
A GPU approach to subtrajectory clustering using the
Fréchet distance

Joachim Gudmundsson
∗

University of Sydney and NICTA
†

Sydney, Australia.
joachim.gudmundsson@sydney.edu.au

Nacho Valladares
‡

IMA, Universitat de Girona
Girona, Spain

ivalladares@ima.udg.edu

ABSTRACT
Given a trajectory T we study the problem of reporting all
subtrajectory clusters of T . To measure similarity between
curves we choose the Fréchet distance. We show how the ex-
isting sequential algorithm can be modified exploiting paral-
lel algorithms together with the GPU computational power
showing substantial speed-ups.
This is to the best of our knowledge not only the first GPU

implementation of a subtrajectory clustering algorithm but
also the first implementation using the continuous Fréchet
distance, instead of the discrete Fréchet distance.

Categories and Subject Descriptors
F.2.0 [Analysis of algorithms and problem complex-
ity]: General; D.1.3 [Parallel programming]: Concurrent
Programming

General Terms
GPU programming, Algorithms

Keywords
Clustering, movement patterns, GPU, parallel programming

1. INTRODUCTION
Recent technological advances of location-aware devices

produce numerous opportunities to trace moving entities.
Due to this the number of commercial and academic projects
around the world tracking animals, people and vehicles has
increased dramatically. For example, elephants are tagged

∗Funded by ARC grant FT100100755.
†NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program.
‡Partially supported by the Spanish MCI grant TIN2010-
20590-C02-02.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL GIS ’12, November 6-9, 2012. Redondo Beach, CA,
USA Copyright c⃝ 2012 ACM ISBN 978-1-4503-1691-0/12/11 ...$15.00.

to map their migration behaviors which is needed for urban
planning, the movement of soldiers is monitored to analyze
how they react to different conditions and how they behave
in a group, vehicles are tracked to detect commuting be-
haviors with the aim of improving traffic conditions and,
finally, the positions of football players are extracted to an-
alyze their performance.

In this paper we focus on the problem of detecting subtra-
jectory clusters in a trajectory. That is, we search for similar
subtrajectories along a single trajectory, as is illustrated in
Fig. 1a. Depending on the application a subtrajectory clus-
ter (SC) can have a different meaning. For example, for
a person a SC might indicate a daily commuting behavior
between home and work. When tracking birds a SC might
indicate annual migration behavior or regular movement be-
tween the nest and foraging areas. A final example, which we
will focus our attention on in this papers, is football where
a subtrajectory cluster indicates frequent movements on the
field performed by a player, see Fig. 1b for an example.

More formally, following the definition from [7], the input
is a moving point object in d-dimensional Euclidean space,
called entity, whose location is known at n consecutive time-
steps. We assume that an entity moves between two consec-
utive time steps on a straight line. Given the trajectory T of
a moving entity, an integer m > 0 and two positive real val-
ues ℓ and ε, we define a subtrajectory cluster C as a set of at
least m subtrajectories of T , where the subtrajectories are
within distance ε from each other, at least one subtrajectory
has length ℓ and the time intervals of two subtrajectories in
C overlap in at most one point.

To measure spatial similarity we choose the Fréchet dis-
tance between (sub)trajectories. In this paper we only con-
sider the trajectory as a directed curve in 2D, thus invariant
under differences in speed: for instance, in a transportation
context, this allows us to detect a commuting pattern even in
the presence of different traffic conditions and varying means
of transport. However, speed can be taken into account by
considering time to be the third dimension. The algorithm
presented in this paper works for any dimension, so does
the Fréchet metric, but for the application we consider the
variance in speed is of minor importance.

The problem was considered in [7] in which the authors
also developed approximation algorithms using both the dis-
crete Fréchet distance and the continuous Fréchet distance.
Their algorithms have a running time of O(ℓn2) and O(n3m·
2α(n/m)(logn log(n/m) + m)) when using the discrete and
continuous Fréchet distance (to be defined), respectively. In
the case when at least one of the subtrajectories in a cluster

has to start and end at vertices of the trajectory the algo-
rithm requires O(n2ℓ) time and O(nℓ2) space, which is also
the version we will focus on in this paper. Their algorithm
can be modified to return many different outputs depending
on the settings, however, in general it reports a set of sub-
trajectory clusters where each cluster C in the set contains
at least m subtrajectories of T , at least one of the subtrajec-
tories has length ℓ and the Fréchet distance between any two
subtrajectories in C is at most 2ε. Due to this the algorithm
is said to be a 2-distance approximation algorithm.
For the discrete Fréchet distance only distances between

vertices are computed. The discrete Fréchet distance works
well in the case when the input data is very dense. In these
cases there is only a small difference between the discrete
and continuous Fréchet distance. However, in most cases
the data is not dense, and even in the case when the input
data is dense one often wants to compress the data by using
a simplification algorithm [8, 14]. In most realistic settings
the input data can be compressed to 5 − 10% of its origi-
nal size, thus developing a practical approach for trajectory
clustering using the continuous Fréchet distance is a cru-
cial open problem. Note that due to the high complexity
only the algorithm using the discrete Fréchet distance was
implemented and tested in [7].

(b)(a)

Figure 1: (a) Illustrating a subtrajectory cluster.
(b) An example of a subtrajectory cluster reported
from a trajectory of a football player.

