
Of Motifs and Goals: Mining Trajectory Data∗

Joachim Gudmundsson
School of IT

University of Sydney
NSW 2006, Australia

joachim.gudmundsson@
sydney.edu.au

Andreas Thom
Dept. of Computer Science

University of Münster
Münster, Germany
andreas.thom@
uni-muenster.de

Jan Vahrenhold
Dept. of Computer Science

University of Münster
Münster, Germany

jan.vahrenhold@
uni-muenster.de

ABSTRACT
In response to the increasing volume of trajectory data ob-
tained, e.g., from tracking athletes, animals, or meteorolog-
ical phenomena, we present a new space-efficient algorithm
for the analysis of trajectory data. The algorithm combines
techniques from computational geometry, data mining, and
string processing and offers a modular design that allows for
a user-guided exploration of trajectory data incorporating
domain-specific constraints and objectives.

Categories and Subject Descriptors:
H.2.8 [Database Management]: Database Applications—Data
Mining

General Terms:
Algorithms.

Keywords:
Trajectory Clustering, Space-Efficiency.

1. INTRODUCTION
Four decades ago, Harry Messel started a ground-breaking

study [26, 36] in Northern Australia using solar powered ra-
dio telemetry to track large Estuarine crocodiles, crocody-
lus porosus. Since then, technological advances in track-
ing and sensing devices have greatly facilitated the study of
wildlife movement ecology [27, 30, 33]. Ecologists can now
use miniaturized animal-borne tags to record high-resolution
spatio-temporal movements of wild animals and use these
recordings to analyze aspects of the animals’ behavior and
physiology, or properties of their environments.

Today, a new revolution is underway, not only in ecology
but in many areas using tracking technologies. For instance,
this change can be seen in team sports analysis: In the late

∗The first author was funded by the Australian Research
Council FT100100755. Part of the work of the second and
third author has been supported by Deutsche Forschungsge-
meinschaft (DFG) within the Collaborative Research Center
SFB 876 “Providing Information by Resource-Constrained
Analysis” (http://sfb876.tu-dortmund.de), project A2.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL GIS ’12, November 6-9, 2012. Redondo Beach, CA,
USA
Copyright 2012 ACM 978-1-4503-1691-0/12/11 ...$15.00.

1990’s, the first attempts were made to track football play-
ers to analyze performance and team strategies. Nowadays,
there are commercial systems [3] that can track the ball,
the players, and the referees in real time with very high ac-
curacy and resolution (25 Hz). Sport scientists have gone
from spending the majority of their time collecting data to
being flooded with data sets that are so large that they can
impossibly be analyzed manually.

There is an eclectic set of disciplines that are affected in
the same way, including geography [11], surveillance anal-
ysis [34], transport analysis [21], and market research [22].
All these areas are in great need of automated tools to make
maximal use of the data being collected.

While the technologies for capturing movement have been
extensively researched and reached considerable sophistica-
tion, the analytical toolbox is much less developed [14]. To
a large extent, the analysis on movement data is still done
manually, or at most semi-automatically using visual tools.
The lack of analytical tools is partly explained by the hard-
ness of accurately defining the problems: Often only vague
descriptions of what domain experts seek are given. Hence,
the most successful tools up to this date are supervised al-
gorithms where the domain expert interactively can adjust
the parameters and thus guide the semi-automated analysis.

Probably the most important open problem in the area is
the (sub)trajectory clustering problem. There are two ver-
sions of this problem, either cluster a given set of trajectories
or cluster subtrajectories of one or many trajectories. We
will study the latter (which is a generalization of the first
problem), that is, given a set of trajectories find a set of
clusters such that every cluster C contains at least k dis-
joint subtrajectories and the “distance” between each pair of
trajectories in C is at most some given threshold α.

1.1 Related research
Since an efficient clustering algorithm for trajectories, or

subtrajectories, is essential for various analysis tasks [14, 35],
many approaches have been proposed in the past. Here, we
briefly discuss the ones most relevant to our work.

A simple approach to cluster trajectories (not subtrajec-
tories) is to map each trajectory into a point and then use
a standard clustering algorithm to cluster the points, see
for example [8, 29]. The main drawback using an approach
like this is its sensitivity to noisy data or outliers. Gaffney
et al. [12, 13] proposed a model-based clustering algorithm
for trajectories, where a set of trajectories is represented us-
ing a regression mixture model. Specifically, their algorithm
is used to determine cluster memberships and, as above, it
only clusters whole trajectories.

Clustering trajectories as a whole does not detect similar
portions of the trajectories. To overcome this problem, Lee
et al. [23], and similarly Zhou and Huang [38], suggested
an approach that partitions a trajectory into a set of line
segments and then group similar segments. The obvious
drawback is that only single segments are clustered.

Mamoulis et al. [25] used a different approach and as-
sumed that the trajectories are given as a sequence of spa-
tial regions, for example ABC would denote that the entity
started at region A and then moved to region C via region B.
Using this model data mining tools such as association rule
mining can be used. A drawback is that two trajectories
that might be very similar may visit different regions, thus
they will not show up as being similar.

In an attempt to develop more robust measures, researchers
considered approaches that had been successful in other ar-
eas. A typical example is Dynamic Time Warping (DTW),
which was first used to match signals in speech recognition.
The DTW is easy to compute. Given polygonal curves repre-
sented by the sequences of the vertices, of length m and n re-
spectively, a simple dynamic programming algorithm yields
the optimal solution in O(mn) time. There are fast ap-
proximate implementations and they usually work well in
practice [20, 31].

A major problem with all the above approaches is that
they match the vertices (not curves) along the trajectories
which requires that the vertices along the trajectories are
uniformly and densely sampled, which is rarely the case. If
the trajectories are simplified (compressed) in a preprocess-
ing step then this will definitely not be the case. One could
conceivably re-sample the input curves, but that would again
increase the complexity of the curves. Furthermore, curves
that are almost identical to each other may appear quite dif-
ferent in the distance measure because of different sampling
on each curve.

