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1 Introduction

Qualitative representation and reasoning—as a field within AT—has been quite
successful in dealing with both time and space. There exists a wide spectrum of
temporal languages (see e.g. [1, 14, 32]). There is a variety of spatial formalisms
(e.g. [7,9, 21, 26]). In both cases effective reasoning procedures have been
developed and implemented (e.g. [20, 18, 25, 13, 2, 29]). The next apparent
and natural step would be to combine these two kinds of reasoning.

The importance of such a step for both theory and applications is beyond any
doubt. And of course there have been attempts to construct spatio-temporal
hybrids. For example, Clarke’s [7, 8] intended interpretation of his region-based
calculus was spatio-temporal. Region Connection Calculus RCC of [26] con-
tained a function space(z,t) for representing the space occupied by object z
at moment of time ¢. Muller [24] developed a first-order theory for reasoning
about motion of spatial entities. However, in contrast to the ‘one-dimensional’
temporal and spatial cases, no effective procedures capable of reasoning about
space in time have been developed.

The main aim of this paper is to introduce a hierarchy of languages intended
for qualitative spatio-temporal representation and reasoning, provide these lan-
guages with topological temporal semantics, construct effective reasoming algo-
rithms, and estimate their computational complezity.

The languages we propose are combinations of two well-known and well-
understood formalisms in temporal and spatial reasoning. The spatial compo-
nent is the fragment RCC-8 of RCC containing eight jointly exhaustive and pair-
wise disjoint base relations between spatial regions. This fragment has attracted
considerable attention of the spatial reasoning community [2, 3, 19, 27, 28, 29].
First, it is sufficiently expressive for various application purposes, say in GIS.
And second, RCC-8 has nice computational properties: it turns out to be de-
cidable [2], in fact NP-complete [29]. Actually, the latter results were obtained



by means of encoding RCC-8 in the well-known propositional modal logic S4
(whose necessity operator can be interpreted as the interior operator in topo-
logical spaces) extended with the universal modality. This makes natural the
choice of the temporal component the point based propositional temporal logic
PTL with the binary operators ‘Since’ and ‘Until’ based on the flow of time
(N, <), rather than Allen’s interval calculus which is spiritually closer to RCC.
(We hope the examples below and the obtained results will convince the reader
that these two formalisms fit together perfectly well indeed.)

PTL is one of the best known temporal logics which has found many ap-
plications in CS and AI (e.g. program verification and specification [22, 23],
distributed and multi-agent systems [11], or temporal databases [6]). It is de-
cidable and PSPACE-complete (see e.g. [14]). Thus, the problem of construct-
ing effective spatio-temporal formalisms can be viewed as designing decidable
two-dimensional modal logics one dimension of which is a topological space and
another one the flow of time (N, <).! The idea of using such kind of multi-
dimensional modal logics for spatio-temporal reasoning has recently been advo-
cated by Bennett and Cohn [4].

The computational behaviour of a combined spatio-temporal logic depends
(i) on the choice of spatial and temporal operators, and (ii) on the degree of
the permitted interaction between them. These two parameters give rise to a
hierarchy of possible languages.

The simplest one, ST g, allows applications of the temporal operators Since
and Until (as well as the booleans) only to RCC-8 formulas. (Actually even
this language is enough to express, for instance, the assumption that change
is continuous, or the notion of conceptual neighbourhoods; see e.g. [10].) The
most expressive one, ST, makes it possible to form unions, intersections, and
complementations of spatial regions, and to apply temporal operators to both
formulas and region terms (for instance, ()X denotes the state of region X
‘tomorrow’).

The natural semantics for these languages are temporal models for PTL each
state in which is some fixed topological space. We prove that the satisfiability
problem for all our languages in topological temporal models is decidable, with
the computational complexity ranging from NP to EXPSPACE. We also study
the structure of the simplest topological spaces that are enough to satisfy all
satisfiable ST3 -formulas, and consider the problem of realising spatio-temporal
formulas in models based on Euclidean space.

2 Region connection calculus

Full RCC. RCC—Region Connection Calculus—is a first-order theory de-
signed by Randell, Cui, and Cohn [26] for qualitative spatial representation and
reasoning. The language of RCC contains only one primitive predicate C(X,Y)
which is read ‘region X is connected with region Y’. Starting from this, one can

L Actually, the obtained results can be generalized to some other flows of time, for instance
(7.,<) or (R, <).



define other kinds of relations between spatial regions. The basic ones are:

DC(X,Y) ‘X and Y are disconnected,’
EC(X,Y) ‘X is externally connected to Y,
PO(X,Y) ‘X partially overlaps YV’

EQ(X,Y) ‘X is identical with Y

TPP(X,Y) ‘X is a tangential proper part of YV’

TPP'(X,Y) ‘Y is a tangential proper part of X’
NTPP(X,Y) ‘X is a nontangential proper part of Y’
NTPP '(X,Y) ¢V is a nontangential proper part of X.’

The intended models of RCC are topological spaces ¥ = (U,T), where U is
a non-empty set, the universe of the space, and I an interior operator on U
satisfying the usual Kuratowski axioms. Individual variables of RCC range
over non-empty regular closed sets of ¥, i.e., an assignment in T is a map a
associating with every variable X a set a(X) C U such that a(X) # 0 and
a(X) = Cla(X), where C is the closure operator on U dual to I. The intended
meaning of C(X,Y)—'regions X and Y share at least one point’—is formalized
then as follows:
TECCX,Y)iff a(X)Na(Y) # 0.

From the computational point of view RCC is too expressive: as was observed
by Gotts [17], the full first-order theory of RCC is undecidable. Fortunately,

there are various decidable (and even tractable) fragments of RCC. One of the
most important is known as RCC-8.

RCC-8. If we are interested only in relationships between spatial regions with-
out taking into account their topological shape, then the eight predicates above
are enough: they are jointly exhaustive and pairwise disjoint, which means that
any two regions stand precisely in one of these eight relations. Moreover, accord-
ing to the experiments reported by Renz and Nebel [28], the eight predicates
turn out to be conceptually cognitive adequate in the sense that people indeed
distinguish between those relations.

Formally, the language of RCC-8 consists of a set of individual variables,
called region wariables, the eight binary predicates DC, EC, PO, EQ, TPP,
TPP™!, NTPP, NTPP !, and the booleans out of which we can construct in
the usual way spatial formulas.

The main reasoning task for RCC-8 can be formulated as follows:

e given a finite set ¥ of spatial formulas, decide whether X is satisfiable (or
realizable) in a topological space, i.e., whether there exists a topological
space ¥ and an assignments a in it such that T =" X.

(The predicates in X are replaced with their definitions via C.)

That this satisfiability problem is decidable was shown by Bennett [2, 3] who
encoded RCC-8 in propositional intuitionistic logic and modal system S4 using
the well-known fact that both of them are complete with respect to topologi-
cal spaces [30, 31]. An elementary proof of the correctness of the encoding is
provided in [?]. To see the intuition behind this encoding, it suffices to observe



that C and the eight predicates of RCC8 can be represented in the one-variable
fragment of the first-order language of topological spaces. For instance,

C(X1, Xy) dz z € X5 N Xy,

DC(X4, X») —-dz z € X5 N Xy,

EC(X1,Xs)  C(X1,Xo)A—dz o € IX; NIXo,

PO(X1,X5) Jrxz e IXiNIXoANdz 2z € IX1N =X Adz 2 € =X NIXs,
EQ(X;, X>) Vz (z € X1 &z € Xa),

TPP(X,, Xy) Vezxe-XUXoANTzz e X1 NC-Xy Az 2z € =X N Xy,
NTPP(X;,Xs) Vzxze-XyUIXoATx z € -X1NXo.

The requirements of non-emptiness and regularity are also expressible in this
fragment:

NE(Xp) dz z € X,
Regular(Xy) Vo x € 1-XqU CI X,.

