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ABSTRACT

Thousands of taxis cruise a metropolitan road network look-
ing for passengers that may be scattered or clustered in
highly active locations. Taxicab drivers tend to gravitate
to the known clusters, often leading to supply and demand
disequilibrium as areas become under or over served. Many
cities monitor their taxi fleet’s locations using GPS devices
and track passenger occupancy through trip meters, thereby
producing data streams of taxicab trajectories and passen-
ger activities. This paper presents the Service Disequilib-
rium Detection (SDD) framework which aims at identifying
regions of service disequilibrium using this information. The
SDD framework models request wait time and taxicab loca-
tion uncertainty inherent in the discrete data streams and
identifies the disequilibrium regions using two methods: (1)
Bayesian spatial scan statistics, and (2) Poisson-based hy-
pothesis testing. We claim the SDD framework can detect
emerging disequilibrium and validate this claim using a large
Shanghai taxi GPS data set.
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In large cities, hundreds of thousands of taxis cruise the
road network looking for passengers. Some passenger re-
quests may be scattered throughout a region while others
may cluster in highly active locations. Taxicab drivers, in
their search for a fare, tend to gravitate to known locations
that produce many fares, such as an airport or a tourist
location. This often leads to an imbalance in supply and
demand as areas become under or over served and results in
regional disequilibrium.

Many cities monitor their taxi fleet and know the exact
location of a taxi every few seconds. Furthermore, once the
driver picks up a passenger, the driver manually pushes a
button or starts the charging meter, and a trip begins. This
produces data streams of taxicab trajectories with starting
times and location of request pickups. Please note that this
system does not observe the non-served requests. Using this
information, the problem is that: given (1) a set of taxis
cruising on a road network and being monitored every few
seconds and (2) customer pickups in real-time, the goal is to
detect emerging regions of service disequilibrium.

The solution to this problem will be useful beyond taxi
services. With the wide availability of low cost geo-locating
devices, smart phones, and wireless networks, it is possible
to monitor demands and services in real-time on road net-
works for many applications. Other example applications
include (1) parking services where demands are parking re-
quests and services are vacant parking spots, and (2) deliv-
ery where requests are item pick-up requests and dispatched
deliverymen provide the services.

1.1 Challenges

There are several challenges in detecting service disequi-
librium. First, uncertainty is inherent in this system, aris-
ing in several aspects. The data stream consists of discrete
information—the time and location information occurs at
discrete intervals. This implies that a system could find lo-
cations at discrete intervals; however, not all taxis report
their information at every time interval. The sampling fre-
quency and GPS error make the location information of the
taxis uncertain at a given observation time. In addition,
while the system knows the pickup time of the passenger,
the actual time that the passenger makes the request is un-
certain. Furthermore, the requests that are never satisfied
are unknown even though these unsatisfied requests are very
important in modeling disequilibrium.

The second challenge is to design a model to relate de-
mand with service that allows the detection of over-served
and under-served regions. A threshold-based counting ap-



proach seems like a natural solution, but such an approach
may be brittle due to the inherent uncertainty, e.g. how
do you count a taxi if it’s location is uncertain at that time.
The third challenge is to deal with large number of requesters
and servers in real-time, specifically when taxi service is a
product of thousands of requests and servers.

1.2 Contributions

e This paper proposes a framework for detecting under-
served and over-served regions. The framework counts
idling taxis and requests in a probabilistic manner;

We adopt a Bayesian spatial scan statistic method in
measuring the disequilibrium under uncertainty;

We then propose to use a Poisson-based hypothesis
testing method to label disequilibrium regions. This
simpler testing method can achieve similar or better
results compared with the Bayesian spatial scan statis-
tic method;

e We evaluate our framework on a large taxi GPS dataset
from Shanghai containing 468,000 trips and 17,139 taxi-
cabs. Both Bayesian and Poisson-based methods can
detect emerging under-served regions within several
minutes with the Poisson method tending to detect
faster.

2. RELATED WORK

We can classify the related work into three categories:
modeling location uncertainty, taxi service improvement, and
spatial-temporal statistics.

