrency fairness 2'6'7 are 
discussed elsewhere. 

Fairness and granularity level 

Fairness properties are severely affected by the choice of 
granularity level, that is, the kind of system component 
under consideration, e.g., process, event, transition, and 
state. For a given system, they typically result in fairness 
notions that do not coincide. 

P r o c e s s  versus  event  fa irness  
It is usually possible to view systems at two semantic 
levels: the level of events and the level of processes. This 
leads to two different notions of fairness, event fairness, in 
the sense that no event should be delayed indefinitely, 
and process fairness, in the sense that no process should 
be delayed indefinitely. These definitions depend on what 
constitutes an event and a process. (Also, it is not always 
clear how to decompose the system into processes as a 
variety of decompositions that determine different fair- 
ness notions are possible.) 

Process fairness and event fairness do not, in general, 
coincide. The following is a simple example: 

A = (do true ~ print( 'a ') 
[]  true --* print( 'b ')  

C = (do true ~ print('c') od) 
P = (milE)  

Process A repeatedly chooses between printing a and b, 
while process C engages in forever printing c. If it is 
assumed that each print command is an event, then the 
only event fair computations of P are the ones that lead 
to an infinite number of each of a, b, and c being printed. 
Given A and C as the identifiable processes, note that 
computations that generate only a finite number of a's 
(or a finite number of b's) are process fair. Thus the 
computations that contain a finite number of a's are 
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process fair, but not event fair. (Note that a different 
decomposition into processes is possible here by repre- 
senting process A as a nondeterministic composition of 
processes A a and Ab; event fairness then coincides with 
process fairness.) 

The above example suggests that it might be plausible 
to redefine the notion of an event so that event fairness 
coincides with process fairness (after all, it has been 
noted t9 that event fairness depends on what constitutes 
an event). A more orthodox view might be taken, how- 
ever, that assumes that no information about processes is 
available at the level of events, and thus consider process 
fairness and event fairness as two different (but perhaps 
related) notions. 

Event fairness has been defined 19 for a concurrent 
'while' language. Process fairness for a (shared-memory) 
concurrent programming language 2'8 and for CCS 6'22 
has been discussed. The relationship of process and event 
fairness in a noninterleaving semantic model has been 
considered 9 . 

In the context of distributed models that allow inter- 
process communication, e.g., over channels, granularity 
of fairness can be further refined by defining channel 
fairness and process communication fairness 1° (not ne- 
cessarily on the same channel). It can be shown that, 
together with process fairness, these notions form a strict 
hierarchy. (That is, the computations that are fair with 
respect to one notion are strictly contained in the set of 
computations that are fair with respect to another one.) 

Transition versus state fairness 
Fairness is also discussed in the context of transition 
systems, often used as an abstract model that views a 
discrete system as progressing through transitions from 
one state to another. Here it is possible to distinguish 
between transition fairness 3, in the sense that no transi- 
tion that is infinitely often enabled should be ignored 
indefinitely, and fair reachability from states 3, in the 
sense that no state that is immediately reachable infini- 
tely often should be delayed indefinitely. 

Consider the following example (adapted from 
FrancezS). The states are identified with the values of x, 
the transitions are the assignment statements, and the 
guards determine if the transitions are enabled in a given 
state: 

P = (x..= 1; 
d o x = l ~ x , = 2  
l--Ix > 0 ~ x.'= x -- 1 
od) 

There is an infinite computation of this program (alter- 
nating the first and second guard) that takes both 
transitions infinitely often, thus no transition has been 
ignored indefinitely (transition fairness). The contents of 
the variable x alternates between 1 and 2 in this computa- 
tion. However, from the state x = 1, which is visited 
infinitely often, it is possible to reach x = 0; hence this 
computation would be disallowed under fair reachability 
from states. Now, as soon as x becomes 0, both guards 
are no longer enabled and the program terminates. Thus 

P terminates under fair reachability from states but does 
not under transition fairness constraints. 

Fair reachability from states and transition fairness are 
independent notions. Here their strong versions only 
have been introduced, although other strengths may also 
be considered 5. 

Fairness and liveness 

It has long been recognised 23 that fairness affects liveness 
properties of programs. Liveness has been defined as a 
class of properties that state that something good will 
happen during program execution 23. This is in contrast 
with safety 23, which is pronounced as nothing bad will 
happen. Examples of liveness are program termination 
(the 'good thing' is that program terminates) and guar- 
anteed response (the 'good thing' is that the request is 
handled). Fairness has a major effect on liveness proper- 
ties in correctness proofs of nondeterministic or concur- 
rent programs; certain programs cannot be proved 
correct with respect to a given liveness property unless 
explicit assumptions are made about fairness. This can be 
shown in the following example: 

A = (do true ~ print(0) 
[] B ! 1 ~ stop 
od) 

B --- (do A?x ~ (print(x); stop) od) 
P = (A[I B) 

Process A repeatedly chooses between printing zero and 
sending the value 1 to process B. Process B is always 
ready to receive from A, but it must wait to synchronize. 
Process P terminates only if A and B eventually synch- 
ronize. Note that P does not terminate if no arbitration is 
present; if, however, a 'reasonable' scheduling algorithm 
is assumed, P will terminate. Termination of P cannot be 
formally proved unless the assumption is incorporated in 
the proof that process A will eventually choose the 
communication (fairness of choice) or that process B 
eventually proceeds (process fairness). 

The term 'liveness' has also been given a different 
meaning, for example: unless a process has terminated, it 
will proceed infinitely often 24. The author believes that 
this formulation is a fairness notion called process live- 
ness, whereas the stated meaning refers to a more general 
class of properties. 

A topological characterization of liveness has been 
presented 2s. A number of proof techniques for liveness 
have been introduced, namely, the proof lattice method 26 
and the well founded sets method l's. The relationship of 
fairness and liveness has also been considered 9. 

Negative versus positive approach 

The question of how to discriminate between fair and 
unfair computations has so far been avoided. Note that 
this cannot be achieved (in a finite number of steps) by 
examining every finite prefix of some computation. Also, 
many existing semantic models do not make any pro- 
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visions for fairness; it is generally accepted that without 
fairness the model is more abstract and therefore simpler 
to use. 

Existing approaches for dealing with fairness can be 
split into two classes. The first approach, called negative, 
is to consider two semantic levels 2. The lower level 
admits all possible computations, whether fair or unfair. 
Then, at the higher level, some methods are invoked for 
excluding unfair computations. An example of such a 
method is to introduce proof rules, one for each fairness 
notion, which are then used to prove termination under 
the given constraints. Thus unfair computations are 
considered irrelevant. Another approach is to extend the 
transition system semantics with explicit fairness 
constraints s'27. The motivation for the negative ap- 
proach is to produce correctness proofs with respect to a 
given scheduling policy, which could then be enforced at 
the implementation stage. 

