
Supporting Rapid Processing and Interactive Map-Based
Exploration of Streaming News∗

Michael D. Lieberman Hanan Samet
Center for Automation Research, Institute for Advanced Computer Studies,

Department of Computer Science, University of Maryland
College Park, MD 20742

{codepoet, hjs}@cs.umd.edu

ABSTRACT
The database architecture and system design of NewsStand, a data-
base system that analyzes and displays streaming news using a map
user interface, is described. Special emphasis is given to News-
Stand’s pipe server, which coordinates individual, independent anal-
ysis modules in a processing pipeline, and NewsStand’s relational
database schema, designed to accommodate responsive spatial query-
ing and retrieval via NewsStand’s user interface. Examples of these
spatial queries, which are variants of top-k window queries, are
also presented. Experiments on the live NewsStand database sys-
tem demonstrate its capability for rapidly processing large amounts
of streaming news as well as the interactivity of its map user inter-
face as measured by database querying.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis and
Indexin g; H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retri eval

General Terms
Algorithms, Design, Performance

Keywords
Streaming news, Database design, NewsStand, Information extrac-
tion, Semi-structured data, Text mining

1. INTRODUCTION
In this paper, we describe the database architecture and system

organization of the NewsStand database system [17,20,23] (found
at http://newsstand.umiacs.umd.edu) that enables the
rapid processing and map-based retrieval (see also the related QUILT
system [19, 22] and the SAND Browser [18]) of streaming news.
NewsStand constantly polls thousands of RSS feeds from news
sources, downloads new articles, and performs a variety of process-
ing on them, storing results in its PostgreSQL database to make

∗This work was supported in part by the National Science Foun-
dation under Grants IIS-07-13501, IIS-08-12377, CCF-08-30618,
IIS-09-48548, IIS-10-18475, and IIS-12-19023.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL GIS ’12, November 6-9, 2012. Redondo Beach,
CA, USA
Copyright 2012 ACM ISBN 978-1-4503-1691-0/12/11...$15.00.

these articles easily and quickly retrievable. Note that retrieving
data by location is relatively easy in the case of explicitly spatial
data (e.g., points, lines, polygons), while it is considerably more
difficult for spatial data encoded as text (e.g., “Paris”), due to am-
biguities in natural language. In particular, many names of places
are also names of other entities (e.g., “Paris, France”, a place, ver-
sus “Paris Hilton”, a person) and also, many places share the same
name (e.g., “Paris, France” versus “Paris, Texas” and over 60 other
places named “Paris”). These ambiguities are resolved by News-
Stand’sgeotagger [10–13], which associates news articles with the
locations mentioned in them, thereby making the articles retriev-
able via spatial queries. Also, NewsStand’sclusterer [24] groups
together articles about the same topic, so that clusters can be re-
trieved by location as well.

Note that commercial aggregator systems such as Google News,
Bing News, and Yahoo! News mainly focus on delivering articles
from local news sources, based on the IP address of the visitor,
rather than based on the content of articles. Also, they present such
articles linearly, rather than through a map interface, which limits
their querying capability. In addition, recent research has addressed
and explored continuous queries over streaming data (e.g., [6, 7]),
and many research systems explore streaming news as well as other
media such as images, audio and video (e.g., PersoNews [3], News-
junkie [4], Europe Media Monitor [8]).

This paper differs from our earlier work [10,12,13,16,23], which
describe elements present in NewsStand’s backend processing, by
instead focusing on the database architecture and system organiza-
tion that enables the smooth and rapid operation of NewsStand’s
processing and retrieval capabilities. NewsStand’s design incorpo-
rates several features that allow it to handle large amounts of stream-
ing news data (about 50,000 articles per day) as well as a large un-
derlying database (over 300GB of data). The architecture including
its processing modules and a description of data flow through the
system is described in Section 2. Central to the NewsStand data-
base operation is itspipe server, described in Section 3, which acts
to coordinate NewsStand’s many backend processing modules by
assigning batches of processing work via a communication proto-
col, and also monitors the system’s health by verifying that docu-
ments are being processed smoothly. Where the pipe server directs
modules to perform work, NewsStand’sSQL database, based on
PostgreSQL and described in Section 4, stores information about
documents present in the system, as well as the results of their pro-
cessing. This database design evolved from that used in STEW-
ARD [14], a spatio-textual search engine with similar processing
and querying capabilities. After processing the input news doc-
uments, NewsStand’s user interface retrieves location-associated
news clusters to display in its map user interface by executing vari-
ants of what are known astop-k window queries. These queries,
described in Section 5, retrieve thek highest scoring news clusters
in NewsStand’s database that are located in the map’s current view-

ing window. Experiments in Section 6 show the voluminous nature
of streaming news processed by the NewsStand database system,
and demonstrate its ability to rapidly process streaming news.

2. ARCHITECTURE
NewsStand’s backend processing is organized as a pipeline, with

individual slave modules running on multiple computers. Docu-
ments stream into the pipeline and flow through various stages of
processing, performed by slave modules connected to the pipeline.
Each module performs a different type of processing on documents
entered to the system, with later modules in the pipeline often de-
pending on results of earlier modules. The main challenge in de-
signing NewsStand’s architecture was coordinating these modules
so that they can execute simultaneously without excessive idle time.

To address this challenge, NewsStand features two centralized
sources of control and synchronization:

1. A pipe servertracks documents as they flow through the pro-
cessing pipeline and assigns documents to slave modules.

2. An SQL databasestores information about documents and
results of each processing stage.

Both the pipe server and database have specific communication
protocols to which slave modules must adhere. Also, notice that this
arrangement decouples NewsStand’s control channel (pipe server)
from its data channel (database).

Figure 1 shows a graphical overview of NewsStand’s architec-
ture. Slave modules are shown as rounded rectangles in blue, with
arrows indicating data flow. In the center are NewsStand’s pipe
server and SQL database. NewsStand’s Web interface accesses the
central database to retrieve data for display. Each retrieval action is
posed in terms of a corresponding SQL query within NewsStand’s
database. These queries are detailed in Section 5. Below, we pro-
vide brief descriptions of each slave module type, which will aid
the understanding of NewsStand’s database schema (described in
Section 4). NewsStand’s slave modules include:

1. RSS Grabber: Polls RSS feeds and retrieves URLs to news
articles.

2. Downloader: Downloads HTML news articles from URLs.
3. Cleaner: Extracts article content from source HTML.
4. Clusterer: Groups together articles about the same story.
5. Topic Classifier: Assigns general topic types to articles (e.g.,

“Business”, “Sports”).
6. Geotagger: Finds textual mentions of geographic locations

and assigns lat/long values to each.
7. People/Disease Finder: Finds textual mentions of people,

diseases, and other entities.
8. Media Extractor : Extracts images and videos, and captions

associated with them.
Document processing proceeds as follows. When a slave mod-

ule instance starts, it connects to both the pipe server and database.
The pipe server then sends document identifiers to the slave in-
stance. For each document, the slave instance retrieves information
about that document from the database, performs its processing on
the document, and stores the results in the database. When all docu-
ments have been processed, the slave reports back to the pipe server
that the batch is finished, and receives another batch of documents
to work on. Document identifiers are added to the pipe server by
the first module in the pipeline, namely the RSS grabber. Note that
individual instances of modules are directed by the pipe server to
work on independent batches of documents. In this way, process-
ing bottlenecks are avoided by starting additional instances of slave
modules that require more processing time, allowing greater scala-
bility. The pipe server and its protocol are described in more detail
in Section 3, while the database layout is presented in Section 4.