1.1 Related results
Vlachos et al. [22] state that in the area of spatio-temporal

analysis it is important to detect commuting patterns of
a single entity, or to find objects that move in a similar
way. An efficient clustering algorithm for trajectories, or
subtrajectories, is essential for such analysis tasks. Gaffney
et al. [12, 13] proposed a model-based clustering algorithm
for trajectories. In this algorithm, a set of trajectories is
represented using a regression mixture model. Specifically,
their algorithm is used to determine cluster memberships
and it only clusters whole trajectories. Lee et al. [17] ar-
gued that clustering trajectories as a whole would not de-
tect similar portions of the trajectories. Instead they sug-
gested an approach that partitions a trajectory into a set
of line segments and then group similar segments. The ob-
vious drawback is that only segments are clustered, while

a commuting pattern might be a complicated path whose
shape may not be captured by a single segment. Mamoulis
et al. [18] used a different approach to detect periodic pat-
terns. They assumed that the trajectories are given as a
sequence of spatial regions, for example ABC would denote
that the entity started at region A and then moved to region
C via region B. Using this model data mining tools such as
association rule mining can be used. Vlachos et al. [22] also
looked at discovering similar trajectories of moving objects.
They mainly focused on formalising a similarity function
based on the longest common subsequence which they claim
is very robust to noise. However, their approach matches
the vertices along the trajectories which requires that the
vertices along the trajectories are synchronized, or almost
synchronized, which is rarely the case. If the trajectories
are simplified (compressed) in a preprocessing step then the
data will also not be synchronized.

1.2 Problem setting
As mentioned in earlier work [5, 16], specifying exactly

which of the patterns should be reported is often a sub-
ject for discussion. In this paper we focus on reporting all
SCs whose length is above a given threshold ℓ containing at
least m subtrajectories. A cluster C of (sub)trajectories has
length at least ℓ if there exists a (sub)trajectory in C whose
length along T between its start- and endpoint is at least ℓ.

Definition 1. Given a trajectory T with n vertices, a
subtrajectory cluster CT (m, ℓ, ε) for T of length ℓ consists of
at least m subtrajectories τ1, . . . , τm of T such that the time
intervals for any two subtrajectories in the cluster overlap in
at most one point, the distance between the subtrajectories
is at most ε, and at least one subtrajectory has length ℓ.

In Definition 1 we omitted to define the distance metric.
Many of the fundamental problems in this area of research
have one issue in common, namely calculating the similarity
between two trajectories (or subtrajectories). Simplified, the
problem is as follows. Given two (polygonal) curves f and g,
one would like to match them up in an optimal way (i.e., find
a continuous mapping from the points of f to the points of g,
so that the mapping maps the endpoints of one curve to the
endpoints of the other curve). Such a mapping is especially
useful if it is associated with an appropriate metric. The
Fréchet metric is one of the most natural measures of this
type: For completeness, we include the formal definitions of
these distance measures here.

Definition 2. Let f : I = [lI , rI] → Rd and g : J =
[lJ , rJ] → Rd be two curves, and let | · | denote the Euclidean
norm1 in Rd. Then the Fréchet distance δF (f, g) is defined
as

δF (f, g) = inf
α:[0,1]→I
β:[0,1]→J

max
t∈[0,1]

|f(α(t))− g(β(t))|,

where α and β range over continuous and increasing func-
tions with α(0) = lI , α(1) = rI , β(0) = lJ and β(1) = rJ .

This is also known as the person-dog metric: imagine a
person walking on f and a dog walking on g. The Fréchet
distance between f and g is the shortest leash that enables
both the person and the dog to travel along f and g with a

1Other norms are possible as well, see Alt and Godau [3].

leash connecting them. Playing around with this metric, one
realizes that because of the continuity requirement on the
mapping f , this measure is in most cases much better suited
than the classical Hausdorff distance between the curves [4],
or many other proposed metrics (the Longest Common Sub-
sequence model [22], a combination of parallel distance, per-
pendicular distance and angle distance [17], the average Eu-
clidean distances between paths [19] and so on [15]). Unfor-
tunately, in the continuous setting, computing the Fréchet
distance between two curves requires quadratic time in the
complexity of the curves [3]. It is currently an open ques-
tion if it is possible to do better than quadratic even when
one tries to approximate this quantity within a constant
multiplicative factor. Alt [2] conjectured that the decision
problem may be 3SUM-hard (i.e. a subquadratic time al-
gorithm is unlikely to exist). The only subquadratic algo-
rithms known are for restricted classes of curves such as for
closed convex curves and when the input has low density ↪A(k-
packed, k-straight, k-bounded) [10]. Very recently Agar-
wal et al. [1] showed that the discrete Fréchet distance can
be computed in subquadratic time, namely in O(n2 log logn

logn
)

time.
For a set of m > 2 curves there is a natural extension due

to Dumitrescu and Rote [11].

Definition 3. For a set of m curves F = {f1, . . . , fm},
fi : [ai, a

′
i] → Rd we define the Fréchet distance as

δF (F) = inf
α1:[0,1]→[a1,a

′
1]

...
αm:[0,1]→[am,a′

m]

max
t∈[0,1]1≤i,j≤m

|fi(αi(t))−fj(αj(t))|,

where α1, . . . , αm range over continuous and increasing func-
tions with αi(0) = ai and αi(1) = a′

i, i = 0, . . . ,m.