In an attempt to take the continuity of the trajectories
into consideration, Buchin et al. [4] developed a clustering
algorithm using the Fréchet distance, which is sometimes re-
ferred to as the “dog-man” distance. The Fréchet distance is
a max-measure and the dependence on the maximum value
can also lead to non-robust behavior, where small variations
in the input can distort the distance function by a large
amount [9]. However, algorithms using the Fréchet distance
do find more involved clusters than the simpler ones dis-
cussed above. The main drawback is in the complexity re-
quirements: Computing the Fréchet distance between two
general curves requires quadratic time in the complexity of
the curves [2]. It is currently an open question if it is pos-
sible to do better even when one tries to approximate this
quantity within a constant multiplicative factor. In an ef-
fort to make this approach more useful, Gudmundsson and
Valladares [15] recently presented a GPU implementation of
the algorithm.

Thus every existing subtrajectory clustering algorithm has
one of the following drawbacks:

1. High complexity (superlinear space or quadratic run-
ning time).

2. Restriction to dectect only simple clusters.

3. Inefficent handling of unsynchronized or sparse data
(data from different sensors).

1.2 Motivation and approach
Often analysts are looking for general characteristics such

as frequent runs or how a player occupies space. Such pat-
terns can be described using rather coarse terms, e.g., “first
move straight, then start a long curve to the right”. We
wish to facilitate clustering according to such terms that
make sense from the analysts’ perspectives but seem hard
to capture in a domain-independent, formal way. The ap-
pealing feature of such terms, however, is that once they
have been agreed upon inside a particular application con-
text, they can be used to label the trajectory’s subpaths.
For the analysis, we then identify each term with a distinct
characters of some alphabet; the collection of the labels of a
trajectory’s subpaths then is a word over this alphabet that
can be analyzed using string processing techniques, e.g., for
finding frequently occurring substrings.

In addition, our approach has these important advantages:

1. It uses linear space which is a crucial requirement with
the recent improvement in tracking technologies.

2. The meaning of a cluster depends on the application
and the parameter values; thus it is important that a
domain expert easily can guide the program to find the
type of clusters that makes sense for his/her analysis.
Our algorithm offers a modular design that allows for a
user-guided exploration of trajectory data incorporat-
ing domain-specific constraints or objectives. Specifi-
cally, it supports the functionality to restart a phase
of the algorithm with changed parameters without the
need to re-run the algorithm from scratch.

3. The pipelined design of our approach enables a semi-
dynamic analysis where new trajectories, or extended
trajectories, can be added to an already existing set of
analyzed trajectories, e.g., the track of a new hurricane
can be added to the already existing tracks. Due to the
modular design the four first phases of the algorithm
only need to be run on the new data, while only the
last two phases are global operations that require the
full set of trajectories to be considered.

Note that our algorithm makes no assumptions on the
input data regarding density, regularity, or synchronization.
In particular, the algorithm can also cope with multiple spa-
tially non-aligned trajectories; such situations may arise in
team sports analysis, where the general movement pattern
of a player may be the same over a series of games but
where the exact location of the pattern on the pitch usually
depends on the opponents’ behavior.

2. OUR ALGORITHM
Following the above discussion, the design of our algo-

rithm is as follows (see Figure 1): In the first phase, we
preprocess the input data such that we eliminate as much
noise as possible without trading too much of the data’s ac-
curacy. The second phase of the algorithm then segments
the input data into subtrajectories that are classified and la-
beled according to their main geometric property, e.g., “wide
left turn” or “short straight segment”. In the third phase,
the algorithm computes frequently occurring substrings, so-
called motifs, from the resulting string of characters. The
algorithm then maps subtrajectories corresponding to motifs

Simplification using
min-# algorithm

1
Smoothing, segmenta-
tion, and classification
of trajectory fragments

2

Motif discovery

3
Feature extraction for

selected motif(s)

4
Density-based

clustering

5
Computation of
representative

trajectories

6

Figure 1: Workflow of the proposed algorithm.

"

Figure 2: Simplification using a min-# algorithm.
The input (black, solid) and output trajectory (red,
dashed) have a Haussdorff distance of at most ε.

into some feature space (Phase 4) and performs a density-
based clustering (Phase 5). In the final, sixth phase, the
resulting clusters are postprocessed for easier visual repre-
sentation. We next discuss each phase in more detail. The
analysis of the algorithm can be found in Section 3.

Simplification.
To decrease the influence of noise in the data and to facil-

itate recognition of movement patterns, we first run a line-
simplification algorithm on the input trajectory P with n
vertices. The main objective is not to reduce the number
of points on the trajectory but to reduce noise; thus, we
use a so-called “min-# algorithm”, that, given a tolerance
ε, computes a simplified trajectory Pε = 〈p0, . . . , pn′−1〉,
where n′ ≤ n, with a minimal number of vertices such that
the Haussdorff distance between P and Pε is at most ε, see
Fig. 2. Pε connects a subset of the input vertices in the
same order as the original trajectory, intersects each ε-ball
centered at an original vertex, and always stays within a
tube of radius ε along the original segments.

While there is a variety of min-# algorithms, our imple-
mentation is based on the min-# algorithm of Chen and
Daescu [7] which only uses linear space. The algorithm
constructs edges in a shortest-path graph only as they are
needed by the algorithm and thus does not need to explicitly
store the quadratic-size all-pairs-shortest-path graph.

Note that using a min-# algorithm (instead of a min-ε
algorithm that, given a number n′ ≤ n reduces the input n-
vertex trajectory to an n′-vertex trajectory with the smallest
possible Haussdorff distance ε) seems somewhat orthogonal
to our initial motivation that the space requirement of the
algorithm should be minimal. In contrast to a min-ε algo-
rithm where we can fix a target size for the output, the size
of Pε may still be of the same order of magnitude as P since
we only guarantee an upper bound on the distance between
P and Pε. Nonetheless, the data reduction may still be sig-
nificant. Figure 3 shows an example where a simplification
with a very small threshold (ε = 0.3 cm) generates a trajec-
tory that is almost identical to the original trajectory and
has less than 50% of the input vertices. In this figure, the
player is moving with an average speed of approximately
11 km/h; which also explains why a coarser simplification
with a tolerance of ε = 50 cm still yields a visually ac-
ceptable approximation as long as the focus is not on local
features, such as the “dribbling” in the left-hand part of the

figure that is captured by the finer simplification but not in
the coarser simplification.

