
Collaborative Geospatial Feature Search

George Lamprianidis

Institute for the Management of Information

Systems

Research Center “Athena”

Artemidos 6, 15125 Maroussi, Greece

glampr@imis.athena-innovation.gr

Dieter Pfoser

Institute for the Management of Information

Systems

Research Center “Athena”

Artemidos 6, 15125 Maroussi, Greece

pfoser@imis.athena-innovation.gr

ABSTRACT
The ever-increasing stream of Web and mobile applications
addressing geospatial data creation has been producing a
large number of user-contributed geospatial datasets. This
work proposes a means to query such data using a collab-
orative Web-based approach. We employ crowdsourcing to
the fullest in that used-generated point-cloud data will be
mined by the crowd not only by providing feature names,
but also by contributing computing resources. We employ
browser-based collaborative search for deriving the extents
of geospatial objects (Points of Interest) from point-cloud
data such as Flickr image locations and tags. The data is
aggregated by means of a hierarchical grid in connection
with an exploratory and a refinement search phase. A per-
formance study establishes the e↵ectiveness of our approach
with respect to the amount of data that needs to be retrieved
from the sources and the quality of the derived spatial fea-
tures.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms

Keywords
data mining, geospatial data fusion, user-contributed con-
tent, map reduce

1. INTRODUCTION
Geospatial data is out there, maybe not always in the

format, quality and amount we expect it, but by employ-
ing intelligent data collection and mining algorithms, we are
able to produce high-quality, and what is sometimes more
important, unusual data.

User-Generated Content (UGC) along with crowdsourcing
are elegant concepts that when properly applied lead to stag-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ACM SIGSPATIAL GIS, November 6-9, 2012. Redondo Beach, CA, USA

Copyright 2012 ACM 978-1-4503-1691-0/12/11 ...$15.00.

gering results. This work aims at exploiting already existing
data and employ user-contributed computing resources and
search parameters to produce quality geospatial datasets.
The Web has created a number of services that facilitate the
collection of location-relevant content, i.e., data for which
location is just but one, and most often not the most im-
portant attribute. Prominent examples include (i) photo
sharing sites such as Flickr and Panoramio, and many oth-
ers, (ii) microblogging sites with a geotagging feature, e.g.
Facebook, Google+, Twitter as well as related photo sharing
sites (twitpic) and (iii) more recently check-in services, e.g.,
Foursquare, Loopt, and Gowalla. Our goal is to utilize this
user-contributed geospatial data and to derive meaningful
geospatial datasets from it.

It is interesting to see that User-Generated Geospatial
Content, or, Volunteered Geographic Information (VGI) [10,
7] is large in volume but comparatively poor in quality. A
basic lesson that can be learned from crowdsourcing is that
the crowd always gets it right, i.e., the estimate of the crowd
typically beats the estimate of a single person even that of
an “expert” [16]. A similar conclusion can be drawn when
considering surveying engineering and the specific task of
determining an unknown location by observing the distance
and orientation to several known locations. The accuracy
of the coordinates produced by the mathematical process of
adjustment computation increases with the number of ob-
servations, i.e., the less influence a single observation has on
the overall outcome.

This work will employ the crowdsourcing concept to the
fullest in that user-generated point-cloud data will be mined
by the crowd not only by providing concepts (searched for
geospatial features) but also by providing computing re-
sources. We employ browser-based collaborative search for
deriving the extents of geospatial objects, or, Points of Inter-
est from point-cloud data such as Flickr image locations. In
a nutshell, the user provides the search terms (e.g., “Plaka,
Athens”) and respective point databases are queried based
on their tag information and using their APIs to retrieve
a point cloud that characterizes this location. This point
cloud stands for the wisdom of the crowd and somehow this
data needs to be aggregated to derive the actual location of
the searched-for geospatial object, e.g., a polygon derived
from the point cloud and representing the spatial extent
of “Plaka” . Here, a particularity in our approach is the
use of a browser as a computing platform. Borrowing from
the MapReduce computing paradigm, we create our own
browser-based version in which data collection and compu-
tation tasks are delegated to the connected search clients

(browsers) and the server only coordinating the search. As
a side e↵ect, no actual data is retrieved by the server directly
from any point-cloud data source, but all tra�c is handled
by the clients, e↵ectively balancing the data tra�c of the
search over the network. The search is collaborative in that
the more clients are connected, i.e., users searching for the
same term, the faster the search finishes.

Overall, the objective of this work is to transform available
user-contributed geocontent (“point cloud”) into meaningful
chunks of information (e.g., a polygon representing the loca-
tion of a spatial object). We aim for geospatial datasets ob-
tained with simplicity and speed comparable to that of Web-
based search. To achieve this task, we propose our search
method utilizing crowdsourcing concepts implemented as a
Web-based, collaborative search tool termed Jeocrowd1.

The outline of the remainder of this work is as follows.
Section 2 discusses related work. Section 3 surveys the type
of user-generated data we will exploit in this work. Section 4
describes the advocated computational approach, while the
actual computing framework is given in Section 5. Section 6
presents an experimental evaluation, and finally, Section 7
gives conclusions and directions for future work.

2. RELATED WORK
In recent years various approaches have been developed

that aim at exploiting UGC and more specifically VGI for
use in di↵erent applications. The following discussion should
give an indication as to what has been achieved and makes
no claim of completeness.

One big issue raised in [9], is the concern about the credi-
bility of VGI. Several techniques and strategies are examined
that help identify the quality and reliability of such user-
generated content. In [4] there is an e↵ort to classify the
types of people, companies or agencies that contribute GI
data and the nature of their contribution. [11] touches the
interesting issue of the localness of the GI contributed data.
By examining two major websites, Flickr and Wikipedia,
the authors find that more than half of Flickr users con-
tribute local information on average, while in Wikipedia the
authors’ participation is less local.