Location uncertainty has been an active research area.
Location uncertainty in Euclidean space is investigated in
paper [8]. Similar to ours, the authors assume that for a
trajectory segment represented by two sampling points, the
two sampling points have no error and the location in be-
tween is uncertain. They derived their general principle of
sampling error based on maximal travel speed, time, and
sampling rate. The work assumes that objects move in a
free space while we assume objects follow the most econom-
ical routes. Various papers have proposed indexing schemes
for querying trajectories considering uncertainty [2, 14, 10,
1, 4]. For our problem, the main goal is to obtain statisti-
cal counts in a stream processing paradigm and indexing is
mainly for querying and retrieving.

Improving the matching process of taxi services has at-
tracted research attention in recent years. In [15], the au-
thors proposed a recommendation system to better match
taxi drivers with customers. The system uses two major
sources of knowledge: 1) passenger mobility patterns and
2) taxi driver pick-up behaviors learned from the GPS tra-
jectories of taxicabs. The idea is to identify, offline, the
routes and destinations that historically produce more fares
for taxis. In [9], the authors use historical data as ex-
perience and derive a Spatio-Temporal Profitability (STP)
map to guide cruising taxicabs looking for customers. This
method avoids systematic routing, which is impractical in
most cases. These methods rely on patterns and do not de-
tect emerging service disequilibrium based on current vacant
taxis and requests.

The spatial scan statistic [5] scans for hotspots in spatial
regions, producing a ratio statistic between the region being

scanned and the outside region. It then compares this ratio
with a distribution curve generated by Monte Carlo sim-
ulation that assumes a certain distribution of the dataset
without hotspots, e.g. a Poisson distribution. A hotspot
is determined using the p — value of the ratio. A public
domain software SatScan™™ is widely used for the detec-
tion and evaluation of hotspots in many application domains
including infectious diseases, natural and human disasters,
criminology, and transportation. In [3], the authors iden-
tify neighborhoods with unusually high/low levels of active
transportation, e.g. walking and biking. CitySense [6] de-
tects spatial-temporal hotspot such as arrivals or departures
of taxicabs and busy nightlife activity regions. Recently, a
Bayesian spatial scan statistics was proposed for detecting
hotspots [7]. Using the counts of points of interests and base-
line population, this method examines the posterior prob-
ability of every possible rectangular region under the null
hypothesis of no hotspots and the alternative hypothesis of
regions of higher density. None of these models considers
location uncertainty.

3. THE SERVICE DISEQUIBLIRIUM DE-
TECTION (SDD) FRAMEWORK

DEFINITION 1. (Tazi Trajectory) A taxzi trajectory Tr is
a sequence of GPS points pertaining to the taxi’s sampling
location over time. FEach point Tr; € Tr consists of a tuple
< (z,y),t,0 > with location (z,y), location reporting time t,
and the tazi’s occupancy status o.

DEFINITION 2. (Request Pickup) The pickup p of a re-
quest T is a tuple < (z,y),t > where (z,y) is the location
and t is the time the request is picked up.

DEFINITION 3. (Trajectory Segment) A trajectory Tr con-
sists of a sequence of segments < Triy,Triy1 >. If a taxi
is occupied at Tr;, i.e. Tri.o is “occupied”, then segment
< Triy,Tris1 > is a live trajectory segment, otherwise it is
a cruising trajectory segment.

3.1 Overview of SDD

Fig. 1is the Service Disequilibrium Detector (SDD) frame-
work. It has three primary components: Probabilistic Counter
(PC), Equilibrium Finder (EF), and Disequilibrium Detec-
tor (DD). These components build and maintain statisti-
cal information of customer requests and taxis, updates this
information at each time interval, and uses it to generate
streaming regions of service disequilibrium. The framework
begins by partitioning the space S into cells as seen in Fig.
2. At each time interval, requests may enter the system in
one of these cells while cruising taxis frequently report their
locations along a trajectory. Zooming in a cell, the figure
displays the taxi trajectory as a series of sampling points. A
taxi may not report its location at time ¢ but it may have
been able to serve the request at that time. The ultimate
goal in a cruising taxi system is to serve all requests with the
minimum number of taxis, thus the framework uses request
and taxi counts to identify disequilibrium of these locations.