3. PIPE SERVER
The pipe server serves as the control system for NewsStand’s

slave modules. It maintains a collection of work queues calledpipes,
with one pipe per slave type. Each pipe contains a number of doc-
ument identifiers, referred to asdocids, which correspond to doc-
uments moving through stages of processing. Each slave module
connects to the pipe server to receive work batches ofdocids that
are intended for an instance of that slave type. In addition to pass-
ing work batches to slaves, the pipe server is well-positioned to
track statistics related to document processing, such as how many
have been processed by each module and how quickly. Further-
more, the pipe server knows which slave modules are currently run-
ning, and can be used to track and restart misbehaving or erroneous
slaves, either manually or with an automated script. Note that the
docids traveling through these pipes correspond to documents in
NewsStand’s database. However, it is interesting that from the per-
spective of the pipe server, thesedocids are simply numbers to be
tracked, because the pipe server does not connect to the database
directly for reliability reasons. That these numbers correspond to
database documents is incidental to its operation.

Several factors influenced the pipe server’s construction. First
and foremost, being the central controlling software in NewsStand,
it must be highly reliable, and never go down or crash. It should
have reasonable memory usage and not have significant external
dependencies, such as requiring a full-fledged database to func-
tion properly. Furthermore, it should be resilient to unreliable slave
modules, which could disconnect at any time, either explicitly, or
due to software bugs or networking problems. All of these cases
must be handled gracefully. In addition to reliability, speed of pro-
cessing is a key factor in the design. Because new articles are con-
stantly streaming in to NewsStand, the pipe server must not be a
bottleneck in articles’ processing time.

The pipe server and its communication protocol have several fea-
tures that address these goals. First, the pipes and thedocids con-
tained in them are stored in a disk-based hash, which does not de-
pend on NewsStand’s database. As a result thedocids move very
quickly through the pipes so that they can keep up with the very
rapidly incoming new data. Also, when communicating with slave
modules, rather than waiting for immediate responses from each
slave, which could slow processing, the pipe server employs non-
blocking input/output and buffering. Each connected slave is tracked
individually with regard to the work batch sent to it, and this work
does not move to the next pipe until the slave sends back a valid
work complete response. Note that this design assumes that slaves
are not malicious (e.g., reporting that work was finished when it
was not). The main drawback of this design is that the pipe server
amounts to a single point of failure. If the pipe server does halt,
NewsStand’s processing will also cease. However, over months of
measurement, we found that the pipe server’s stopping was due to
rebooting the server on which it runs, rather than reliability issues
introduced by its design.

4. DATABASE DESIGN
There are two main goals behind this design:
1. Managing the large amount of data streaming through News-

Stand and derived from its processing.
2. Serving NewsStand’s map query interface quickly to facili-

tate interactive browsing and exploration of news.
To address the first goal, NewsStand employs a central Post-

greSQL relational database that holds all data downloaded and gen-
erated from processing. Due to our domain of streaming news, data
is constantly being added to and deleted from this database, unlike
typical SQL databases where the data is mostly static. This data
churn can wreak havoc on performance and must be managed care-

Figure 1: NewsStand’s architecture, including slave modules (blue) andintermediate output (red). Arrows indicate data flow.

fully. For example, database query planners track statistics about
data value distributions within these tables to determine efficient
query execution plans given a particular query. Heavy data churn
means that these statistics will quickly go out of date and must
be updated frequently. In PostgreSQL, this operation is known as
vacuuming, and we perform vacuuming regularly in the database.
To address the second goal of serving NewsStand’s map query in-
terface quickly, we maintain a separatecache database containing
only the most recent data, which improves querying performance
(see Section 5 for a description of such queries).

Figure 2 provides an overview of NewsStand’s database schema,
showing the tables used for NewsStand’s core data processing. Ta-
bles are color coded by purpose: Red relates to individual doc-
uments (feeds, docs, doc_text, media), blue for clusters
of documents (clusters, cluster_locs), and because lo-
cations play such an important role in all of NewsStand’s query-
ing, we give special attention to geotagging tables, shown in green
(entities, doc_locs). Also, indexed attributes are indicated
by filled circles next to the attribute names. Each table’s tuples
have one identifier as primary key (shown as filled diamonds next
to attribute names), and these identifiers are used in numerous for-
eign key constraints, shown as arrows, which enforce data integrity.
Note that Figure 2 is a simplified depiction of NewsStand’s data-
base, which currently contains over 100 tables, but these few serve
as a useful illustration of the core data and functionality present in
NewsStand, as well as the general design strategy.

In subsequent sections, we describe the tables for documents
(Section 4.1), geotagging (Section 4.2), and clusters (Section 4.3),
as well as how they are populated by NewsStand’s processing mod-
ules (see Section 2 for a brief description of these modules). Also,
we describe NewsStand’s cache database in Section 4.4.

4.1 Documents
Tables related to document processing are shown in red in Fig-

ure 2. Document processing begins with thefeeds table, which
holds information about the RSS feeds that NewsStand’sRSS grab-
ber polls to inject new documents into the system. Along with a
feedname andurl, a timestamplast_retrieved and time
interval last_interval are stored with each feed. The latter
two attributes are used by the RSS grabber to adjust the polling
intervals of RSS feeds. If the RSS grabber polls a given feed and
finds new data, then the polling interval is decreased; otherwise, it
is increased. In this way, a feed’s polling interval gradually moves
toward its data generation rate. Finally, an additionalparent_id
field stores an optional pointer to a “parent” RSS feed. This field is
filled for multiple RSS feeds that belong to the same news source
(e.g., a single newspaper with multiple feeds corresponding to dif-
ferent newspaper sections), and allows quick retrieval of all feeds
from a single news source.

While polling RSS feeds, the RSS grabber populates thedocs
table, which holds information about individual documents. For

each document, thefeed_id value is set to that of the feed from
which it came, and the document’s publication date, source URL,
title, and snippet of text, all of which come from the RSS feed,
are stored in thepub_date, url, title, and snippet at-
tributes, respectively. Thecluster_id and topic fields are
populated by NewsStand’s clusterer and topic classifier, to be de-
scribed shortly.