Now, by replacing the quantifiers Vz and 3z with the universal necessity and
possibility operators denoted here by V and 3, respectively, associating with
every region variable X; a propositional variable p; and representing topological
terms as the corresponding S4-formulas with necessity I and possibility C, we
obtain bimodal formulas of the form:

(DC(X1, X2))" = —3(p1 A p2),

(EC(X1, X)) = A(p1 Ap2) A—=F(Ip1 A Ips),

(PO(X4,X2))" =3(Ip1 A Ips) AI(Ipr A =p2) A I(=p1 A Ips),

(EQ(X1,X2))" =V(p1 < p2)

(TPP(X1,X5))* =V(=p1 Vp2) A3(p1 A Cpa) A3(=p1 A po),
(NTPP(X1, X5))* = V(=p1 V Ip2) A3(=p1 Ap2),
(NE(X0))" = 3po.
(Regular(Xg))* =V (I-po V ClIpy)

Given a spatial formula ¢, denote by ¢* the result of replacing all occurrences
of the RCC-8 predicates R(X;, X;) in ¢ by the corresponding bimodal formulas
(R(X;,X;))*. And then put

ol =" A /\ (I3p AVY(I-pV ClIp)).

pEsubp*

Having recalled the topological interpretation of S4, it is not hard to see that
¢ is satisfiable in a topological space iff ¢! is satisfiable in a Kripke model for
the propositional bimodal logic S4,, i.e., Lewis’ S4 with universal modality.
Such models have the form 9t = (F, V), where § = (W, R, S) is a Kripke frame
in which R is a quasi-order on W (interpreting I and C), S = W x W is the
universal binary relation (interpreting V and 3), and U a valuation in §. In
what follows we will omit S and write simply § = (W, R).

Moreover, using the fact that B(p) = CIV(p) for every variable p in ¢f,
one can show that ¢! is satisfiable iff it is satisfied in a model based on a forest



F of £(p!) trees of depth 1 the roots in which have precisely 2 successors (cf.
[Renz 1998]). Here £(¢t) is the length (say, the number of subformulas) in .
A proof of this fact can be found in Section 4 below.

Renz and Nebel [29] proved that the satisfiability problem for RCC-8 formulas
is actually NP-complete and described a maximal tractable fragment of RCC-8.

3 Temporalizing RCC-8

Suppose now that the spatial configuration we are interested in is changing in
time. Let us imagine, for instance, that the flow of time is (N, <) and that we
have the temporal operators S (Since) and U (Until); other standard operators
like O (at the next moment), OF (always in the future), ¢ (some time in
the future), etc. are defined via S and U in the usual way. We can assume
also that space itself with its topology always remains the same. However, the
spatial regions occupied by the objects under consideration may change with
time passing by. This naive picture is formalized by the following concept of

topological temporal model.

Definition 1 (tt-model). A topological temporal model (or tt-model, for short)
based on a topological space T = (U,T) is a triple of the form 9t = (T, N, a),
where a, an assignment in ¥, associates with every region variable X and every
moment of time n € N a set a(X,n) C U such that a(X,n) = Cla(X,n) and
a(X,n) # 0. For each n, we take a, to be the function defined by a,(X) =
a(X,n).

There are different ways of introducing a temporal dimension into the syntax
of RCC-8.

STo. The most obvious one RCC-8 is to allow applications of the operators
S and U (along with the booleans) to spatial formulas. Denote the resulting
spatio-temporal language by ST .

Definition 2 (truth). For a tt-model M = (T,N,a), an ST o-formula ¢, and
n € N, define the truth-relation (M, n) = ¢ ‘¢ holds in M at moment n’ by
induction on the construction of ¢:

e if ¢ contains no temporal operators, then (I, n) = ¢ iff T =% ;

e (M,n) = wU iff there is k > n such that (M, k) =« and (M,]) | ¢ for
every | € (n,k), where (n,k) ={m:n <m < k};

e (M,n) = oSy iff there is k < n such that (I, k) = ¢ and (M, 1) | ¢ for
every | € (k,n).

The interaction between time and space in ST is rather weak, and it is not
hard to show that the following theorem holds.

Theorem 3. The satisfiability problem for ST o-formulas in topological tempo-
ral models is PSPACE-complete.

A proof of this and other theorems formulated in this section can be found
in Section 5.



The language ST is expressive enough to capture continuity of changes (see
e.g. [10]):
Ot (DC(X,Y) = O(DC(X,Y) VvV EC(X,Y))),
OF(EC(X,Y) — O(DC(X,Y) VEC(X,Y)VPO(X,Y))),
(X,)Y)v

)

3

0* (PO(X, ¥) - O(EC(X,Y) v PO
TPP(X,Y) VEQ(X,Y) v TPPT!(X,Y)))

3

etc.

The first of these formulas, for instance, says that if two regions are disconnected
at some moment, then at the next moment they either will remain disconnected
or will be externally connected (but will not overlap).

However, the expressive power of ST is rather limited. In particular, we
can compare regions only at one moment of time, but we are not able to connect
a region as it is today with its state tomorrow to say e.g. that it is expanding or
remains the same. In other words, we can express the dynamics of relations be-
tween regions, say, ~O7P(Kosovo, Yugoslavia) (‘it is not true that Kosovo will
always be part of Yugoslavia’) but not the dynamics of regions themselves, e.g.
that OFP(EU, OEU), where OFEU at moment n denotes the space occupied
by the EU at moment n + 1 (so the last formula means: ‘the EU will always be
expanding’).

This new construct may also be important to refine the continuity assump-
tion by requiring that O (EQ(X, O X) v O(X, (X)), i.e., ‘regions X and OX
either coincide or overlap.’

ST1. To capture this dynamics, we extend ST by allowing applications of the
next-time operator () not only to formulas but also to region variables. Thus,
arguments of the RCC-8 predicates can be now region variables X prefixed by
arbitrarily long sequences of (), say (O () X (representing region X as it will be
the day after tomorrow). Denote the resulting language by ST, and let ST}
be its sublanguage with only one temporal operator (). Definition 2 is extended
by the following clause: a(QX,n) = a(X,n + 1).

Theorem 4. (i) The satisfiability problem for ST-formulas in ti-models is
decidable in EXPSPACE.
(i) The satisfiability problem for ST -formulas is NP-complete.

Using ST1 we can express, say, that region X will always be the same (i.e.,
X is rigid): OTEQ(X,(OX), or that it has at most two distinct states, one on
even days, another on odd ones: OTEQ(X, (D () X). Note, by the way, that the
ST;-formula OFYNTPP(X, OX) is satisfiable only in models based on infinite
topological spaces unlike ST o- (and of course, RCC-8) formulas for which finite
topological spaces are enough.

It may appear that ST is able to compare regions only within fixed time
intervals. However, using an auxiliary rigid variable X we can write, for in-
stance, OTEQ(X,OX) A OTEQ(X, EU) A P(Russia, X). This formula is satis-
fiable iff ‘someday in the future the present territory of Russia will be part of
the EU.” Note that the formula O*P(Russia, EU) means that there will be a
day when Russia—its territory on that day (say, without Chechnya but with
Byelorussia)—becomes part of the EU.



Imagine now that we want to express in our spatio-temporal language that
all countries in Europe will pass through the Euro-zone, but only Germany will
use the euro forever. Unfortunately, we don’t know which countries will be
formed in Europe in the future, so we can’t simply write down all formulas of
the form OTP(X, Euro-zone). Hopefully, Europe is rigid, and so what we need
is the possibility of constructing regions &+ X and O X which contain all the
points that will belong to region X in the future and only common points of all
future states of X, respectively. Then we can write: EQ(Europe, Ot Euro-zone)
and EQ(Germany, OF Euro-zone). The formula P(Russia, 0T EU) says that all
points of the present territory of Russia will belong to the EU in the future (but
perhaps at different moments of time).

ST2. So let us allow applications of the temporal operators O, OF, O (and
possibly their past counterparts) to region variables.

Definition 5 (region term). Every region variable is a region term. If ¢ is a
region term then so are Ot, OT¢, and OT¢.

Denote by ST > the language that results from S7 o by allowing the use of region
terms along with region variables. The intended semantics for region terms is
defined as follows.

Definition 6. Let 9 = (T,N,a) be a tt-model. Define by induction the value
a(t,n) of a region term ¢ under a at n in M

e a(Ot,n) = a(t,n+1),
e a(O%t,n) =CI),>, a(t k), and
e a(Ott,n) = Cl Uy, alt, k).

It is to be noted, however, that this definition uses infinite unions and intersec-
tions of regions which are rather problematic. As was observed in [26], infinite
unions contradict the axioms of full RCC. The infinite intersection of a sequence
of shrinking regions may result in an empty set which by definition is not a
region. And finally, as we shall see below, infinite operations bring various se-
mantical complications. To avoid this problem we can try to restrict assignments
in models in such a way that infinite intersections and unions can be reduced
to finite ones. There are several ways of doing this.
One idea would be to accept the Finite Change Assumption (FCA):

‘No region can change its spatial configuration infinitely often. ‘

This means that under FCA we consider only those tt-models 91 = (%, N, a)
that satisfy the following condition: for every region term ¢, there is n € N
such that a(¢, k) = a(¢,n) for all & > n. Actually, FCA can be captured by the
STs-formulas GTOTEQ(t, Ot).