Because of the nature of the data and the increase in the
availability of computing resources, many techniques that
process this information in parallel have been proposed to
reduce the execution time and provide results faster. The
MapReduce model is a perfect candidate to be used as a
programming model in these scenarios, as shown in [1] and
[17] where it outperforms the traditional computational ap-
proaches. In our work, we implemented the MapReduce
framework a bit di↵erently. Instead of distributing our com-
putational work load to server farms, or the cloud, we let
the users’ browsers perform all the calculations for us and
then return us the results.

Finally, there is a great number of related work dealing
with extracting tag information to derive meaningful geospa-
tial data, or, in more general terms, place information. [5]
outlines an approach to derive geospatial shape information
from geotagged Flickr photos. Yahoo! GeoPlanet WOEIDs
as part of the metadata are exploited by means of direct
access to the Flickr database. [15] extracts place semantics

1The tool is named Jeocrowd, which is a combination of Geo
+ Crowd, using a J instead of G, to emphasize the use of
Javascript as its core calculation platform.

(a) Point cloud (b) Grid approach

Figure 1: Point cloud for the“Plaka”area in Athens,

Greece.

from Flickr tag information based on the spatial distribu-
tion of the data. In [12], again, Flickr data is used to iden-
tify places and also relationships among them (e.g., contain-
ment) based on tag analysis and spatial clustering. While
the above approaches have certain similarities with the basic
premise of our work, i.e., to extract geospatial information
from user-contributed datasets, our contribution will be to-
wards defining a collaborative data mining framework that
actively involves the user and their resources in the pro-
cess. Finally, an early prototype showcasing the Jeocrowd
approach has been presented as a demo paper [13].

3. USER-GENERATED AND GEOSPATIAL
DATA

Users generate data by means of many di↵erent applica-
tions in which the geospatial aspect does not play a major
role, but is simply used to index and access the collected
data. As mentioned, prominent examples here are photo
sharing sites and micro blogging services using geotagging
features. To illustrate the potential for geospatial data gen-
eration, consider the use of Flickr data for the computation
of feature shapes of various spatial objects including city
scale, countries and other colloquial areas [5]. The approach
is based on computing primary shapes for point clouds that
are grouped together by Yahoo! GeoPlanet WOEIDs (Ya-
hoo! Where On Earth IDs), which are part of the Flickr
metadata. Flickr currently contains 150+ million geotagged
photos.

Querying the API with a specific search term returns in
essence a “point cloud” referring to a specific POI. In other
words, the geotagging of each photo represents an indepen-
dent observation of the “true” location of the POI. The am-
bition of this work is to take point clouds as input and to
identify an approach for extracting geospatial location in-
formation from it. Here we essentially use the wisdom of
the crowd to determine the true location of a POI. Consider
the example point cloud in Figure 1(a), which shows geo-
tags of retrieved flick images for the query “Plaka”. The re-
sult includes also locations outside the actual area (shaded
polygon). The task at hand is how to derive the area in-
formation from this point cloud data. Complicating things
is the fact that the location of a POI might be that of a
point or area feature. Prominent examples here are “Cen-
tral Park” (area feature) and “Parthenon” (point feature)
but also larger features such as cities (“London”) or entire

Figure 2: Exploratory and refinement search

traversing up and down the hierarchical grid.

natural areas (“Alps”) 2.
Overall, to extract place information from point clouds,

we propose a method based on online (live search), collab-
orative (many users querying the same term speed up the
search), Web-based (browser-based computing) crowdsourc-
ing (user-contributed expertise - the search term, and re-
sources - computing power and bandwidth). The core con-
tributions of this work are (i) a collaborative spatial search
implemented by means of (ii) Web and browser-based com-
puting utilizing a browser-based MapReduce approach as
described in the following two sections.

4. COLLABORATIVE SPATIAL SEARCH
The basic task at hand is how to derive spatial datasets

from user-contributed point cloud data that have basically
no quality guarantee. A typical approach would entail the
clustering of the points (cf. [5]) in combination with outlier
detection. The latter should eliminate points that have been
assigned false coordinate information in connection with im-
age labels.

In Jeocrowd, we employ a grid-based clustering approach
(cf. [18], [14], [8]). Point cloud locations are aggregated by
means of a hierarchical grid. The fanout n and the grid spac-
ing at the lowest level a are grid parameters. For example,
with n = 5, a = 50m, we generate a grid that at the lowest
level (Level 0 or base level) consists of 50m ⇥ 50m cells, at
the level above (Level 1) of 250m⇥250m cells, etc. At every
level, except the base one, a cell will enclose n

2 cells of the
level below.
Performing a spatial search entails now intelligently pop-

ulating the cells by retrieving photos and more specifically
their locations using a point cloud API and a specific search
term that is matched to tag data. We essentially count how
many photos are located in a specific cell. Figure 1(b) shows
the example of “Plaka, Athens”. Using various thresholds
such as occupancy in connection with neighbor count infor-
mation, the result will comprise as set of connected cells
whose spatial extent will be the position of the searched for
spatial feature (POI). The typical result will be a polygon
with the accuracy of the shape being limited by the spacing
of the grid.

2The authors acknowledge however that whether a location
can be represented by a point or an area depends on the
scale and (practical) degree of abstraction at which the data
is represented.

Using a grid has the advantage that the search (i) can
be parallelized, i.e., cells can be populated simultaneously
from various data sources and (ii) is in fact continuous,
i.e., as additional user-generated data becomes available, the
search result will be refined. For example, city boundaries
may change in subsequent searches to reflect newly observed
data.