The problem with simply counting the requests and taxi
sampling locations is the uncertainty in the request time
and taxi locations. Taxis report at pickup time, not when
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Figure 1: The Service Disequilibrium Detector
(SDD) framework receives a set of Request Pick-
ups R and Taxi Location Updates C' at each time
interval. This input becomes probabilistic observed
counts that the framework uses to determine service
disequilibrium.

the customer makes the request, and the taxi location be-
tween two reported GPS coordinates is unknown. For exam-
ple, request r appears in the system at pickup time ¢ even
though it began at some unknown time ¢t — §;. Taxi ¢ may
have reported its location at time ¢t — d2 and t + d3, leav-
ing the actual location at time ¢ unknown. This taxi may
have been available to serve the request, along with m other
taxis, meaning that the counts are uncertain for that time
interval. The framework uses a probabilistic representation
for the time and location uncertainty as information arrives
from two streams: a set of customer pickups R and a set
of taxi location reports C. The PC processes this data into
probabilistic counts of observed requests 7,45 and taxis cops
and updates a cell’s statistical information at each time in-
terval to form a streaming history that the framework can
use to detect emerging location service disequilibrium.

A major challenge in detecting disequilibrium is to define
a notion of equilibrium. In economics, equilibrium is a state
at which quantity demanded and supplied are equal [13]. In
a cruising taxi system, the ratio between requests and cruis-
ing taxis in a equilibrium is decided by several factors. In
a perfect knowledge system where all taxi and requests are
known to each other and maximum matching [12] is per-
formed by a central system, the ratio can be close to one.
When knowledge is imperfect, we will need more cruising
taxis to satisfy a given set of requests. The task of the
Equilibrium Finder is to estimate the ratio in equilibrium.
The idea is to use a request injection and a cruising taxi
matching process to learn the parameters at equilibrium.

The Disequilibrium Detector uses the learned equilibrium
state and observed counts to perform hypothesis testing to
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Figure 2: The Service Disequilibrium Detector
(SDD) framework partitions the region into cells
with request pickups and taxis. Zooming in on one
of the cells displays the taxi trajectory as a series of
sampling points.

determine if a region is over-served, under-served, or well
served at each time interval. We propose two methods. The
first one uses a Bayesian spatial scan method on this uncer-
tain data. The second one uses a Poisson hypothesis testing
to identify regions of disequilibrium.

3.2 Probablistic Counter (PC)

The Probabilistic Counter counts the requests and taxis
in each cell for determining disequilibrium. It begins by par-
titioning the region S into equal sized cells with count his-
tory windows for both requests and taxis. Next, it processes
two data streams simultaneously. One is a time-dependent
set of request pickups R with each request consisting of the
pickup time and location. The second data stream is a time-
dependent set of taxi location updates C' that contain the
taxis’ current location and time. At time t, all satisfied re-
quests with that time enter the stream; however, not all
taxis report their location nor are their reports necessarily
at regular intervals. This input becomes the observed re-
quests 7Tops and taxis cops later used to determine a service
rate and disequilibrium.

3.2.1 Counting Observed Requests

There is request arrival uncertainty in a cruising taxi sys-
tem lacking perfect knowledge. When a taxi picks up a
customer at time r:, it is reasonable to assume that the
request actually arrived at some previous time ¢t — 4, i.e.
the uncertainty is the customer wait time w. This uncer-
tainty carries some probability that the request occurred at
a given interval of w, implying that the system can model
it as a probability distribution. For the SSD framework, we
assume a normal distribution and limit it to three standard
deviations about the mean; hence, we define a request as:

DEFINITION 4. (Request) A request r assoicated with a
pickup p is approximated by a normal distribution r =<~
N(pt —w/2,0u),p > with p.t — w/2 as the mean request
time and o, as the standard deviation. Here p.t refers to
the pickup time of p and w is the average customer waiting
time.

Fig. 3 (a) shows the normal distribution curve represent-
ing uncertainty in request time. The probablistic request
in a time interval < ti,t2 > is counted by the cumulative



distribution function cdfn(t2 : p.t — w/2,04) — cdfn(t1 :
pt — w/2,04). The total request count is the sum of all
probablistic requests observed at that time.
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(a) A normal distribution representing a request with
pickup time ¢t. The area under the curve of interval
(t —w/2,t —w/2 + 1) is the probabilistic request asso-
ciated with the request count.
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(b) Assuming w = 4, the request count at t — 3 and
t — 2 is incomplete at time ¢ when 72 (dashed line)
arrives even though the PC already counted r1. The

count at t — 4 is complete at time t because future
pickups will not affect the count.

Figure 3: Requests model as a distribution.