Figure 3: Simplifying a 20-second excerpt from a
football player’s trajectory inside an area of 20.02
m × 8.75 m. The input trajectory has 200 vertices,
the result has 94 vertices (solid); the trajectories’
Haussdorff distance is less than ε = 0.3 cm. The
dotted line is an 11-vertex simplification (ε = 50 cm).

Smoothing, Segmentation, and Classification.
As can be seen from Fig. 3, Pε may still contain very short

segments whose directional angle may vary locally. Since
we aim at identifying global motion patterns, the second
phase of our algorithm first smoothes Pε and then segments
Pε based upon characteristics derived from the smoothed
trajectory P sε .

There is a broad variety of algorithms for smoothing a
trajectory, e.g., based on splines, Kalman filters [37], or gen-
eralized moving averages [6]. Since we are working with an
approximation of the original trajectory and since we do
not aim at, e.g., reconstructing a road network from multi-
ple trajectories, we do not need to fully exploit the power
of more advanced techniques. We restrict ourselves to the
classical moving average technique; note, however, that our
general approach also allows for using more advanced tech-
niques as long as the space requirement is linear.

Given the simplified trajectory Pε = 〈p0, . . . , pn′−1〉 and a
parameter κ ≥ 0, we compute the moving-average trajectory
P sε = 〈r0, . . . , rn′−1〉 of via ri := 1

2κ+1

∑j+κ
i=j−κ pi (we define

pj := p0 for j < 0 and pj := pn′−1 for j > n′−1). Using P sε ,
the simplified trajectory P sε is then partitioned into segments
of roughly the same motion pattern. In the basic version of
our algorithm, we consider the following geometric patterns:

Code Geometry Code Geometry

L wide left turn R wide right turn
M short left turn Q short right turn
X sharp left turn Z sharp right turn
S long straight C circle
T short straight A (none of the above)

We note that a set of similar patterns has been used by
Harguess and Aggarwal [17] who use a combination of shape
matching and combinatorial optimization to match curves to
predefined shapes given by their geometric description.

S (long straight segment)

S (long straight segment)

S (long straight segment)

T (short straight segment)

T (short straight segment)
T (short straight segment)

L (wide left turn)

X (sharp left turn)

T (short straight segment)

M (short left turn)

X (sharp left turn)

Q (short right turn)

Q (short right turn)

Z (sharp right turn)

Figure 4: Segmentation of the trajectory from Figure 3 using a moving average window of nine points, i.e.,
for κ = 4; The moving average trajectory is shown in the background (dashed).

The segmentation algorithm iterates over all the points of
the trajectory 〈p0, . . . , pn−1〉 and, for each point pi, considers
the corresponding moving average point ri and the κ “past”
and “future” vertices in the smoothed trajectory. Starting
from an (arbitrary) initial pattern, the algorithm tries to
greedily extend the set of points inducing the same general
pattern, i.e., “straight”, “left curve”, or “right curve”. The
decision of how to classify the current point pi is based upon
separately classifying the“past”subtrajectory 〈ri−κ, . . . , ri−1〉
and the “future” subtrajectory 〈ri, . . . , ri+κ〉. To distinguish
between “straight”, “left turn”, or “right turn”, we compute,
for the “past” and “future” subtrajectory relative to ri, the
aggregate αleft of all left-turn angles, the aggregate αright

right-turn angles, and the average β of all angles. The“past”
subtrajectory is classified as “straight”, if ((β ≤ κ + 1 ∧
max{αleft, αright} ≤ κ2) ∨ (|αright − αleft| ≤ k + 1)), other-
wise it is classified as a“left turn”or a“right turn”depending
on whether or not αleft > αright. If both subtrajectories are
classified in the same way, e.g., as a “left turn”, the point pi
is included in the current segment, otherwise a new segment
corresponding to the “future” pattern is started. Since this
scheme uses monotone criteria, this simple, greedy approach
yields an optimal segmentation [5, Theorem 3].

The final classification (e.g., “wide”, “short”, or “sharp”
turn) is done by evaluating each segmented subtrajectory of
the trajectory Pε based on its curvature and the perpendic-
ular distance of its points w.r.t. the segment connecting the
first and last point of the subtrajectory. Figure 4 shows an
example derived using this algorithm.

As can be seen from Fig. 4, the algorithm may produce
two or more consecutive subtrajectories with the same clas-
sification—see the two “short straight” subtrajectories in the
bottom-right part of the trajectory consisting of three seg-
ments each. Such configurations may occur if the moving-
average window, i.e., the set of 2κ + 1 vertices around the
point currently considered, is larger than the “real” straight
subtrajectory; in such a situation, the point inside the win-
dow but outside the subtrajectory may cause the smoothed
representation to indicate a turning angle that is to large to
allow for a “straight” classification. In addition, two consec-
utive subtrajectories may be classified as the same type of
curve, e.g., as a wide right turn, if they join at a point where
an isolated opposing turn occurs.

The influence of the parameter κ is at least twofold: first,
the larger the value of κ, the more noise is reduced; this

is an advantage when looking at coarse trajectory patterns
such as “moving forward” but a disadvantage when analyz-
ing more detailed patterns such as“dribbling”patterns. Sec-
ondly, the min-# algorithm removes many points from long
subtrajectories that are smooth curves, see Fig. 3 (top).

In the case when the samples come from uniformly spaced
time steps, many removed samples result in a trajectory
where samples are more spread out in time. This in turn
implies that the moving average filter may look ahead and
back with different (time) intervals, and thus, the smooth-
ing, at least to some extent, is time-dependent.