The next phases of processing involve thedoc_text table,
which stores text versions of the document. After thedocs en-
try for a given documentd has been created,d is downloaded by
NewsStand’sdownloader module, and this HTML version ofd is
added to thehtml field for d. Next, NewsStand’scleanermodule
takes the downloaded HTML version, and produces a cleaned ver-
sion, storing the result in theclean field. Finally, the document’s
clean text is mapped to its vector space representation and stored in
thevector field, which facilitates full text indexing and keyword
searching. Queries involving a keyword component which leverage
this vector are further described in Section 5.

After retrieving the document’s text, images [21], videos, and
other media which are found by NewsStand’smedia extractor,
they are stored in themedia table. Several relevant attributes are
stored along with each media entry, including the media’stype
(e.g., “image”, “video”),url, embeddinghtml, caption as de-
termined from the embedding structure or other methods (e.g., im-
agealt tags), andwidth andheight.

4.2 Geotagging
NewsStand’sgeotaggermodule involves two steps: First, find-

ing all textual references to geographic locations (calledtoponyms)
in a document, and then for each toponym, assigning the proper
lat/long values for the toponym. These steps are also referred to as
toponym recognition and toponym resolution. Refer to Lieberman
et al. [10–13] for fuller descriptions of NewsStand’s geotagger.

Several tables in NewsStand’s database are populated by thegeo-
tagger module. The most important of these are theentities
anddoc_locs tables, shown in green in Figure 2, which contain
entities and locations found during toponym recognition and reso-
lution, respectively.entities is populated with entities found in
the toponym recognition process, such as person names, organiza-
tions, and locations. Each entity is associated with thedoc_id of
the document from whence it came, as well as thestart andend
offsets within the document, thetype of entity, the textphrase
of the entity, and the entity’sscore which is determined during
the entity recognition process. Thisscore can reflect, for exam-
ple, the confidence that the given entity is correct. Of course, to-
ponym recognition is nominally only concerned with location en-
tities; however, in the course of toponym recognition, knowledge
that a given term or pattern often signals an entity of some other
type can aid in distinguishing locations from non-locations (e.g.,
knowing that “Mr.” often precedes a person’s name), and these en-

clusters

cluster_id integer

score real

time_centroid timestamp

last_update timestamp

num_docs integer

num_images integer

num_videos integer

topic text

rep_doc_id integer

rep_media_id integer

docs

doc_id integer

feed_id integer

pub_date timestamp

url text

title text

snippet text

cluster_id integer

topic text

feeds

feed_id integer

name text

url text

last_retrieved timestamp

last_interval interval

parent_id integer

doc_text

doc_id integer

html text

clean text

vector text

media

media_id integer

doc_id integer

type text

url text

html text

caption text

width integer

height integer

entities

ent_id integer

doc_id integer

start integer

end integer

type text

phrase text

score real

doc_locs

loc_id integer

ent_id integer

gaz_id integer

score real

cluster_locs

cluster_id integer

gaz_id integer

count integer

score real

snippet text

gazetteer

gaz_id integer

name text

latitude real

longitude real

feature_code text

country text

admin1 text

admin2 text

admin3 text

admin4 text

population integer

Figure 2: NewsStand’s database schema, featuring tables used in coreprocessing and querying. Tables related to individual documents (red),
geotagging (green), and clustering (blue) are shown. Arrows indicateforeign key constraints, and indexed attributes are shown by filled
shapes adjacent to attribute names (filled diamonds for primary keys, filled circles for other attributes).

tities are also stored. Other modules, such as thepeople finderand
disease finder, also store entities in theentities table.

After finding entities in toponym recognition and populating the
entities table, the geotagger proceeds with toponym resolution
to resolve any geo/geo ambiguities and assign final lat/long val-
ues to each location entity inentities (i.e., the document’sto-
ponyms). Lat/long values are obtained from agazetteer, a list of
locations and metadata, which is stored in thegazetteer table.
Our gazetteer is based on GeoNames, a crowdsourced gazetteer
containing over 7.5 million locations. Output from the toponym
resolution process is stored in thedoc_locs table, which serves
to tie together a toponym entity (ent_id) and a gazetteer entry
(gaz_id). Also, a toponymscore reflects the toponym’s impor-
tance within the document, based on frequency and distribution,
and is used to find the document’s geographic focus (i.e., central lo-
cation associated with it). Note that thedoc_locs table does not
store location information explicitly (e.g., lat/long values), which
is instead stored in thegazetteer table. This design centralizes
location information to enable easy updates, which occurs nightly
when thegazetteer table is synchronized with GeoNames.

4.3 Clusters
NewsStand’sclusterer plays a central role in processing stream-

ing news. Tables involved with clusters of documents are shown
in blue in Figure 2. Theclusters table aggregates information
about clusters. It contains the cluster’s importancescore, com-
puted as a combination of several factors such as freshness of the
documents in the cluster, cluster size, rates of growth such as ve-
locity and acceleration, and diversity of news sources within the
cluster. Thescore is used extensively when retrieving clusters to
display in NewsStand’s user interface (Section 5). Additional in-

formation stored with each cluster includes the time centroid of
documents in the cluster (time_centroid), time of last cluster
update (last_update), and number of documents, images, and
videos in the cluster (num_docs,num_images,num_videos).
Also, the cluster’stopic is computed based on the topics of doc-
uments contained within it, and a representative document and im-
age are chosen to display along with the cluster (rep_doc_id,
rep_media_id).

After geotagging the documents in the cluster, the cluster itself
is associated with locations found in the documents. These loca-
tions are stored in thecluster_locs table, which, analogously
to doc_locs, ties together a cluster (cluster_id) and a lo-
cation (gaz_id). Also stored are the number of times the loca-
tion appears in documents in the cluster (count), how relevant
the location is to the cluster as a whole, determined by the scores
of instances of that location in the cluster (score), and a text
snippet from the cluster’s representative document that contains
the location. This snippet is shown in NewsStand’s interface, to
give users an understanding of the location’s relevance to the story.

4.4 Cache Database
NewsStand’s main database serves as a data repository, where

the main goals are consistency, reliability, and enough space to hold
the large amount of news flowing through NewsStand. NewsStand
downloads about 50,000 new documents each day, and stores the
most recent four months’ of news, including the documents’ ac-
tual text rather than simply a URL, at any given time. While we
plan to eventually store more than four months of news, to enable
more interesting analytic applications, we currently do not due to a
lack of database disk space. Also, document processing generates
much more data to be stored in the database. NewsStand’s process-

ing modules constantly communicate with the database, resulting
in heavy query traffic with many tuple changes (i.e., inserts, up-
dates, and deletes). These changes could causeSELECT statements
to block while waiting for transactions to complete. As a result,
this database is not suitable for serving NewsStand’s user interface,
where the goal is interactive query speed.