Because a request is unknown until satisfied, the request
count for current time may be incomplete until some future
time. As seen in Fig. 3 (b), assuming w is four time units,
the request count is incomplete for time ¢ — 1 and ¢ — 2 at
time ¢ because there may be new pickups at and after ¢.
The PC updates a cell’s request count history containing
observed counts for any previous counts affected by the new
request’s distribution.

3.2.2 Counting Observed Taxis

The difference between a taxi’s previous location and the
new location forms a segment with known endpoints T'r; and
Tri+1 but unknown taxi location between endpoints. The
PC can count taxis at a location using a similar concept as
counting requests by representing the location uncertainty
with a probability distribution curve centered on a mean
location. Fig. 4 shows this concept by representing each
trajectory segment with a distribution curve. For the SSD
framework, we assume a normal distribution and limit it
to three standard deviations about the mean location of a
segment.

DEFINITION 5 (TAXI LOCATION WITH STATIC MEAN).

An unknown tazi location in a trajectory segment < Tr;, Trit1 >
is approzimated by normal distribution N((Tr;.p+Tri+1.p)/2,0;).

Here (Tr;. p+Trit1.p)/2 is the middle point of the two ends
of the segment.

Because taxis are moving, the mean location of the normal
distribution should move as well. For example in Fig. 5,
at time T'r;.t, it should have probability of one at Tr;.p
and, as times approaches T'r;;1.t, the probability of taxi
being at T'riy+1.p is approaching one. However, with static
mean distribution N, at T'r;41.t — 1, the distribution shows
the probability as approximately 0.032, which is counter-
intuitive because the taxi has almost reached the segment
endpoint T'r;11.p at that time. In other words, an accurate
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Figure 4: Taxi ¢ forms several trip segments with
some crossing cell boundaries. The exact location
between each segment’s starting and ending location
is unknown; however, the PC can approximate it
using normal distributions.
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Figure 5: N is the distribution centered on mean
time for the trip segment but N’ better represents
the location probability at time t — 1 because it is
close to the endpoint.

taxi count for each time in between requires adjusting the
distribution curve to a asymmetric distribution.

There are several adjustment mechanisms for normal dis-
tributions including skew, kurtosis, and mean adjustments;
however, there is a trade-off between adjustment value and
computational effort. Calculating skew and kurtosis is typ-
ically complicated, and along with variance, is contextually
difficult to quantify. In addition, most trip segments are rel-
atively short because GPS logging intervals are often short.
Mean adjustment is simple and it can occur through adjust-
ing the input parameter of the distribution’s cdf function.

DEFINITION 6  (TAXI LOCATION WITH VARIABLE MEAN).
An unknown taxi location at time t where Trit < t <
Triy1.t in a trajectory segment < T'r;,Triy1 > is approxi-
mated by normal distribution N (u¢, o) with p, as the mean
location of the taxi with standard deviation o:. Here p: is
the estimated location of the taxi at time t between Tr; and
Triy1 assuming constant speed in between.

In the SDD framework, the location used for counting
purposes is a cell so a probabilistic count of the taxi be-
comes the area under the distribution curve bounded by cell
boundaries. As seen in Fig. 6, the area under the curve
bounded by by and b; represents the probabilistic count of
the taxi for that cell location. A taxi segment may also cross
several cells. We find all cells that intersect < T'r;, Tri+1 >.
Then we order all the intersection by their z axis in the di-
rection from T'r;.p.x to Tri41.p.z (if the intersections of all
x axis values are the same, we order by y axis). We repre-
sent the intersection line as < T7;.p,p1,...,Pm, L Tit1.p >.
For each p; and p;+1, we increase the counts of the cell that
the segment < p;,pit1 > is crossing by the accumulative
probability.
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Figure 6: A taxi moves through multiple cells. At
each time t, the distribution of location is adjusted
and the accumulative count distribution for each in-
tersecting cell is adjusted.

A taxi trajectory segment is an unknown distribution un-
til the taxi reports T'r;4+1. Unlike requests, each taxi reports
both endpoints so the distribution can represent the vari-
ance in segment lengths (Fig. 4). The taxi count may be
incomplete until some future time and this can be handled
by keeping a window of counts on the taxi streams for 7.,
time where T, is the maximal interval between two sam-
pling points.