Since dealing with remote data sources, our goal is to re-
trieve as little data as possible so as to speed up search and
reduce tra�c. To this e↵ect we split our search into an ex-
ploratory part, which tries to quickly find a good estimate
of the extent of the spatial feature and a refinement part,
which then tries to explore the shape of the spatial feature
in greater detail. As shown in Figure 2, the hierarchical grid
is used (i) to expand the search area after the exploratory
phase and (ii) to eliminate unlikely areas during the refine-
ment stage.

4.1 Exploratory Search
Exploratory search retrieves some initial points matching

the search terms to get an overview of the spatial extent of
the spatial feature, i.e., is it a point location (statue, co↵ee
shop) or are we looking for an area feature (neighborhood,
city, country). These points are used to construct the base
grid. Each point is assigned to a grid cell according to its
coordinates. The total count of points (photos) within a cell
is called degree of the cell. During this phase we aim at col-
lecting a representative but small in size point cloud relevant
to our search terms. Hence when using Flickr as our point
cloud provider, the data is requested and retrieved sorted
first by relevance and then by descending interestingness.
These two sorting criteria are the parameters of the API
that provide us the most relevant dataset for this provider.
In the current implementation using only Flickr data, we col-
lect approximately 4000 unique points (photos). Figure 7(a)
shows the result of the exploratory search for “Plaka” (Level
0). Specifically a neighborhood density map is shown, in
which colors from blue to red are assigned to cells based on
how many neighboring cells have also collected point cloud
data. Isolated cells are colored blue and surrounded cells are
shaded red.

4.2 Refinement Search
During the refinement phase, the search is forced into

areas that are suspected of being part of the feature, but
for which we have not retrieved (many) points during the
exploratory phase. Users tend to take disproportionally
many pictures of the most popular locations. The refine-
ment search uses the search term in connection with location
estimates determined by the exploratory search to retrieve
additional photos for this “unpopular areas”.

4.2.1 Grid Construction

The refinement search is based on the hierarchical grid
idea using a top-down approach. However, to make the
top-down approach work, we first need to work our way
bottom-up and construct the hierarchical grid based on the
exploratory search results that populated the base level. The
two procedures given in pseudo code in Figure 4 and Figure 3
are used to iteratively build each level of the hierarchical grid
by aggregating degrees of lower-level cells to create higher-
level ones using an aggregation criterion and a termination
criterion.

BuildGridLevel(level, aggregationFunc)

1 grid ;
2 gridBelow GetGridAtLevel(level - 1)
3 for each cell in gridBelow
4 parentId DigitizeCoordinates(cell.lat, cell.lon)
5 if ¬CellExists(grid, parentId)
6 ^Apply(aggregationFunc, cell)
7 siblings getSiblings(cell)
8 degree siblings .Sum(0degree0)
9 points siblings .Collect(0points0)

10 parentCell MakeCell(parentId, degree, points)
11 AddCell(grid , parentCell)
12 return grid

Figure 3: Construction of a single level of the hier-

archical grid

BuildGrid()

1 grids[level] ;
2 aggregationFunc AtLeastTwo ⇤ ✓ = 2
3 for level 1 to 7
4 grids[level]

BuildGridLevel(level, aggregationFunc)
5 if CountCells(grids[level]) == 0
6 terminationLevel level �1
7 break
8 aggregationFunc0 AtLeastOne ⇤ ✓ = 1

⇤ terminationLevel is the stopping factor needed
⇤ using aggregationFunc

0

9 for level 1 to terminationLevel
10 grids[level]

BuildGridLevel(level, aggregationFunc

0)
11 return grids

Figure 4: Construction of the hierarchical grid (it-

eratively build each level)

The aggregation criterion determines whether a higher-
level cell will be populated based on the attributes of its
constituting lower-level cells. An example criterion would
be to create a higher-level cell based on a threshold ✓ for the
aggregated degree of its constituting lower-level cells. The
BuildGridLevel procedure (Figure 3) is called within an
iteration, in order to create each of the multiple levels of the
hierarchical grid, until a grid at a certain level contains zero
cells. The procedure loops through all the cells of a level,
grouping them together to form the larger cells of the level
above. If the aggregation criterion is met, then the group is
instantiated as a cell in the level above. If the aggregation
criterion cannot guarantee that eventually a level will have
zero cells, the iteration must use a termination criterion as
well.
The termination criterion is introduced to terminate cell

aggregation with a weak aggregation criterion. For example,
if we use ✓ = 2, i.e., propagate cells if they enclose at least
2 populated cells from the level below, the aggregation will
eventually terminate. However, for ✓ = 1, the aggregation
will not terminate as there is always at least one populated
cell that gets “aggregated” to an upper level. In this case

a termination criterion is needed to stop aggregation. Our
experiments showed that with ✓ = 2 many interesting ar-
eas were “cut o↵” because they had not attracted su�cient
points in the exploratory search. Hence, the choice of ✓ = 1
and the introduction of a termination criterion.

Because the termination criterion needs to be variable
rather than fixed for better results, we opted for a filter-
refinement strategy in our search. An initial search with
✓ = 2 derives the termination (maximum) level the hierar-
chical grid reaches in our search, i.e., the size estimate of the
spatial object. This level becomes the termination criterion
for the second aggregation phase that re-runs the algorithm
with ✓ = 1 and stopping the search at the level correspond-
ing to the termination criterion. This flow is described in
pseudo code in Figure 4.

When searching for large-scale spatial objects, the con-
struction of the hierarchical grid might prematurely termi-
nate, i.e., the estimated extent is too small due to sparse
point clouds. In those cases, we want to allow the grid to
grow beyond what is estimated. To accommodate for such
scenarios, after computing the maximum level and grid, we
employ the following heuristic. We measure the distance
between the centers of the h “hottest cells”. If the average
distance is larger than s times the length of the edge of a cell
for that maximum level then the grid is considered sparse
and an additional level is added to the hierarchical grid.
This procedure is described in pseudo code in Figure 5. The
default values are h = 5 and s = 10.