Instead, for serving the user interface, we maintain a separate,
smallercache database containing only the most recent news data
(several days’ worth). The cache database has mostly the same
schema as the main database, except with less data. Smaller tables
result in more table rows residing in the database’s cache buffers,
rather than having to go to disk to respond to queries. In addition,
since NewsStand’s user interface does not modify the main data-
base, queries will not block on waiting for modifications. Of course,
the cache database needs to be updated from the main database in a
timely manner so that the latest news is always being served. A spe-
cial cache updating module continually polls the main database for
clusters whoselast_update value is newer than the previous
update time, and copies the cluster and its associated information
to the cache. In this way, updates to the cache database are mini-
mized and more database query processing resources are used for
serving the interface.

5. DATABASE QUERIES
Here, we describe some of the database queries used to retrieve

data for NewsStand’s map user interface. With NewsStand’s data-
base schema (described in Section 4), each interface action is easy
to cast in terms of an SQL query. Broadly, there are two modes
of using NewsStand, corresponding to the two basic queries that it
supports:

1. Top stories mode: Where is topicX happening?
2. Map mode: What is happening at locationY?

Note that NewsStand’s database contains far more information than
is feasible to send over a network connection and display in a client’s
user interface. Instead, we are only interested in the top few results
for each query. To this end, as we will see in the following sections,
the queries used within these two modes are all variants of what is
known in database parlance astop-k queries, i.e., queries that re-
turn the firstk ranked results according to some ranking function,
which varies depending on the particular query. In addition, many
more queries are used throughout NewsStand’s interface than are
presented here, due to lack of space. Instead, we only present the
queries associated with story and location retrieval, though these
queries serve to illustrate the principle of top-k retrieval that ap-
plies to all of NewsStand’s interface queries.

Additionally, the queries introduced below featurejoins among
multiple tables in the database, which often hinder query perfor-
mance. However, these joins are presented for conceptual under-
standing rather than reflecting the actual implementation of these
queries. As noted in Section 4.4, in order to improve the speed of
querying and hence improve interactivity, the user interface queries
are executed in the cache database rather than in NewsStand’s main
database. When executing these queries, we use what are calledma-
terialized views of the query results, which amount to precomputa-
tion and storage of the query results prior to runtime. For example,
in the query “SELECT * FROM a, b WHERE a.id = b.id
AND a.val1 = ’X’ AND b.val2 = ’Y’”, creating a ma-
terialized view of this query would involve executing the query’s
join portion, namely “SELECT * FROM a, b WHERE a.id
= b.id”, and storing the result. When executing the original query,
the filter conditions (“a.val1 = ’X’ AND b.val2 = ’Y’”)
would only need to be applied to the materialized view result, with-
out any joins at runtime. This optimization further improves cache
query performance.

Below, we continue with descriptions of NewsStand’s interfaces
and queries that return clusters in top stories mode (Section 5.1)

and map mode (Section 5.2), as well as queries involving a single
cluster used in both modes (Section 5.3).

5.1 Top Stories Mode
Answering queries of the form “Where is topicX happening?”

(i.e., feature-based queries [2]) is the purview of NewsStand’s first
mode, referred to as “top stories mode” or “text mode”. Figure 3
shows NewsStand’s interface in top stories mode. Assuming a land-
scape display, the left pane shows the top-k story clusters, ranked
in importance from top to bottom of the visible part of the display
screen. This pane is populated by one of several queries presented
in Figure 4, depending on filtering parameters. Figure 4a is the ba-
sic query to populate the pane, which retrieves clusters in order of
cluster score. Additionally, several links at the top left allow for
filtering of the top-k clusters according to their topic types (e.g.,
“Business”, “Sports”), while at top right, a menu allows selecting
clusters with articles from particular news feeds, and a keyword
search allows the selection of clusters relevant to particular key-
words. These functionalities are implemented using the SQL pre-
sented in Figures 4b, 4c, and 4d, respectively, which are all variants
of the basic top-k query of Figure 4a except with additional con-
straints. For the keyword query of Figure 4d, the cluster rankings
are modified to include a keyword relevance measure in addition to
the cluster’s score.

As the mouse is hovered over the clusters in the left pane, the
most relevant locations to the selected cluster are displayed on the
map in the right pane of the display using what we term “markers”
which are icons corresponding to the most dominant topic type of
the elements of the cluster. This action corresponds to the feature-
based query of “Where is topicX happening?”, in that its input is
one of the news clusters, and its output is the set of locations that
are relevant to the cluster. Also, note the presence of a slider at the
top of the right pane, whose movement to the right (left) allows the
maximum number of locations for which icons are displayed for
the highlighted cluster to be increased (decreased). The identity of
the locations for which icons are present depends on the number
of times the location is mentioned in the articles that make up the
cluster, with priority given to those that are mentioned most fre-
quently. The presence of this slider is precisely the novel aspect of
NewsStand that enables it to answer top-k variant of the feature-
based query of “Where is topicX happening?” The algorithm that
performs the display ensures that all of the desired locations can be
seen, and thus the area displayed is the minimum bounding box of
the locations. In database parlance, what we have here is an instance
of a top-k query wherek corresponds to the number of visible lo-
cations for a particular cluster or a cluster that contains a particular
keyword. That is, we have a “top-k locations” query. This query is
implemented in SQL as shown in Figure 7a, to be described shortly.

5.2 Map Mode
NewsStand’s second mode, referred to as “map mode” or “full

screen mode” and shown in Figure 5, is used for answering queries
of the form “What is happening at locationY?” (i.e., location-based
queries [2]). In this case, NewsStand provides the capability of
reading over 10,000 newspapers (RSS feeds) by using a map. As
mentioned earlier, the result of processing the RSS feeds is a set of
clusters of articles by topic. Initially, the map contains topic icons at
locations corresponding to those in thek most representative clus-
ters, where “representative” takes into account factors such as im-
portance measured by currency, size and rate of growth of the clus-
ter in terms of velocity and acceleration, as well as a desire to have
a good spatial distribution in the area being displayed. A variant of
the feature-based query can also be executed in map mode. This is
done by entering a keyword in the “search” box at upper right. The
result is a set ofk clusters with respect to the designated keyword,
displayed using topic icons at the clusters’ locations. Once a search
has been activated, all subsequent searches will be restricted to the
keyword. However, searches are restricted to the displayed part of

Figure 3: NewsStand’s top stories mode.
SELECT c.cluster_id FROM clusters c
ORDER BY c.score LIMIT k

(a) Get top clusters

SELECT c.cluster_id FROM clusters c
WHERE c.topic = t
ORDER BY c.score LIMIT k

(b) Get top clusters of a given topict

SELECT DISTINCT c.cluster_id
FROM clusters c, docs d
WHERE c.cluster_id = d.cluster_id

AND d.feed_id = fid
ORDER BY c.score LIMIT k

(c) Get top clusters with articles from feed
fid

SELECT DISTINCT c.cluster_id
FROM clusters c, docs d, doc_text dt
WHERE c.cluster_id = d.cluster_id

AND d.doc_id = dt.doc_id
AND match(dt.vector, kw)

ORDER BY kwrank(c.score, dt.vector, kw) LIMIT k

(d) Get top clusters with keywordkw

Figure 4: Queries used to populate the left pane of top stories mode.

the map (i.e., they are spatially restricted and are analogous to a
spatial join operation).