1.3 GPU programing model
GPU manufacturers provide tools and software so users

can exploit GPU parallel capabilities. Each manufacturer
has its own technology and consequently its own software.
For instance, the AMD/ATI technology is based in the AMD
App acceleration model, while Nvidia GPU’s are CUDA
based. Despite the parallel algorithm presented in this paper
can be applied to any parallel technology we use a NVidia
GPU card for the implementation.
CUDA (Compute Unified Device Architecture) [20, 21]

is the computing engine in NVidia GPUs which is designed
to support various languages and application programming
interfaces. It is accessible to software developers through
variants of industry standard programming languages like
CUDA c or OpenCL.

CUDA programming model.
The basis of the CUDA programming model are threads.

Threads are lightweight processes which are easy to create
and to synchronize. The user writes programs called kernels
and its execution is scheduled according to the distribution
of threads. Threads are organized into blocks and blocks are
organized into a grid. The grid and the block dimensions are
defined according to the needs of the problem. All threads
of the same kernel are executed in parallel and, typically,
each one computes a result element. The GPU contains a
number of multiprocessors consisting of a set of independent
processors and each processor is responsible for executing
one thread.

Memory model.
CUDA allows users to access GPU memory concurrently.

The user can choose different types of memory and various
access patterns which significantly affects the performance.

Registers are the fastest type of memory. They are used
to store local variables of a single thread and can only be
accessed by that thread. Each thread is limited to a few
registers per thread depending on the number of threads
used and the GPU capabilities. Shared memory is a very
fast memory which can be as fast as registers if accessed
properly. It is accessible to all thread within a block, thus
enabling cooperation. Its limited in size (up to 48 KB) which
sometimes can makes it complicated to use. The last type
of memory is the global memory which is the largest and
slowest type of memory and is the only one visible from the
CPU. Even though it has an impressive bandwidth, it has a
high latency which is hidden by a large number of parallel
accesses. Depending on the GPU capabilities this area can
be up 8 GB size.

Memory access pattern is an important issue when pro-
gramming. Each memory has its own correct access pat-
tern which should be performed. Despite it being a difficult
task one has to take it into account since the algorithm’s
efficiency is highly dependant on the way the memory is
accessed.

Atomic operations.
CUDA concurrent memory access is a powerful feature

which, in some situations, can entail simultaneous mem-
ory reads and writes causing unexpected results. This is
given by the so-called thread ’race condition’. For a group
of threads that are executed in parallel the thread order ex-
ecution may differ between executions, even when executing
exactly the same code. This follows from the fact that there
is no guarantee that two or more threads reading and writing
in the same position of memory will produce the same result
for different executions. This is a typical scenario in paral-
lel computing. CUDA provides a set of operations called
’atomic operations’ to solve this issue.

Atomic operations are operations which are performed
without interference from any other threads. If a thread is
computing an atomic operation over a position of memory
no other thread can read or write over this position until
the atomic operation is finished. This ensures the correct
computation but atomic operations are very slow compared
to non-atomic operations.

2. THE DATA STRUCTURE
In the following sections we will show how to construct

the data structure in the GPU needed to compute the sub-
trajectory clusters, then in Section 3 we show how it can be
used to report the clusters. The algorithm builds upon the
corresponding CPU algorithm by Buchin et al. [7], which we
now will describe in more detail.

Their algorithm uses the free space diagram of two polygo-
nal curves h and g, which is a geometric data structure intro-
duced by Alt and Godau [3] for computing the Fréchet dis-
tance. Let h be a polygonal curve with n vertices p1, . . . , pn
and let g be a polygonal curve with m vertices q1, . . . , qm.
We use ϕh to denote the following natural parameterization
of h. The map ϕh : [1, n] → Rd maps i ∈ {1, . . . , n} to pi
and interpolates linearly in between vertices. The free space
diagram of two polygonal curves h and g, with n and m

vertices, respectively, is the set

Fε(h, g) = {(s, t) ∈ [1, n]× [1,m] : |ϕh(s), ϕg(t)| ≤ ε}

which describes all tuples (s, t) such that the points ϕh(s)
and ϕg(t) have Euclidean distance at most ε, the so-called
free space of the diagram. See Fig. 2 for an example of a free
space diagram with n−1 columns and m−1 rows, the white
region in the diagram is the free space. Alt and Godau [3]
showed that the Fréchet distance between h and g is less
than ε if and only if there exists an xy-monotone path in
the free space of Fε(h, g) from (0, 0) to (n,m).

ε

h

g

Figure 2: Two trajectories h and g and the corre-
sponding free space diagram with respect to ε.

Consider a free space diagram Fε(T, T) of a polygonal
curve T and itself. In [7] it was noted that if a subtrajectory
τ of length ℓ within T belongs to a subtrajectory cluster
SC(m, ℓ, 2ε) then there exists m xy-monotone paths from
the vertical line intersecting the x-axis at the start point of
τ and the vertical line intersecting the x-axis at the endpoint
of τ . Furthermore, the projections of the xy-monotone paths
onto the y-axis are not allowed to overlap (otherwise the
subtrajectories in the cluster would overlap along T). We
call τ the reference subtrajectory. See Fig. 3 for an example.
Thus the aim is to find all maximal length intervals along
the x-axis where there are m xy-monotone paths from the
left vertical boundary to the right vertical boundary of the
interval.
We assume that the reference subtrajectory will always