Motif Discovery.
As described in the previous subsection, the second phase

of our algorithm results in a collection of subtrajectories each
of which is labeled according to its shape and size. Thus,
the input trajectory can be characterized by the sequence of
labels assigned to its subtrajectories.

Using the above characterization, the task of identifying
common subtrajectories can be stated as the so-called mo-
tif discovery problem which is a fundamental problem in
bioinformatics: given a sequence of characters over a finite
alphabet, the motif discovery problem asks for frequently
occurring substrings (motifs).1 In the most basic version
considered here, given a string s and two positive integers
f and `, the task is to report all substrings of s that are of
length at least ` and occur at least f times in s. Alternative,
domain-dependent variations of motif discovery include ex-
tracting motifs of length at least ` or searching for patterns
that match a certain pattern, possibly allowing wildcards or
mismatches, see [28, 32] and the references therein.

A standard data structure for processing strings is the
so-called suffix array in which the possible suffixes along
with their respective start index in the input string are rep-
resented in lexicographic order—see Figure 5 (right). We
point out that a suffix array can be constructed in linear
time and linear space using radix sort [19].

To extract the motifs of length ` once the suffix array has
been constructed, the linear-time algorithm of Abouelhoda
et al. [1] scans through the suffix array and maintains the
length lcp of the longest common prefix of the current suffix
and its predecessor in the suffix array. As soon as the al-

1This connection between motifs and data analysis has also
been observed by Lin et al. [24] who used characters to rep-
resent (ranges) of y-values in time series analysis.

Name Definition Geometric property / purpose

F1 Minimum axis aligned bounding box Location and spread of the subtrajectory
F2 Direction vector of start and end point Global direction
F3 Start and end point Spatial coherence
F4 Centroid of the vertices Spatial coherence
F5 Width and height of minimum enclosing rectangle Geometric shape of the subtrajectory
F6 Motif (mapping from nominal to numeric) (Strong partitioning; no strict order of the motifs)
F7 Average speed Distinction between running and walking
F8 Length of subtrajectory Similarity of curves or straights
F9 Difference of total right and total left turning Overall turning direction
F10 Average of the curvature radii Overall curvature of the subtrajectory

Table 1: Features that can extracted from the subtrajectories together with the geometric property the
feature aims at characterizing or the purpose, e.g., strongly separating subtrajectories, the feature serves.

0 1 2 3 4 5 6
sequence: b a n a n a $ motif length ` = 2

lcp
0 -1 b
1 0 e b
2 1 e b
3 3 e
4 0 e b
5 0 e b
6 2 e
7 -1 e

su�x array
6 $
5 a$
3 ana$
1 anana$
0 banana$
4 na$
2 nana$

result: [{2, 2}, {5, 2}]

Figure 5: Extracting motifs from a suffix array.

gorithm processes a suffix such that lcp ≥ `, we record the
current index b in the suffix array. Then, we scan forward
to find the first index e such that lcp drops below `. If the
difference b−e is at least as large as the minimum frequency
f , we extract the prefix of length m from the entry at posi-
tion b and record the difference e−b as the frequency of this
prefix and continue to scan forward to find the next index
b as described above. Figure 5 illustrates this process for
finding all motifs of length ` = 2 that occur at least twice.

In our algorithm, we apply the above motif discovery
scheme to the string resulting from the classification of the
input trajectory. The result of this step, a list of all motifs
of given length and frequency can then be refined further by
the analyst, e.g., by selecting only the top-k motifs.

Feature Selection.
The result of the third phase of our algorithm is a set of

m subtrajectories extracted from the simplified input tra-
jectory where each of the trajectories is additionally labeled
with a motif.

In the fourth phase, we map the subtrajectories into a
carefully defined feature space and try to cluster these fea-
ture points to obtain a clustering of the subtrajectories. A
similar approach has been employed by Lee et al. [23] who
define a distance measure between the (implicitly defined)
feature points of two line segments on the basis of the two
segments’ perpendicular distance, parallel distance, and an-
gle distance. In contrast, we consider multiple-segments sub-
trajectories and explicitly map these subtrajectories into a
feature space. In the case of working with motifs of length
` ≥ 2, each feature point represents the (joined) subtrajec-
tories corresponding to the motif.

Table 1 lists several features along with the geometric
properties of the subtrajectories that they aim at describ-
ing. With the exception of Feature F5, all features can be
extracted in linear time. To extract Feature F5 we need the
convex hull of the feature points which we compute using the
rotating-calipers algorithm, which requires O(n logn) time.

We point out that Table 1 is non-exclusive in the sense
that depending on the analysis task at hand, other proper-
ties may be more appropriate. Due to the modular design
of our approach, such additional or alternative features can
be easily incorporated. Another important observation is
that dimensions in feature space can be scaled thus allowing
for emphasizing or de-emphasizing their importance. The
latter is important if we wish to ignore small spatial offsets
in data space, something that would be penalized heavily
when using the Fréchet distance.

Density-based Clustering.
In the fifth phase, the algorithm attempts to identify sim-

ilar subtrajectories on the basis of the features extracted
in the fourth phase. For each subtrajectory, we construct a
single feature point in d-dimensional Euclidean space by con-
catenating the points corresponding to the selected features.
For example, Features F1 (minimum axis-aligned bounding
box), F3 (start and end point), and F7 (average speed)
result in a point in 9-dimensional space, e.g., (bb lower ,
bb left , bb upper , bb right , start x , start y , end x , end y ,
avg speed).

To identify clusters in feature space, we employ the well-
known DBSCAN algorithm [10] which we briefly sketch for
the sake of self-containment. In a nutshell, DBSCAN takes
two parameters ε̄ and MinPts in addition to a point set S
and attempts to identify clusters in S of size at least MinPts
based upon (local) nearest neighbor computations.