Again, while in map mode, a slider is present at the upper right
corner of the map whose movement to the right (left) effectively
allows the maximum number of different clusters for which topic
icons are displayed at their representative locations to increase (de-
crease). Although this feature seems very similar to its analog in top
stories mode, its semantics are actually very different. In particular,
each additional location corresponds to potentially increasing the
number of viewable clusters although this is achieved by increasing
the number of locations for which icons are displayed. The pres-
ence of this slider represents a second novel aspect of NewsStand as
it enables it to answer the location-based query of the form “What is
happening at locationY?” where, contrary to conventional assump-
tions,Y is not a location, but is actually a region corresponding to
the part of the world that is viewable. Thus, moving the slider to the
right increases the number of clusters that could be viewed, as these
clusters are associated with the various locations, although the clus-
ters associated with the additional location could be the same as the
clusters associated with the existing viewable locations. Thus, we

see that the number of viewable clusters resulting from moving the
slider to the right is non-decreasing. In database parlance, what we
have here is an instance of a top-k query wherek corresponds to
the number of viewable clusters. In other words, we have a “top-k
clusters” query. That is, the resolution (also referred to as the zoom
level, but measured here in terms of the number of clusters that are
visible, in contrast to the conventional definition which is in terms
of visible area) also increases.

Another database analog of the top-k clusters query is a ranked
spatial range query or a ranked spatial join query. The challenge in
implementing this query lies in deciding on the order in which the
loations corresponding to clusters are delivered to the user, which
is a function of their importance. This need not necessarily be the
number of times they are mentioned. For example, it could be based
on the number of clusters in which they appear at least once. An-
other factor could be their currency in terms of the time at which
they arrive, and the velocity and acceleration of the cluster’s rate of
growth. Again, these issues arise because our data is dynamic on
account of our streaming environment. Given the above analogies
of top stories mode and map mode with the top-k query, it is also
natural to letk vary, wherek denotes the number of markers (topic
type icons), which is achieved by using the slider.

Figure 6 presents examples of top-k cluster queries used in map
mode. Figure 6a illustrates the default mode, where a set of clusters
are used to populate the visible map window. Theclusters table
is joined withcluster_locs to retrieve the cluster locations, as
well as with thegazetteer table to retrieve lat/long information,
which in turn is used to filter the clusters to only include those that
lie within the query windowqw. Results are ordered by the cluster’s
score. Notice that this query is related to that of Figure 4a, except
for an additional query window constraint on the cluster’s locations.
Also, as before, we use variants of this query to add more query
constraints involving topics, source feeds, and keywords, which are
shown in Figures 6b, 6c and 6d.

5.3 Single-Cluster Queries
In this section, we present queries that retrieve information about

a single cluster. These queries are used in both top stories mode
and map mode, since both modes involve the retrieval and display
of news clusters and information associated with them. As with
previous user interface operations, these actions are easy to cast in
terms of SQL using NewsStand’s database schema. These queries
are presented in Figure 7, and are described in detail below.

Recall from Section 5.1 that the primary form of queries in top

Figure 5: NewsStand’s map mode.

SELECT DISTINCT c.cluster_id
FROM clusters c, cluster_locs cl, gazetteer g
WHERE c.cluster_id = cl.cluster_id

AND cl.gaz_id = g.gaz_id
AND contains(qw, g.latitude, g.longitude)

ORDER BY c.score LIMIT k

(a) Get top clusters in query windowqw

SELECT DISTINCT c.cluster_id
FROM clusters c, cluster_locs cl, gazetteer g
WHERE c.cluster_id = cl.cluster_id

AND cl.gaz_id = g.gaz_id
AND contains(qw, g.latitude, g.longitude)
AND c.topic = t

ORDER BY c.score LIMIT k

(b) Get top clusters in query windowqw with topic t

SELECT DISTINCT c.cluster_id
FROM clusters c, cluster_locs cl, gazetteer g
WHERE c.cluster_id = cl.cluster_id

AND cl.gaz_id = g.gaz_id
AND c.cluster_id IN (

SELECT d.cluster_id FROM docs d
WHERE d.feed_id = fid

)
AND contains(qw, g.latitude, g.longitude)

ORDER BY c.score LIMIT k

(c) Get top clusters in query windowqw with articles
from feedfid

SELECT DISTINCT c.cluster_id
FROM clusters c, cluster_locs cl,

doc_text dt, gazetteer g
WHERE c.cluster_id = cl.cluster_id

AND cl.gaz_id = g.gaz_id
AND c.rep_doc_id = dt.doc_id
AND contains(qw, g.latitude, g.longitude)
AND match(dt.vector, kw)

ORDER BY kwrank(c.score, dt.vector, kw) LIMIT k

(d) Get top clusters in query windowqw with keywordkw

Figure 6: Queries used in map mode.

SELECT * FROM clusters c, cluster_locs cl, gazetteer g
WHERE c.cluster_id = cl.cluster_id

AND cl.gaz_id = g.gaz_id
AND c.cluster_id = cid

ORDER BY cl.score LIMIT k

(a) Get top locations for clustercid

SELECT * FROM clusters c, docs d,
feeds f, media m

WHERE c.rep_doc_id = d.doc_id
AND d.feed_id = f.feed_id
AND c.rep_media_id = m.media_id
AND c.cluster_id = cid

(b) Get cluster summary for clustercid

SELECT * FROM docs d
WHERE d.cluster_id = cid
ORDER BY d.pub_date LIMIT k

(c) Get all articles in clustercid

SELECT * FROM docs d, media m
WHERE d.media_id = m.media_id

AND d.cluster_id = cid
AND m.type = t

ORDER BY d.pub_date LIMIT k

(d) Get media of typet for clustercid

Figure 7: Queries to retrieve single-cluster information.

stories mode is “Where is topicX happening?”, whereX corre-
sponds to a cluster of news. This query corresponds to Figure 7a,
which retrieves the top-k locations associated with a given clus-
ter with identifiercid. The locations are retrieved in order of their
relevance score to clustercid.