Of course, FCA excludes some mathematically interesting cases. Yet, it is
absolutely adequate for many applications, for example, when we are planning
a job which eventually must be completed (consider a robot painting a wall).
Optimists will accept FCA to describe the geography of Europe in the examples
above. In temporal databases the time line is often assumed to be finite, though
arbitrarily long, which corresponds to FCA.



Theorem 7. The satisfiability problem for ST »-formulas in FCA-models is de-
cidable in EXPSPACE.

Another, more general way of reducing infinite unions and intersections to
finite ones is to adopt the Finite State Assumption (FSA):

Every region can have only finitely many possible states (although it may
change its states infinitely often).

Definition 8 (FSA-model). Say that a model 9t = (%, N, a) satisfies FSA,
or is an FSA-model, if for every region term t there are finitely many regular
closed sets Ay, ..., A, CU such that {a(t,n) :n € N} = {A;,...,A,,}.

Theorem 9. (i) The satisfiability problem for ST o-formulas in FSA-models is
decidable in EXPSPACE.

(ii) An STa-formula is satisfiable in an FSA-model iff it is satisfiable in an
FSA-model based on a finite topological space.

ST;“. We can make our languages ST, for i = 0,1,2, even more expressive
by allowing applications of the boolean operations to region terms. Their se-
mantical meaning is defined as follows:

e a(tVit',n)=a(t,n)Ua(t',n)

e a(tAt',n) =Cl(a(t,n)Na(t',n)),
e a(—t,n) =CI(U — a(t,n)).
So we can write, e.g.

EQ(UK, Great_Britain V Northern_Ireland).

Let S’T?’ be the resulting family of languages. It turns out that all theorems
above remain valid after replacing ST; with ST .

4 Modal encoding of ST3 .

The decidability and complexity results formulated above are proved in Section 5
by means of embedding ST into a temporalized version of the propositional
modal logic S4 extended with the universal modality [16] and then using the
method of quasimodels developed in [33]. Denote by ML the propositional
modal language whose connectives are the booleans, the necessity and possibility
operators I and C' of S4, the universal necessity and possibility operators V
and 3, and the temporal operators S and /. What is the intended semantics
of ML? When encoding pure RCC-8 in S4 with V, we can use both (more
general) topological models of S4 and (more transparent) Kripke models (which
is explained, for instance, by the fact that S4 has the finite model property). The
addition of the temporal component makes the situation more complicated. For
we can interpret M L-formulas in structures of two kinds that are not equivalent
with respect to these formulas.



Definition 10 (Kripke model). A Kripke ML-model is a triple of the form

= (F,N,B) where § = (W, R) is a quasi-order (a frame for S4) and 2, a
valuation, is a map associating with every propositional variable p and every
n € N a subset U(p,n) C W. The truth-relation (u,n) Fg ¢ in K is defined as
follows:

o (u,n) Egpiff u € V(p,n),
u,n) =g Y iff (v,n) Eg ¢ for allv e W,

)

u,n) =g I iff (v,n) =g ¢ for all v € W such that uRwv,

(
(
(u,
(u,n) =g YUY iff there is k& > n such that (u, k) Eg x and (u,m) =g ¢
for all m € (n, k),

(u,n) =g YSx iff there is k < n such that (u,k) Eg x and (u,m) =g ¢
for all m € (k,n),

plus the standard clauses for the booleans. An M/L-formula ¢ is satisfied in £
if (u,n) =g ¢ for some u € W and n € N.

Definition 11 (topological model). A topological model for ML is the struc-
ture 9 = (T, N, 4) in which ¥ = (U, 1) is a topological space and i, a valuation,
is a map associating with every propositional variable p and every n € N a set
U(p,n) CU. $his then extended to arbitrary M L-formulas in the following way:

o U A x,n) =U,n)NUX,n),

(

o U(—tp,n) =U —U¥,n),

o U(Vp,n) =U if U(yp,n) = U, and U(Vep,n) = () otherwise,
U

Ip,n) = T4(, n),

e z € Y(YUx,n) iff there is k > n such that z € U(x, k) and z € U(Y, m)
for all m € (n, k),

e z € U(pSx,n) iff there is k < n such that ¢ € U(x, k) and =z € U(Y, m)
for all m € (k,n).

In particular, 4(CF ¢, n) = U, (v, k) and WO, n) = -, (¥, k). An
MLAformula ¢ is satisfied in N if U(p,n) # O for some n € N.

The sets of M L-formulas satisfiable in Kripke models and topological models
turn out to be different. Of course, every Kripke model (based on (W, R)) is
equivalent to some topological model (with <2W, ]I> as the underlying topological
space, where I.X is the maximal R-closed subset of X); see e.g. [5]. But the
converse does not hold.

Proposition 12. The formula OTCp + COTp is valid in every Kripke ML-
model but not in every topological M L-model.

Proof The former claim is clear. To see that there is a topological M L-model
in which the formula is refuted, it suffices to take T = (R, I) with the standard
interior operator on the real line, select a sequence X,, of closed sets such that
Unen Xn is not closed, and put U(p,n) = X,. a



Fortunately, the two types of models are equivalent with respect to modal
translations of ST -formulas under the finite state assumption FSA. The modal
translation f from ST5 into ML is defined as follows.

Definition 13 (modal translation). For a region term ¢, define an M/L-
formula ¢* by taking

X} = p;, X aregion variable, Oty =CcIQt,
(OTt)* = CIOTt*, (OFt)* = CcIott,

(t1 Via)" =CI(t] V13), (t1 At2)" = CI(t] A 13),
(=t)* = CI~t".

For atomic ST -formulas, let

(DC(t1,12))" = =3(t] A 13),

(EC(t1,t2))* = 3(t7 A ty) A —3(It] A It),

(PO(t1,t2))* = (Tt A Tt3) ATt A —t5) A (5 A TtS),
(EQ(t1,12))" = V(t] < 3),

(TPP(t1,t2))* = V(=7 Vt3) AI(t] A C—t3) AI(—tT A t3),
(TPP ™! (t1,12))* = (TPP(t2,11))",

(NTPP(t1,t2))" = V(—t7 V It5) AI(—t] AtY),

(NTPP™ (7‘1 t2))* = (NTPP(t2,t1))",

(NE(#))" = 3t",

(Regular(t))* = V(I-t* v CIt").

Suppose now that ¢ is an arbitrary ST -formula. Denote by ¢* the result of
replacing all occurrences of RCC-8 predicates R(t1,t2) in ¢ by (R(t1,t2))* and
then put

ol =" A /\ A (Regular(t))*,

tEtermyp

where termy is the set of all region terms occurring in ¢. The ML-formula f
is called the modal translation of .

Say that a topological M L-model (T, N, i) (or a Kripke M L-model (§, N, 4))
satisfies FSA for an ML-formula ¢ if for every variable p occurring in ¢ and
every n € N there exist finitely many sets Ay, ..., Aj such that

{U(p,m):m >n}={A1,..., A}

It is easy to show by induction that in this case we also have that for every
M L-formula v built up from variables in ¢ and every n € N there are sets
By, ..., B; such that

{u(djam) im > n} = {Bla e '7Bl}'
By a straightforward induction one can prove the following:

Theorem 14. An ST -formula is satisfiable in a tt-model (with FSA) iff its
modal translation is satisfiable in a topological ML-model (with FSA).

10



The modal translations of 87 -formulas form a rather special fragment
of the modal language ML. Renz [27] showed that an RCC-8 formula ¢ is
satisfiable iff ' is satisfiable in a Kripke model based on an S4-frame of depth
< 1 and width < 2 (which means that it contains no chains of more than 2
distinct points, and no point has more than 2 distinct successors). It turns out
that this result can be generalized to ST § -formulas.

Definition 15 (CI-term). We will be distinguishing between four types of
CI-terms:

e an M /L-formula is called a CI-term if it can be obtained from a proposi-
tional temporal formula y with operators (), O+, OF by prefixing CT to
every subformula of y;

e an M/L-formula is called a CI~-term if it can be obtained from a proposi-
tional temporal formula x with only one temporal operator () by prefixing
C1 to every subformula of x;

o an ML-formula ¢ is a general CI-term (general CI-term) if it is a
C1I-term (respectively, CI-term) prefixed by a string of -, I, and C.

Remark 16. Since CI-terms begin with CI, every general CI-term is equiva-
lent in topological models to a term of the form y, —x, Ix, =Ix, or I-y, with
x being a CI-term.

