
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 2, MARCH 1999 427

A Method to Determine the Required Number
of Neural-Network Training Repetitions

Mahesh S. Iyer and R. Russell Rhinehart

Abstract—Conventional neural-network training algorithms of-
ten get stuck in local minima. To find the global optimum, training
is conventionally repeated with ten, or so, random starting values
for the weights. Here we develop an analytical procedure to
determine how many times a neural network needs to be trained,
with random starting weights, to ensure that the best of those
is within a desirable lower percentile of all possible trainings,
with a certain level of confidence. The theoretical developments
are validated by experimental results. While applied to neural-
network training, the method is generally applicable to nonlinear
optimization.

Index Terms—Neural-network training, steady-state identifica-
tion, weakest-link-in-a-chain.

I. INTRODUCTION

NEURAL networks are used for a variety of engineering
applications like process modeling and control, time

series modeling, process fault diagnosis, and system identi-
fication [2], [6], [11], [15]–[17], [21]. Control of bioreactors
is finding increasing application of neural networks [7], [18]
and pattern recognition [5], [8], [22] has been one of the largest
applications of neural networks. For all the above, neural net-
works need to be trained, i.e., an optimization procedure is to
be undertaken. While the most popular algorithm for training
of feedforward neural networks has been error backpropa-
gation [9], global optimizers like the Levenberg–Marquardt
optimizer [12] are now gaining popularity [14], [19].

An inherent problem with optimizers is their tendency, for
nonlinear problems, to get stuck in local minima. Neural-
network training is nonlinear. To alleviate this problem, often,
neural networks are trained more than once, starting with
a random set of weights. The best neural network is often
selected as the one with the lowest error. Parket al. [15]
have reported the results on prediction of sunspots using a
feedforward neural network. Their best network was selected
from among ten networks of the same architecture, each of
which was initiated with a random set of weights. In another
work, Shaet al. [19] have reported the use of 25 random starts
in the use of neural networks for ship design.

This study establishes a theoretical basis for the choice of
the number of random starts in neural-network training. The

Manuscript received July 6, 1998; revised December 15, 1998. This work
was sponsored by the State of Texas Advanced Research Program Grant
(Project 003 644-165).

M. S. Iyer is with the Department of Chemical Engineering, Texas Tech
University, Lubbock, TX 79409-3121 USA.

R. R. Rhinehart is with the Department of Chemical Engineering, Texas
Tech University, Lubbock, TX 79409-3121 USA, on leave with the School
of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078-
5021 USA.

Publisher Item Identifier S 1045-9227(99)02670-3.

concept, used for this development, is the best-of-or the well
accepted weakest-link-in-the-chain analysis [1]. The theory
is verified by experimental results, in the context of neural-
network training. However, the study is generally applicable,
and can be extended, to any nonlinear optimization procedure.

II. THE BEST-OF- OR

WEAKEST-LINK-IN-THE-CHAIN ANALYSIS [1]

A chain is only as strong as its weakest link. In other words,
the strength of a chain of links, each of whose strengths
is a distributed variable, is the strength of the weakest link.
By analogy, the above concept is applicable to optimization
problems, when an optimizer is used repeatedly, starting
each time with randomly selected values of the decision
variables. Each complete optimization, from one random start,
is analogous to an individual link. The performance of the
optimizer is typically measured by the sum-of-squared errors
on a data set [9]. The lower the error, the better the optimizer’s
performance. The value of the error function, being minimized,
is analogous to the strength of a link. The lowest error, of
several random starts, is analogous to the strength of the
weakest link. The “weakest link,” from a certain number of
random starts, would mean the best optimization, and not the
poorest one, as the name may seem to suggest.

To develop the analogy further, consider the following
thought experiment. Train a neural network many times (per-
haps thousands), each from independent starting values for
the weights. For each training, record, the sum-of-squared
errors on the independent test set, after training is complete.
Create a histogram of the values of The curve which
describes the histogram is the probability density func-
tion (PDF) of for a particular training problem. It may
resemble the curve labeled as “PDF of test set errors” shown in
Fig. 1(a). The -axis location of peaks on the curve represent
the sum-of-squared errors where the optimizer stopped. The
height of the peaks on the curve represent the probability
of the optimizer getting stuck in the local optima. It should
be noted that the ordinate in Fig. 1(a) is the smoothed PDF
obtained using the kernel method [20]. The global optimum
has a value of 0.013 for the sum-of-squared errors, while the
local optima have many values ranging from 0.015–0.53. The
graph only shows the local optima with values less than 0.05,
and it should be noted all errors are dimensionless, since scaled
values of network prediction and desired outputs were used in
the computation.