DetectSparseGrid(h, s)

⇤ order cells by descending degree
1 cells grids[terminationLevel].GetCells()
2 cells cells .SortBy(0degree0, DESC)

⇤ get the first h cells
3 hot cells[0..h� 1]

⇤ calculate average distances
4 for each pair c1 , c2 in hot
5 d [c1 , c2] DistanceBetween(c1 , c2)
6 length = LengthOfCellEdge(terminationLevel)
7 if Average(d) > s ⇥length
8 terminationLevel terminationLevel +1
9 grids[terminationLevel]

BuildGridLevel(terminationLevel,

aggregationFunc

0)
10 return grids

Figure 5: Expanding the grid one more level if the

existing top level has a lot of disjoint components.

4.2.2 Filtering Cells

At this stage of the search a set of large cells gives an
estimate of the shape of the spatial object. What needs to
be done now is to “carve out” the actual shape, i.e., direct
the search intelligently so as to eliminate as large as possi-
ble improbable areas as early as possible in our search. To
dissect larger cells into smaller cells and eliminating cells in
the process the two criteria degree and neighborhood den-
sity (i.e., count of adjacent cells) of each cell are used. The
filtering algorithm needs a function employing those two pa-
rameters that when applied on a cell decides if it should be
discarded or not. If �(h) is the average degree of the first

h “hottest cells”, i.e., cells with the largest degree, then the
function used in the current implementation discards a cell
if (i) it is isolated (has 0 neighbors) and its degree is less
than 0.5 ⇥ �(h), or, (ii) if it is not isolated and its degree
is less than k ⇥ �(h). The default values are k = 0.02 and
h = 5. The filtering procedure is described in pseudo code
in Figure 6.

FilterLevel(level, k)

1 grid grids[level]
2 cells grid .GetCells()

⇤ order cells by descending degree
3 cells cells .SortBy(0degree0, DESC)

⇤ get the first h cells
4 hot cells[0..h� 1]
5 avg Average(hot)

⇤ iterate all cells and discard as necessary
6 for each cell in cells
7 neighborCount cell .GetNeighbors().Count()
8 if (neighborCount == 0 ^ cell . degree < 0.5⇥ avg)
9 _(neighborCount > 0 ^ cell . degree < k ⇥ avg)

10 grid .DeleteCell(cell)
11 return grid

Figure 6: The filtering procedure that runs at each

level of the grid before progressing to the next one.

The refinement search then proceeds with searching these
super cells that remained after the filtering process, starting
from the grid at the maximum level and working its way top-
down. Figure 7(b) shows a super cell for the search term
“Plaka”. Because in this phase of the search each search
request to the external provider (e.g., Flickr) is spatially
bounded by the border of a cell we only need to request
the total count of points in that cell, thus reducing the size
of the data requested and transmitted considerably. As we
will see in Section 6, on average a request at this phase will
download only 22bytes, as opposed to the exploratory phase
of the search where the payload is approximately 89KB per
request.

Initially at this stage the top level cells are dissected, so
that a “hollow” grid at level top level - 1 is created. The
“hollow” grid cells are then sequentially searched, and their
degree gets updated. Once all the cells of a specific level have
been searched, the algorithm runs the filtering procedure
again to discard the most irrelevant, then recursively dissects
the remaining ones and proceeds to the level below.

In addition to that, the filtering procedure also tries to
detect cells that are completely surrounded by populated
neighboring cells. These core cells will not be dissected at
lower levels as they represent significant areas of the spa-
tial object discovered early on. Discarded cells will not be
examined further at a lower level. Table 4 shows that this
elimination process is very beneficial for the algorithm, as it
discards about 85% of cells on average. The boost in execu-
tion time as well as in total data downloaded is significant.
Using a hierarchical grid, the goal is to rule out cells as early
as possible, i.e., at high levels, since examining larger areas
at lower levels is costly (many small cells). The result of the
“Plaka” search after completing the refinement step is shown
in Figure 7(c).

(a) Exploratory search (b) Refinement search

(c) Result

Figure 7: Searching for Plaka, Athens

Our approach can also detect multi locations if the search
term refers to more than one spatial entity. For example,
the search for “Olympic Stadium, Athens” will return two
locations, the Marble Stadium and the new Olympic Sta-
dium.

5. BROWSER-BASED MAPREDUCE
To facilitate collaborative search, one not only needs to

design a search strategy and respective data structures, but
also an e�cient computation framework. Search is a typical
task performed by Web users. We build the computation
framework around this notion and try to not only provide a
service for users, but to involve them (and their resources)
in the search process as much as possible. Hence, the core
aspects of the approach described in the following are (i)
parallelization, (ii) Web computing and to some extent (iii)
user-contributed content.

We propose browser-based computing in connection with
the MapReduce [6] concept. We introduce aWeb application
to speed up the procedure by utilizing the users’ computing
resources and, thus, o✏oading the server. The di↵erence
to the original MapReduce idea is that due to the browser-
based nature of the application, the task assignment uses a
pull rather than a push mechanism. In conventional imple-
mentations a master worker pushes the several map tasks to
a list of available machines. Here each client (web browser)
requests a new task once it connects to the service. The
server is only used for coordinating tasks and storing results.
All computation takes place in the browser. This has many
advantages, the main one being the increase in computa-
tional capacity. The basic work flow of the exploratory and
the refinement search applying our browser-based MapRe-
duce paradigm is shown in Figures 8 and 10, respectively.

5.1 Parallelizing Search
MapReduce can only be applied provided one finds a way

to parallelize problem solving. Our collaborative spatial

search consists of two distinct search phases, each a↵ord-
ing a di↵erent approach to parallelization.