Definition 17 (CI-formula). By a CI-formula we mean an M/L-formula
composed from formulas of the form F and Vi, where ¢ is a boolean com-
bination of general CI-terms, using the temporal operators and the booleans.
A CIn-formula is an M L-formula composed from formulas of the form 3¢ and
V1), where 9 is a boolean combination of general CI-terms, using arbitrary
temporal operators and the booleans.

It easily follows from the given definitions that:

e the modal translation of every ST -formula is equivalent (in topological
ML-models) to a CI-formula.

e the modal translation of every ST -formula is equivalent (in topological
ML-models) to a CI-formula.

We now show that all CI-formulas satisfiable in topological M /£-models
with FSA and all satisfiable C'I~-formulas can be satisfied in Kripke M/L-
models of a rather simple form.

The following lemma is actually based on the Stone—Jénsson—Tarski repre-
sentation of topological boolean algebras, in particular, topological spaces, in
the form of general frames (for definitions consult [15] or [5]).

Lemma 18. (i) If a CI-formula ¢ is satisfied in a topological ML-model with
FSA, then ¢ is satisfied in a Kripke ML-model with the FSA.

(ii) If a CIo-formula ¢ is satisfied in a topological ML-model, then ¢ is
satisfied in a Kripke ML-model as well.

Moreover, in both cases we can choose a Kripke model & = (§F,N, D) satis-
fying ¢ and § = (W, R) in such a way that every set of the form

{u € W :vRu and (u,n) =g ¢},

where v € W, n € N, and ¢ is a CI-term, contains an R-mazximal point.
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Proof Suppose ¢ is satisfied in a topological model 9 = (T, N, i) based on a
topological space T = (U,T). Denote by W the set of ultrafilters in 2V and for
any two ultrafilters vy, vy € W put

v1 Ruy iff VV - U (]IVGU] -V E'UQ).

It can be shown that R is a quasi-order on W (see [5]). Put § = (W, R) and
define a Kripke model & = (F, N, ) by taking

B(p,n) ={veW :4Up,n) € v}.

Now, by induction on the construction of ¢y € subp we show that for all v € W
and n € N, we have
(v7n) ‘:ﬁ 1/} iff Ll(,(:b n) SCH

The basis of induction follows from definition, and the cases of the booleans and
the modal operators of S4 are standard (see e.g. [5]).

Suppose that (v,n) =g V. Then Yu € W (u,n) g ¢ and so, by IH,
Yu € W U(yp,n) € u, which means that $(¢p, n) = U, whence U(Vip,n) =U € v.
Conversely, if U(Vi),n) € v then U(Ve),n) # @ and so U(Vip,n) = U. Tt follows
that U(yp,n) = U, i.e.,, Yu € W U(¢,n) € u, from which by IH (v,n) =g V.

The case of QO is easy. We have (v,n) =g Qu iff (v,n + 1) Eg ¢ iff, by
IH, (¢, n + 1) = U(Oy,n) € v.

Now assume that (v,n) =g O*¢. Then 3m > n (v,m) =g ¢ and so, by TH,
U(p,m) € v. As U(OTp,n) = U, U(¥, k), we have U(hp,m) C U(CTY,n),
from which U(OFe,n) € v.

Conversely, let U(OFep,n) = U, U(1, k) € v. By FSA, we then have

U(OFP,n) = Uy, ki) U~ ULy, ky) € v

for some kq,...,k > n. Since v is a prime filter, 4(¢, k,,) € v for some m, from
which by TH, (v, k) Fg ¢ and so (v,n) Eg OTe.

The case of OF1) is treated similarly. Note that we use FSA only when ¢
contains a CI-term with &1 or OF.

The existence of R-maximal points follows from [12] (see Theorem 10.36 in

[5])- Q

A quasi-order (V, S) is said to be of depth < 1 if V can be represented as
the disjoint union of two sets, V7 and Vj, in such a way that S is the reflexive
closure of a subset of Vi x V. The points in V; are said to be of depth i.

Lemma 19. Suppose that a CI-formula ¢ is satisfied in a Kripke ML-model
M = (&, N, U) with & = (W, R). Suppose also that for any w € W, n € N,
and any CI-formula ¢ the set {u € W : wRu and (u,n) Fop ¥} contains an
R-mazimal point. Then ¢ is satisfied in a Kripke model & = (§,N,D) in which
§ is a quasi-order of depth < 1. If I satisfies FSA, then K satisfies FSA as

well.
Proof Define § = (V,S) by taking V = V5 UV;, where

Vo={zeW:-3y (zRy AN —~yRz)}, Vi =W -1},

and taking S to be the reflexive closure of RN (Vi x V4). In other words, §
keeps the same set of worlds as &, but only those arrows from the latter that

12



lead to points in final clusters (arrows within these clusters are omitted). By
the condition of the lemma, Vg # @ (take ¢» = T). Finally, we put 0 = 4 and
R=(FND).

First we show that for every CI-term 1, every n € N, and every u € V,

(u,n) =g iff (u,n) Fm Y. (1)

The proof is by induction. The basis of induction follows from the definition.
Now recall that every CI-term begins with CI. And for such formulas we
clearly have:

(u,n) Foq CIx iff 3v € W (uRv & Yw € W (vRw — (w,n) = X-

Therefore, (u,n) |FEon CIx iff there is a point v € Vp such that wSv and
(v,n) = x. Suppose, for instance, that x = OQ¢. Then (v,n) E;m QU
iff (v,n+1) |Fom ¢ iff, by IH, (v,n + 1) g ¢ iff (v,n) Fg x iff (u,n) = CIx.
The other temporal operators and the booleans are treated in the same way.

Now we extend (1) to general C' I-terms. The only non-trivial case is ¢ = Iy,
where x is a CI-term. (The case ¢ = I—x is considered analogously.) If
(u,n) FEom Ix then (v,n) Eo x whenever uSv, and so (u,n) =g Ix. Con-
versely, suppose (u,n) =g Iy, but (u,n) #om Ix. Then there is v € W such
that uRv and (v,n) Fop x. Take any w € Vj with vRw. Clearly, (w,n) [#Fom Xx-
But then (w,n) [~g x, contrary to uSw and (u,n) Fg Ix.

Finally, using this fact we can easily extend (1) to arbitrary CI-formulas
simply because they are constructed from general CI-terms using operators
which do not depend on the structure of the underlying S4-frame. a

By combining the two lemmata above and Theorem 14, we obtain the fol-
lowing:

Theorem 20. (i) An ST -formula is satisfiable in a tt-model with FSA iff its
modal translation is satisfiable in a Kripke ML-model with FSA whose under-
lying S4-frame is of depth < 1.

(ii) An ST -formula is satisfiable in a tt-model iff its modal translation is
satisfiable in a Kripke ML-model whose underlying S4-frame is of depth < 1.

In fact, it turns out that even simpler S4-frames are enough to satisfy ST;’—
formulas. We remind the reader that an S4-frame (W, R) is said to be of width
n if no point in W has more than n R-incomparable successors.

Renz [27] showed actually that an RCC-8 formula ¢ is satisfiable iff (' is
satisfiable in a Kripke model based on a frame of depth < 1 and width < 2. We
will prove now that this result can be generalized to the temporal case.

Theorem 21. (i) An ST4 -formula ¢ is satisfiable in a tt-model with FSA iff
ol is satisfiable in a Kripke ML-model with FSA whose underlying S4-frame
is of depth <1 and width < 2.

(ii) An ST -formula ¢ is satisfiable in a tt-model iff p' is satisfiable in a
Kripke ML-model whose underlying S4-frame is of depth <1 and width < 2.

Proof Suppose ¢ is satisfied in a tt-model M = (T N, a) and assume that
Xy,..., X, are all region variables occurring in ¢. Denote by ® the set of all

atoms of ST that contain only these variables.

13



For every n € N, take m fresh variables X{',..., X]'. Given a region term
t built up from X, ..., X,,, define inductively another term ¢" in the following
way:

o if t = X, then t" = X%

L] t] /\tg) —tn/\tg,
L] t] Vtg) 7t”Vt§l,
—t)" = "
O = 17414

o if t = OTty, then we take minimal ki, ...,k > n such that

(
(
(
(

(1(<>+t1,’ﬂ,) = Cl(tl, ]{'1) U---u Cl(tl.kl)
(they exist by FSA) and put t" = tfl VeV t’f’;

e for t = O%¢; we take minimal kq,..., %k > n such that
a(Otty,n) = IC(a(ti, ki) N---Na(t, k))
and put t"* =t A - AR
Now let
A, ={P(t7,t7) : P(t1,t2) € ® and (M, n) |= P(t1,t2)}

and

A:UAn.

neN

By definition, A contains no occurrences of temporal operators. Denote by ¥
the set of atoms from ® without temporal operators.