In addition, several queries are used to render cluster information
in NewsStand’s interface. In both top stories mode and map mode,
summary information about each cluster is displayed, in different
ways. In top stories mode, each cluster is shown with its represen-
tative article’s title, along with a text snippet from the article, its
last update, total number of documents in the cluster, and so on.
These data are retrieved with the query in Figure 7b. Additional
links in the left pane allow users to retrieve all documents, images,
or videos associated with a single cluster. Documents are retrieved
using the query in Figure 7c which takes data from thedocs table,
while the retrieval of images and videos is accomplished with the
query of Figure 7d, which retrieves media of the appropriate type
from themedia table.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 3 6 9 12 15 18 21

M
ed

ia
n

ar
tic

le
 c

ou
nt

Hour

(a)

 0

 20000

 40000

 60000

 80000

 100000

01
-0

1
01

-1
5
01

-2
9
02

-1
2
02

-2
6
03

-1
2
03

-2
6
04

-0
9
04

-2
3
05

-0
7
05

-2
1

A
rt

ic
le

 c
ou

nt

(b)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

01
-0

7
01

-1
0
01

-1
3
01

-1
6
01

-1
9
01

-2
2
01

-2
5
01

-2
8
01

-3
1

N
um

be
r

of
 u

ni
qu

e
fe

ed
s

(c)

Figure 8: Number of articles retrieved by NewsStand (a) per hour
and (b) per day, as well as (c) the number of unique feeds supplying
these articles.

6. EXPERIMENTS
This section describes the results of several experiments intended

to characterize the amount of streaming news collected by the News-
Stand database, as well as its processing and querying time. Unlike
typical system evaluations on news data, which use small, static
corpora of news from a single generally prominent source (e.g.,
Reuters, New York Times), these experiments were conducted on
the live NewsStand database system over several months’ worth of
streaming news data. As a result, they better characterize News-
Stand’s long term performance on streaming news.

6.1 Data Collection
First, we measured how frequently articles are collected and en-

tered into the NewsStand database through the many RSS feeds that
it polls. Figures 8a and 8b present statistics about the number of ar-
ticles retrieved by NewsStand from RSS feeds per hour (measured
using Eastern Standard Time) and per day, respectively, as mea-
sured over a five month period from January to May, 2011. Both
figures show the large volume of news processed by the NewsStand
database every day, which dwarfs typical corpus sizes (i.e., hun-
dreds of documents) used in information retrieval and geotagging
research (e.g., [1, 5, 9, 15]). They also show the generally cyclical
publishing rate of sources polled by NewsStand, with most arti-
cles being published during daytime hours and during the week,
rather than on weekends. The clustering of article publishing times
between the hours 11–13 in Figure 8a is also a byproduct of News-
Stand’s current focus on US-based news sources. Figure 8b shows
that the NewsStand database ingests on the order of 50,000–60,000
articles on weekdays, and about 30,000 articles on weekends. Also,
Figure 8b demonstrates dips in article counts followed by peaks
near 26 Feb and 25 Apr, which are due to system downtime at those
times, and subsequent catching up of the system. We also measured
the number of unique feeds that supply these articles over time, and
these feed counts are shown in Figure 8c. Over all measured days,
NewsStand processed and displayed articles of around 2,000–3,000
distinct news sources, indicating the breadth and variety of news
sources and data available in NewsStand.

6.2 Data Content
While a primary goal of NewsStand is to capture as much news

as possible to its users, the actual content of such news is impor-

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000

01
-0

7
01

-1
0
01

-1
3
01

-1
6
01

-1
9
01

-2
2
01

-2
5
01

-2
8
01

-3
1

N
um

be
r

of
 lo

ca
tio

ns

Continent
Country

State

County
LgCity

SmCity

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

01
-0

7
01

-1
0
01

-1
3
01

-1
6
01

-1
9
01

-2
2
01

-2
5
01

-2
8
01

-3
1

N
um

be
r

of
 m

ed
ia

 e
le

m
en

ts

(b)

Figure 9: Different types of content found by NewsStand in arti-
cles, including (a) number and types of locations, and (b) amount
of multimedia (images and videos).

Table 1: Database table sizes.

Rows Data D + I

cluster_locs 4.0M 8GB 15GB
clusters 2.8M 1.9GB 4.5GB
doc_locs 25.8M 5GB 12GB
docs 6.3M 20GB 81GB
doc_text 5.5M 83GB 87GB
entities 207M 25GB 38GB
feeds 10k 200MB 350MB
gazetteer 8.0M 1.5GB 4.2GB
media 1.4M 4GB 9GB

tant as well. Here, we present measurements of the extracted con-
tent found by NewsStand in the articles that it retrieves from news
sources. For this experiment, we measure content in terms of the
number and types of locations found by NewsStand’s geotagger, as
well as the amount of multimedia found by NewsStand’s media ex-
tractor. These measurements were made over a month’s time, and
are shown in Figures 9a and 9b. The number of locations and media
follow the characteristic week-versus-weekend pattern seen earlier,
with around 130,000 extracted locations and 11,000 extracted me-
dia during the week. With about 40,000 articles downloaded daily,
this corresponds to 3–4 locations per article on average, which in-
dicates the usefulness of NewsStand’s map-based interface, since
it will be filled with a large number locations and thus there is
much data to query. Further, examining the breakdown of loca-
tion types, smaller places including states and small cities (under
100,000 population) dominate the location type counts, followed by
larger places including large cities (over 100,000 population) and
countries. These type counts show NewsStand’s focus on highly
local streaming news which is more difficult to geotag automati-
cally, but results in a much richer, local news experience. On the
other hand, the relatively low number of images and videos, about
1 image per 3–4 articles, shows the difficulty of extracting relevant
images and image captions while also filtering for advertising and
other spurious media.

6.3 Data Size
Next, we examined the sizes of tables and indexes present in

NewsStand’s database. The sizes of the tables shown in Figure 2 are
listed in Table 1. For each table, we include the number of rows, the
total disk space consumed by the data in the rows, and the total disk
space of data plus the indexes present in the table (“D + I”). We can
see that thedoc_text table is by far the largest at 83GB, which
is not surprising given that it contains the full text of articles in the
database. However, thedocs table rivalsdoc_text in size when
accounting for the index space as well, since thedocs table has
many more columns and indexes on these columns, including a full-
text index on thesnippet attribute for keyword searches. Also,
thedoc_locs andentities tables have many rows, reflecting
the many locations and other entities found by NewsStand’s geo-
tagger and other processing modules.

 10

 100

 1000

 10000

05
-1

5
05

-1
8
05

-2
1
05

-2
4
05

-2
7
05

-3
0
06

-0
2
06

-0
5
06

-0
8
06

-1
1
06

-1
4

M
ed

ia
n

pr
oc

es
si

ng
 ti

m
e

(s
ec

)

(a)

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
um

be
r

of
 a

rt
ic

le
s

Minutes

(b)

Figure 10: Backend processing time in terms of (a) median pro-
cessing time per document and (b) time for articles to appear in
NewsStand’s Web interface.