Initially, all points in S are marked as unsettled. DB-
SCAN then iterates over all unsettled points x ∈ S and
computes the ε̄-neighborhood NS,ε̄(x), i.e., the set of un-
settled points in S that lie inside the d-dimensional ball
Bε̄(x) of radius δ centered at x. If NS,ε̄(x) contains at
least MinPts points, x is labeled as a core point identify-
ing a new cluster ρ, otherwise it is labeled as noise. If x
was identified as a core point, the algorithm greedily in-
spects the ε̄-neighborhood NS,ε̄(y) for each y ∈ NS,ε̄(x). If
NS,ε̄(y) contains at least MinPts points, y is also labeled
as a core point of the current cluster ρ and the algorithm

continues the exploration. If, in the other hand, NS,ε̄(y)
contains less than MinPts points, y is labeled as a bound-
ary point of the current cluster ρ. If all points in NS,ε̄(x)
have been inspected, the method terminates indicating that
the cluster ρ has been identified completely. At the end of
each (recursive) inspection of the neighborhood of a core
point, the core point is marked as settled and thus excluded
from future computations. Similarly, each boundary point
is marked as settled as well.

0 1000 2000 3000 4000 5000

0.
0

0.
5

1.
0

1.
5

Point

D
is

ta
nc

e

0 500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

Point

D
is

ta
nc

e

Figure 6: k-distance graph with k = MinPts = 10 for
the Hurricane (left) and Player 1 (right) data set
(see Sections 3.1 and 3.3 for a detailed description).

Our choice of the parameter ε̄ is based upon the original
heuristic described by Ester et al. [10]. The authors pro-
posed to automatically infer ε̄ from the so-called k-distance
graph, in which each data point is plotted against the dis-
tance to its k-th nearest neighbor and the data points are
arranged in descending order of their distance values, see
Fig. 6. This graph reflects the density distribution of the
data set. According to Ester et al. [10, Sec. 4.2], a good
candidate for the size of the ε̄-neighborhood is the distance-
value of the point at the end of the first valley of the k-
distance graph where k := MinPts > 4. All points to the
right of this value identify a cluster and the others will be
classified as noise or a boundary points.

Computation of Representative Trajectories.
In the final phase, we compute representative trajectories

for each cluster; these trajectories are then used in the visual
representation of our algorithm’s output. A representative
trajectory should reflect the general movement and the dis-
tribution of the segments of the trajectory cluster such that
domain experts are enabled to quickly grasp the movement
of the entities generating the subtrajectories of each cluster.

As mentioned above, Lee et al. [23] proposed an algorithm
for clustering line segments. While our algorithm is more
general as it allows for clustering not only single segments
but also subtrajectories consisting of multiple segments, we
can still adopt Lee et al.’s algorithm for computing a repre-
sentative trajectory from a set of line segments—in our case,
the segments are extracted from the subtrajectories.

Lee et al.’s [23] algorithm processes a set of segments in
four steps (refer to Fig. 7). In the first step, the average

direction vector ~V of all segments is computed. In the sec-
ond step the coordinate system is rotated such that ~V points
along the x-axis. In the third step, the algorithm performs a
standard plane-sweep along the x-axis: the algorithm stops
at each start and endpoint of a trajectory and computes the

1.

2.

3.

4.

Figure 7: Computing a representative trajec-
tory [23] (blue; red: average direction vector).

representative trajectory’s corresponding vertex as the aver-
age of all y-coordinates of the segments currently crossed by
the sweep-line. Finally, in the fourth step, the rotation per-
formed in Step (2) is undone. The output of the algorithm
is shown in Fig. 7 as the dashed blue trajectory.

To prune noise and to avoid excessive segmentation of
the representative trajectory, Lee et al. propose to use
two parameters MinDist and MinLns. The first parameter
lower-bounds the x-distance between two sweep-line events
at which a point may be added to the representative trajec-
tory. In Figure 7, gray vertical lines indicate events where
no points were added because the distance to the previous
event was too small. The second parameter lower-bounds
the number of segments that need to be active at a given
event to allow the sweep-line to process this event at all; the
pruning effect of this parameter can be seen at the beginning
and the end of the sweep where no representative trajectory
is computed.

Our algorithm automatically infers the values of MinDist
and MinLns from the previous phase: the minimum x-dis-
tance MinDist is set to half the average length of the seg-
ments inside the current cluster and the minimum number of
segments required is set to the square root of the minimum
cluster size of DBSCAN, i.e., MinLns := b

√
MinPtsc.

3. ANALYSIS
In this section, we present a theoretical analysis of all

algorithmic phases and comparative experimental studies.
Before detailing our analysis, we point out an important

conceptual advantage of the pipelined design: the algorithm
can be restarted prior to any phase (cf. Table 2) while reusing
the results of the previous phases. For example, once the tra-
jectory has been simplified, segmented, classified, and ana-
lyzed w.r.t. motifs, the analyst can start multiple runs of the
feature extraction and clustering phases without the need to
re-run the initial steps of the algorithm. In particular, this
facilitates data space exploration since the effects of chang-
ing feature extraction or selecting different features for clus-
tering can be investigated with minimal overhead. Finally,
the pipelined design of our approach enables a semi-dynamic
analysis where new trajectories can be added to an already
existing set of analyzed and classified trajectories, e.g., mea-
surements from Champion’s League games can be added to
the already existing regular season’s games. Due to the mod-
ular design, the simplification, segmentation, classification,
and feature extraction algorithms only need to be run on

Phase Time Space Reference

1 Simplification using min-] algorithm O(n2) O(n) [7]
2 Smoothing, segmentation, and classification of (sub-)trajectories O(n) O(n) [this paper]
3 Motif discovery O(n) O(n) [1, 19]

4 Feature extraction for selected motif(s) O(m logm)(∗),(?) O(n) [this paper]

5 Density-based clustering in d-dimensional feature space O(m logd+1 m)(∗) O(n) [10]

6 Computation of representative trajectories O(m logm)(∗) O(n) [23]

Table 2: Analysis of the time and space requirements of the proposed algorithm.
(∗): m ≤ n denotes the number of points in the subtrajectories selected in Phase (3); usually, m� n holds.
(?): Depending on the features extracted; all features we consider can be extracted in O(m logm) time.

the new data, only motif discovery and clustering are global
operations that require reconsidering all trajectories.