start and end at a vertex of T , while no restriction is made
on the start and end points of the other members of the SC.
In Fε(T, T) each cell corresponds to two line segments of T
and the free space in one cell is the intersection of the cell
with an ellipse, possibly degenerated to the space between
two parallel lines [3]. There are at most eight intersection
points of the boundary of the cell with the free space. We
call these intersection points critical points, see Fig. 4. For
each critical point, place a vertex on it in the free space
diagram. Furthermore, all critical points in the free space
of the corresponding row or column are propagated. That
is, propagate critical points on vertical cell boundaries hor-
izontally to the right, and critical points on horizontal cell
boundaries vertically upwards. Consider a critical point p
on a vertical boundary. Move p horizontally to the right in
the diagram until it hits a non-free space boundary. Every
time p moves over a cell boundary an intersection point is
added. When p hits the free space boundary the propaga-
tion stops. Each critical point can generate at most n − 1
propagated critical points. Figure 5 shows an example of
horizontal propagation.
Following the idea presented in [7] we use a labeled graph

with the critical points and the propagated points as vertices

τ

τ

Figure 3: A free space diagram of a trajectory T with
itself. The four xy-monotone curves represents a
cluster with four subtrajectories of T within distance
ε from τ , including τ itself.

so we can later navigate through the graph in order to find
the clusters. Each critical and propagated point has a label
that stores the smallest x-coordinate reachable by an xy-
monotone path via this point.

These are the data structures needed to compute the clus-
ters. In this section we will show how to construct these in
the GPU. After the structure has been constructed one can
easily find the subtrajectory clusters. In Section 3 we will
show how this is done in the GPU. However, for the reader to
have a full understanding of the approach we next describe
the CPU approach.

Using the labeled graph, one can determine whether there
are m cluster curves between two vertical lines ls and lt.
This is done by greedily searching for monotone paths from
ls (start boundary) to lt (end boundary). Let i be the x-
coordinate of ls. Start at the topmost vertex on lt which has
an outgoing edge whose label is at most i. In each vertex
follow the topmost edge whose label is again at most i. This
ends on a vertex (i, j) on ls. Continue with the topmost
vertex on lt at height at most j which as before has an
outgoing edge whose label is at most i. Stop when we have
found m curves, or no more vertices on lt with an outgoing
edge whose label is at most i exist. Note that the edge labels
prevent us from going into dead ends in the graph.

To obtain the labeled graph we need to show how to (1)
compute the free space diagram (Section 2.1), (2) propagate
the points (Section 2.2) and (3) label all the points of the free
space diagram (Section 2.3) in the GPU model. The labeled
graph is then used to report the clusters (Section 3.1).

In the following sections we will focus on a subproblem to
the subtrajectory clustering problem. Given two trajectories
h and g, and a positive constant ε we next show how to
construct the free space diagram for h and g with respect to
ε in the GPU.

2.1 Computing the free space diagram in the
GPU

Inside the GPU it is not possible to use dynamic memory
so all the memory required by a kernel must be allocated
before it is executed. Furthermore the data structure must
be optimized so that a maximum number of threads can

c0 c1

r0

r1

c2 c3

c1

p1

f1

2 2

0 2

0.1 0.9 0.1 1.0

r3
0

4

c2

p2

f2

1 2

0 1

0.1 0.2 0.9 0.9

1

3

l1

l2 1

0 0 0

1 1

T
0
−

s
e
t

T
1
−

s
e
t

R
1
−
s
e
t

R
0
−
s
e
t

Figure 4: An example of F(h, g) where n = 1 and m = 2.

access any position in memory in constant time. Here we
will discuss the structure used to compute the free space
diagram.

2.1.1 The free space diagram inside the GPU
As input we are given two trajectories h = ⟨h1, . . . , hn⟩,

g = ⟨g1, . . . gm⟩ and a positive constant ε. Next we will
show how to construct the free space diagram in the GPU.
Each cell in the free space diagram is a convex polygon, but
instead of storing the whole polygon structure we just store
the critical points (the intersections between the boundary
of the cells with the free space), see Fig. 4. There are at
most eight critical points per cell in the free space diagram.
The critical points of each cell is divided into two sets;

the set of points on the top boundary (T -set), not including
the ones in the corners of the cell, and the set of points on
the right boundary (R-set). Thus each cell in the free space
diagram will be stored as two sets. We store every critical
point as floats in the interval [0, 1] indicating the distance
from the left or bottom boundary of the cell.
We create a matrix M with 2(n + 1) columns and m +

1 rows, M [0..2(n + 1) − 1, 0..m]. For each column in the
free space diagram we have two columns in M ; one for the
T -set and one for the R-set. The first two columns of M
correspond to the left boundary of the leftmost column in
the free space diagram. Note that the T -set in this column
(T0 − set) is an empty set and it is only included to make
the structure uniform. Finally, there is an extra row for
the points on the bottom boundary of the bottommost row,
Fig. 4.
Inside the GPU, each column i of the matrix M is stored

in three arrays. The counting array ci[0..m] is an integer
array such that ci[j] stores the number of critical points in
cell (i, j) of M . The positioning array pi[0..m] is also an
integer array and stores the prefix sum of ci, that is

pi[0] = 0 and pi[j > 0] =

j−1∑
k=0

ci[k] = pi[j − 1] + ci[j − 1].

Finally, the critical points array fi[1..k] is a float array,
where k is the total number of critical points in column i
of M . With this structure we can easily access any cell or

critical point using the fact that the critical points of the cell
(i, j) in the free space diagram starts at position (p2i[j] + 1)
of f2i and is stored in c2i[j] consecutive positions of f2i. We
will refer to this entire structure, (M, c, p, f), as F(h, g), and
Fi(h, g) as the ith column of F(h, g). An example is shown
in Fig. 4.