An alternative approach is to generate only fair com- 
putations of a given system, rather than exclude the 
unfair ones from all admissible computations. This is the 
essence of the positive approach, which deals with one 
semantic level. A set of rules generating weakly and 
strongly process fair computations for CCS has been 
developed 6'22 by extending the CCS calculus to a la- 
belled calculus and modifying the proof rules. There are 
other positive approaches, based on random 
assignment 19'2s. The positive approach could be viewed 
as producing a set of guidelines for an acceptable sche- 
duler from the point of view of the semantics of the 
system. 

TAXONOMY OF FAIRNESS NOTIONS 
Some of the most widely known fairness notions are now 
presented in more detail. 

Unconditional fairness 

Unconditional fairness (also called impartiality) has ori- 
ginally been defined for processes 2. It can be summarized 
as follows: every process proceeds infinitely often. In 
other words, every unconditionally fair computation 
must admit an infinite number of occurrences of the 
actions of each process. An example of unconditional 
fairness has already been considered in the section 'Con- 
currency fairness versus fairness of choice' (the set of 
concurrency fair computations of process P is exactly 
that of unconditionally process fair computations). 

Unconditional fairness may be too restrictive when 
distributed process termination is allowed, for example: 

A = (do true ~ print( 'a ') od) 
B = (print( 'b'); stop) 
P = (m I[ B) 

Process B, unlike process A, terminates after executing its 
action. It is unreasonable, therefore, to expect process B 
to proceed infinitely often. Intuitively, the set of admissi- 
ble computations should include only those computa- 

tions that generate an infinite number of a's interleaved 
with one b (i.e., a*ba°'). However, this computation is not 
unconditionally fair because b does not occur infinitely 
often ! 

Thus unconditional fairness should only be used in the 
context of nonterminating processes. (Excluding distri- 
buted termination does not reduce the expressive power 
of some models, e.g., CSP 29, so unconditional fairness 
will often be sufficient.) Likewise, processes that have not 
yet terminated but have become disabled, for example, by 
waiting to synchronize with another process, will not be 
correctly handled by unconditional fairness. 

Unconditional process fairness properties in a nonin- 
terleaving model for concurrency have been shown to 
form a lattice 9. Unconditional fairness may also be 
defined with respect to nondeterministic choice 5. 

Process liveness 24 is a modification of unconditional 
fairness to allow for the fact that processes may termin- 
ate. (Process liveness should not be confused with live- 
ness as 'something good will happen '23, which is a class 
of more general properties.) It can be expressed as 
follows: unless a process has terminated, it will proceed 
infinitely often. 

Now, in the program P above, process liveness will 
admit only the computations a*ba% However, process 
liveness is still a very crude property. Note that the above 
definition can be rephrased to state that if in a computa- 
tion a process has proceeded finitely often then it must 
have terminated. If there are other reasons for which a 
process proceeds only finitely often, then process liveness 
is not applicable. Unfortunately, this is the case with 
systems that allow synchronization; it is possible for a 
process to become (temporarily or permanently) disabled 
because it is waiting to synchronize with another process 
that refuses to do so. 

Unconditional fairness is known in formal languages 
as 'fairmerge', which was introduced for og-regular lan- 
guages (i.e., extensions of regular languages, by means of 
the co-iteration operator, onto languages of finite or 
infinite sequences over a given alphabet) 2s. Fairmerge of 
two such languages A and B is a language AIIB that 
contains only those sequences that are interleavings of 
pairs of possibly infinite sequences from A and B in such 
a way that all of any infinite sequence is absorbed. 

Fairmerge is a fairness notion that was introduced as 
an abstraction of concurrency fairness. It applies to 
noncommunicating, nonsynchronizing concurrency, that 
is, systems that consist of concurrent processes whose 
actions are totally independent. Some aspects of fair- 
merge have been considered for process algebras 3°. Fair- 
merge is not adequate to express synchronization 
fairness, but it can be suitably extended 31. 

Weak fairness 

Weak process fairness (also called 'justice') 2"s is a prop- 
erty that takes into account the fact that processes may 
become disabled. A process becomes possible (or ena- 
bled) if at least one of its actions is enabled, and disabled 
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otherwise. Weak process fairness can now be summar- 
ized as follows: if a process is enabled continuously from 
some point onwards then it eventually proceeds. 

This definition excludes all computations in which a 
process is enabled continuously and never proceeds after 
some point in time. Note that it follows that if some 
process is actually enabled continuously from some point 
on then it proceeds infinitely often. 

As termination is a reason for a process not to become 
continuously enabled, weak process fairness implies pro- 
cess liveness (that is, if a computation is weakly process 
fair, it satisfies process liveness). If a process may become 
disabled only when it terminates, weak process fairness 
coincides with process liveness. If processes are contin- 
uously enabled and never terminate, weak process fair- 
ness, process liveness, and unconditional fairness 
coincide. 

Consider the following example: 

A = (B!O ~ stop) 
B = (x.'= 1; 

do A?x ~ (print(x); stop) 
[] x > 0 ~ print(x) 
od) 

P = (AIIB) 

Process A is continuously enabled to synchronize, where- 
as process B can repeatedly choose between synchroniza- 
tion with A and the internal action. P terminates only if A 
and B synchronize (the second guard then becomes false). 
If weak process fairness is assumed then process A 
eventually proceeds, hence P terminates under weak 
process fairness. Every weakly process fair computation 
leads to a finite number of l 's  followed by a single 0 (that 
is, a sequence of the form I*0). 

Considering weak process fairness as a separate notion 
is sometimes motivated by the cost of a possible 
implementationS; it is automatically guaranteed on a 
truly concurrent system, whereas for multiprogramming 
concurrency a simple round-robin scheduler will enforce 
it. A 'busy waiting' implementation of a semaphore is 
weakly fair. Stronger fairness notions require queueing 
mechanisms. 

Several other weak fairness properties have also been 
introduced. One example is weak fairness of choice of 
nondeterministic guards, which may be phrased as 'any 
guard that evaluates to true from some point on will 
eventually be chosen'. Consider the following program: 

Q = (x..= 1; 
do x > O~x . .=O 
• x > O ~ x . . = x +  1 
od) 

The above program terminates only if the first guard, 
which is continuously enabled, is ever chosen (both 
guards then evaluate to false). Thus Q terminates under 

weak fairness of choice of guards. Weak fairness of choice 
of guards is independent of weak process fairness. 

Weak process fairness for CCS has been considered 6 
Weak process fairness properties have been defined for 
noninterleaving concurrency 9. Weak process, channel 
communication, and process communication fairness for 
CSP have been discussed 1° and an overview of weak 
fairness of choice presented s. Weak fairness can also be 
defined at the level of events 19, transitions 3, and states 3. 