Continue the thought experiment. Train a particular network
from each of random starts (is a small number, such
as 10), and record the lowest of the sum-of-squared

1045–9227/99$10.00 1999 IEEE

428 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 2, MARCH 1999

(a)

(b)

Fig. 1. (a) Sum of squared scaled errors, dimensionless. (b) Sum of squared
scaled errors, dimensionless.

errors. The use of independent random starts, in training
a neural network, is equivalent to drawing an independent
random sample of size (with replacement) from the
distribution and selecting the best-of- results. Create a
histogram of these best-of- values. It would resemble the
PDF curve in Fig. 1(b), labeled “Best-of-”

Reconsider the independent training runs. The probability
that any single optimization has an error value,less than or
equal to “ ” is where is the
value of the cumulative distribution function (CDF) atThen,
the probability of is , and the probability that
all elements of the sample, of size, have a value greater than
a specific value, is Hence, the probability
that at least one of the elements has a value lower than, or
equal to, is Using to represent
the CDF for the weakest link, from links

(1)

Equation (1) explicitly defines the value of one of three
variables, in terms of values of the other two.is the number
of random, independent optimization starts from which the
best will be chosen. is the sum-of-squared errors on any
individual optimization. is the fraction of random starts
which would result in a value of less than or equal to “”
and If has a value of 0.2, this means
that the -value for the sum-of-squared errors is one of the

best (lowest) 20% possible values. is the best (lowest) value
for , the sum-of-squared errors, out of starts. is
the fraction of best-of- -values that result in a value of

less than or equal to “” If has
a value of 0.99, this means there is only a 1% chance of the
best-of- -values being worse.

Equation (1) can be rearranged to solve explicitly for ,
given and

(2)

Alternatively, if the user decides on the desired values of
, the level of confidence, and , the percentage

vicinity of the lower tail of the distribution, which the best-
of- is expected to provide, then (1) can be arranged to give
the required number of random starts

(3)

For example, if you want to be 99% confident (
) that the best-of- random starts will result in one of the

best 20% values for the sum-of-squared errors ()
then

III. EXPERIMENTAL RESULTS

Equations (1)–(3) are widely accepted in analyzing reliabil-
ity and failure of mechanical and electronic devices. In order
to verify the theory presented above for optimization, three
feedforward neural networks were trained. The details of the
training exercise are as follows.

Case 1: A 1-20-2 network, with unipolar sigmoidal acti-
vation function in the hidden and output layers, was trained
to learn the simulated variation in the reformate yield and
octane number (network outputs) as functions of time (network
input). Error backpropagation was used with a learning rate
of 0.2 and a momentum constant of 0.7. Only the hidden
layer was connected to a unit bias, while the output layer
was not connected to any bias. There were 80 weights,
but only 61 data points were used to train the network. A
novel steady-state identification (SSID) algorithm [3], [4] was
used to automatically stop training when the improvement in
validation error was statistically insignificant [10], [14]. Each
of the SSID algorithm parameters had a value of 0.05. The test
set comprised 80 data points not seen by the network during
training.

Case 2: An 8-4-1 network, with unipolar sigmoidal acti-
vation function in the hidden and output layers, was trained
to learn the experimentally observed variation in the outlet
pH (network output) in an in-line pH control system [13] as
functions of eight different process variables (network inputs)
using the Levenberg-Marquardt optimizer. Only the hidden
layer was connected to a unit bias, while the output layer was
not connected to any bias. There were 40 weights, and 75 data
points were used to train the network. Training was stopped
by the SSID algorithm, with values of 0.20 for each of the
parameters in the algorithm. The test set comprised 120 data
points not seen by the network during training.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 2, MARCH 1999 429

Fig. 2. CDF for test error and Best-of-N CDF for N = 10; Case 1.

Case 3: A 4-10-2 network, with unipolar sigmoidal acti-
vation function in the hidden and output layers, was trained
to predict the simulated manipulated variable action (the
reflux rate and the reboiler heat duty), corresponding to a
particular feed rate and feed composition, and for control to
target overhead and bottoms compositions (network inputs)
for a methanol-water distillation column [17]. The Leven-
berg–Marquardt optimizer was used to determine the weights,
and training was stopped by cross-validation. Only the hidden
layer was connected to a unit bias, while the output layer was
not connected to any bias. There were 70 weights, and 114
data points were used to train the network. The validation and
test sets comprised 37 data points each.