Finally an additional array l is initialized to store the label
of each point (to be defined in Section 2.3).

In the rest of this section we assume that Fi(h, g) fits in
the GPU memory. However this is not always possible and
in Section 3.2.1 we will explain how to partition the free
space diagram into smaller pieces where the data structure
for each piece can fit in the GPU memory.

2.1.2 Computing the critical points using the GPU
An optimal scenario in parallel computation is when a

single element can be computed and reported without the
interference from other elements and without requiring the
results from the computation of other elements. Luckily
the computation of the critical points is an optimal sce-
nario since each critical point is independent from the others,
which allows us to compute them very efficiently in parallel.
This process is performed in three steps:

Step 1:
Launch a parallel kernel with (n+1)× (m+1) threads, one
thread for each cell (i, j) in the free space diagram. Here
we imagine a 0th row and column. Each thread computes
the number of critical points in the T - and R-points for that
cell. The number of points in the T -set of (i, j) is stored in
c2i[j] and the number of points in the R-set of (i, j) is stored
in c2i+1[j].

Step 2
Perform a parallel scan [9] over ci to obtain the values needed
to populate the position array pi.

Step 3:
For each i, 0 ≤ i ≤ 2n+1, allocate pi[m]+ ci[m] memory to
fi. Launch a kernel with (n+1)× (m+1) threads, one per
cell in the free space diagram. A thread (i, j) stores the Ti

and Ri critical points starting at position, p2i[j] + 1 for the
T -set and p2i+1[j] + 1 for the R-set.

2.2 Propagate the critical points
We need to propagate the critical points of F(h, g) ver-

tically and horizontally. This process is easy to parallelize
since the propagation of a critical point does not affect the
rest of the propagations. The process is performed in four
steps, see Fig. 5.

Step 1:
For each i, 0 ≤ i ≤ 2n+1, create an auxiliary array accumi of
size m+1 which will be used to keep track of the number of
propagated points in each cell. To populate accum we launch
a kernel with as many threads as critical points in F(h, g),
assigning to each thread a critical point and propagating
that critical point horizontally or vertically, depending on if
the critical point lies on a horizontal or vertical boundary.

Consider a critical point q in a cell (i, j) of F(h, g). If
column i represents a T -set (i is even) then q is propagated
vertically upward otherwise, if column i represents an R-set,
it is propagated horizontally to the right. Assume without

c(i+1)∗2+1

p(i+1)∗2+1

f(i+1)∗2+1

2 2 0

0 2 2 4

0.0 0.7 0.1 00 21accum(i+1)∗2+1

c′(i+1)∗2+1

p′(i+1)∗2+1

3 0 4 0

0 3 3 7

f ′
(i+1)∗2+1

f ′
(i+1)∗2+1

f ′
(i+1)∗2+1

0.0 0.50.1

0

0.5

0.7

0.0 0.50.10.7

0.50.7

0.4 0.3 0.4

0.0 0.4 0.1 0.30.4

gj

gj+1

gj+2

hi hi+1 hi+2

F(i+1)∗2+1

Figure 5: Critical points marked as black disks and
the propagate points as red squares.

loss of generality that column i is even. Move q vertically
upwards until it either hits a non-free space boundary or un-
til it intersects a horizontal cell boundary. Every time q hits
a cell boundary an intersection point is added. When q hits
the free space boundary the thread immediately terminates.
Thus, if q belongs to a T -set then it might generate up to

m − i new propagated points and if it belongs to an R-set
then it might generate up to n−j new propagated points. At
each iteration in the propagation the corresponding accum

cell value is incremented by 1 indicating that there is a new
propagated point in this cell. At the end of the process
accum stores the number of propagated points in each cell.
A complication is that two different critical points can be

propagated to the same cell boundary, and consequently to
the same accum position at the same time in the process.
This can lead to memory interference between threads. To
avoid this situation we use atomic operations when writing
to accum.

Step 2:
For each i, 0 ≤ i ≤ 2n + 1, create an integer array c′i[0..m]
and set c′i[j] = ci[j]+accumi[j], for 0 ≤ j ≤ m. Also create
an integer array p′i[1..m] and set p′i[j] to the sum of c′i[1..j].

Step 3:
For each i, 0 ≤ i ≤ 2n + 1, create f ′

i of size p′i[j] + c′i[j]
and then run a kernel with one thread per critical point in
F(h, g). Note that we now repeat the propagating process
but this time storing the propagated points in f ′. Once this
is done F ′(h, g) stores the free space diagram including all
the propagated points.
Note that the corner points never have to be propagated

(either they already exist or they do not lie in the free space).

Step 4:
For each cell (i, j) inM , if it is a T -set then place the leftmost
point at position (p′i[j] + 1) of f ′

i and the rightmost point
at position p′i[j + 1] of f ′

i . Similarly, if it is an R-set then
place the bottommost point at position (p′i[j] + 1) of f ′

i and
the topmost point at position p′i[j + 1] of f ′

i . This can be
done in parallel with one thread per cell, Fig. 5. This step
is needed to speed up the labeling step that will be describe
next.

2.3 Parallel labeling
The labeling process is the most expensive part of the

algorithm since there is no natural way to parallelize it. The
reason for this is that the label of the points in cell (i, j)

in the free space diagram depends on the labels of all the
points to the left and below cell (i, j). We say that a point u
is reachable from a point v if there is an xy-monotone path
from u to v. Imagine the situation showed in Fig. 6 were the
regions reachable from a are marked in stripes, the regions
reachable from b in lightgray and the regions reachable from
both a and b is shown as checkered.