Strong fairness  

It may not always be desirable to satisfy the assumption 
of weak fairness, which requires that once a process has 
become enabled, it may not become disabled, even tem- 
porarily, if it is to proceed. Therefore the assumption of a 
process becoming enabled continuously from some point 
on is relaxed to becoming enabled infinitely often. Thus a 
notion of strong process fairness (also called fairness 2) is 
arrived at that can be paraphrased as follows: if a process 
is enabled infinitely often then it proceeds infinitely often. 

This definition disallows all, and only those, computa- 
tions in which a process is enabled infinitely often but 
proceeds only a finite number of times, Note that strong 
process fairness implies weak process fairness (that is, if a 
computation is strongly process fair then it is weakly 
process fair). Obviously, if a process never becomes 
enabled once it has becomes disabled, strong process 
fairness coincides with weak process fairness. 

Consider the following example: 

A = (B !0 ~ stop) 
B = (x. .= I; 

do (x mod 2 = 1) and A?x ~ (print(x); stop) 
[] x > 0 ~ (print(x); x .'= x + 1) 
od) 

p = (AJlB) 

Process A is continuously ready to synchronize with B, 
but B can accept the synchronization only at alternate 
steps (in fact, every time x contains an odd number). 
Thus process A is not enabled continuously, but it is 
enabled infinitely often. P terminates only if A and B 
synchronize. An infinite computation that allows only 
process B to proceed is weakly process fair. On the other 
hand, this computation is not admissible under strong 
process fairness, hence P terminates under strong process 
fairness. 

Strong fairness is usually strictly stronger than the 
corresponding weak fairness notion. Although weak fair- 
ness is not sufficient in most cases, the distinction is again 
motivated by implementation considerations. To imple- 
ment strong fairness, queues of pending requests or 
priority systems are needed. An example of a strongly fair 
semaphore is an implementation with FIFO scheduling 
policy. 

It is also possible to define strong fairness of choice of 
nondeterministic guards, which may be described as any 
guard that evaluates to true infinitely often will be chosen 
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infinitely often. As an example, consider: 

Q = ( x : = l ;  
do x mod 2 = 1 ~ x. '=0 
E ] x > 0  --* x..= x + 1 
od) 

Note that Q terminates under strong fairness of choice of 
guards, but not under weak fairness of choice of guards 
(the first guard is not continuously enabled, but it is 
enabled infinitely often). Strong fairness of choice of 
guards is independent of strong process fairness. 

Strong process fairness for CCS has been considered 6. 
Strong process fairness properties have been defined for 
noninterleaving concurrency 9. Strong process, channel 
communication, and process communication fairness in 
CSP have been discussed ~° and an overview of strong 
fairness of choice given 5. Strong fairness may also be 
defined at the level of events ~9, transitions 3, and states 3. 

Generalizations of  fairness 

Equifairness 
The notions of fairness introduced so far were concerned 
with the independent progress of system components. It 
is possible to strengthen weak, strong, and unconditional 
fairness by taking into account the relative number of 
times the components proceed. Thus it is possible to 
arrive at a notion of equifairness 5'2°, the motivation for 
which is to give each group of jointly enabled guards an 
equal chance to proceed. Strong equifairness can be 
summarized as follows: if a group of guards is enabled 
infinitely often, then there exist infinitely many time 
instants where all members of the group have been 
chosen the same number of times. 

Weak and unconditional equifairness are correspond- 
ingly defined. Consider the following example (adapted 
from Francez5): 

Q = (x, y :=  0; z..= 1; 
d o z > 0  --* x : = x  + 1 
[ ] z > 0  ~ y.'= y + 1 
[ ] z > 0 a n d x = y ~ z . . = z -  1 
od) 

This program does not terminate under the assumption 
of strong fairness of choice of nondeterministic guards: 
the computation taking the first guard and then alternat- 
ing the first and the second guard is infinite (the third 
guard is only enabled in the initial state). However, it 
does terminate under strong equifairness because then x 
eventually becomes equal to y. 

Strong equifairness is strictly stronger than strong 
fairness of choice of nondeterministic guards. (In other 
words, the set of equifair computations is strictly con- 
tained in the set of computations that are fair with 
respect to strong fairness of choice.) The same holds for 
weak and unconditional equifairness 5. Equifairness is 
usually applied to nondeterministic guards, although it 

seems feasible to apply it in other situations as well, for 
example, process synchronization. 

Probabilistic fairness 
Fairness has also been defined as a probabilistic 
property TM. A computational model, based on a state- 
transition system with probabilities, is assumed attached 
to transitions. A determinate transition (i.e., nonproba- 
bilistic) is a simple edge that connects two states; it has 
the probability 1. A probabilistic transition ~ is a split 
edge: it is an edge split into k edges, each with probability 
~/attached; every ri is called a mode of the transition r. It 
is required that ~1 + ~i + ' "  + ~k = 1. A state predicate 
is a predicate whose truth values are solely determined by 
the state, and a state formula is built from those by means 
of a first-order predicate calculus. A ~b-state is a state that 
satisfies formula qk 

Then extreme fairness can be defined as follows: for 
any state formula q~, and a probabilistic transition z such 
that ~ is taken infinitely many times from ~b-states, each 
m o d e  27 i of ~" is also taken infinitely many times from 
q~-states. 

It has been shown 32 that to prove that a temporal 
property ~ holds with probability 1 on all computations, 
it is sufficient to prove that it holds on all extremely fair 
computations. This formalism has been used 4 to verify 
multiprocess protocols. 

Other notions 
Many more extensions or generalizations of fairness have 
been introduced. Generalized fairness 5 is an attempt to 
abstract notions like equifairness and fairness of choice 
into a class of fairness notions determined by sets of pairs 
of state predicates. Fair reachability of predicates 
introduced 3 as a replacement for state and transition 
fairness is a similar notion; a computation is considered 
unfair if there is a predicate over states that is reachable 
infinitely often but states satisfying this predicate are 
taken only finitely often. Relativized fairness 3 is a further 
refinement of fair reachability of predicates. 

Conspiracy is where a number of processes monopo- 
lize a resource, effectively preventing some process from 
proceeding at all 33,34. Hyper_fairness35 is a conspiracy- 
resistant notion adequate for multiparty operations (the 
reason for this distinction is that some fairness notions 
allow only pairwise communication; multiparty com- 
munication can be found in some models, e.g., T C S P  36 
and programming languages like ADA). 

Related notions 

Several notions have been introduced that can be in some 
way related to fairness; in fact, in many cases, the author 
believes they are fairness properties. 

Finite delay 
Finite delay property was originally formulated by Karp 
and Miller 16, where a formalism of state-transition sys- 
tems as models for parallel computations was intro- 
duced. In this formalism, computations, represented by 
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sequences of primitive steps (transitions), correspond to 
admissible sequentializations of a concurrent behaviour. 
A sequence of transitions is a computation if it is either 
finite, in which case no more transitions may remain 
enabled, or infinite, in which case it is required to satisfy 
finite delay property. The finite delay property can be 
described informally as: if some transition is permanently 
enabled from some point on then it is eventually taken. 