3.1 Data Sets
The data sets used in our experimental study are taken

from two application domains: team sports analysis and
weather analysis. We worked with two non-public record-
ings of football players that were recorded in discrete time
steps of 1/10 of a second; each recording of a single player’s
movement covers a single game and consists of approxi-
mately 57,000 points. The resolution of these data sets
is 10 mm. For the weather analysis scenario, and in line
with the previous study by Lee et al. [23], we used the Hur-
ricane data set available at http://weather.unisys.com/

hurricane/atlantic/. This data set contains the hurri-
cane’s latitude, longitude, maximum sustained surface wind,
and minimum sea-level pressure. Following Lee et al. [23],
we extracted the latitude and longitude of hurricanes from
the years 1950 to 2004. The resulting data set consists of
3,353 trajectories with a total of 106,090 points and thus is a
proper superset of the (unspecified) subset used in the study
of Lee et al. [23] who worked with 570 trajectories consisting
of 17,736 points in total.

3.2 Theoretical Analysis
As mentioned in the introduction, one desirable feature of

an algorithm for large-scale trajectory analysis is a low space
requirement. A single player’s collective trajectories sam-
pled a 1/10 of a second over one season of Germany’s Bun-
desliga (34 games/season, 90 minutes/game, no overtime)
consist of roughly 1.8 million data points; assuming two
bytes to represent a coordinate and assuming that the con-
stant factor in the Big-Oh notation is (unrealistically low) 1,
a back-of-the-envelope calculation reveals that a quadratic-
space algorithm would require at least 50 GB of RAM.

Table 2 summarizes the time and space requirements of
our algorithm and shows that our algorithm is guaranteed
to have a linear space requirement. Monitoring the memory
used for the whole program revealed that the algorithms’ av-
erage space consumption when run on a football player’s tra-
jectory with approximately 57,000 points was around 15 MB.

As far as the runtime analysis is concerned, we observe
two important points: First of all, the complexity of the
first three phases depends on the number n of points in the
input trajectory, while the runtime of the last three phases
depends on the number m ≤ n of points in the subtra-
jectories corresponding to the motifs selected in Phase (3).
For all practical scenarios, we expect that m � n. Since
these phases are likely to be re-run multiple time, this im-
plies a significant practical improvement in runtime over

Phase Player 1 Hurricane

[Load data] 0.8 s 10.0% 1.8 s 15.7%
Simplify 2.2 s 28.3% 0.3 s 2.7%
Smooth/segment/classify 1.2 s 15.2% 2.9 s 25.1%
Extract motifs 0.1 s 0.3% 0.1 s 0.5%
Extract features 1.5 s 18.9% 1.2 s 10.3%
DBSCAN 0.2 s 2.6% 1.0 s 8.6%
Compute representation 0.1 s 0.3% 0.3 s 3.0%
[Clean up] 1.9 s 24.3% 3.9 s 34.1%

Total 8.0 s 100% 11.5 s 100%

Table 3: Breakdown of runtimes for the Player 1
and Hurricane data sets (averaged over ten runs).

non-pipelined algorithms, e.g., those using the Fréchet dis-
tance [4]. Related to this, the second observation is that
the dominating step of our algorithm is the initial run of
the min-] simplification algorithm—see Table 2.2 We point
out, however, that this algorithm is run separately for each
trajectory, i.e., an x-fold increase in trajectories increases
the runtime by a factor of x (instead of by a factor of x2).
This can be observed in practice, too, as the the analysis of
the football player’s two trajectories (one per half of the
game) with approximately 28,000 points each take much
longer than the analysis of the Hurricane data set where
3,353 trajectories with 31 points on average even though the
total number of vertices in the Hurricane data set (106,090)
is almost twice as much as the number of vertices in the
football player’s data set (57,000)—see Table 3.

Even though the implementation was not optimized for
speed, we note that a non-trivial amount of the runtime goes
into loading the data from disk and cleaning up the memory
allocated throughout the lifetime of the algorithm; the latter
task requires up to roughly 1/3 of the total runtime.

3.3 Comparative Studies
To assess our proposed algorithm, we compared it against

two previous algorithms that had been using in the respec-
tive application domains. For the team sports analysis sce-
nario, we compared against an implementation of the subtra-
jectory clustering algorithm of Buchin et al. [4] (see also [16]),
and for the weather analysis scenario, we refer to the ex-
perimental study of Lee et al. [23]. As mentioned in the
introduction, the hardness of accurately defining clustering
problems on (sub)trajectories results in most studies being

2If one is content with heuristics, there are fast simplification
algorithms, e.g., Snoeyink and Hershberger [18] presented an
algorithm that needs O(n) space and O(n log∗ n) time.

Figure 8: Team sports analysis scenario. Motif clustering (left) compared to clustering with Fréchet dis-
tance [4] (right). The top-10 clusters (excluding the “noise” cluster) of the motif clustering are shown; red
dots indicate the start of a representative subtrajectory. Parameters for Fréchet distance: ε = 3 m, at least
6 curves in a cluster, representative subcurve in the cluster of length at least 8 m.

done using visual tools. This in turn implies that there is no
“ground truth” data to compare clustering results against.
As a consequence, we present our results by visualizing them
side-by-side with the results of the competitors.

Team Sports Analysis.
As an example for the team sports analysis scenario, we

present the analysis of the recordings of a right defender
(Player 1; Figure 8, top) and an attacker (Player 2; Figure 8,
bottom). Each data set was processed with the following pa-
rameters for the motif analysis: ε = 0.5 cm [simplification],
κ = 4 [moving average], motifs {S,L,R}, features {F2, F3,
F4, F5, F10}, MinPts = 7, and ε̄ = 0.015 [DBSCAN]. The
following table shows the resulting complexities:

Data set Player 1 Player 2

Input size n 56,957 56,943
Size n′ after simplification 15,161 15,634
Clustered subtrajectories 1,341 1,326
Size m of clustered subtrajectories 11,218 12,655

A visual inspection reveals that the shape and the distri-
bution of the clustered trajectories is the roughly the same
for both our algorithm and the algorithm of Buchin et al. [4].