Next missing page: 2

Next missing page: 4

…

…

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Jeocrowd
Server

+
 Database

Exploratory search (Flickr pages in descending relevance & interestingness)

client1

client2

Clients 1 and 2 start simultaneously
and ask the Jeocrowd server for the
next missing piece of data.

Next missing page: 1 Next missing page: 3

…

…

?

?

client3

?

Next missin
g page: 7

…

…

Client 3 starts later, but immediately
displays the result of pages 1-6 that

was stored on the server.

Figure 8: Browser-based MapReduce in Jeocrowd

during the exploratory phase and of the search.

ExploratorySearch(p, results)

⇤ p 2 [0,MAX PAGE]
1 scheduling [page] p
2 results[page] results

⇤ assign new time-stamp for client and
⇤ insert it into scheduling array

3 t CurrentTimeInMilliseconds()
4 if ¬ scheduling .Full?
5 scheduling .Push(t)
6 else

7 for page 0 to MAX PAGE� 1
8 if (t � scheduling [page] > TIMEOUT)^
9 (scheduling [page] /2 [0,MAX PAGE])

10 scheduling [page] t
11 return scheduling

Figure 9: Server-side flow when a client tries to store

a page of results during the exploratory phase.

During each search phase (cf. Section 4) data is requested
from an external provider. For the exploratory search the
data is requested as a set of pages sorted by relevance and
descending interestingness. Each page contains a fixed num-
ber of point locations (we do not need to retrieve actual im-
ages). Each page is assigned to a client, i.e., a Web browser
connected to the service, which queries the external provider
for any points matching the search term and then submits
the results to the server.

During the refinement phase the cells are searched/pro-
cessed in order of their coordinates. To parallelize the search,
each client is assigned a block/set of cells it then retrieves
from the external data provider. As stated, in contrast to
the exploratory search, during the refinement phase, we only
retrieve counts of points within the boundaries of each cell.
The number is reported back to the server.

The ordering in both cases permits the search task to be
split into multiple subtasks, each of which can be assigned
a non-overlapping range of pages or blocks to be retrieved
from the external point-cloud data sources, e.g., Flickr API.
Each browser handles its portion of the search separately
only coordinated by the server, thus parallelizing the search.
(cf. Figure 8 and Figure 10).

Next missing block: 2

Next missing block: 4

…

…

Jeocrowd
Server

+
 Database

client1

client2

Clients 1 and 2 start simultaneously
and ask the Jeocrowd server for the
next missing piece of data.

Next missing block: 1 Next missing block: 3

…

…

?

?

client3

?

Next missin
g block: 7

…

…

Client 3 starts later, but immediately
displays the result of blocks 1-6 that

was stored on the server.

1 1 1 2 2 2

3 3 3 3 4 4 4 4

5 5 5 5 6 6 6 6

7 7 7 7

Figure 10: Browser-based MapReduce in Jeocrowd

during the refinement phase of the search for a single

level of the hierarchical grid.

RefinementSearch(level, newResults, blockSize)

⇤ newResults is a hash, eg. key - value pairs
⇤ newResults are appended to the results array

1 results[level].Push(newResults)
⇤ the ids of the cells just save are removed
⇤ from the markingArray

2 markingArray [level].PullAll(newResults . keys)
⇤ the first blockSize cell ids are removed from the
⇤ assingingArray and copied for transfer to the client

3 newBlock assingingArray [level].Splice(0, blockSize)
⇤ if the new assignment is empty copy all cell ids not
⇤ marked as saved yet and try assigning again

4 if newBlock .Empty?() ^ ¬markingArray [level].Empty?()
5 assingingArray [level].PushAll(markingArray [level])
6 newBlock assingingArray [level].Splice(0, blockSize)
7 return newBlock

Figure 11: Server-side flow when a client tries to

store a block of results during the refinement phase.

The mechanism of task assignment is handled by the server.
A no-SQL document database [2] that supports atomic in-
place updates, e.g., MongoDB [3], alongside with a write-
only technique to eliminate race condition e↵ects from the
multiple clients as much as possible, is used.

This approach aims at providing a scalable architecture
with the ability to resume tasks from their last saved state
by losing the minimum amount of work possible. To persist
the state of a search, we keep all the information needed
to resume it, on the server. This includes which pages and

blocks have already been retrieved and which are to be re-
trieved next. Once a new client connects to the service,
regardless if it’s the only one searching for a specific term,
or if there are others as well, receives the latest snapshot
of the search and is assigned the next available task. De-
pending on the phase of the search a di↵erent approach is
used.

5.1.1 Exploratory Search

The exploratory search downloads point ids with coordi-
nate information. Here we need to keep all this information
saved to avoid using duplicate points when calculating the
counters to build the hierarchical grid. Here, the task as-
signment works as follows. There are two arrays with 16
slots each. The scheduling array is used for coordinating the
clients and the results array is used for storing the actual re-
sults. Each array matches its index to the page number of
the results fetched. To distinguish which client is respon-
sible for which page we use millisecond timestamps. When
a request arrives from a client, the server appends a new
timestamp to the scheduling array and sends back the array
and the timestamp to the client. The client reads the times-
tamp, finds its index in the array and requests the page with
the same index from the external provider. Once the result
has been retrieved, the client sends it back to server where it
gets saved in the results array. At this point the timestamp
that rests at the specified index in the scheduling array is
replaced with the index value itself, thus marking that spe-
cific page as complete. In the exploratory phase only the
base grid (at level 0) is stored in the database. Every other
level can be computed and displayed on demand, e.g., for
visualization purposes.