The author believes the intention of this definition was 
to impose finite delay for independent, that is, concur- 
rent, actions, rather than nondeterministic choices. In 
fact, a subclass of systems (determinate systems) that are 
concurrent but disallow nondeterminism has been 
characterized16; for such systems, finite delay corre- 
sponds to concurrency fairness. When adapting this 
property to the more general class of nondeterminate 
systems, it seems necessary to distinguish whether a 
transition remains enabled in the context of concurrency 
or nondeterminism; otherwise, the resulting property 
may be considered too strong 9, as it would impose 
concurrency fairness together with fairness of choice. 

The finite delay property is a fairness property that 
reflects the minimum constraint on sequences of transi- 
tions/states to be admissible as sequentializations of a 
concurrent behaviour, and it is too weak to model 
synchronization fairness. Finite delay only excludes cer- 
tain infinite computations; hence, as such, it affects 
properties like termination and equivalence but bears no 
relation to partial correctness. It is present, as maximality 
of computations, in many noninterleaving models for 
concurrency based on causality 9'1 ~,18,21,3 v.3 s. The inter- 
leaving models, like C C S  39 o r  TCSP 36, have often been 
criticised for not having a finite delay property. A finite 
delay operator has been proposed 4°, but it is not clear 
how this approach relates to that of Karp and Miller 16. 

Livelocks 
The term 'livelock' was coined by Ashcroft 41, who 
extended the Floyd assertion method onto parallel pro- 
grams. Ashcroft observed that, although, using induc- 
tion, he could prove systems partially correct, his method 
could not be claimed to guarantee correctness with 
respect to properties like 'guaranteed response', and that 
finite delay property did not provide a satisfactory sol- 
ution. Using an example of a situation in an airline 
reservation system, somewhat similar to the example 
used in the introduction, he showed that certain events in 
the system can be permanently blocked by a 'continually 
changing pattern of constraints'. This is named livelock, 
as opposed to deadlock, because the system is not 
stopped. 

The motivation for introducing the notion of a livelock 
was to impose fairness constraints. Livelocks can also be 
viewed as a liveness property 23 (the 'good thing' would 
be the customer making progress). Livelocks have been 
examined in a Petri-net setting 42. 

Unbounded nondeterminism 
Fairness is often discussed in the context of unbounded 
nondeterminism, which was first raised by Dijkstra 43. 

This phenomenon arises in the context of guarded com- 
mands: 

P = (x. .= 0; 
do x>~0 ~ x . ' = x + l  
[] x/> 0 ~(pr in t (x ) ; s top)  
od) 

Under the assumption of (weak) fairness of choice, P 
would always terminate and yet produce any, that is, 
unbounded, natural number. This seems to contradict 
the intuition about programming, in the sense that no 
feasible implementation can produce an unbounded 
number. 

Unbounded nondeterminism has been reconsidered by 
Park 7, who observed that the above contradiction could 
be explained on the grounds of the existence of two 
interpretations of nondeterminism: loose nondetermin- 
ism and tight nondeterminism. In tight nondeterminism, 
nondeterminism in the language describes more than one 
result, but a possible implementation does not have to 
produce all the results; it must merely guarantee that the 
results produced are described by the semantics. In loose 
nondeterminism, a possible implementation may or may 
not produce more than one result; the only constraint is 
that every result produced is one of those prescribed by 
the semantics. The usual interpretation of the nondeter- 
minism of a scheduler of concurrent operations is a loose 
one. 

Unbounded nondeterminism arises in the context of 
infinitely branching transition systemsa4; infinitely 
branching systems have been considered as a model for 
TCSP 36 ' 

EXISTING FORMALISMS AND 
FAIRNESS 

Temporal logic 

Fairness properties are expressed most elegantly in tem- 
poral logic. There is a variety of temporal logics used to 
analyse program properties, which depend on the repre- 
sentation of the behaviour of the program in terms of its 
runs (i.e., sequences of states). The two main approaches 
here are linear, which groups runs into a set, and 
branching, represented as a computation tree. 

As an example, consider linear temporal logic l'a'4s, 
which is interpreted over (finite or infinite) sequences of 
program states. The exposition here is based on Pneuli 8. 
A state formula is any well formed first-order formula; its 
truth value at instant i in a sequence s = sis2--.si--- is 
found by evaluating it on s;. A temporal formula is 
constructed from state formulas p, q, to which the 
following (basic) operators are applied, and interpreted 
in state si of some sequence as follows: 

• X: strong next instant operator (Xp is true at i if S~+ : 
exists and p is a state formula true at i + 1) 
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• U: until operator (pUq is true at i if there existsj s.t. q 
is true at j and for all k, i < k <j ,  p is true at k) 

• P: strong previous instant operator (Pp is true at i if 
i > 0 a n d p i s t r u e a t i - 1 )  

• S: strong since operator (pSq is true at i if for some j, 
0 < j < i, q is true at j and for all k, j < k < i, p is true 
at k) 

Some of the derived operators are: 

• F: sometime in the future (Fp = trueUp), often de- 
noted as diamond 

• G: always in the future (Gp = --q F-qp), often denoted 
as box 

Examples of temporal formulas are: 

• p ~ F q :  
• G(p ~ Fq): 
• F(Gp): 
• G(Fp): 

p now implies eventually q 
every p is followed by a q 
eventually permanently p 
infinitely often p (for infinite sequences 
only) 

A formula p is said to be satisfiable if there exists a 
sequence s and a positionj such that p holds a t j  (denoted 
sjCp). A formula p is valid if for all sequences and 
positions j < len(s), s~p. 

A formula p is valid over program R if for every 
sequence (computation of R) s a n d j  < len(s), sj~p. 

Temporal logic distinguishes between safety and live- 
ness properties. A safety property is characterized as 

Gp 

where p is some past formula, that is, p holds over all 
finite prefixes. Any formula constructed out of past 
formulas, the logical operators ^ and v ,  and the future 
temporal operators G and U is a safety property. 

A (basic) liveness property complements a safety prop- 
erty by requiring that certain finite prefix properties hold 
at least once, infinitely many times, or continuously from 
some point on, that is, correspondingly: 

Fp, G(Fp), F(Gp) 

for some past formula p. 
The following are examples of fairness properties in 

temporal logic, assuming p stands for 'process enabled' 
and q stands for 'process taken': 

• Gp ~ Fq, i.e., F ( ~ p  v q) = weak fairness 
• G(Fp) ~ Fq, i.e., F(G(-qp) v q) = strong fairness 

Other properties useful to express scheduling constraints 
include (consider p, Pi as 'request', and q, qi as 're- 
sponse'): 

• Pr(p,q) -~ (Fq ~ (~qUp))  = p precedes q 
• Pr(pl,P2) --* Pr(ql,q2) = if pl precedes P2 then 

ql precedes q2 (FIFO) 

This has given an overview of a language L(X,U,P,S), 
also called TL (linear temporal logic). Its subclasses TLF 
and TLP correspond to future and past temporal logics 
L(X,U) and L(P,S), which have equivalent power to TL. 
It is known that L(U) has the same expressive power as 
L(F,X,U), but L(X,F) is not expressively complete1; for 
example, the fairness and responsiveness properties 
shown above could not have been expressed without U. 
Another point is that linear temporal logic, being a 
noncounting formalism s does not have the same expres- 
sive power as regular expressions. 