3.3 Equiblirium Finder (EF)

The Disequilibrium Detector (discussed in Section 3.4)
determines the service disequilibrium through Poisson hy-
pothesis testing using the expected number of requests that
a given number of taxis can serve. This ratio is called the
equilibrium service rate geq. The service rate is similar to
a disease infection rate, but in the taxi service context, the
“infection rate” is the number of requests that a location’s
population of cruising taxis could serve. In a perfect sys-
tem, the service rate should equal one, implying a perfect
matching of requests to taxis. Realistically, this may never
occur because of incomplete information and lack of coordi-
nation. The Equilibrium Finder’s goal is to determine this
equilibrium rate given the region’s density of requests and
taxis.

The service rate is the ratio of request count r to the
cruising taxi count c¢; however, the rate at equilibrium is
unknown in a system that only counts the known satisfied
requests. The service rate should also include the un-served
requests, or a reasonable estimate. The EF estimates this
value by simulating the random injection of requests and
attempting to match them with a cruising taxis within an
arbitrary 100 meter radius until reaching a saturation point.
We can define the rate of service rs for the requests using
the total number of served requests and total requests as
seen in Eq. 1 where 74,5 is the number of requests served,
rinj is the number of requests injected, and 7inj,ser is the
number of injected requests that are served.

rs — Tobs + Ting,ser (1)
Tobs 1+ Tinj
We wish to learn the ratio geq of served requests and cruis-
ing taxis as defined in equation 2 at equilibrium. We define
the equilibrium as the saturation point where a certain per-
centage of the requests are satisfied.

Tobs + Tinj,ser
Geq = (2)
Cobs

Algorithm 1 summarizes the injection process used to de-
termine geq. Given an area A and the desired saturation

Algorithm 1 INJECTION(area A, rs threshold 0)

Require: area A with r.5s and cops, and rs threshold 0
Ensure: The estimated gcq for region S

1: Tinj ‘= 0

2: Ting,ser +— 0

3: while rs4 < 0 do

4: create random request r; € A
5: Tinj ‘= Tinj + 1

6: if r; matches a ¢; € A then
7 cj.occupied := true

8: r;.served 1= true

9: Ting,ser ‘= Tingj,ser + 1
10: else
11: rj.served := false

12: end if
13: update rsa < 60

14: end while
15: return g, =

TobstTing,ser
Cobs

threshold 0 for the rate of service, the algorithm injects ran-
dom requests by randomly selecting locations in the area
based on the historical distribution of requests in the previ-
ous 30 minutes. It attempts to match the injected requests
with cruising taxis (lines 4-12) while counting them appro-
priately. This continues while rs > 6 (line 3).

Algorithm 2 is a supporting algorithm that calls Algo-
rithm 1 after partitioning the entire region S into smaller
areas. It performs this partitioning because the distribution
of activity in the entire area is not necessarily reflective of
localized areas. In addition, because there is a distinct pat-
tern to taxi activity over time, the ¢.q can vary with time of
day. Therefore, for each area and each hour, this algorithm
calls the injection algorithm to find an average geq that is
implicitly weighted by each area’s activity. The final result
of the algorithm is a lookup table of hourly g, values that
the Disequilibrium Detector calls upon. The framework can
do this process offline whenever desired because it uses per-
sistent historical data patterns.

Algorithm 2 CREATE_Q_TABLE(region S, rs threshold 0)

Require: region S and rs threshold 6
Ensure: The estimated g for region S per hour h

1. partition S into area set A with associated rops and cops
2: for hour h:=1— 24 do

3: for area a := 0 — |A| do

4: q:=0

5: for injection i :=1 — n do

6: q = q + INJECTION(Alal, 8)
7 end for

8: q:=q/n

9: g-table_insert(Alal, h, q)

10: end for

11: end for

12: return ¢ table

The PC counts the requests and taxis per time unit but
the framework is interested in establishing a service rate
over a time interval to avoid spurious counts. The EF can
establish the request rate by adding the number of requests
observed during a subset of the history window. Likewise,



P(D|Ho) = [] P(ci ~ Po(c % geq)) (3)
S; G
P(D|H:) = ] P(c} ~ Po(ci X geg)) X (4)
S;,eS

[T P~ Po(cf x geg x B))
S;eG-S

it can establish the taxi rate, but with a caveat. The PC
distributes a stationary request over a time interval, which
means it counts a request only once. The PC distributes
the taxis as well, but the adjustment at each time unit effec-
tively forces the PC to count it multiple times. As a simple
example, consider a static taxi in a cell. At each time unit,
the probability the taxi is located in the cell is always one
but counted 300 times in a five-minute window assuming
one-second time granularity. The EF adjusts it by dividing
the sum of taxis over the history window size to establish
the taxi rate.