5.1.2 Refinement Search

The refinement search uses point counts for specified bound-
ing boxes rather than actual coordinate information. For
each level of the hierarchical grid, the search terminates af-
ter all cells have been searched. However the number of
cells in each grid is not a fixed number. The only hard limit
posed by the implementation is the total number of levels
in the hierarchical grid, which is 7. The task assignment is
accomplished as follows. Three arrays exist for each level.
The first two are used to coordinate the client jobs; the as-
signment array is used to hold all the cell ids that are to
be search, and the missing array contains all the cell ids
for which results have not been saved yet. The last one,
the result array, is used to store the actual results as {cell
id, count} tuples. This structure helps in reducing (i) up-
date racing conditions and (ii) the overlap in the data stored
by the di↵erent clients. In terms of implementation detail,
this is achieved by using the atomic, in-place modifiers that
MongoDB o↵ers when altering the arrays. Every time we
want to assign a new block of cells to a client for process-
ing, we first read all the cell identifiers, then explicitly pull
designated identifiers from the assignment array and send
these identifiers to the client. The client then queries the
external provider for the total count of photos contained in
each cell’s bounding box. Once its assigned block of cells
has been searched, the client submits the results back to the
server. The cells are appended to the result array, and the
cells’ ids are pulled from the missing array. When both the
assigning and the missing array are empty, the search of this
specific cell level is considered complete and the filtering and

dissection process proceed to the next lower level.

6. EXPERIMENTATION
The objective of the following experimentation is to es-

tablish the performance of the collaborative spatial search
algorithm in terms of (i) time it takes to compute a result
and (ii) the data exchanged with the external provider(s).
The performance will be evaluated for a varying number of
search terms represented ranging from point features such as
“Ei↵el tower” to large-scale features such as “Alps”. Impor-
tant for the performance assessment will be a parallelization
and, thus, utilization of the map-reduce approach by using
a varying number of browsers that concurrently perform a
search.

6.1 Setup
The experiments conducted will include four sets of six

search terms each, grouped by the anticipated spatial extent
of the results: point features, small-scale areas, city-scale
areas feature and large-scale area features. Each set will
have its own profile (configuration settings), optimized to
give good results for the selected spatial extent. For each one
of these sets, we will then run the search 5 times, increasing
the number of clients used by a factor of 2.

All search parameters, summarized in Tables 1 and 2, were
established through experimental evaluation or by making
basic assumptions. In addition, the optimal refinement search
parameters as shown in Table 2 depend on the size of the
spatial feature in question.

Param. Explanation
n = 5 grid fanout in each dimension
a = 50m grid spacing at level 0
✓ = 1 min. cell occupancy, termination criterion
h nof. “hottest” cells
s s⇥ a distance between sparse cells
k discarding isolated cell threshold

Table 1: Search parameter settings and overview

Param./Feature point sm. area city lg. area
h 4 10 5 5
s 10 10 15 20
k 0.25 0.10 0.05 0.01

Table 2: Values of adjustable search parameters

To obtain the following experimental results, the web ap-
plication was installed on a 64-bit Ubuntu server virtual ma-
chine with QEMU Virtual CPU clocked at 2.3GHz with 4
cores, and with a total RAM capacity of 4GB. The web ap-
plication is a Ruby on Rails 3.1 backed up application, us-
ing the jQuery 1.7 Javascript framework and the database
used is a MongoDB 2.0 server. The use of multiple browsers
is simulated by creating a script that would automatically
launch the number of browsers required. For simplicity, all
the browsers run on the same machine. The browser of
choice was Google Chrome.

What follows are the results of our performance experi-
ments that detail the cost attributed to the various searches
in terms of transferred data and execution time.

6.2 Exploratory and Refinement Search

Exploratory search establishes a rough position estimate
that is subsequently refined using a hierarchical grid-based
search.

0%

20%

40%

60%

80%

100%

Point features Small areas Cities Large areas

ex
ec

ut
io

n
tim

e

Refinement

Exploratory

(a) Time distribution

0%

20%

40%

60%

80%

100%

Point features Small areas Cities Large areas

da
ta

 e
xc

ha
ng

ed

Refinement

Exploratory

(b) Data distribution

Figure 12: Time and data distribution between each

phase of the search split by category.

Figure 12(a) shows the percentage of time spent for the
varying types of spatial objects split by search type. As the
time spent on exploratory search is the same for all searches
the refinement search largely determines the overall search
time. The key parameter of the refinement search is the
hierarchical grid configuration for a specific search deter-
mined by (i) the starting level (top), the finishing level (bot-
tom), and the spatial extent of the object(s) being searched.
The starting level is determined by the outcome of the ex-
ploratory search comprising a base grid that defines the
rough estimate of the spatial extent of the object. The start-
ing level of the refinement search is calculated by the routine
that aggregates the base grid into coarser higher level grid
cells as explained in Section 4.2. The finishing level is se-
lected based on pre-existing knowledge with respect to the
size of the object. In terms of search time using one browser,
the exploratory phase takes about 1m to complete, i.e., 16
requests taking approximately 4.2s each. The refinement
search can take from a couple of minutes up to almost half
an hour for some very large scale objects. This assumes that
an average refinement search request takes about 300ms.

The data retrieved for each search case is shown in Fig-
ure 12(b). While a considerably smaller search time is at-
tributed to the exploratory search, the respective data re-
trieved amounts to 95% of all data retrieved from the point-
cloud data source. This is due to di↵erent nature of the data
being fetched during these phases. In exploratory search
we fetch 250 photo attributes per request, including their
unique id, their location information, and the url to the ac-
tual photo stored on the servers, while during refinement
search this information is fetched essentially for only one
photograph plus the total count for the specified bounding
box.

In terms of size, one exploratory search request comprises
89KB, while a refinement search request fetches only 22bytes
of data from the Web data source. This results on average

in data sizes of 1.36MB and 26KB for the exploratory and
the refinement search respectively.

Table 3 summarizes the absolute times spent and data
exchanged for four example cases. It is evident from the
table that the costly part (time) of the algorithm is indeed
the refinement phase. Nevertheless, this phase retrieves very
little data compared to the exploratory search.