Let b be the assignment in T defined by 6(X?) = a(X;,n). It is readily
checked by induction that for every region term ¢ we have b(¢t") = a(t,n), and
S0

T ‘:b P(ty,ty) iff P(t),t3) € Ap,

for all P(t;,t3) € ®.

Conversely, suppose we have a topological space ' and an assignment b in
it such that

T L P, ty) it P(17,15) € Ay,

for all P(t1,t2) € ®. Construct a tt-model MM’ = (T’ N a') by taking, for
every n € N, a/(X;,n) = 6(X]"). Then we shall have a'(¢,n) = b(¢") and so
(M, n) = P(t1,t2) iff P(t7,15) € A,. It follows that ¢ is satisfied in D'

Thus, to prove our theorem it suffices to construct a Kripke model & =
(§',0") based on a frame §' = (W', R’) of depth < 1 and width < 2 and such
that for every P(t1,t2),

R |: (P(t],tg))T iff P(t]7t2) e A.

14



By Theorem 20, we have a model & = (F, W) such that § = (W, R) is of depth
< 1 and for every P(t1,t2),

R |: (P(thtg))T iff P(t],tg) e A.

Denote by X5 the set of formulas of the form Jx and their negations which are
true in & and such that Jy is a subformula of (P(t1,t2)), for some P(t,t) € W.

For every dx € X3 there is z, € W such that z, |= x. We may assume that
we have chosen mutually different z, and that all z of depth 1 (so, those with
proper successors) are of the form z, for some 3y € X3. Moreover, we may
assume that no point has more than 1 proper predecessor.

We construct §' in the following way.

First, for every 9y € X3 such that there exists a point of depth 0 with
x = x, we remove the point z, from W whenever it has depth 1. Let W' be
the resulting set of worlds.

Suppose now that Iy € X35 and z, € W'. By definition, x has one of the
following forms:

AL, BANC—S, TEAIE, —t ALy, —t] AL

And without loss of generality we may assume that each ¢} is of the form CI);.

Depending on the form of x we delete some of the R-arrows coming from
x,. There are four possible cases.

Case 1: x = CI ACItpy. Then we select two points 21,22 € W' of depth
0 such that z; = CIt; and z, Rz;, for i = 1,2, and remove all R-arrows leading
from z, to points different from z,z>.

Case 2: x = CI); NC—CI1py. Then we select x1, 12 € W' of depth 0 such
that z1 | CIyn, x5 |= ~CIs, zy Rz;, and remove all arrows leading from =,
to points different from x;, 5.

Case 3: x = CIyy A ~CIvyy. Then we select 1,20 € W' of depth 0 such
that 21 |= CIy1, xo |= ~CIt)s, z, Rx;, and remove all arrows leading from z,
to points different from x, .

Case 4: Otherwise take arbitrary z1,zo € W' of depth 0 (if they exist)
such that z, Rz; and remove all arrows leading from z,, to points different from
I1,T2.

Denote by R’ the resulting relation and define a valuation ' in §' = (W', R’)
by taking, for every variable p, x € U'(p) iff there is y € W' of depth 0 such
that zR'y and y € B(p).

Let us show that the model 9" = (F',Y') is as required.

Clearly, the points of depth 0 in 9t and 9% validate the same formulas
(without 3). By the construction, we also have that if 9t = Jx then 9’ = .
So it remains to show that if 9 = =3y then M’ |= =Iy. Consider all five
possible cases for .

(1) x = CIyy A CIpy. If (M z) = x then there are x1,29 € W' of depth
0 such that zR'z; and z; = CIy;. But then (M, z) = x.

(2) x = CIyy ANC-ClItpy. Let (M, z) = x. Then y = CIv); for some y
of depth 0, zR'y. Thus (IM,z) = CIy;, and so (M,z) = ~C—C Iy which
means that z = CIy, whenever 2Rz. So we have (M, z) = CIvy, whenever
zR'z, contrary to (M, x) = C-CI1),.

(3) x = ICIyy ANICIvs. Suppose (M, z) = x. Then for every successor y
of z of depth 0, we have (0, y) = x and so (M, y) = x, which is a contradiction.
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(4) x = "CIyy ACIpy. If (M, z) |= x then I, y) = CIy, for some y
of depth 0, zR'y. But then (9,y) = -1, so (M,y) E x, which is again a
contradiction.

(5) x = =C1Iy; A ICIp,. This case is considered in the same way. o

5 Decidability

We begin by considering the logics ST and S7. To simplify presentation, we
assume that we have only one temporal operator /. the reader should have no
problems in extending the proofs to the language with S.

Suppose ¢ € ST;. Denote by term(yp) the set of region terms ()™ X occur-
ring in ¢. And let sub(y) be the set of all subformulas in ¢. Without loss of
generality we may assume that sub(y) is closed under —.

Definition 22 (fork). By a fork we mean a frame § = (Wj, R;) such that
o Wy = {as, by, 1},
o a5 is the root of f, while b; and c; are its two immediate successors.

Thus Rs is the reflexive closure of the relation

{{ay, by) s ag, e) }-

A labelled fork for ¢ is the pair (f,[;), where § is a fork and I; a labelling function
which associates with every point z in f a subset I(z) of term(y) in such a way
that ¢t € l;(z) iff there is a final point y in | accessible from z with ¢ € I;(y).

A set F of labelled forks can be regarded as a Kripke frame (W, R) the
disjoint union of forks in F—with all points z € W labelled by I r(z) C term(yp)
where Ip(z) = l§(z) if z € W;.

For an RCC-8 predicate P and region terms t1, to, we write F |= P(t1,t2) iff
P(t1,t2) holds in the topological space determined by F under the assignment

a(t) ={z e W:telr(zx)}.
Definition 23 (type). A formula type for ¢ is a subset ® of sub(p) such that
e YAx€E Diff i, x € P, for every ¢ A x € sub(p);
e —p € ®iff v ¢ P, for every ¢ € sub(y).

Definition 24 (quasistate). We say that the pair (F', ®) is a quasistate for ¢
if

e F'is a set of pairwise non-isomorphic labelled forks, and

e ® is a formula type for ¢ such that for every P(t1,t2) € sub(p), we have
P(t],tg) e diff F ‘: P(t]7t2).

Denote by f(p) the number of pairwise non-isomorphic quasistates for .
Clearly
92 term ()]

#(p) < 2 . 9lsub(@)]
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Definition 25 (suitable pair). Say that an ordered pair (f,ls), (g,ly) of la-
belled forks for ¢ is suitable if there is an isomorphism o from § onto g such
that, for all Ot € term(yp) and all z € W},

Ot els(z) iff telg(o(x)).
An ordered pair (F,®), (G, V) of quasistates for ¢ is called suitable if

e for every (f,l;) € F there is (g,l5) € G such that the pair (f,1;), (g,1) is
suitable;

e for every (g,ly) € G there is (f,1;) € F such that (f,[s), (g, 1) is a suitable
pair.

Definition 26 (state function). A state function for ¢ is a function I which
associates with each n € N a quasistate I(n) = (F,,, ®,,) for ¢.

Definition 27 (quasimodel). A state function I with I(n) = (F,,®,) is
called a quasimodel for ¢ if

e the pair I(m), I(m + 1) of quasistates is suitable for every m € N,

o YUY € @, iff there exists £ > n such that ¢ € &, and x € P; for all
l€(n,k)and n € N.

Say that ¢ is satisfied in the quasimodel I if ¢ € ®,, for some n € N.

Theorem 28. A formula p € ST is satisfied in a tt-model iff it is satisfied in
a quasimodel for .

Proof (=) By Theorem 21, we may assume that ¢ is satisfied in a tt-model
M = (T,N,a) the underlying topological space T of which is determined by a
disjoint union § = (W, R) of forks.

For every n € N, define an equivalence relation ~,, on the set of forks in § by
taking f ~,, g iff there is an isomorphism o from f onto g such that z € a(¢,n)
iff o(z) € a(t,n), for all ¢t € term(p) and all z in f.

Pick a representative of every ~,-equivalence class and define F',, to be the
set of all selected representatives labelled in accordance with a. Let ®,, be the
set of all formulas in sub(p) that hold in 9t at moment n.

It is easy to check that the state function I(n) = (F',,, ®,) is a quasimodel
satisfying .