In Fig. 6 the point v (f[43]) is reachable from both a and
b. If we label all the points in parallel then f ′[43] could be
labeled with any of the two labels a or b depending on the
thread race condition. This is a problem since the algorithm
requires information at each point in the free space diagram
of the leftmost point it can reach with an xy-monotone path.
This is crucial in deciding if there exists a subtrajectory
cluster or not.

To get around this problem we label the points as follows.
We use an integer array l[1..k], where k is the total number
of critical and propagated points in the free space diagram.
For each critical and propagated point p we store a label in
l(p), where p is associated to an integer in [1, k]. Initially
a critical point is labeled with the row index of the cell it
belongs to and a propagated point is initially labeled with
the same label as the label of the critical point that induced
it.

In order to avoid excessive relabeling we compute the la-
beling in several steps. Recall that the labels in f ′

0 and f ′
1 of

M do not have to be re-labeled. So first label all points in f ′
2

(T -sets) with labels from the points in f ′
1, then f ′

3 with the
labels from the points in f ′

2 and f ′
1, f

′
4 with the labels from

the points in f ′
3, f

′
5 with the points in f ′

4 and f ′
3, and so on.

To do this efficiently in parallel we run a kernel with one
thread per point (critical and propagated) in f ′

i and each
thread labels all its visible points. Navigating through F is
easily done using the first and last point of each f ′

i [j].
Even though this avoids a large part of the unnecessary

re-labeling we still have points that are labeled several times.
Some of them can be avoided by defining a new stop condi-
tion based on the idea of which points are reachable by an
xy-monotone path. Observe that all points reachable from a
point u are reachable from a point v if u is reachable from v.
Using this observation, we can force a thread to stop when
it tries to re-label a point v with the same label, or a smaller
label, since this implies that another thread already labeled
it and will label all other points that are reachable from v.

This concludes the construction of the data structure.

3. REPORTING SUBTRAJECTORY CLUS-
TERS

Which clusters that should be reported is often a topic for
discussion, since it often depends on the application. For
instance, is it necessary to report a subtrajectory which has
already been reported in another cluster? Do we allow two
subtrajectory clusters to overlap? Do we want the clusters
of maximum length or the ones with a maximum number of
subtrajectories?

Another major problem is the huge amount of clusters re-
ported if no restrictions are made on the output. Especially
if subtrajectories are allowed to overlap, or if one allow clus-
ters that are very similar but have different representative
subtrajectories. Therefore we made the following restric-
tions on the subtrajectory clusters.

1. Two subtrajectories in a single cluster may only over-

b

v = f [43]

Step 1

gj

gj+1

gj+2

hi hi+1 hi+2
a

gj

gj+1

gj+2

hi hi+1 hi+2

Figure 6: The visibility of points (left). Four poten-
tial clusters found (right).

lap along T in a single point. (Section 3.1)

2. A representative subtrajectory must start and end at
a vertex of T . (Section 3.2)

3. A subtrajectory in a cluster must have length greater
than zero. (Section 3.3)

4. Subtrajectories belonging to different clusters may only
overlap along T in a single point. (Section 3.4)

5. The reported cluster should have maximal length in
the following sense. No two clusters can be merged
into a single cluster (Section 3.2). A representative
subtrajectory cannot be extended in either direction
without destroying the cluster or overlapping with an-
other cluster (Section 3.4).

Consider a free space diagram Fε(T, T) of a polygonal
curve T and itself. Recall that if a subtrajectory τ of length
ℓ within T belongs to a subtrajectory cluster SC(m, ℓ, 2ε)
then there exist m xy-monotone paths from the vertical line
in the free space diagram intersecting the x-axis at the start
point of τ , denoted ls, and the vertical line intersecting the
x-axis at the endpoint of τ , denoted lt. Furthermore, accord-
ing to restriction (2) the projections of any two xy-monotone
paths onto the y-axis are not allowed to overlap in more than
a single point (otherwise the subtrajectories in the cluster
would overlap along T). We call τ the reference subtrajec-
tory. See Fig. 3 for an example. Thus the aim is to find all
maximal length intervals (restriction (5)) along the x-axis
where there are m xy-monotone paths from the left vertical
boundary to the right vertical boundary of the interval such
that the projections onto the y-axis of any two xy-monotone
paths overlap in at most one point.

3.1 Finding m xy-monotone paths in the free
space diagram

Consider the case when we have a fixed representative
subtrajectory, that is the left and right boundaries (ls and
lt) are fixed. In [7] it was shown that a greedy approach
can be used in the sequential setting to decide if there is
m xy-monotone paths between the left and right boundary.
That is, start at the topmost vertex on the right boundary
which has an edge connected to a vertex whose label is ls.
In each vertex follow the topmost edge (decreasing along the
y-coordinate) connected to a vertex whose label is again ls.
This ends on a vertex (ls, j) on the left boundary. Continue
with the topmost vertex on the right boundary at height at
most j which, as before, has an edge connected to a vertex
with label ls. Stop when m curves have been found, or no
more vertices on the right boundary with an edge connected
to a vertex with label ls exist. Note that this guarantees
that restriction (1) and the first part of restriction (5) are
fulfilled.