Table 2: Amount of time required by each module to process single
documents, measured in seconds.

Downloader 1.024 Geotagger 2.961
Cleaner 0.098 People finder 0.535
Clusterer 1.648 Disease finder 0.125
Topic classifier 0.047 Media extractor 0.166

Total 6.604

6.4 Processing Time
Next, we examined the time required for a new article ingested

into the NewsStand database to be completely processed by all its
modules and to become available via the Web interface. Figure 10a
presents these processing times as measured over one months’ worth
of news. On most days, articles were fully processed within a few
minutes, demonstrating that NewsStand’s database architecture is
well adapted for processing streaming news. However, several spikes
in the processing time appear as well, with a large spike on 1 Jun.
These spikes are likely due to downtime and maintenance for the
machines on which the NewsStand database modules execute, which
due to being a research system are somewhat unavoidable.

We also directly measured the amount of time it took for articles
to appear in NewsStand’s Web interface. Over a day’s time, we exe-
cuted a query through the Web interface every 5 minutes to retrieve
the 30 most recent articles, and measured how long it took for those
articles to be processed. We took these measurements during a day
where NewsStand was processing documents under typical daily
loads—i.e., not during processing spikes due to downtime or other
factors. Figure 10b shows the results, with most retrieved articles
taking between 3–5 minutes to appear on the Web interface. This
result corroborates our previous finding in indicating NewsStand’s
suitability for processing streaming news quickly.

We further broke down article processing times in terms of how
much time is spent in each of NewsStand’s processing modules.
These times are listed in Table 2. Processing times per document
are rather low, with the total processing time for a single document
on average being just over 6 seconds. As work is batched in groups
of at most 100, a given work batch would travel through the sys-
tem and be fully processed by NewsStand’s modules in at most
10 minutes, at full load. Of course, if the system is not saturated
with work, then articles can be fully processed in a shorter time,
and as demonstrated by Figure 10b, we typically observe articles in
NewsStand that are only a few minutes old. Examining individual
processing times in detail, the geotagger, clusterer, and downloader
modules are bottlenecks in processing time, accounting for fully
85% of the total processing time for a document. Reasons for the
slowness of these modules vary, but can generally be accounted for
by the number of database queries that they make. The geotagger
and clusterer modules execute a large number of database queries
to draw in additional evidence for use in geotagging and clustering.
On the other hand, the downloader module’s primary bottleneck is
the time required to download articles from websites. Note that de-
spite their slow processing times, we avoid slowing the system as a

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 2 3 4 5 6 7 8 9 10 11 12

Q
ue

rie
s/

se
c

Processes

(a)

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

05
-1

5
05

-1
8
05

-2
1
05

-2
4
05

-2
7
05

-3
0
06

-0
2
06

-0
5
06

-0
8
06

-1
1
06

-1
4

M
ed

ia
n

qu
er

y
tim

e
(s

ec
)

W
W+T
W+F

W+K
W+T+F+K

(b)

Figure 11: Query performance as measured by (a) the sustained
number of queries executed by NewsStand’s database, and (b) me-
dian query times for top-k window queries with various additional
constraints.

whole by starting more instances of these modules, thus increasing
the system’s processing throughput. We also start more instances
when a large amount of work is waiting in pipes, due to modules
having been stopped for some time.

6.5 Query Performance
Our final set of experiments were designed to test the interac-

tivity of the NewsStand database Web interface, as measured by
the time required to execute queries generated by the interface,
especially in NewsStand’s map mode. As outlined in Section 5.2,
these queries are all variants of top-k window queries. Recall that
Figure 6 shows examples of this type of query, which all contain
a query windowqw expressed in lat/long values, and return the
k clusters with highest scores that fall withinqw. We generated
queries by randomly creating query windows over land masses with
a variety of sizes. Each window consists of lower left lat/long val-
ues, width, and height. We executed these queries in NewsStand’s
cache database (described in Section 4.4), and measured query per-
formance over time. In this way, we tracked live performance fluc-
tuations that arise from the NewsStand database operating on stream-
ing news.

Our first set of query performance experiments tested the num-
ber of top-k window queries per second that could be sustained by
NewsStand’s cache database, which should be roughly proportional
to the number of users that could be browsing in NewsStand’s inter-
face simultaneously. For each experiment, we created several test
processes, each of which would connect to the database and execute
queries as quickly as possible. By increasing the number of pro-
cesses and hence database connections, we saturated the database’s
query capacity to determine an upper limit on the number of queries
per second that can be handled simultaneously. For this experiment,
k was fixed at 200, matching the value used in NewsStand’s user
interface. Though this value may seem small, especially compared
to the database’s size, it is actually reasonable given limited band-
width and screen space.

Figure 11a presents the queries per second (qps) rate delivered
by NewsStand’s cache database, as measured over one minute of
processing. As the number of test processes increased, the qps rate
likewise increased, to a ceiling of about 100, as shown by the flat-
tening of the qps curve at around 8–9 test processes. If we con-
sider that a user of NewsStand could generate at most two queries
per second, via continuous actions such as scrolling, panning, and
zooming, the system as-is can support up to 50 users at a time.
These performance results are respectable, especially given that
they were executed on a live system, constantly being updated with
additional streaming news. To gain additional performance when
scaling the system up to support larger numbers of users, further
options such as database replication and round-robin scheduling
could be considered.

Our next query time experiment combined the top-k window
queries described above with additional constraints that are added

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

US S.Amer. Afr. Asia Eur. Austr.

Q
ue

ry
 ti

m
e

(s
ec

)

Region

(a) Region

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 1 2 3 4 5

Q
ue

ry
 ti

m
e

(s
ec

)

Zoom level

(b) Zoom

Figure 12: Region and zoom level versus query time.

by certain queries available in NewsStand’s interface. We tested the
following additional constraints:

1. Topic: Retrieve stories relevant to a given topic (e.g., “Busi-
ness”, “Sports”).

2. Feeds: Retrieve stories with articles from a set of news feeds.
3. Keyword: Retrieve stories relevant to a keyword.

To select topics, feeds, and keywords to use in these queries, we
sampled query values present in NewsStand’s query log files, and
selected among them randomly. Furthermore, in keeping with our
goal of benchmarking streaming news, we executed a set of these
queries every five minutes over a one month period, to track per-
formance of the live NewsStand system over time. Figure 11b con-
tains performance results for these queries, shown as the median
query time per day for each query type, with constraints speci-
fied as letters: “W” for window, “T” for topic, “F” for feeds, and
“K” for keywords, and combinations such as “W+F” referring to
a window query with a feed constraint. Examining the results, we
see that query times fluctuate from day to day, but tend to fall un-
der 1 sec. The plain top-k window query was faster than the other
query types, with additional constraints generally slowing the query
time. Further, the feeds query was consistently slower than the other
query types, most likely due to the requirement that query results be
from a set of feeds, rather than a single value. Nonetheless, query
performance was relatively consistent across all dates and times
tested, reflecting NewsStand’s stability as a live system.