An intermediate result which may be of independent in-
terest for a domain expert is the distribution of the motion

patterns. Table 4 lists the top-5 motifs of length ` = 1, 2
for the Player 1 data set and shows that the predominant
motion pattern of this player appears to consist of relatively
straight motions; this information may be exploited by do-
main experts to automatically classify the player by its mo-
tion pattern and to select features especially suited to cluster
this particular type of motion.

Motif Frequency Motif Frequency

S long straight 1472 SS 635
T short straight 1408 TT 455
L wide left 555 TS 363
R wide right 554 ST 357
Q short right 195 RS 194

Table 4: Top-5 motifs for the Player 1 data set.

Table 5 details for each cluster the classifications of the
subtrajectories clustered together. Since we did not use Fea-
ture F6 (motifs mapped to numerical values) to strongly
separate motifs, clusters may consist of straight segments
and wide curves as long as the general direction is similar.
However, there are still some clusters that consist of sub-
trajectories of at most two different types; in such cases, we
have a very strong evidence of a predominant behavior.

Figure 9: Weather analysis scenario. Motif clustering (left) compared to TraClus clustering (right, Figure 18
in [23]). The middle part of the figure shows a close-up of the right-turn blue cluster.

Player 1 Hurricane
Size S R L Size S R L

67 45 13 9 1550 1057 315 178
46 27 13 6 822 316 387 119
45 26 12 7 135 39 42 54
22 13 6 3 59 0 59 0
12 4 4 4 48 1 29 18
12 8 2 2 42 42 0 0
12 3 4 5 41 0 29 12
11 6 3 2 41 23 0 18
9 7 1 1 39 12 27 0

Table 5: Breakdown of the top non-noise clusters of
Figures 8 (top) and 9 with respect to the motifs.

Weather Analysis.
As mentioned in Section 3.1, our example for the weather

analysis scenario is the set of the trajectories of all atlantic
hurricanes from 1954 to 2004. For the motif analysis, we
worked with the following parameters: ε = 0.1 units [sim-
plification], κ = 4 [moving average], motifs {S,L,R}, fea-
tures {F2, F3, F4, F5, F10}, MinPts = 10, and ε̄ = 0.01
[DBSCAN]. After the simplification algorithm, the number
of vertices had been reduced from n = 106, 090 to n′ =
49, 739; the feature extraction algorithm worked on m =
39, 327 points from 5, 518 subtrajectories.

Figure 9 compares the top-10 clusters (excluding the“noise”
cluster) with the visualization of the TraClus algorithm of
Lee et al. [23] as shown in the original publication. As ob-
served by Lee et al., “some hurricanes move along a curve,
changing their direction from east-to-west to south-to-north,
and then to west-to-east. On the other hand, some hurri-
canes move along a straight east-to-west line or a straight
west-to-east line.” [23, p. 601]. This observation is confirmed
by the distribution of the motifs: Table 6 shows that the pre-
dominant motion patterns are either straight lines or (wide
or short) right curves. One of the clusters consisting of right
curves is depicted in the middle part of Figure 9. This clus-
ter, which is located in the middle part of the data set, is
not detected by TraClus. This particular cluster also demon-
strates a weakness in Lee et al.’s algorithm for computing
a representative trajectory: a set of curves will be mapped
to a relatively straight representative trajectory, if the cur-
vature is large with respect to the extent of the set along
the average direction vector—see the almost vertical black
representative trajectory computed for the cluster in the left
part of Figure 9.

Motif Frequency Motif Frequency

S long straight 2379 SS 704
R wide right 2161 RS 620
T short straight 1821 SR 587
L wide left 1041 RR 570
Q short right 919 ST 487

Table 6: Top-5 motifs for the Hurricane data set.

4. SUMMARY
Despite an impressive body of literature, the problem of

how to cluster movement data is still wide open, mainly
because the problem’s exact nature varies very much de-
pending on the application domain. In response to this, we
have presented a modular, pipelined algorithm that can be
adapted to the domain expert’s focus of analysis. From an
algorithmic point of view, two features are of particular im-
portance: the algorithm guarantees a linear space require-
ment which is crucial in the light of the increasing qual-
ity and quantity of motion data and it allows for restarting
phases of the algorithm with changed parameters without
the need of rerunning the more expensive initial phases.

5. REFERENCES
[1] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch.

Replacing suffix trees with enhanced suffix arrays.
Journal of Discrete Algorithms, 2:53–86, 2004.

[2] H. Alt and M. Godau. Computing the Fréchet
distance between two polygonal curves. International
Journal on Computational Geometry and Applications,
5:75–91, 1995.

[3] Amisco. www.sport-universal.com.

[4] K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler,
and J. Luo. Detecting commuting patterns by
clustering subtrajectories. International Journal of
Computational Geometry and Applications,
21(3):253–282, 2011.

[5] M. Buchin, A. Driemel, M. J. van Kreveld, and
V. Sacristan. An algorithmic framework for
segmenting trajectories based on spatio-temporal
criteria. In Proc. 18th ACM SIGSPATIAL
International Symposium on Advances in Geographic
Information Systems, pp. 202–211, 2010.

[6] F. Chazal, D. Chen, L. J. Guibas, X. Jiang, and
C. Sommer. Data-driven trajectory smoothing. In
Proc. 19th ACM SIGSPATIAL International
Symposium on Advances in Geographic Information
Systems, pp. 251–260, 2011.

[7] D. Z. Chen and O. Daescu. Space-efficient algorithms
for approximating polygonal curves in two dimensional
space. In Proc. 4th Annual International Conference
on Computing and Combinatorics, pp. 45–54, 1998.

[8] K. Chu and M. Wong. Fast time-series searching with
scaling and shifting. In Proc. 18th ACM Symposium
on Principles of Database Systems, pp. 237–248, 1999.