3.4 Disequiblirium Detector (DD)

We describe two methods of detecting regions of disequi-
librium. The first one uses Bayesian scan statistics over the
probabilistic counts and the second one uses Poisson test-
ing. The Bayesian method detects hotspots and outliers. It
is possible for this method to detect an under-served region
even though the region only has slightly more requests than
outside and is still over-served. The Poisson-based testing
does not depend on a comparison between a region and out-
side and can detect an under-served region even when the
whole space is under-served.

3.4.1 Baysian Scan Statistics

The space is partitioned into an N x N grid G. We want
to find regions S in GG where the ratio of the probabilistic
count of requests over the count of cruising taxis is higher
than the region outside S. For a given dataset D at a time
snapshot, the null hypothesis Hy is that the requests follow
a Poisson distribution based on cruising taxis Reps ~ Po(qx
Cobs) against the alternative set of hypothesis Hi(S), each
representing a higher number of requests in a region S.

Now we want to calculate the probability P(Hy|D) and
the probability of P(H1|D) as in Equation 3 and 4. Here
for each cell S; of G, we use ¢} to represent the probabilistic
request count and c{ to represent the count for probabilistic
cruising taxis.

Using the Bayesian rule, we have P(Ho|D) =
and P(H,|D) = ZLLEUEE) where P(D) =
> s P(D|H1)P(H:). We assume the prior probability of an
under-served region is p. Then P(Hp) = 1 — p. We also as-
sume the probability of the outbreak is equally distributed to
any region. Thus, P(H1(S)) = NLS where Ng is the number
of possible regions. For under-served detection, (§ is larger
than 1 while 8 will be between 0 and 1 for over-served de-
tection. We discuss setting [ for under-serving but the over-
serving case can be derived similarly. Since we do not know
the exact value of 3, we use a discrete uniform distribution
for 8, ranging from 1...3 at intervals of 0.2. We call P(H:|D)
the F* score of the dataset D and use F™* to detect service

P(D|Ho)P(H1)
P(D)

P(D|Ho)P(Ho)+

disequilibrium which will be discussed in details in section
4.2.2.

3.4.2 Region-based Poisson Testing

The Disequilibrium Detector determines a region’s ser-
vice disequilibrium through Poisson hypothesis testing. For
each region S € G, given the service rate and the count
of observed taxis and requests, it labels a region according
to Table 1. The detector labels a region as over served if
the requests are more than expected given the number of
cruising taxis in that region; however, this may also result
from no reported requests. Similarly, it labels a region as
under served if the requests are more than expected given
the taxis in that region; however, this could also results from
no taxis. There is an ‘unknown’ category representing re-
gion with no known requests and taxis, which may indicate
an un-servable region or that there is no data for that time.
Well-served regions are those with observed requests that do
not significantly deviate from the expected requests.

Category Level Requests Taxis
over served -2 X
over served -1 X X
well served 0 X X
under served +1 X X
under served +2 X

unknown NA

Table 1: Service Balance Categories. The level de-
pends whether there are requests or taxis in the re-
gion (x indicates that data exists for that attribute).
Unknown represents regions that have no known re-
quests or taxis.

We compare the null hypothesis that the observed request
does not significantly deviate from the expected requests
with the alternative hypothesis of deviation for a region. It
uses the service rate at equilibrium to calculate the likeli-
hood it deviates by first determining the expected number
requests as Er = @eq X Cobs. Er then becomes the Poisson
distribution mean (Equation 5).

For a given region, multiplying the service rate by the ob-
served taxi count produces the expected number of requests.
The goal is to use this as the mean of a Poisson distribu-
tion to determine if the observed number of requests signif-
icantly deviates from the normal expectation. Depending
on the results of the two-tail hypothesis test (Equation 6),
the framework can label it according to the table. Rejec-
tion of the null hypothesis means the counts determine the
level, otherwise, the null hypothesis is accepted and it labels
the location as well served. This occurs for each time unit
leading to a time-series of maps.