Search query Time (mm:ss) Data (bytes)
expl. refin. expl. refin.

Ei↵el Tower 00:56.2 01:39.0 1,407,770 9,538
Disneyland 01:05.0 02:13.7 1,427,622 10,717
London 01:14.5 05:51.3 1,423,609 36,102

California 01:02.3 23:51.0 1,433,566 101,674

Table 3: Time and data values for example search

queries, one browser

6.3 Refinement Search
Refining the positional estimate is the time-wise costly

part of our geospatial search. Some intuition is given in
Figure 13. The figure plots the number of visited cells per
hierarchy level as the refinement search progresses, rang-
ing in each case from the starting level (the level the ex-
ploratory search identifies as the starting point for the re-
finement search) to the desired finishing level. Each subse-
quent level in the hierarchical grid grows in terms of number
of cells visited. This is of course expected as we move from
coarser levels to more fine-grained ones to better define the
object’s spatial extent. Using a 5 ⇥ 5 grid (n = 5), one
might expect that the number of visited cells increases with
each step by 25. However, in our algorithm, we employ two
techniques that try to reduce these numbers: the filtering
process and the use of core cells.

0

5

10

15

20

Level 4 Level 3 Level 2 Level 1 Level 0

[c
el

ls
]

Eiffel Tower
Big Ben
Statue of Liberty
Parthenon
Taj Mahal
Colosseum

(a) Point features

0

20

40

60

80

100

Level 5 Level 4 Level 3 Level 2

[c
el

ls
]

London
Athens
Paris
New York City
Berlin
San Francisco

(b) Cities

Figure 13: Line graphs that show how each hierar-

chical grid level’s size tends to grow as the search

progresses split by category.

The filtering process (cf. Section 4.2) runs after all cells
of a specific level have been searched and discards irrelevant

cells, thus slowly carving out the shape of the spatial ob-
ject. Core cells try to achieve the opposite by finding very
relevant cells, i.e., cells that are completely surrounded by
neighboring cells, and whilst keeping them in the result of
the search, avoid them being searched over and over again.
This implies that the object in question has a solid spatial
extent, with no “holes”, as is true for most cases. This tech-
nique tries to identify the “core” of the object as quickly as
possible and then focuses on refining the edges of its shape.
Using these two techniques, the increase in number of cells
by progressing to the next levels is kept to an average of 2
(instead of 25) (cf. Figure 13).

Pt. feat. Sm. areas Cities Lg. areas
Average 92.2% 88.3% 90.9% 71.7%

Cum. Average 99.6% 98.2% 98.8% 81.5%

Table 4: Percentage of cells that got discarded and

eventually not searched thus improving the speed

and reducing the data downloaded by the algorithm.

In this context, one interesting metric is the percentage of
cells that ends up being eliminated. This metric, as shown
in Table 4 can be computed in two di↵erent ways. The
first method is to simply compute the average percentage
of the cells discarded at each level. The second approach
calculates this percentage in a cumulative way by figuring
out the number of cells discarded compared to the number
of cells the grid would have if its highest level were to be
dissected directly into base grid cells. This is cumulative in
the sense that discarded cells of one level count also as n

2

discarded cells of the level below and so on, where n

2 is the
amount of cells of level l � 1 enclosed in one cell of level l.

6.4 Overall Search Results
One question that still needs to be answered is whether

our search is an actual improvement over the simplest way of
computing spatial positions, namely retrieving all location
data that is stored on the external providers for a specific
search term. Our experiments clearly show that our algo-
rithm performs not only faster, but also uses a lot less data
when compared to the exhaustive approach.

Figure 14 shows the results of that comparison. Both
the speedup in the execution time and the decrease in data
downloaded are very significant. Table 5 gives the actual
percentages. The dominant case observed is the “Cities”
category. Here, both the search time speedup and the de-
crease in downloaded data is very high. This abnormal-
ity can be explained primarily by the fact that “city-type”
searches have a very high number of total available photos
since city names are an expressive tag for photo descriptions.
Thus, when just searching with a city name as a keyword
one can expect that there will be a vast number of results
and that most probably this search will include results from
the first two categories - namely point features and small
areas - that can be found in the specified city.

What is further interesting, cities do usually have a large
enough spatial extent to allow for core cells to be identi-
fied, thus giving an additional performance advantage over
searches in other categories. Large areas tend to include sev-
eral isolated places of interest rather than being one large
connected feature, i.e., disfavoring core cells.

6.5 Parallelizing Search

1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07

Point
features

Small
areas

Cities Large
areas

[m
ill

is
ec

on
ds

]

Time actually taken

Time it would take to
fetch all data with
exploratory search

(a) Time speedup

1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07
1.E+08

Point
features

Small
areas

Cities Large
areas

[b
yt

es
]

Data actually
downloaded

Data that would be
downloaded to get all
data with exploratory
search

(b) Data gain

Figure 14: Comparison of our algorithm against the

simplest way of fetching all data via exploratory

search, both time-wise and data-wise.

Time speedup and data gain
Pt. feat. Sm. areas Cities Lg. areas

Time 29.32% 12.26% 1.65% 14.45%
Data 8.46% 3.70% 0.33% 0.71%

Table 5: Time taken and data downloaded as a per-

centage of the values the simplest way of fetching all

data via exploratory search would achieve.