We propose a semi parallel approach of this process. We
use a thread per point in F2t+2. Each thread, which point
has label ls, moves along adjacent cells of F until they reach
a point in Fs with label ls. This is done without any thread
interference and at the same time. Because each thread has
follow its independent path, the resulting paths may overlap.
The path overlap removing process is difficult to parallelize
because the removal of a path depends on the above paths
which can be removed or not. This leads into several ker-
nel executions to guarantee correct results. We tested this
approach but it is slower than executing the sequential al-
gorithm in the CPU, so we decided to merge our approach
with the one presented in [7]. We found the xy-monotone
paths in parallel using the GPU and then we remove the
overlapped ones using sequential CPU algorithm.

3.2 Sweep the free space diagram
Above we showed how to find all xy-monotone paths in

the free space diagram of two given trajectories h and g. We
can use the same approach to report subtrajectory clusters
within a trajectory T . This can be done by considering T as
the trajectory h and also as the reference trajectory g, hav-
ing T in the both dimensions of the free space diagram. We
want to report all subtrajectory clusters while we consider
all the possible reference subtrajectories within T . To this
end we proceed as follows.

We define s and t as the start and end vertices of a possible
representative subtrajectory T (s, t) of T , respectively. Let
ls and lt be the vertical lines in the free space diagram with
x-coordinate s and t, respectively. The idea is to sweep
ls and lt from left to right while maintaining the number
of xy-monotone paths starting on ls and ending on lt while
fulfilling the restrictions. The number of xy-monotone paths
between ls and lt is denoted λ(s, t) and is computed using
the approach described in the previous section.

Initially set s = 0 and t = 1. If λ(s, t) < m then in-
crease both s and t by 1, until λ(s, t) ≥ m. This implies
that there is a subtrajectory cluster of size at least m and
length |T (s, t)| having T (s, t) as its representative subtra-
jectory. Since we need to find the maximal length cluster
(restriction (5)) we increase t until we reach the first value
where λ(s, t) < m. Then report the subtrajectory cluster
with T (s, t− 1) as a representative subtrajectory.

The process starts all over again by setting s = t − 1.

ℓ r

Cluster size 3 3 4 34 4 4 4 4 4 4

t
s
=

0

T0

T1

T2

Figure 7: Left and right movement for a m = 4. The
reported subtrajectories are drawn fat.

This is repeated until t = n. Since the event points of the
sweepline is the integer coordinates this guarantees that re-
striction (2) is fulfilled. An example of the process is shown
in Fig. 7.
It is important to note that when t moves one step to the

right we only compute the xy-monotone paths from lt−1 to
lt, since all the necessary information is already stored in
the vertices along lt−1. That is, paths found are connected
with the already stored paths on lt−1 obtaining xy-monotone
paths from ls to lt.

3.2.1 Super columns
As mentioned in Section 2 the approach presented in pre-

vious sections assumes that the whole F(T, T) fits in the
GPU memory. This is obviously unrealistic since the struc-
ture uses quadratic space and the trajectory can be very
large, even after it has been simplified. To overcome this
problem we compute F(T, T) in parts using what we call
super columns, that is, a set of M consecutive columns that
fit inside the GPU.
Initially compute and store F0 to FM−1 in the GPU. Su-

per columns are stored as a CPU vector array S[0..n], where
each S[i] contains a pointer to the position in the GPU mem-
ory storing Fi. Next, search for subtrajectory clusters with
s and t in this interval. When s is incremented the previous
column is removed from the GPU memory.
The right boundary, t is incremented as described above

until it reaches the end of the super column. The next super
column is then computed and the corresponding pointers in
the GPU memory is added to the CPU array S. Since all
the necessary information is stored in the last column FM−1

(Section 3.2) we can free up the GPU memory storing all the
earlier column of the super column (see also Section 3.4).
This implies that even if a subtrajectory cluster is very long
the algorithm will find it.
Note that this approach requires that the size of the GPU

memory is Ω(n) since at least one column, Fi is required to
fit in memory. We believe it is a reasonable assumption.

3.3 Paths of zero length
Another issue we have to deal with is when a monotone

T

T

PP0

PP1

PP0

PP1

Figure 8: Two copies of the same two subtrajectories
occurring at two places in the free space diagram.

increasing path has length 0 (constraint (3)). Even though
it fulfills the cluster condition and it is not overlapping any
other subtrajectory, it makes no sense from a practical point
of view. This usually happens when ε is very large with
respect to ℓ, or when a representative trajectory has stayed
within a small spatial region for a long time, which is not
an uncommon situation in real data sets.

To handle this constraint we add an extra constraint to
the xy-monotone paths between ls and lt, namely that no
path is allowed to be a single horizontal segment. Note that
any restriction on the length of the segments can easily be
added.

3.4 Avoiding overlapping clusters
To avoid reporting very similar clusters the fourth con-

straint guarantees that a subtrajectory that is already in-
cluded in a found cluster cannot be included (even in parts)
in a different cluster. The problem occurs for two reasons;
(1) we check all possible start and endpoints for the repre-
sentative clusters during the sweep and (2) the free space
diagram is symmetric we will find the same cluster with the
reference subtrajectory swapped, see Fig. 8.

To handle this we create an array of size n initialized to 0.
Each time a cluster is reported we set all the time steps of
the subtrajectories involved in the cluster to 1. Then when
we search for the xy-monotone paths we check if any of its
time steps have been already been reported. If they have
the corresponding subtrajectory is discarded.