In each of the cases described above, the inputs and outputs
were scaled between 0.2 and 0.8 using, the entire data set
available (including training, test and validation sets). The
sum-of-squared errors was calculated on the scaled data.

In order to confirm the theoretical analysis, and
must be known for each neural network. Hence, each

neural network was trained 1000 times, starting each training
with random initial values of the weights in the interval

[0.01, 0.01]. The 1000 observations on the test set error
were accepted to represent the underlying distribution of the
test set errors. We chose to test the analysis for values of
equal to five, ten, 20, and 50. The general procedure was to
draw, with replacement, a random sample of sizefrom the
1000 observations. Fig. 1(a) is an example, from Case 2. The
minimum test error of these values was the experimental
best-of- values. For each this procedure was performed
400 times. The resulting 400 best-of-data points was used
to construct the best-of- histogram. Fig. 1(b) is an example,
from Case 2, for We used the kernel technique [20]
to smooth the PDF for both the test set and the best-of-
sum-of-squared errors.

Fig. 1(a) shows the presence of various local optima, values
of , where the optimizer gets stuck. The best-of-PDF,
Fig. 1(b) , is located near the lower tail of the PDF
of the sum-of-squared errors, as expected.

Figs. 2–4 show the plot of the CDF of sum-of-squared errors
and the best-of- CDF for a value of equal to ten, for
cases 1–3, respectively. The horizontal and vertical lines on
these figures show that when ten random starts are taken, there

430 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 2, MARCH 1999

Fig. 3. CDF for test set error and Best-of-N CDF for N = 10; Case 2.

is a 95% probability that the best network from these ten
starts would give a sum-of-squared errors that falls roughly
in the lower 26% of all values comprising the underlying
distribution of the sum-of-squared errors. Similarly, there is
a 99% probability that the best network has a sum-of-squared
errors corresponding to the lower 37% of all possible sum-of-
squared errors that form the underlying distribution. Similar
observations were made for several values of(although not
graphically depicted here).

The behavior of these observations were expected to obey
(2). To verify it, use (2) to predict from and

, and compare the theoretical values of with
those found experimentally from figures such as Figs. 2–4.
The results obtained are presented in Tables I–III. Consider
Table I. Theoretically, when the best network is selected from
just five random starts, it is expected to result in a sum-of-
squared errors that corresponds to the lower 45.08% of the
values comprising the underlying distribution of the sum-of-
squared errors, with a confidence of 95%. Experimentally, it
was observed that the best-of-five random starts, for the same
confidence, resulted in a network with sum-of-squared errors

in the lower 44.6% of the underlying distribution. Statistically,
45.08 and 44.6% are indistinguishably different. Similarly,
with 99% confidence, the best network from 50 random
starts should give an error in the lower 8.8% of all possible
errors. The experimentally observed figure was 9.13%. Results
presented in Tables I–III, for various values of, different
neural-network architectures, two types of optimizers, three
unique data sets, and two stopping techniques, all follow the
theoretical pattern laid by the weakest-link-in-the-chain or
best-of- analysis.

IV. I MPORTANT FEATURES

The significant features of the study are as follows.

1) Equation (3) determines the required number of random
starts of an optimizer, regardless of the application, op-
timization technique, and stopping criterion, activation
function of neurons, etc. It was tested on a wide variety
of neural-network training cases.

2) Tables I–III, and (2), indicate that when a network is
trained with ten random starts (as has often been the
case [15]), the lowest error found by the optimizer would

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 2, MARCH 1999 431

Fig. 4. CDF for test set error and Best-of-N CDF for N = 10; Case 3.

TABLE I
COMPARISON OFEXPERIMENTAL AND THEORETICAL RESULTS OFCASE STUDY (1)

probably (99% confidence) be within the best 36.9%
of the distribution of all possible errors. This may be
acceptable, but we would prefer to probably have one of
the best 20%, and therefore recommend that all networks
be trained with at least 20 random starts.

TABLE II
COMPARISON OFEXPERIMENTAL AND THEORETICAL RESULTS OFCASE STUDY (2)

3) The lower 20% of all possible errors (20 random starts)
may not be as close to the global optimum as a particular
application desires. Then (3) can be used to determine
the number of random starts needed to obtain a trained
network within a particular percentile of the generaliza-

432 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 2, MARCH 1999

TABLE III
COMPARISON OFEXPERIMENTAL AND THEORETICAL RESULTS OFCASE STUDY (3)

tion errors, with a certain desirable level of confidence.
To cite an example, if the best 2% of all errors is sought
() with 99% confidence ()
then (3) yields the desired value of as

4) The weakest-link-in-a-chain analysis provides a foun-
dation to analytically evaluate the heuristic best-of-ten
practice often used in neural-network training [15].