Linear temporal logic provides temporal operators 
that describe events along a single computation path. In 
branching-time logic, the temporal operators quantify 
over all the paths that are possible from a given state. 

It is an interesting question to compare the expressive 
power of linear and branching-time temporal logic. A 
temporal logic language CTL*, which combines both 
linear-time and branching-time operators, has been 
introduced 46, thus making it possible to obtain the 
results of such a comparison. It is shown that CTL* 
strictly subsumes B(L(F,X,U)). The expressive power of 
branching-time logic B(L(F)) is different from that of its 
linear counterpart L(F). 

A u t o m a t a  and infinitary languages  

For fairness properties to be included in an analysis of 
system behaviours, it is necessary to allow both finite and 
infinite sequences. This implies extending formal lan- 
guages to infinitary languages, which, in turn, requires 
reconsidering finite state automata as acceptors of lan- 
guages. 

Infinitary languages have been investigated by a 
number of authors 2s'4v. co-regular languages are a na- 
tural extension of regular languages with co-iteration 
operator, that is, iteration an infinite number of times. 
co-automata 2s are formed from standard finite automata 
by the addition of a structure for accepting infinite 
sequences. Two (equivalent in the nondeterministic case) 
varieties are B-automaton, due to Biichi, with an addi- 
tional set of 'green' states that must be visited infinitely 
often, and M-automaton, first introduced by Muller, 
where a set of accepting states with a similar requirement 
is specified. The class of co-regular languages is recogn- 
ised by B-automata. 

The relationship of co-regular languages and a concur- 
rency operator (fairmerge) is dealt with by Park 2s. 
Fairmerge of infinitary languages is a function that 
interleaves pairs of sequences in such a way that the 
whole of an infinite sequence is taken. The class of co- 
regular languages is shown to be closed under fairmerge. 
Fairmerge corresponds to concurrency fairness for non- 
communicating concurrency, but it may be extended to a 
communication merge TM. 

Fairness in (labelled) finite state automata has been 
discussed, considering only the case of strong fairness x3. 
The notions of edge- and letter-fairness (that is, transition 
fairness and fairness with respect to transition labels) are 
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distinguished. These notions are generalized onto (finite) 
paths (i.e., sequences of edges) and words (i.e., sequences 
of letters), and the hierarchy of languages that are fair 
with respect to a given notion is discussed. The relation- 
ship with Biichi and Muller automata is also considered. 

Infinitary languages have been generalized to allow for 
concurrent behaviours 9. Infinitary trace languages are 
developed, and a topological characterization of beha- 
vioural properties that includes fairness properties is 
presented. The notions of process and event fairness are 
distinguished, but the formalism is general enough to 
express notions such as equifairness and fair reachability 
from states. 

Process algebras 

Process algebras are algebraic languages for the specifi- 
cation of concurrent processes and the formulation of the 
properties of such processes. They are usually introduced 
together with the rules of algebraic calculus. Process 
algebras should not be treated as models for concurrency 
but as abstract representations of classes of such models. 

C C S  39 is a calculus whose closed expressions corre- 
spond to processes. The behaviour of processes is deter- 
mined by the (transition) rules of the calculus. The 
language allows: prefixing a process E with an action 
(aE), nondeterminism (+) ,  concurrency (I), recursion 
(fix), and restriction ( \) .  Synchronization of actions a ~ A 
with co-actions ~ e A is enforced only under restriction; 
otherwise processes may choose to proceed autono- 
mously or synchronize. The following is an example of a 
CCS process: 

( E I E) \b  

where E = fix X.(aX + bNIL), F = 13NIL. This process 
terminates only if E and F eventually synchronize. 

Fairness in (pure) CCS without restriction has been 
examined 22 and viewed as an issue to do with concurrent 
processes. No distinction between weak and strong fair- 
ness was needed there because processes never become 
locally disabled while waiting to synchronize with other 
processes. Pure CCS with restriction has been 
investigated 6, where weak process fairness is defined in 
the sense that no process that is almost always enabled 
can be delayed indefinitely, and strong fairness is defined 
correspondingly. 

The main concern of Costa and Stirling 6 is to provide 
a positive treatment of fairness, i.e., generate only the 
derivations that are fair. The calculus of CCS has been 
extended to a labelled calculus by adding labels that 
identify the path to a component of an expression. These 
labels have then been used to identify uniquely autono- 
mous actions and processes in a given expression. A 
subclass of live processes, that is, the set of processes that 
became active and have not engaged in a transition yet, is 
distinguished. 

In this setting, the set of rules for Weak Fair CCS and 
Strong Fair CCS have been developed. Both sets of rules 

are finite and do not involve random assignment. Weak 
Fair CCS is based on a local characterization of admissi- 
bility. On the other hand, Strong Fair CCS cannot be 
similarly characterized and involves predictive choice 39, 
that is, the definition needs to be based on an infinite tail 
of the derivation in question. 

A metric characterization of weak and strong fairness 
in CCS has been presented 67. The conclusion there is 
that fair infinite derivations of a given expression can be 
characterized as limits of infinite chains of finite deriva- 
tions. Although a generalization of the results onto the 
class of all expressions is proposed, it does not seem 
abstract enough as it is based on pairs composed of 
expressions and their derivations. Fairmerge has been 
discussed in a CCS setting 3°. 

C S P  36'49 (also known as TCSP) is a process algebra 
that distinguishes between internal and external choice 
and allows hiding (abstraction). Interprocess communi- 
cation is based on (n-communicat ing) joint  actions 
rather than on binary synchronization in the sense of 
CCS. The usual semantic model for CSP is the failures 
model, which is a transition system extended with addi- 
tional failure and ready sets to model the interaction of 
processes with their environment. Fairness is not expres- 
sible within CSP 49. Extending the failures semantics has 
been proposed 44 so that unbounded nondeterminism is 
allowed. It is not known if fairness issues have been 
considered in this setting. 

ACP 4s, the Algebra of Communicating Processes, is 
not tied to a particular model. It is based on bisimulation 
semantics 2s. The primitives include, apart from the usual 
ones, a 'left merge' operator, in terms of which a parallel 
composition is defined. Communications are generalized 
to multisets of actions that can happen simultaneously. 
ACP has been extended with abstraction and encapsula- 
tion operators 5°. A process is fair if for any improbable 
path (i.e., one that contains infinitely many exits) the 
probability that it will be executed is zero. Fair abstrac- 
tion rule, which states that any invisible infinite path may 
be discarded, is shown to be satisfied in this algebra. It is 
not clear how this approach relates to the rest of the 
research. 