Reops ~ Po(A = ERr = geq X Cops) (5)
Hy : A= Er Assume Hy is true (6)
Hi : \# Er Reject Ho if :

P(Robs < Er) < /2 or

P(Rops > Er) > 1— /2

4. EVALUATION
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Figure 7: An example result of the Region-based Poisson Test on the Shanghai metropolitan region at 8 am.
The region is divided in to 1km by 1km cells with the shading indicating the disequilibrium.

4.1 Data

Shanghai is a metropolitan area in eastern China with
over 23 million denizens and a taxicab service industry with
approximately 45 thousand taxis operated by over 150 com-
panies [11]. To demonstrate our framework, we use a collec-
tion of GPS traces for May 29, 2009. The data set contains
over 48.1 million GPS records (WGS84 geodetic system) for
three companies between the hours of 12am and 5:30pm and
over 468,000 predefined live trips of 17,139 taxicabs.

The region was limited to 31.0 —31.5° N, 121.0 — 122.0°F
to remove extreme outliers and limit trips to the greater
metropolitan area. Furthermore, only trips greater than
five minutes are included since erratic behavior occurred
more often in those below that threshold. Similar erratic
behavior occurred with trips above three hours, often the
result of the taxi going out of service, parking, and showing
minute but noticeable movement from GPS satellite drift.
The three-hour threshold is partially arbitrary and partially
based on the distribution of trips times. While relatively
rare, there are times when taxis spend over an hour on a
cruising trip, but cruising trips over three hours occur much
less frequently. These reductions left over 306 thousand live
trips from which we constructed a stream of requests using
live trip start times and locations. This resulted in an av-
erage of approximately 5 pickups per second, distributed as
shown in Fig. 8.

For each taxicab, we defined a cruisin trips as the time and
distance between the ending of one live trip and the begin-
ning another. Using the cruising trip endpoints, we form the
cruising trip segments from the 48 million individual GPS
records. This resulted in over 21.4 million cruising trip seg-
ments that become the stream of taxicab location reports.
The average trip segment is approximately 24 seconds and
100 meters. Fig. 9 is the distribution of cruising trips seg-
ments using the segment start time and Fig. 10 shows how
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Figure 8: Distribution of requests per hour using
the live trip start time.

the segment length varies throughout the day. Asshown, the
average length of two consecutive sampling points is smaller
between 3 and 5am, indicating cruising taxis are less mobile
in that time period.

4.2 Framework Evaluation

To validate our framework, we compare the results of the
Bayesian Scan Statistic and the Region-based Poisson Test-
ing method by examining both methods over synthetically
created outbreaks designed to make an area under-served.
The outbreaks result from injecting requests into specific
areas using the same method as the Equilibrium Finder.
The injection process matches each request with a taxicab
within 100 meters, which it then removes from the dataset
as it adds the injected request data as a pickup. The goal is
to determine if both methods detect the outbreak and the
quickness of detection.
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Figure 9: Distribution of cruising trip segments per
hour based on segment starting time.
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Figure 10: Distribution of cruising trip segments
lengths per hour based on segment starting time.
‘While the average length is 100 meters, there is vari-
ation depending on time of day.

4.2.1 Parameters

We pseudo-randomly selected five areas over the Shanghai
region with interesting characteristics based on preliminary
data examination of 1km x 1km cells. One selected area
is relatively highly active yet routinely over served. Three
areas are more moderately active and contain a mixture of
over-served, under-served, and well-served cells. The fourth
area often has a split between over-served locations with a
high taxi-to-request ratio and under-served locations with a
high request-to-taxis ratio. The last area is a relatively ac-
tive location apart from the Shanghai downtown area. Figs.
11 and 12 is an example of the request and taxicab activity
in the five selected areas at 8 am.

The three independent variables include the injection in-
tensity (the number of injected and satisfied requests), the
length of the outbreak in minutes, and the size of the out-
break area. The injection intensity ranged from 50 to 200
requests, in intervals of 50 requests over four experiments,
with injection based on a normal distribution using mean
outbreak time. This created a period of intensity, followed
by a peak, and that a decrease in intensity. The outbreak
lengths ranged from 10 to 30 minutes in 10 minute intervals
and the outbreak area was 9km?. A second set of exper-
iments using a 16km>. The control variable P(Ho) is as-
sumed as 0.90 For the Bayesian Scan Statistic method and
all experiments used the 7 AM to 12 PM period data with
the outbreak injected requests centered during the 8am hour.