The proposed method allows for the parallelization of search,
i.e., the more users search for a spatial feature at the same
time, the faster the spatial extent of the feature is com-
puted. To measure the speedup in search, we performed
experiments with a varying numbers of browsers searching
concurrently. We expect the speedup to be more significant
for cities and larger areas rather than smaller ones, because
of the synchronization points in the algorithm (when switch-
ing from exploratory to refinement, and when descending
each level during refinement) and because of the increased
availability of assignable tasks. For the exploratory phase
the speedup will be the same for all categories (same num-
ber of pages is fetched in all cases). The refinement search
performance however will be a↵ected by the search category.
For larger areas, a plethora of blocks is available for assign-
ment to clients for simultaneous processing before reaching
the synchronization point of progressing to the next (lower)
level. The average speedup measured per category can be
seen in Figure 15. The speedup is not very significant for
point features, since a lot of overlap exists between assigned
search tasks. For larger-scale objects, each browser will
be assigned a fair share of the total area. Here a possible
speedup of > 7 is possible.

6.6 Summary
Experimentation showed that the proposed method is a

very e�cient way for searching and discovering geospatial

0

1

2

3

4

5

6

7

8

1 Browser 2 Browsers 4 Browsers 8 Browser 16 Browsers

[s
pe

ed
up

]
Point features
Small areas
Cities
Large areas

Figure 15: Speedup when using multiple browsers

simultaneously

objects in user-contributed point cloud data. It provides
a way to minimize, both, computation time and the data
fetched from the Web sources. The ability to parallelize the
search further decreases the amount of time required and
further improves the search performance.

7. CONCLUSIONS
The paper proposes a collaborative, browser-based spatial-

feature search mechanism that employs crowdsourcing tech-
niques to harness user-contributed point-cloud data by means
of user-contributed expertise and computing resources. To
minimize the data transmitted over the network and to speed
up the search, a hierarchical grid is used as means to quickly
establish a position estimate (exploratory search), to direct
the search, and to refine the geometry of the spatial feature
in question. Using or own version of what we refer to as a
browser-based MapReduce approach, the search is delegated
and all computation takes places on Web clients using algo-
rithms implemented in Javascript. Experiments establish
the e�ciency of the approach, both, in terms of search time
and the amount of data that needs to be retrieved to provide
an accurate position estimate. These characteristics make it
also possible to run a search on mobile devices with limited
bandwidth and restricted data plans. Finally, constantly im-
proving browser-technology and specifically the Javascript
engines will further improve the search performance. Di-
rections for future work are to introduce a comprehensive
mechanism to evaluate the quality of the derived data and
to provide quality guarantees. The quality and coverage
will be improved by including further data sources and by
considering existing geospatial metadata for inferring rela-
tionships and hierarchies between spatial objects (“part-of”
relationships). As cities are changing and growing, people
are discovering these places by means of taking pictures and
blogging about them. Using this content to derive geospa-
tial data, one needs to properly consider the evolving nature
of this data.

Acknowledgements
The research leading to these results has received funding
from the EU FP7 - Marie Curie Actions, Initial Training
Network GEOCROWD (http://www.geocrowd.eu) under grant
agreement No. FP7-PEOPLE-2010-ITN-264994.

8. REFERENCES
[1] A. Cary, Z. Sun, V. Hristidis, and N. Rishe.

Experiences on processing spatial data with

mapreduce. In Proc. 21st SSDBM conf., pages
302–319, 2009.

[2] R. Cattell. Scalable sql and nosql data stores. ACM
SIGMOD Record, 39(4):12–27, 2011.

[3] K. Chodorow and M. Dirolf. MongoDB: the definitive
guide. O’Reilly Media, Inc., 2010.

[4] D. Coleman, Y. Georgiadou, and J. Labonte.
Volunteered geographic information: the nature and
motivation of produsers. Int’l Journal of Spatial Data
Infrastructures Research, 4:332–358, 2009.

[5] A. Cope. The Shape of Alpha. Where 2.0 conf.
presentation, http://whereconf.com/where2009/
public/schedule/detail/7212, 2009.

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In Proc. 6th OSDI
Symp., pages 137–150, 2004.

[7] S. Elwood. Volunteered geographic information: key
questions, concepts and methods to guide emerging
research and practice. GeoJournal, 72(3):133–135,
2008.

[8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In Proc. 2nd KDD
conf., pages 226–231, 1996.

[9] A. Flanagin and M. Metzger. The credibility of
volunteered geographic information. GeoJournal,
72(3):137–148, 2008.

[10] M. Goodchild. Uncertainty: the Achilles Heel of GIS?
Geo Info Systems, 8(11):50–52, 1998.

[11] B. Hecht and D. Gergle. On the localness of
user-generated content. In Proc. 2010 ACM conference
on computer supported cooperative work, pages
229–232, 2010.

[12] S. Intagorn, A. Plangprasopchok, and K. Lerman.
Harvesting geospatial knowledge from social
metadata. In Proc. 7th ISCRAM conf., 2010.

[13] G. Lamprianidis and D. Pfoser. Jeocrowd:
collaborative searching of user-generated point
datasets. In Proc. 19th ACM GIS conf., pages
509–512, 2011.

[14] R. T. Ng and J. Han. E�cient and e↵ective clustering
methods for spatial data mining. In Proceedings of the
20th International Conference on Very Large Data
Bases, pages 144–155, 1994.

[15] T. Rattenbury and M. Naaman. Methods for
extracting place semantics from flickr tags. ACM
Transactions on the Web, 3(1):1–30, January 2009.

[16] J. Surowiecki. The Wisdom of Crowds: Why the Many
Are Smarter Than the Few and How Collective
Wisdom Shapes Business, Economies, Societies and
Nations. Doubleday, May 2004.

[17] K. Wang, J. Han, B. Tu, J. Dai, W. Zhou, and
X. Song. Accelerating spatial data processing with
mapreduce. In Proc. 16th ICPADS conf., pages
229–236, 2010.

[18] W. Wang, J. Yang, and R. R. Muntz. Sting: A
statistical information grid approach to spatial data
mining. In Proc. 23rd VLDB conf., pages 186–195,
1997.