Infinitary process algebra has been discussed 31. It is 
influenced by CCS, restricted to regular behaviours (that 
is, corresponding to finite-state machines). Fairness 
properties are introduced as operators, which define 
restrictions that affect only infinite behaviours. This is 
achieved by introducing an infinitary agent A((L)), where 
A is an agent is the sense of CCS and L is an ~o-regular 
language that contains no finite sequences. A((L)) be- 
haves as the agent L, except that its infinite behaviours 
must be members of L. Equivalences can then be proved 
under such constraints. This process algebra is applied to 
protocol verification. 

Net theory 

A number of papers have been published on fairness in 
Petri nets. Net theory revolves around the idea of a Petri 
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net, which is commonly recognised as one of the first 
models for concurrency based on causality, rather than 
interleaving. A Petri net 51 is a triple N = (S, T, F), where 
S is the set of places, T is the set of transitions, and 
F ~_ S × T w T × S is the flow relation. A marking is a 
function M: S ~ Nat that defines the number of tokens in 
a given place. A transition is enabled (may fire) if all its 
input places contain at least one token. As a result of a 
transition firing, one token is added to each output place. 
The behaviour of a net is often represented as an alternat- 
ing sequence of markings and transitions: Mob M lt2 . . . .  
Petri nets can be viewed as transition systems, with 
markings forming the states. 

Transition fairness has been investigated 33' 34 and an 
infinite hierarchy of notions of fairness, motivated by the 
need to exclude conspiracy, introduced. This hierarchy 
collapses to a single notion for a simpler class of nets 
(confusion-free). Another approach a~ defines notions of 
fairness for three granularity levels in terms of subclasses 
of infinitary languages: markings, (bounded) places, and 
transitions. Transition fairness corresponds to fairness of 
choice of transitions, and marking fairness to fair reacha- 
bility of states. The hierarchies of classes of fair languages 
have been investigated ~ 1 and some decidability questions 
answered 52. 

It is not clear how processes should be defined for Petri 
nets; a variety of decompositions are possible. A notion 
of a process based on occurrence nets has been intro- 
duced, and transition fairness and marking fairness 
discussed ~2; these notions are shown to be independent. 
The hierarchy of marking fairness is proved to collapse. 

Livelocks have been investigated in parallel programs 
modelled by Petri nets and a technique for verifying the 
absence of livelocks introduced 42. 

Transition systems 

Transition systems, with a countable set of states, seem to 
be the underlying structure of all models for discrete 
systems. A number of fairness notions related directly to 
transition systems as models for nondeterministic or 
concurrent programs have been introduced. Most com- 
monly, they correspond to fairness at the granularity 
level of transitions or states, although some generaliza- 
tions have also been proposed. Transition fairness is too 
general as a fairness notion, because it depends on what 
constitutes a state and what a transition represents. 

Labelled transition systems have been used as models 
for nondeterministic programs 3. A state is a vector of 
program variables, while transitions correspond to 
guarded commands and are enabled in a given state if the 
corresponding guard evaluates to true. In this formalism, 
fairness with respect to transitions, fair choice of states, 
and fair reachability of predicates over states (all in their 
strong form only) are criticised for a number of anoma- 
lies, including not being preserved under syntactical 
transformations. Relativized fairness is introduced in- 
stead, and a branching-time temporal logic is formalized 
to prove properties under fairness assumptions. 

Transition fairness 3 corresponds to fairness of choice. 
When concurrency is represented as nondeterministic 
interleaving, however, transition systems may be used to 
model parallel composition of processes 45. According to 
this approach, states correspond to vectors of variables 
together with control information about each process 
(that is, the location of control of each process at a 
particular instant). Here (weak, strong, or unconditional) 
transition fairness corresponds to (weak, strong, or un- 
conditional) process fairness. Transition systems have 
been extended to fair transition systems by adding res- 
trictions on justice and fairness (i.e., weak and strong 
fairness) 8 . 

Fairness for a concurrent while language modelled as a 
transition systems has also been examined 19. 

Asynchronous transition systems, namely, extensions 
of labelled transition systems with an independency 
relation, have been considered 9. A notion of process 
structure is introduced; a variety of process structures for 
a given system are possible. Process structures give rise to 
a lattice of process fairness properties. 

Denotationai semantics 

The issue of fairness raises a few important questions in 
denotational semantics 53, especially in relation to con- 
tinuity and the Scott hypothesis. Denotational semantics 
defines program constructs in terms of functions over 
domains, usually complete partial orders. It is commonly 
accepted that all computable functions can be expressed 
in terms of continuous functions over domains. It is also 
recognised that the powerdomain construction 19 is 
needed to provide denotations of nondeterministic or 
concurrent programs. 

The notion of continuity, in the sense of preserving 
least upper bounds of infinite chains, has been extended 
onto uncountable chains 7. A relational approach to 
denotational semantics of nondeterministic programs is 
proposed. The problem of (concurrency) fairness and 
unbounded nondeterminism is reconsidered, and it is 
shown that the intuitively acceptable fixpoint solution to 
the fairmerge of languages 0 ~' and 1 '~ is neither the 
minimal nor the maximal fixpoint. The latter suggests 
that generalized fixpoints may be needed to deal with 
fairness 7 . 

A powerdomain semantics for a concurrent while 
language (without internal nondeterminism) has been 
discussed 19. Weak and strong event fairness are distin- 
guished, and fair parallel operators I]~ and If, which put 
an explicit bound on the number of moves the process on 
the corresponding side can make, are defined. 

The question of the relationship of the operational 
semantics and denotational semantics (in terms of infin- 
ite streams) for a process algebra has been addressed 54. 
The issue of fairness is not dealt with there, but an 
observation is made that fairness properties correspond 
to behaviours that are not closed in the topological sense. 
The topology considered is one with respect to the metric 
space determined by the usual distance over sequences 
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defined as 2 -~n+l), where n is the length of the longest 
common prefix. A suitable example would be the lan- 
guage {a'b}, representing computations that are fair 
with respect to communication b. This language is not 
closed, but {a'b} u {a°'}, containing an unfair computa- 
tion a ~', is. 

P R O V I N G  P R O P E R T I E S  U N D E R  
F A I R N E S S  C O N S T R A I N T S  

Properties of programs can be split into two classes: 
safety and liveness properties. This is motivated by the 
different proof techniques required in each case: for 
safety, structural induction based on invariants suffices, 
while liveness is based on the method of well founded 
sets. A number of axiomatic systems that originate from 
the Floyd assertion method have been introduced to 
reason about the correctness of concurrent 
programsS. 41, 45, 55. Each axiom corresponds to a syn- 
tactic construct in the language. 

Partial correctness and mutual exclusion are examples 
of safety properties. Termination and guaranteed re- 
sponse are liveness properties. Safety properties, as 
opposed to liveness, are not usually affected by fairness 
properties. 