For our final query time experiments, we examined query times
for queries placed in a particular region or zoom level. Figure 12a
presents query times for random window sizes and positions cate-
gorized by the location of the query region, as a box and whisker
plot. For all regions, query times were again respectable, with all
medians being under 0.2 sec. Furthermore, notice that the query
times tended to have skewed distributions, with most query times
being low, but with high outliers. We also observed that query per-
formance for query windows in the US region is significantly higher
than in other areas. This is likely due to NewsStand’s source bias for
newspapers in the US rather than other areas. Figure 12b explores
query performace differences by varying the zoom level where again
both query window size and positioning were randomized and no
distinction was made for different regions of the world. As might
be expected, as the zoom level increases (thus decreasing the query
window size and hence the number of markers present in the win-
dow), query times decreased. As before, query times are generally
low, with some larger outliers.

7. CONCLUSION
NewsStand’s database architecture makes it suitable for process-

ing documents usingcloud computing, an area for future research,
since multiple instances of slave modules can execute simultane-
ously. Rather than having a single cache database, several such
databases on separate computers could allow greater scalability and
a larger eventual user base. With a larger user base, additional ana-
lytics can be used to improve querying performance. For example,
the geographic location of users (as determined by IP addresses), or
their most frequent window queries, can be used to inform caching

strategies. As the prevalence of streaming data on the Web increases,
database systems such as NewsStand that are capable of quickly
processing this streaming data will be ever more important.

8. REFERENCES
[1] E. Amitay, N. Har’El, R. Sivan, and A. Soffer. Web-a-Where:

Geotagging web content. InSIGIR’04, pages 273–280, Sheffield,
UK, July 2004.

[2] W. G. Aref and H. Samet. Efficient processing of window queries in
the pyramid data structure. InPODS’90, pages 265–272, Nashville,
TN, Apr. 1990.

[3] E. Banos, I. Katakis, N. Bassiliades, G. Tsoumakas, and I.Vlahavas.
PersoNews: A personalized news reader enhanced by machine
learning and semantic filtering. InODBASE’06, pages 975–982,
Montpellier, France, Oct. 2006.

[4] E. Gabrilovich, S. Dumais, and E. Horvitz. Newsjunkie: Providing
personalized newsfeeds via analysis of information novelty. In
WWW’04, pages 482–490, New York, May 2004.

[5] E. Garbin and I. Mani. Disambiguating toponyms in news. In
HLT/EMNLP’05, pages 363–370, Vancouver, Canada, Oct. 2005.

[6] M. Henzinger, B.-W. Chang, B. Milch, and S. Brin. Query-free news
search.World Wide Web, 8(2):101–126, June 2005.

[7] F. T. Johnsen, T. Hafsøe, C. Griwodz, and P. Halvorsen. Workload
characterization for news-on-demand streaming services. In
IPCCC’07, pages 314–323, New Orleans, LA, Apr. 2007.

[8] M. Krstajic, F. Mansmann, A. Stoffel, M. Atkinson, and D. A. Keim.
Processing online news streams for large-scale semantic analysis. In
ICDEW’10, pages 215–220, Long Beach, CA, Mar. 2010.

[9] J. L. Leidner. An evaluation dataset for the toponym resolution task.
CEUS: Computers, Environment, and Urban Systems,
30(4):400–417, July 2006.

[10] M. D. Lieberman and H. Samet. Multifaceted toponym recognition
for streaming news. InSIGIR’11, pages 843–852, Beijing, China,
July 2011.

[11] M. D. Lieberman and H. Samet. Adaptive context features for
toponym resolution in streaming news. InSIGIR’12, pages 731–740,
Portland, OR, Aug. 2012.

[12] M. D. Lieberman, H. Samet, and J. Sankaranarayanan. Geotagging:
Using proximity, sibling, and prominence clues to understandcomma
groups. InGIR’10, Zurich, Switzerland, Feb. 2010.

[13] M. D. Lieberman, H. Samet, and J. Sankaranarayanan. Geotagging
with local lexicons to build indexes for textually-specified spatial
data. InICDE’10, pages 201–212, Long Beach, CA, Mar. 2010.

[14] M. D. Lieberman, H. Samet, J. Sankaranarayanan, and J. Sperling.
STEWARD: Architecture of a spatio-textual search engine. In
GIS’07, pages 186–193, Seattle, WA, Nov. 2007.

[15] B. Martins, I. Anastácio, and P. Calado. A machine learning
approach for resolving place references in text. InAGILE’10, pages
221–236, Guimarães, Portugal, May 2010.

[16] G. Quercini, H. Samet, J. Sankaranarayanan, and M. D. Lieberman.
Determining the spatial reader scopes of news sources using local
lexicons. InGIS’10, pages 43–52, San Jose, CA, Nov. 2010.

[17] H. Samet, M. D. Adelfio, B. C. Fruin, M. D. Lieberman, and B. E.
Teitler. Porting a web-based mapping application to a smartphone
app. InGIS’11, pages 525–528, Chicago, Nov. 2011.

[18] H. Samet, H. Alborzi, F. Brabec, C. Esperança, G. R. Hjaltason,
F. Morgan, and E. Tanin. Use of the SAND spatial browser for digital
government applications.CACM, 46(1):63–66, Jan. 2003.

[19] H. Samet, A. Rosenfeld, C. A. Shaffer, and R. E. Webber. A
geographic information system using quadtrees.Pattern Recognition,
17(6):647–656, November/December 1984.

[20] H. Samet, B. E. Teitler, M. D. Adelfio, and M. D. Lieberman.
Adapting a map query interface for a gesturing touch screen
interface. InWWW’11, pages 257–260, Hyderabad, India, Mar. 2011.

[21] J. Sankaranarayanan and H. Samet. Images in news. InICPR’10,
pages 3240–3243, Istanbul, Turkey, Aug. 2010.

[22] C. A. Shaffer, H. Samet, and R. C. Nelson. QUILT: a geographic
information system based on quadtrees.IJGIS, 4(2):103–131,
April–June 1990. Also University of Maryland Computer Science
Technical Report TR–1885.1, July 1987.

[23] B. E. Teitler, M. D. Lieberman, D. Panozzo, J. Sankaranarayanan,
H. Samet, and J. Sperling. NewsStand: A new view on news. In
GIS’08, pages 144–153, Irvine, CA, Nov. 2008.

[24] B. E. Teitler, J. Sankaranarayanan, and H. Samet. Onlinedocument
clustering using the GPU. Technical Report CS-TR-4970, University
of Maryland, College Park, MD, Aug. 2010.