(«=) Conversely, suppose ¢ is satisfied in a quasimodel I for ¢. Say that a
function r which associates with every n € N a labelled fork r(n) in I(n) is a
run through I if for every m € N, the pair of r(m), r(m + 1) is suitable. Let R
be the set of all runs through I.

Define a topological temporal model 9t = (¥, N, a) as follows. The topolog-
ical space ¥ is determined by the frame § = (W, R), where

W =R x{a,b,c}
and, for all z,y € W

zRy iff z=y VvV IreR (z=(ra) &y =(r,b) Vy={(rc)).
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And the assignment a is defined by
CI(X, 77) = {<T7 d) X € lr(n) (dr(n))}
It is not hard to check by induction that ¢ is satisfied in 9. a

We are going to prove now that, given an ST ;-formula ¢, we can effectively
recognize whether there exists a quasimodel satisfying . The idea of the proof
is to show that a satisfiable ¢ can always be satisfied in a ‘periodical’ quasimodel
of the form

100), ..., I(k), I(k+1),...,I())"

with effectively bounded & and .

Let us first fix some notation concerning sequences (of arbitrary elements).
Given a sequence s = 5(0),5(1),... and i > 0, we denote by s<% and s> the
head s(0),...,s(i) and the tail s(i + 1), s(i + 2),... of s, respectively; s; * s9 is
the concatenation of sequences s; and so; |s| denotes the length of s and

S =s*xs5*kSs*...

Lemma 29. Let I = I(0),I(1),... be a quasimodel for ¢ and I(n) = I(m) for

somen < m. Then I, = IS" % I>™ is also a quasimodel for .

If a subsequence of a quasimodel I for ¢ is a quasimodel for ¢ itself, then we
call it a subquasimodel of I. For example, I,,, in Lemma 29 is a subquasimodel
of I.

Lemma 30. Every quasimodel I for ¢ contains a subquasimodel Iy * I, such
that |I] < 4(¢) and each quasistate in I, occurs in this sequence infinitely many
times.

Let, as before, I(n) = (F,,, ®,). Say that a formula YUx € ®,, is realized in
m steps in I if there is [ € (0,m + 1) such that x € ®,,,; and ¢ € &, for all
k€ (0,1).

Lemma 31. Let I = I} x I be a quasimodel for ¢ (with quasistates of the form
(F;,®;), i € N) satisfying the requirements of Lemma 30 and let n = |I| + 1.
Then I contains a subquasimodel of the form I * Iy * 12>l, for some | > 0, such
that

(i) [Lo] < [sub(p)| - #(¢) + 1();
(i) every formula YUy € ®,, is realized in |Iy| steps;

(it)) Io(0) = I;(0).

Proof Suppose Uy € ®,, Then there exists m > 0 such that x € ®,4,,
and ¢ € ®,4 for all £ € (0,m). Assume now that 0 < i < j < m and
I(n+1i) = I(n+j). In view of Lemma 29, I % I=' % I;7 is a subquasimodel of
1. It follows that we can construct a subquasimodel I * I,;] x I3 of I in which
YUy is realized in my < #(yp) steps.

Then we consider another formula ¢'Ux’ € ®, and assume that it is re-
alized in mos > my steps. Using Lemma 29 once again (and deleting repeat-
ing quasistates in the interval I3(mq),...,I3(m2)) we select a subquasimodel
I 1231 * 135"” x I, of I which realizes both YUy and ¥'Uyx" in 24(p) steps.
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Having analyzed all distinct formulas of the form ¢lUyx € ®,, we obtain a
subquasimodel Iy * 5! « I' of I which realizes all those formulas in |[sub(¢)]|-#(¢)
steps. And < () additional quasistates may be required to comply with (iii).

A

Lemma 32. Suppose I and I, are finite sequences of quasistates for ¢ of length
ly and ly, respectively, and let

I=I %I}

with I(n) = (F,,®,). Then I is a quasimodel for ¢ whenever the following
conditions hold:

1. for every i <l +la, the pair F;, F;1 is suitable;
2. for every i <ly + 1y, and every formula YUx € sub(yp),

YUx € ®; iff either x € ®jy1 or Y € @1 and YUx € Pitq;

3. for every i < Iy + 1, all formulas of the form YUy € ®; are realized in
ly + 1y — i steps.

As a consequence of the two preceding lemmas we immediately obtain

Theorem 33. An ST 1-formula o is satisfiable in a topological temporal model
iff there are two sequences Iy and I, of quasistates for ¢ such that I = I x I
satisfies conditions 1-3 of Lemma 32, all quasistates in I, are distinct (and so
1L < #(e)),

2] < [sub(p)] - 1(0) + £(e0),

and ¢ € I(1).

This theorem provides us with an EXPSPACE algorithm which is capable
of deciding whether a given S7;-formula ¢ is satisfiable in a quasimodel for
. Here is a rough description of such an algorithm; in view of the equality
EXPSPACE = NEXPSPACE, it can be non-deterministic.

First, we guess I; < #(p) and Iy < [sub(p)| - #(p) + #(p) and write them
in binary using thereby exponential space in £(y). Then we guess a set Fy of
< 2% lterm(@)] Jabelled forks, a subset ®, C sub(y) containing ¢, and check that
(Fo,®p) is a quasistate. In the same way we guess a quasistate (F'y, ®1) (here
we do not need the condition ¢ € ®;) and check whether the pair (Fg, ®¢),
(F'y, ®,) is suitable and whether condition 2 of Lemma 32 is satisfied. After
that we remove (Fq, ®g), guess (Fa, ®5), check the pair (Fy, ®1), (Fa, ®5), and
so on till we reach (F, 11, ®;,+1) this quasistate is stored in memory together
with the set X of all formulas of the form xUv. We proceed further in the same
way as before deleting xU1 from Y every time we reach ®; containing . If
the pair (Fy, 1., Pri11,)s (Fi41, ®y,11) is suitable and ¥ is empty, then ¢ is
satisfiable. This proves Theorem 4 (i).

Suppose now that ¢ is an ST o-formula. It follows from the proof of Theo-
rem 21 that ¢ is satisfiable iff it is satisfied in a quasimodel all quasistates in
which contain < ¢ £(yp) labelled forks, ¢ = const. Thus

§(g) < ¢ - (p) - 2> lterm(D)] . glsub(e)]
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and so the satisfiability problem for ST -formulas is decidable in PSPACE. Re-
call that the satisfiability problem for pure PTL-formulas is PSPACE-complete
(see e.g. [14]). Given such a formula ¢, we replace every propositional variable
p in it with the RCC-8 predicate EQ(XP?,Y?) thus obtaining an ST o-formula ¢°.
It should be clear that ¢ is satisfiable (in a model for PTL) iff ¢° is satisfiable
(in a tt-model). Consequently, the satisfiability problem for ST -formulas is
PSPACE-complete. This proves Theorem 3.

As to ST -formulas, it is not hard to see that such a formula ¢ is satisfiable
in a tt-model iff it is satisfied in a model (¥, £, a), where £ is a strict linear order
with < £(¢) points and T is determined by a set of < (¢())? forks. This yields
a satisfiability checking algorithm which is in NP, and thus proves Theorem 4
(ii).

Let us consider now ST s-formulas and assume again that we have only one
temporal operator U. Suppose p € STo. As before term(yp) is the set of region
terms occurring in ¢; now besides region variables it may contain. terms of the
form O*X, 0t X, and OX.

Definition 34 (run). Suppose [ is a state function for . By a run r in [
we mean a function r = (ry,ry,r3) with domain N such that, for all n € N,
there exists a fork f = (I, Rs) underlying some labelled fork in F',, such that
r1(n) is the root of f and ro(n),r3(n) are its immediate successors, and for all
i€{1,2,3} and n € N,

o Oteli(ri(n)) iff t € lg(ri(n + 1)),
e 0%t € li(ri(n)) iff, for all m > n, t € ly(r;(m)),
e OFt € li(ri(n)) iff there exists m > n such that ¢ € I5(r;(m)).

Definition 35 (FSA-quasimodel). A pair (I, R) consisting of a state func-
tion I with I(n) = (Fy,®,) and a finite set of runs R in I is called a FSA
quasimodel for ¢ if

e xUy € I(n) iff there exists k > n such that ¢ € &, and x € ¥, for all
l € (n,k)and n € N,

e for all n € N and fork f underlying a labelled fork in F',, there exists r € R
such that Wj = {ri(n),r2(n),r3(n)}.