W e l l  founded  sets  

The main proof technique used to show termination (and 
liveness properties) of programs is based on well founded 
sets. A well founded set (A, < )  is a partially ordered set in 
which no infinite strictly decreasing sequence exists. 
Elements of such a set may be used to define a ranking 
function 2 p: S ~ A 2, where S denotes the set of states of a 
given program. The ranking function should be defined 
so that as the computation proceeds through state transi- 
tions, the value of the ranking function for the visited 
states decreases. As no infinite ranking sequence is possi- 
ble, the program must terminate. The program termin- 
ates if, and only if, such a ranking function exists 2. 

For deterministic programs, it is sufficient to require 
that the ranking function decreases at every step. When 
concurrent, or nondeterministic, programs are consid- 
ered, however, this requirement may be too strong. 
Often, infinite sequences are not admissible under a 
fairness constraint, which suggests that, in many cases, 
the ranking function could be defined only for the fair 
sequences. Consider the following example: 

A = (b .'= false) 
B = (do true ~ skip od) 

P = (b..= true; AIIB) 

As long as only process B is taken, nothing changes in the 
state, so no ranking sequence exists. If (weak process) 
fairness is assumed, however, the program terminates. 

The solution suggested 2 is to define ranking sequences, 
which only decrease eventually. Thus distinguish be- 

tween a helpful direction, i.e., one that decreases the 
ranking function ('b ..= false' in the example above), and 
an indifferent one, i.e., one that does not increase it. Now, 
using a proof rule that incorporates the required fairness 
constraint, it can be shown that as the computation 
proceeds, the ranking function does not increase and, by 
the fairness constraint, the helpful direction is eventually 
chosen. Thus for program P, assuming weak process 
fairness, the well founded set would be {0, 1}, with 
p(true) = 1, p(faise) = 0, as the states could be identified 
with the value of b. 

A complication of this method, when used to verify 
concurrent or nondeterministic programs, is that arbi- 
trary (not just countable) well founded sets are required. 
A ranking sequence would typically include transfinite 
ordinals, rather than just natural numbers, hence trans- 
finite induction may also be required. Ordinal numbers 
are an extension of the concept of natural numbers 
beyond co and are defined as follows: 0 = ~ ,  n + 1 = 
n u {n}. Now proceed by taking co = {0, 1 . . . .  }, 09 + 1 = 
co u {co}, etc. Ordinals are strictly ordered by the set 
membership and form a well founded class. 

Consider the following example: 

A = (x := 0; comm := true; 
do comm ---, x .'= x + 1 
[] comm -~ (B!x; comm ..= false) 
od) 

B = (A?y; C!y; stop) 
C = ( B ? z ; d o z > 0 - - . z , = z -  lod)  

P = (AIIBIIC) 

Clearly, C is terminating, so as long as AIIB terminates, P 
will terminate. Note that AIIB always terminates under 
the assumption of weak process fairness. Process A 
produces an unbounded natural number, which is then 
sent to C, who decrements it until it reaches zero. The 
well founded set in this case is co, the second guard in A is 
helpful and the first one indifferent. The ranking function 
defined on the states identified with the contents of the 
variable comm is: p(true) = 09, p(faise) = x; comm has 
been included to indicate that communication between A 
and B has occurred. (Note that taking a bounded value 
here was impossible because indifferent directions must 
not increase the ranking function.) 

The well founded sets method also applies to other 
liveness properties 8, not just termination. In this ap- 
proach, fairness is incorporated as a constraint within a 
proof rule; a variety of proof rules can be formulated, 
depending on the actual notion of fairness. 

A compositional approach is also possible, which 
allows for modules to be specified and verified, indepen- 
dent of their environment. This is achieved by the intro- 
duction of a notion of an interface. A compositional 
approach to temporal logic hasbeen discussed 56, but it is 
not clear how fairness constraints are dealt with. 

Well founded sets are also used to prove termination of 
nondeterministic programs 5. Two inter-reducible meth- 
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ods seem to be used in this case: the state-directed choice 
(essentially the ranking function with helpful directions 
as described above), and the ordinal-directed choice 
(based on the existence of a parametrized invariant). A 
variety of proof rules, one for each fairness notion, are 
considered together with their soundness and semantic 
completeness 5. Termination proofs are considered suffi- 
cient since other liveness properties can be reduced to 
termination 5~ . 

Transformational approach 

An alternative method for tackling termination of non- 
deterministic programs is the method of explicit 
scheduler 5. It is based on the transformation of the 
original program into a derived program that uses ran- 
dom assignment. This way it is possible to find a ranking 
sequence in the derived program that decreases at every 
computation step. Thus a simpler rule can be used to 
reason about the termination of the original program. 
Random assignment is a statement of the form x : = ?, 
where? stands for any natural number. The method of 
explicit scheduler has been analysed, where soundness 
and completeness are also considered 5. 

Positive approach 

The methods discussed so far were essentially negative 
approaches based on two-level semantics. At the lower 
level, all computations, whether fair or unfair, were 
allowed. The proof rules incorporated a variety of fair- 
ness constraints, thus making it possible for the proof to 
reason only about computations that are fair. Computa- 
tions that are not admissible under a given scheduling 
policy were considered irrelevant. 

The positive approach is concerned with generating 
the fair computations only. A positive approach to 
fairness in CCS has been considered 6. This was achieved 
by introducing two sets of rules, namely Weak Fair CCS 
and Strong Fair CCS, which are mathematically more 
complex than the standard rules for CCS. Any property 
verified by means of those rules automatically holds for 
all, and only, fair computations. Such an approach may 
be criticised for being inflexible, as any other notion of 
fairness would require a new set of rules. 

Automatic verification 

The obvious disadvantages of manual verification of 
program properties may be overcome by a mechaniza- 
tion of the verification process. In temporal logic, so 
called model checking 27 provides such facilities. This 
method relies on the representation of finite-state pro- 
grams as labelled state-transition graphs (called Kripke 
structures). The algorithm developed for CTL 27, which 
determines if a formula fo is true in the state s, has 
complexity O(len(fo)*( I S ] + I R ])), where S denotes the set 
of states and R is the reachability relation. 

Incorporating fairness constraints involves extending 
the state-transition graph with a set of fairness predicates, 
each of which is required to hold infinitely often along a 
computation path. The temporal operators now quantify 
over fair computation paths. The complexity of the 
model checking in this case increases by the factor IF[, 
where F denotes the set of fairness predicates. A potential 
problem of this method is that the number of states 
grows exponentially. 

Other model checking systems that allow for fairness 
have been reported 58'59. 

APPLICATIONS 

The techniques developed for program verification under 
fairness constraints have been used, in isolated cases, in 
some practical applications. The work understandably 
concentrates on mutual-exclusion algorithms and proto- 
col verification, as fairness properties become important 
when modelling synchronization or data transfer over an 
unreliable medium. 