V. CONCLUSION

The close agreement between the theoretical expectations
and the experimental observations, over a wide range of
conditions, supports the best-of-analysis to determine the
number of random starts needed in neural-network training.
The technique is equally applicable, regardless of the appli-
cation, optimization algorithm, type of data set, and stopping
technique.

REFERENCES

[1] R. M. Bethea and R. R. Rhinehart,Applied Engineering Statistics.New
York, NY: Marcel Dekker, 1991.

[2] N. V. Bhat, P. A. Minderman, Jr., T. McAvoy, and N. S. Wang,
“Modeling chemical process systems via neural computation,”IEEE
Contr. Syst. Mag., vol. 10, pp. 24–30.

[3] S. Cao and R. R. Rhinehart, “An efficient method for on-line identifi-
cation of steady-state,”J. Process Contr., vol. 5, no. 6, pp. 363–374,
1995.

[4] , “Critical values for a steady-state identifier,”J. Process Contr.,
vol. 7, pp. 149–152, 1997.

[5] R. O. Duda, Pattern Classification and Scene Analysis.New York:
Wiley, 1973.

[6] P. Dutta and R. R. Rhinehart, “Application of neural-network control
to distillation and an experimental comparison with other advanced
controllers,” J Process Contr, Feb. 1997.

[7] C. Emmandouilides and L. Petrou, “Identification and control of anaer-
obic digesters using adaptive, on-line trained neural networks,”Comput.
Chemical Eng., vol. 21, no. 1, pp. 113–143, 1997.

[8] K. Fukunaga, Introduction to Statistical Pattern Recognition.New
York: Academic, 1972.

[9] S. Haykin,Neural Networks, A Comprehensive Foundation.New York:
MacMillan, 1994.

[10] M. S. Iyer, Ph.D. dissertation, Texas Tech Univ., Lubbock, TX, 1997.
[11] N. V. Joshi, P. Murugan, and R. R. Rhinehart, “Experimental com-

parison of control strategies,”Contr. Eng. Practice, Mar. 1997, to be
published.

[12] D. W. Marquardt, “An algorithm for least-squares estimation of nonlin-
ear parameters,”J. Soc. Indust. Appl. Math., vol. 11, no. 2, pp. 431–441,
1963.

[13] S. Natarajan and R. R. Rhinehart, “Implementation techniques for an in-
line pH controller,” inProc. 1994 Amer. Contr. Conf., Baltimore, MD,
June 1994, pp. 3523–3527.

[14] , “Automated stopping criteria for neural network training,” in
Proc. 1997 Amer. Contr. Conf., Albuquerque, NM, June 1997, Paper
#TP09-4.

[15] Y. R. Park, T. J. Murray, and C. Chen, “Predicting sun spots using a
layered perceptron neural network,”IEEE Trans. Neural Networks, vol.
7, pp. 501–505, Mar. 1996.

[16] S. Ramaswamy, P. B. Deshpande, G. E. Paxton, and R. P. Hajare,
“Consider neural networks for process identification,”Hydrocarbon
Processing, vol. 74, no. 6, pp. 59–62, June 1995.

[17] S. Ramchandran and R. R. Rhinehart, “A very simple structure for
neural-network control of distillation,”J. Process Contr., vol. 5, no.
2, pp. 115–128, 1995.

[18] J. Schubert, R. Simutis, M. Dors, I. Havlik, and A. Lubbert, “Bio-
process optimization and control: Application of hybrid modeling,”J.
Biotechnol., vol. 35, pp. 51–68, 1994.

[19] O. P. Sha, T. Ray, and R. P. Gokarn, “An artificial neural network for
preliminary ship design,” inProc. 8th Int. Conf. Computer Applicat. Ship
Building, p. 2, vol. 1014, pp. 10.15–10.30, vol. 2.

[20] B. W. Silverman,Density Estimation for Statistics and Data Analysis.
London: Chapman and Hall, 1986.

[21] J. Thibault and B. P. A. Grandjean, “Neural networks in process
control—A survey,”IFAC Advanced Contr. Chemical Processes, 1991,
pp. 251–260.

[22] S. Watanabe,Pattern Recognition: Human and Mechanical.New
York: Wiley, 1985.