Say that ¢ is satisfied in the quasimodel I if ¢ € ®,, for some n € N.
Theorem 36. The following conditions are equivalent:

1. A formula ¢ € ST is satisfied in a tt-model with FSA,

2. ¢ is satisfied in a FSA—quasimodel for .

3. @ is satisfied in a tt-model with finite domain.

Proof (1) = (2). By Theorem 21, we may assume that ¢ is satisfied in a
tt-model M = (T, N,a) with FSA the underlying topological space T of which
is determined by a disjoint union § = (W, R) of forks.

For every n € N, define an equivalence relation ~,, on the set of forks in § by
taking f ~,, g iff there is an isomorphism o from f onto g such that z € a(t, n) iff
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o(x) € a(t,n), for all t € term(p) and all z in f. Observe that, because of FSA,
the set {~,: n € N} is finite. Pick a representative of every ~,-equivalence
class (such that the representatives coincide whenever ~,=~,) and define F',
to be the set of all selected representatives labelled in accordance with a.

Let f be a fork in §. Define rf = <r{,r£,r;> as follows: for n € N, let

on be the isomorphism from f onto the representative §” of § in F',, such that
z € a(t,n) iff on(z) € a(t,n), for all ¢t and x € W;. Put

o ri(n) = ou(ay),
o ri(n) = ou(by).
o ri(n) = ou(cy)

Tt is not difficult to see that all 7/ are runs and that
R = {rf . afork in §}

is finite. Let ®,, be the set of all formulas in sub(y) that hold in 9t at moment n.
Tt is easy to check that the pair (I, R) with I(n) = (F',,, ®,) is a FSA-quasimodel
satisfying (.

(2) < (3). Suppose g is satisfied in a FSA-quasimodel (I, R) for ¢.

Define a topological temporal model 9t = (¥, N, a) as follows. The topolog-
ical space ¥ is determined by the frame § = (W, R), where

W =R x{a,b,c}
and, for all z,y € W
zRy if z=y VvV IreR (z=(ra) &y =(r,b) Vy={(rc)).
And the assignment a is defined by

Cl(X,n) = {<T7 d) X € lr(n) (dr(n))}
It is not hard to check by induction that ¢ is satisfied in 9t. Clearly W is finite.
(3) = (1) is trivial. a

We fix a formula ¢ € ST, and an enumeration (h1,..., b, ) of all labelled
forks for ¢, n, < 2%term()l,

Let (I,R) be a FSA-quasimodel for ¢ with I(n) = (F,, ®,). In what follows
we write r(i) = r(j) for a run r = (ry,r2,73) € R and 4,j € N whenever

o (ri(i),r2(i),r3(i)) = (r1(4),r2(4),r3(j)) and
o Ip,(ri(i)) = lp,(ri(4)), for all k € {1,2,3}.

We write r(i) = h whenever b is the labelled fork in F; based on {ry (i), r2(7),r3(i)}.
Define an equivalence relation ~% on N by taking i ~5 j iff

e I(i) =1(j) and
o Vr e Rr(i) =r(j).
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Denote by [n]r the ~g-equivalence class generated by n.
Besides, for each n € N, we define one more equivalence relation ~% on N
by taking i ~%, j iff I(i) = I(j) and

e for every r € R there is r' € R such that r(n) = r'(n) and (i) = r'(j),
e for every r € R there is r' € R such that r(n) = r'(n) and r(j) = r' (7).

Lemma 37. For every n € N, the number of pairwise distinct ~% -equivalence
classes does not exceed

b(p) < f(p) - 222N

Proof Fix some n € N and define a function o;(k,1), for i € N, k,l < n, by
taking

0 otherwise.

oi(k,1) = { L if 3r € Rr(n) = b & r(i) = b,

We then have i ~% j whenever I(i) = I(j) and o;(k,l) = o;(k,I), for all
k,l1 < n,. It remains to observe that the number of functions from {1,...,n,}?
into {0,1} is 2% 0

The following is easily proved:

Lemma 38. Every FSA-quasimodel (I,R) for ¢ contains a FSA-quasimodel
(I % I, Q) such that |I| < #(p) and [n]g is infinite, for every n > |I].

Lemma 39. Let (I,R) be a quasimodel for ¢, n <i < j, and i ~% j.
Then <15i x[27,0 =R %, 'R>j> is also a FSA-quasimodel for o, where

R * R>J = {T_ * T2>] ry,r2 € R: 1 (7) = T2(j),’l"1 (77) = TQ(’H’)}'
Moreover, for alln' > j, if n ~g n' thenn ~gn' — (j —1).
Proof Follows immediately from the definition of i ~% j. a

Lemma 40. Let (I = I; * I3, R) be a FSA-quasimodel for ¢ (in which we have
I(n) = (F,, ®,)) such that n = |I]| < #(p) and [m]r is infinite for all m > n.
Then (I, R) contains a FSA-subquasimodel of the form ([1 x I *12>l, Q>, for
some | > 0, such that

(i) Hol <b(ep) - 2" Term @13 - Jterm(p)| + 1 + 221542 |sub(y)]);

(ii) for every f = (Ws,1;) € F,, there is a run v € Q through | realizing all
terms of the form OTX in Uzewf li(z) in |Io| steps;

(iii) every v1lUpy € ®,, is realized in |fo| steps;
(iv) n ~g |11 * Ip|;?
(v) for every labelled fork § € F,, there is a run r € Q through §.

2Note that I(n) = Io(0) = 15%(0) = I(|I1 * Io|).
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Proof Suppose f = (Wj,l5) € F,,, Ot X € [j(z), for some z € Wy, and r is a
run through f. Take k € {1,2,3} such that x = r(n).

Then there exists m > 0 such that X € Ip, . (rx(n+m)). Assume now that
0<i<j<m,r(n+i)=r(n+j) andn+i~%n+j. Inview of Lemma 39,

<Il * I2S1 * 12>j/ QO = R§n+z *pn R>n+j>

is a FSA-subquasimodel of (I, R), 7<"* x r>"+J is a run through §, and for all
n' > n+j we have n ~g, n' — (j — i) whenever n ~% n'. Thus we obtain a
FSA-subquasimodel

<Il % IQSO 3 13, Q0>
of (I,R) such that there is a run 71 € Qg through § realizing ©*X in
my < 92-[term(¢)] 5(e)

steps and such that, for all n’ > n +m; we have n ~g, n' — (j — i) whenever
n ~g n'. In particular, [n]g, is infinite.

After that we consider another formula ¢*Z € Ij(z), for some z € W
and assume that it is realized in msy > my steps in r;. Using Lemma 39 once
again (and deleting states in the interval I3(m;),...,I3(ms2)) we construct a
FSA-subquasimodel

<I1 $ 130 % IS™ s 1y, Q1>

of (I,R) and a run 7y through f realizing both &+ X and &+ Z in 2. 2% [term(@)].
b(¢) steps, with [n]g, being infinite.

Having analyzed all distinct terms of the form ¢+X which occur in some
l;(x) we obtain a FSA-subquasimodel

<11 * [2§1 x I, Q'>

of (I,R) with finite Q' and a run r' € Q' through § realizing all O*-terms in
m' < 3-[term(p)| - 2%1term (@) () steps. The class [n]g is infinite.

Then we consider in the same manner another labelled fork § € F,,. How-
ever, this time we can delete states only after I'(m'). And so forth. Thus we
arrive at a FSA-subquasimodel

<Il * 12§0 x I Q">
of (I,’R) with infinite [n]g» and such that all terms of the form O+ X which
occur in some [ _(x) are realized by some r € Q' in

< 22 lterm@)l 3 Jterm(p)| - 27 1term@l ()

steps.
To comply with (iii) we need 22 1540() . () - |sub(y)| further steps.
Finally, we need at most f(y) new states to comply with (iv).

(v) is satisfied by the construction. a

Definition 41 (suitable pair). Say that an ordered pair (f,ls), (g, ) of la-
belled forks for ¢ is suitable if there is an isomorphism o from § onto g such
that, for all Ot, O7¢, and Ot in term(yp) and all 2 € W,
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o Oteli(z)iff t € lg(o(x)),

o OFteli(z)iff t,0%¢t € lg(o(x)),

o Otteli(x)ifft €lg(o(x)) or OFt € lg(o(z)).

An ordered pair ®, ¥ of formula types is suitable if for every ¢ Us:
ViU € @ & 1Py € W or YUY, € V.