Concurrent algorithms 

When designing and implementing mutual-exclusion al- 
gorithms, some reasoning about fairness is needed to 
ensure that a process that requests access to the critical 
section will eventually be allowed to enter. Mutual- 
exclusion algorithms are often verified to exemplify the 
proof technique under consideration. Peterson's algor- 
ithm has been shown to be correct (the proof is based on 
linear temporal logic) TM. Mutual exclusion using the 
'proof lattice' technique has been proved 26. Peterson's 
algorithm has been automatically verified by the model 
checking algorithm for the CTL temporal logic 2~. A 
version of n-process mutual exclusion has been verified 
using the notion of extreme fairness (that is, probabilistic 
fairness)4; the algorithm is based on symmetric protocols 
that do not share a writable storage, but other processes 
are allowed to read the value of the private variable of a 
given processes. Algorithms with the same constraint, 
deemed necessary in distributed systems, have been 
analysed 6°. Apart from fairness, some fault-tolerance 
properties are also considered there. 

Fairness of synchronization primitives has been 
characterized 6~. Unbounded communication primitives 
and two versions of semaphore operations are axioma- 
tized. Monitors that guarantee fairness have been imple- 
mented as an extension of PASCAL with concurrency 62. 

Protocol verification 

The verification of network communication protocols is 
of increasing importance. The alternating bit protocol is 
verified under fairness constraints using many tech- 
niques, e.g., a manual proof in terms of an infinitary 
process algebra 31 and an automatic verification in 
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CTL 27. The CSMA/CD protocol has also been verified 
using an infinitary process algebra 31 . 

Verification of multiprocess probabilistic protocols 
has been discussed 4, where the notion of extreme fairness 
is employed. The protocol used there is based on an n- 
process mutual-exclusion algorithm that assumes no 
writable storage for communication. 

Automatic verification using a model checking system 
written in PROLOG has also been discussed 58. More 
detailed information on the subject of protocol verifica- 
tion is given elsewhere 31. 

Programming languages 
It is an interesting question whether fairness constraints 
formulated, at the stage of the language design or imple- 
mentation, for existing programming languages are ade- 
quate. Criteria for appraisal of fairness notions have been 
introduced 63 . These are: 

• feasibility, that is, whether some computation of a 
program remains once all computations that are un- 
fair with respect to the given notion have been ex- 
cluded 

• equivalence robustness, that is, if fairness respects the 
equivalence induced by the model 

• liveness enhancement, which requires that additional 
liveness properties hold for some program. 

When fairness notions for CSP ~5 have been analysed, 
only strong process fairness (see the section 'Taxonomy 
of fairness notions') is shown to satisfy all three criteria. 
Several fairness notions for communication in ADA have 
also been considered. 

Other work concerning programming languages re- 
volves around synchronization primitives, for example, 
semaphores 61 or monitors 62. 

C O N C L U S I O N S  

Fairness and fairness-related notions stem from the ob- 
servation that a certain undesirable phenomenon, often 
present in infinite computations admissible under a given 
semantics, and usually relating to the lack of progress of 
some component of a system, must be disallowed. When 
first introduced 2'16'28'41 , fairness was defined as an issue 
to do with concurrency. The motivation for the introduc- 
tion of fairness was to make the admissible behaviour 
realistic from the point of view of a concurrent implemen- 
tation on a multiprocessor system. The definitions of 
fairness were often elusive, informal, and heavily depen- 
dent on the particular model used. This situation has led 
to the emergence of the multiplicity of model-specific 
fairness notions, guided by concerns other than concur- 
rency, for example, fairness of choice. As a result, the 
originally intended intuition of fairness has been obs- 
cured, 

It should be recognised that fairness is not a mono- 
lithic notion; rather, in its present form, it is a collection 
of (mostly independent) properties, which are dependent 

on the choice of the granularity level and the strength 
required. Nevertheless, fairness properties exhibit certain 
features that distinguish them from other properties. All 
fairness notions known to the author exclude some 
infinite behaviours, while all finite behaviours are consid- 
ered fair. Also, fairness usually requires that some system 
component makes progress infinitely often, without put- 
ting an explicit bound on the delay (the only constraint is 
that this delay is finite). Notions like infinitely often, 
component becomes possible, and progress has been 
made need to be formalized to express fairness. 

It has been maintained that fairness has no effect on 
partial correctness and, in general, safety properties. It 
does, however, affect liveness properties, for example, 
program termination. This observation relies on the fact 
that, when some infinite computations have been ex- 
cluded, it is often the case that no infinite computations 
are admissible hence the program will be terminating. 
Fairness is introduced in most formalisms as a 
constraint 8, that is, an assumption incorporated at the 
verification stage, for example, as a premise of a proof 
rule, which is used to prove properties other than fair- 
ness. On the other hand, fairness may be treated as a 
property TM of programs, that is, it may be added to the 
list of properties that form a specification for that pro- 
gram. Given notations expressive enough, statements 
about fairness of a given program can be made and 
verified, although this may have some effect on the 
complexity of the proof 27. 

It became apparent that some existing formalisms 
could not adequately incorporate fairness as a property 
expressible within the formalism. Many models had to be 
extended with infinite computations. In temporal logic, it 
has been observed that some properties could not be 
expressed without certain powerful temporal 
operators TM. In verification techniques, incorporating 
fairness has called for transfinite induction 2'5. In denota- 
tional semantics, continuity had to be reconsidered 27. 

Further difficulty arises when different behavioural 
structures are used as models, for example, when nonde- 
terministic interleaving is used to represent concurrency. 
At this high level of abstraction, no restrictions are 
usually imposed on admissible sequentializations of con- 
current computations (such as the finite delay 
property16). For  such approaches, fairness with respect 
to concurrent processes may be reduced to fairness of 
choice for a particular scheduler. When transferring 
fairness onto other behavioural structures, for example, 
those based on causality, certain anomalies could come 
to view 9'64 . 

Owing to the number of different guises fairness takes 
in different models, it is not clear at this stage how best to 
approach fairness. Doubts have often been expressed as 
to whether powerful formalisms like transfinite induction 
are really needed to deal with a property so easy, on the 
face of it, to implement in practice. Also, some quantita- 
tive methods, rather than the qualitative ones that have 
been applied until now, would be beneficial to model the 
bounded delays necessary in realtime systems. 

Recently, some criticism was raised 65 as to whether 
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fairness is a 'workable notion' as no finite experiment can 
be set up to prove or disprove it. The author would argue 
with this statement and tend towards thinking that 
fairness is a useful abstraction 66, especially when related 
to concurrency, and, as such, although undetectable by 
finite experiments, it is nevertheless a property that can 
be formally stated 9. Further research is needed, however, 
to provide a comparative study of fairness properties 
independent of the intricacies of the models used. This 
seems a worthwhile goal, considering the pleasing fact 
that the research in concurrency has begun to converge. 
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