[9] A. Efrat, S. Venkatasubramanian, and Q. Fan. Curve
matching, time warping, and light fields: New
algorithms for computing similarity between curves.
Journal on Mathematic Imaging and Vision,
27(3):203–216, 2007.

[10] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In Proc. Second
International Conference on Knowledge Discovery and
Data Mining, pp. 226–231, 1996.

[11] A. U. Frank. Socio-economic units: Their life and
motion. In A. U. Frank, J. Raper, and J. P. Cheylan,
editors, Life and motion of socio-economic units, pp.
21–34. Taylor & Francis, London, 2001.

[12] S. Gaffney, A. Robertson, P. Smyth, S. Camargo, and
M. Ghil. Probabilistic clustering of extratropical
cyclones using regression mixture models. Climate
Dynamic, 29(4):423–440, 2007.

[13] S. Gaffney and P. Smyth. Trajectory clustering with
mixtures of regression models. In Proc. 5th ACM
International Conference on Knowledge Discovery and
Data Mining, pp. 63–72, 1999.

[14] J. Gudmundsson, P. Laube, and T. Wolle.
Computational movement analysis. In W. Kresse and
D. Danko, editors, Springer Handbook of Geographic
Information, pp. 725–741. Springer, 2012.

[15] J. Gudmundsson and N. Valladares. A GPU approach
to subtrajectory clustering using the Fréchet distance.
Proc. 20th ACM SIGSPATIAL International
Symposium on Advances in Geographic Information
Systems, to appear, 2012.

[16] J. Gudmundsson and T. Wolle. Football analysis using
spatio-temporal tools. Proc. 20th ACM SIGSPATIAL
International Symposium on Advances in Geographic
Information Systems, to appear, 2012.

[17] J. Harguess and J. K. Aggarwal. Semantic labeling of
track events using time series segmentation and shape
analysis. In 16th IEEE International Conference on
Image Processing, pp. 4317–4320, 2009.

[18] J. Hershberger and J. Snoeyink. Cartographic line
simplification and polygon CSG formulae in
O(n log∗ n) time. Computational Geometry: Theory
and Applications, 11(3–4):93–103, 1998.

[19] J. Kärkkäinen and P. Sanders. Simple linear work
suffix array construction. In Proc. 30th International
Colloquium on Automata, Languages and
Programming, pp. 943–955, 2003.

[20] E. J. Keogh and C. A. Ratanamahatana. Exact
indexing of dynamic time warping. Knowledge and
Information Systems, pp. 358–386, 2005.

[21] M. P. Kwan. Interactive geovisualization of
activity-travel patterns using three dimensional
geographical information systems: A methodological
exploration with a large data set. Transportation
Research Part C, 8(1–6):185–203, 2000.

[22] J. Larson, E. Bradlow, and P. Fader. An exploratory
look at supermarket shopping paths. Intl. Journal of
Research in Marketing, 22(4):395–414, 2005.

[23] J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory
clustering: A partition-and-group framework. In Proc.
ACM International Conference on Management of
Data, pp. 593–604, 2007.

[24] J. Lin, E. J. Keogh, S. Lonardi, and B. Y.-C. Chiu. A
symbolic representation of time series, with
implications for streaming algorithms. In Proc. 8th
ACM Workshop on Research Issues in Data Mining
and Knowledge Discovery, pp. 2–11, 2003.

[25] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou,
Y. Tao, and D. Cheung. Mining, indexing, and
querying historical spatiotemporal data. In Proc. 10th
International ACM Conference On Knowledge
Discovery and Data Mining, pp. 236–245, 2004.

[26] H. Messel, A. Wells, and W. J. Green. The alligator
region river systems. Pergamon Press, 1979.

[27] R. Nathan. An emerging movement ecology paradigm.
PNAS, 105(49):19050–1, 2008.

[28] G. Navarro and M. Raffinot. Flexible Pattern
Matching in Strings – Practical on-line search
algorithms for texts and biological sequences.
Cambridge University Press, 2002.

[29] S. Rasetic, J. Sander, J. Elding, and M. A.
Nascimento. A trajectory splitting model for efficient
spatio-temporal indexing. In Proc. 31st International
Conference on Very Large Data Bases, pp. 934–945,
2005.

[30] C. Rutz and G. C. Hays. New frontiers in biologging
science. Biology letters, 5(3):289–292, 2009.

[31] Y. Sakurai, M. Yoshikawa, and C. Faloutsos. FTW:
fast similarity search under the time warping distance.
In Proc. 24th ACM Symposium on Principles of
Database Systems, pp. 326–337, 2005.

[32] G. K. Sandve and F. Drabløs. A survey of motif
discovery methods in an integrated framework.
Biology Direct, 11(1), 2006.

[33] J. Shamoun-Baranes, E. van Loon, R. Purves,
B. Speckmann, D. Weiskopf, and C. Camphuysen.
Analysis and visualization of animal movement.
Biology Letters, 8(1):6–9, 2012.

[34] J. J. Thomas and K. A. Cook. A visual analytics
agenda. IEEE Computer Graphics and Applications,
26(1):10–13, 2006.

[35] M. Vlachos, D. Gunopoulos, and G. Kollios.
Discovering similar multidimensional trajectories. In
Proc. 18th International Conference on Data
Engineering, pp. 673–682, 2002.

[36] G. J. W. Webb and H. Messel. Movement and
dispersal patterns of crocodylus porosus in some rivers
of arnhem land, northern australia. Australian
Wildlife Research, 5(2):263–283, 1978.

[37] G. Welch and G. Bishop. An introduction to the
Kalman filter. Technical Report TR 95-041, Dept. of
Computer Science, UNC Chapel Hill, 1995. Updated
June 2006, http://www.cs.unc.edu/~welch/kalman.

[38] Y. Zhou and T. S. Huang. ‘Bag of Segments’ for
motion trajectory analysis. In 15th IEEE International
Conference on Image Processing, pp. 757–760, 2008.