Now the decidability of the satisfiability problem for formulas in 875 in
FSA-models follows from the following result:

Theorem 42. A formula ¢ is satisfiable in a tt-model with FSA iff there exist
two state functions Iy, Is of length

o ll S ﬁ((p)i
o I <t(p) - (2413 fterm(p)] + 221 (o) - [sub(p)] +1).

with
I=1xI
such that the following holds (for I(n) = (F,,, ®,)):
1. (a) p € P,

(b) fori<ly +1a, ®;,P;11 is suitable,

(c) @y 41,1, Py is suitable,

(d) for every i < li and every YUyps € U € ®;: y1UYs is realized in
l1 + 1y — i steps;

2. for every i < l1 + ls and every labelled fork b; in F; there is a sequence
bo,--- bl 41,—1 Such that
(a) b € F;, for every j <ly + 1o,
(b) the pair hj, b1 is suitable, for every j <l +1s —1,
(C) hll+l271:hl1 is suitable;
3. for every i < l; and every labelled fork h; in F;, there is a sequence
bo, ..., B1,41,—1 such that
(a) every Ot from by; is realized in Iy + 1o — i steps in o, ..., b1 11, 1,
(b) b; € Fj, for every j <l + 1o,
(c) the pair hj, b1 is suitable, for every j <l +1s —1,
(d) Biy41,—-1, b1, is suitable.
Proof Firstly we show that ¢ is satisfiable in a FSA-quasimodel whenever we
find an [ satisfying the conditions of the theorem. To this end suppose I satisfies
those conditions. It suffices to show that there exists a set of runs R in I such
that (I,R) is a FSA-quasimodel.

Say that a sequence by, . . ., b, +1,—1 is of type I (type 2) if it satisfies condition
2 (respectively, condition 3 for i = I;) in the formulation of the theorem. Clearly,
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there are finitely many sequences of type 1, and every sequence of type 2 is also
a sequence of type 1.
Let R consist of all infinite words of the form

S1 % (522l1 * 33211)* and sp * (53211 * 52211)*:

where sq, s3 are sequences of type 1 and ss is a sequence of type 2 such that
e the pair s1(l1 + 12 — 1), s2(ly) is suitable and

. Sg(ll) = 33(l1)-

It is readily checked that every such word is a run in [ and that (I,R) is a
FSA-quasimodel for .

Conversely, it follows from Lemma 40 that there exists an I satisfying the
conditions above whenever ¢ is satisfied in a FSA-quasimodel for ¢. a

6 Temporal models of Euclidean space

Although RCC was formulated as a first-order theory that can be interpreted
in arbitrary topological spaces, of course the intended models for various ap-
plications are one-, two-, or three-dimensional Euclidean spaces, i.e., R" for
n = 1,2,3 with the standard interior operator.? Renz [27] showed that for pure
RCC-8-formulas satisfiability in arbitrary topological spaces coincides with sat-
isfiability in R, and so in R™ for any n > 0; R? is enough to realize any set of
satisfiable RCC-8 formulas using only connected regions.

Let us observe first that this result of [27] cannot be generalized to RCC-8
extended with the operation V intended to form unions of regions.

Proposition 43. There exists a satisfiable RCC-8 formula ¢ with V which is not
satisfiable in any connected* topological space. In particular, @ is not satisfiable
in R™ for any n > 1.

Proof Take the conjunction ¢ of the following predicates:

EQ(X;UX.,Y), NTPP(X,,Y), NTPP(X,,Y), DC(Y,Z).

Clearly, ¢ is satisfied in the topological space consisting of three points and
having the identical interior operator.

Note now that if ¢ holds in some topological space, then the region X; U X5
is closed and included in the interior of Y. On the other hand, it coincides
with Y. Hence Y is both closed and open. However, Y is not the whole space
because it is disjoint with Z. a

Since the operation of forming unions of regions is implicitly available in the
language ST (in the form of &), we obtain the following

Proposition 44. There is an ST2-formula satisfiable in some tt-model with
FSA, but not in a model based on a connected topological space, in particular
R™, for any n > 1.

3Cohn [10] notes, however, that in some applications discrete or even finite topological
spaces may be preferable.
4A space is called connected if it is not the union of two disjoint non-empty open sets.
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Proof Let ¢ be the conjunction of the predicates:

EQ(OTX,Y), NTPP(OX,Y), NTPP(O®'X,Y), DC(Y,Z).

3 3

As in the proof above, we can show that if ¢ holds at some moment of time,

then Y at that moment must be clopen. a

Fortunately, this is not the case for S7;-formulas.

Theorem 45. If a set of ST1-formulas is satisfiable in a tt-model then it is
also satisfiable in a model based on R™, for any n > 1.

Proof As follows from the proof of Theorem 21, it suffices to show that if a set
? of RCC-8 predicates and their negations has a topological model determined
by a Kripke model 9t = (§,¥) in which § is a disjoint union of countably many
forks, then ? has a topological model based on R.

So let us assume that 7 has such a model 9 and § is the disjoint union of w
forks f,, n < w, with three points: a,, the root, and its two successors b,, and
Cn.-

Denote by X} the set of all region variables X such that

EU(‘Xv) N fn = {an: bn}

Analogously, X%, and X, are the sets of all region variables X such that

Cc

Q](X) Nfp = {an,cn},
m(X) N f’n = {an7bn7cn}7

respectively. And let A" = X" UX" U A

abc*

Define a partial order < on X™ by taking
X <Y iff MEVYX > Y).
For each n < w, we then choose three maps
o fIr X (0,0.2),
o fI X" — (0,0.2),
o [ Xape — (0.3,04)
in such a way that, for every e € {ab,ac,abc} and all X,V € X2,
X)) <f2Y) if X2,

and
X)) = fMY) if X<Y&Y <X.

Clearly, such maps exist.
Then we put

e a™(X) =[n— f(X),n] for every X € X%},
o a™(X) =[n,n+ fI.(X)] for every X € X

ac)

o a™(X)=[n—fI (X),n+ f (X)] for every X € A7,

abc abe?
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e a"(X) =0 for every X ¢ X"

Finally, let

for all region variables X.

It is a matter of routine now to show that ? holds in the topological space
R under the assignment a. We will consider here only two cases.

Suppose EC(X,Y") € ?. Then there is n < w such that

an € B(X)NBY), (2)

but (J,,c,{bn,cn} is disjoint with B(X)NB(Y). It follows that a(X) and a(Y’)
are externally connected by all n for which (2) holds.

Suppose NTPP(X,Y) € 7. Then a(X) C a(Y) and a(Y) — a(X) # 0. It
remains to show that a(X) is included in the interior of a(Y"). Let 2 € a(X).
Then z € a"(X), for some n < w. It suffices to show that r is in the interior of
a”(V). Three cases are possible:

Case I: X € X}. Then Y € A% or Y € &A%, . If Y € A7, then z is in the
interior of a™(X), since f}(X) < f (V) (recall that 9t = V(X — Y) but not
vice versa). If Y € X, , then z is in the interior of a”(Y") since the range of f7,
is contained in (0, 0.2) while the range of f7, . is contained in (0.3,0.4).

Case 2: X € X. This case is dual to Case 1.

Case 3 X € X7, . Then Y € A% (since M |= V(X = Y)) and f7, (X) <

o (Y) from which we deduce that z is in the interior of a™(Y"). a

7 Conclusion

In this paper we constructed a family of logics intended for qualitative knowledge
representation and reasoning about the behaviour of spatial regions in time. We
proved that reasoning in these logics is effective and estimated its computational
complexity. We also found out the relationship between topological temporal
models based on abstract topological spaces and those on Euclidean ones.

The obtained results make the first step in the study of effective spatio-
temporal formalisms. Many interesting problems remain open for investigation.
Here are some of them, connected with the logics constructed in the paper.

(1) Theorems 4, 7, and 9 establish only upper bounds for the complexity
of the satisfiability problem for S'Tj', i > 0. Do they coincide with the lower
bounds?

(2) It may be of interest to extend the logics ST; with infinitary opera-
tors which allow us to construct formulas of the form A, . R(X,O"Y) and
Vpen B(X, O"Y) to say, for instance, that \/ . P(Russia, Q"EU), i.e., some
time in the future the whole Russia as it is today will become part of the EU.

(3) FSA assumes that we can apply O and ©F only to region terms that
have finitely many possible states. To allow for infinite sets of states, one may
consider models that are ‘compact’ in the sense that regions can change infinitely
often and have infinitely many possible states, but there are finitely many max-
imal and minimal (with respect to C) states starting from each n € N. We
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conjecture that the satisfiability problem for STzr—formulas in compact topo-
logical temporal models is decidable.

(4) Theorem 15 realises region variables as arbitrary regular closed sets of

R™. What if we require those sets to be connected? (See e.g. [27].)
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