Figure 11: An example of the 8 am request activ-
ity for the five selected areas. Three areas focus on
downtown Shanghai while one area is located some
distance away. The selected area just north of down-
town is a region that preliminary experiments re-
vealed as routinely over served.

Figure 12: The 8 am taxi activity for the same five
areas as seen in Fig. 11.



4.2.2 Outbreak Detection

The Bayesian Scan Statistic outbreak detection uses a
similar process to [7]. We first generate the score F* (see
Section 3.4.1) for each minute between 7 AM and 12 PM
before any outbreak is injected. We then partition these
scores into consecutive 10-minute interval sets, thus each
set contains ten F™ scores which serve as a baseline. Af-
ter the outbreak is injected, the process calculates the new
score F*(t) for each minute and compares it to each of the
ten original F* scores for that 10-minute interval. If F*(¢)
is greater than all original F'* scores within the interval, the
process marks the time as the start of an outbreak. This
process ensures that the false positive is bounded by one ev-
ery 10 minutes. We can also determine false positives, false
negatives, and how quickly it detected the outbreak because
we know when the injected outbreak begins. We focus on
detecting the outbreak and the detection time.

Detecting outbreaks for the Region-based Poisson Test
uses a simpler method. Since the outbreak is affecting both
the request count and taxi count, the result of the Poisson
test can change at each minute; therefore, the first reported
change in an area to under-served after the start of an out-
break signals outbreak detection.

4.2.3 Results

Figure 13 shows the results of performing the detection
under the various parameter values with area sized fixed
at 9km?. Both methods detect the outbreak within a few
minutes; however, the Region-based Poisson Test often iden-
tifies the outbreak quicker than the Bayesian method. The
anomaly in the 30-minute outbreak experiment appears to
be a missing result; however, this is actually the result of a
missed detection. The Region-based Poisson Test detected
the outbreak during the first minute for four of the areas,
but failed to detect the outbreak during for the fifth area.
An examination of data revealed that for several minute
before to the outbreak, the test identified the area as over
served. Then during the outbreak, it became well served
before going back to over served at the end. This results
from a distribution of 50 injections over a 30-minute period
as shown in Figure 14. The per-minute injections are simply
not enough to change it from over served to under served in
this case. Technically, the outbreak was detected therefore
we label this as a pseudo-false negative.

We also performed experiments by expanding the injection
areas to 16km? as shown in Fig. 15. The inner box is
the original area and the outer box is the expanded area.
The results of these experiments were virtually identical as
the other results except the Bayesian often identified area
4 (shown encircled in the figure) later than in the previous
experiment. This appears to only be a factor of the newly
included data of the expand areas.

5. CONCLUSION

Thousands of taxis cruise a metropolitan road network
looking for passengers that may be scattered or clustered in
highly active locations. Taxicab drivers tend to gravitate
to the known clusters, often leading to supply and demand
disequilibrium as areas become under or over served. Our
proposed Service Disequilibrium Detection (SDD) frame-
work identifies regions of service disequilibrium by modeling
the uncertainty resulting from discrete customer requests
and taxicab location information. This modeling allow the
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Figure 14: The injection distribution causing the
pseudo-false negative anomaly. The injections were
enough to change the area to well served from over
served, but not enough to identify it as underserved.

Figure 15: The expanded area used for testing 16km?
areas. The expansion attempts to include some of
the more active surround cells.
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Figure 13: The results of four experiment sets with five fixed sized regions of 9km? and varying outbreak
intensity and length. Both methods detect the outbreaks, but overall, the Region-based Poisson Test detected
the outbreak sooner. The apparent missing data is the result of a pseudo-false negative detection in one area

while it detected the other four areas immediately.

probabilistic counting of taxis and customers such that the
framework can use the counts to determine an equilibrium
point from which two methods, the Bayesian Scan Statistic
and our own Region-based Poisson Test, can quickly identify
emerging regions of disequilibrium. We validate our frame-
work by comparing methods on a set of real taxicab data
from Shanghai, China.

There are several potential future directions for this frame-
work. First, the grid-based approach could become a road
network approach in which the framework analyzes each
road segment instead of a cell. Second, the framework could
provide a recommendation system that can redistribute taxis
and customer to balance the disequilibrium as it emerges. In
addition, the framework could also make recommendations
as a share-ride utility by recommending passengers share
taxis in under-served areas. The key challenge for these
projects would be to ensure real-time performance.
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