This pruning step also has the additional effect that when
a maximal length reference subtrajectory T (s, t) for a cluster
has been found we do not have to consider any part between
s and t again. The result of this is that all the information
needed during the sweep can be stored in column t− 1, we
do not have to keep any information in the columns between
s and t− 1, which gives a considerable speed-up.

4. EXPERIMENTAL RESULTS
The experimental results have been run using an i5-200

CPU with a Nvidia GTX 580. We studied the running times
and the influence of the input parameters using three differ-
ent data sets. The trajectories of two soccer players during
one match (see the diagrams in Fig. 10 and Fig. 11) and a
trajectory of a bird tracked for one month (Fig. 12). The
soccer data sets have 28, 597 and 27, 894 time steps, respec-
tively, and the bird trajectory has 4, 161 time steps.

4.1 Input parameters
Modifying the input parameters shows a relationship be-

tween the number of reported clusters and the length of the
clusters. In the experiments we only measured the length
of the longest cluster, however, in general the average clus-

ter length increases when the length of the longest cluster
increases. In Fig. 10 left column, we increase ε while m re-
mains fixed. Naturally the length of the longest cluster in-
creases. But the number of reported clusters also decreases,
the main reason is that several clusters may merge into a
single cluster while only a small number of new clusters is
found.
In the right column of Fig. 10, we increase m while ε re-

mains fixed. As m increases the constraint becomes more
restrictive and the algorithm finds less clusters and shorter
clusters. This is what we expected, however, a different
behavior is seen in Fig. 11 when performing the same exper-
iment. As mentioned above, both trajectories are generated
by soccer players, however, the second trajectory was gen-
erated by a goalkeeper and, hence, the distribution of the
points is very different. For the goal keeper the trajectory
is enclosed in a very small region and when ε becomes large
almost every point of the trajectory lies within distance ε
from all other points. As a result the algorithm finds many
clusters of length zero (Section 3.3) which are discarded and
consequently, fewer clusters are reported. Note that, since
T is normalized in the [0, 1]2 space, a 0.15 ε-value repre-
sents 15% of the length of the soccer field, which is approx-
imately the area where a goal keeper player spends most of
the time. This does not happen in Fig. 10 since a “normal”
player moves within a much larger area.
Finally, for the goal keeper trajectory we also tested the

algorithm by fixing ε and varying m. Again, shorter clusters
were reported while the number of clusters found increased.
This is counter-intuitive and we believe it is a result of the
large ε value (0.15), which is much too large to analyze the
movement of a goal keeper.

4.2 Running times
The running times shown in Fig. 10-12 are divided into the

three main parts of the algorithm; building the free space,
label the graph and finding the clusters. The total time in-
cludes the time of computing the subtrajectory clusters and
reporting them. As expected the most expensive process is
the labeling (Section 2.3) which is the part of the algorithm
that is not using the parallelism fully. Note that the running
times depend on ε while ℓ’s value has a minor effect.
Finally we compared the clustering method implemented

in [7] that uses the discrete Fréchet distance for the CPU
model with our method that uses the continuous Fréchet
distance in the GPU model, see Fig. 9. Note that the theo-
retical bound on the running time of the CPU algorithm is
O(n2ℓ), which is also supported by the experimental results.
The algorithm was able to handle data sets containing up
to 39k points, anything larger caused it to crash.
Clearly the CPU algorithm grows much faster than the

GPU algorithm presented in this paper. The GPU algorithm
was tested with trajectories with up to 113k points without
any problems.

5. CONCLUSIONS
In this paper we presented a parallel algorithm to compute

subtrajectory clusters using the continuous Fréchet distance
between curves as a measure of proximity. We show how
the steps in the original algorithm by Buchin et al. [7] are
mostly parallelizable, which results in a large improvement
in running times. The running times strongly depend on
the labeling since there is no natural way of parallelizin that

Figure 9: Clustering running times varying n. The

results shown are, for the GPU, using the continuous

Fréchet distance and, for the CPU, using the discrete

Fréchet distance

Figure 10: Soccer data set player. 28597 time steps.

Figure 11: Soccer data set player. 27894 time steps.

Figure 12: 1 seagull data set. 4161 time steps.

step.
Previous implementations of the subtrajectory clustering

algorithm have all used the discrete Fréchet distance instead
of the continuous. The main advantage with using the con-
tinuous is that it allows us to apply compressing techniques
to the input data. Various studies have shown that a tra-
jectory can be compressed to 5%-10% of its original size
without loosing much information. Thus our implementa-
tion gives us the ability to handle much larger data sets
than previously possible.
It is important to remark that there exists best practices

and programming techniques to reach the maximum perfor-
mance of the GPU [6]. In our paper, most of these guide
lines and recommendations are very difficult to enforce due
the complexity of the algorithm.

6. REFERENCES
[1] P.K. Agarwal, R.B. Avraham, H. Kaplan, and

M. Sharir. Computing the discrete fréchet distance in
subquadratic time. CoRR, abs/1204.5333, 2012.

[2] H. Alt. In Efficient Algorithms: Essays Dedicated to
Kurt Mehlhorn on the Occasion of His 60th Birthday,
chapter The computational geometry of comparing
shapes, pages 235Ű–248. Springer-Verlag, 2009.

[3] H. Alt and M. Godau. Computing the fréchet distance
between two polygonal curves. Int. J. Comput.
Geometry Appl., 5:75–91, 1995.

[4] H. Alt, C. Knauer, and C. Wenk. Comparison of
distance measures for planar curves. Algorithmica,
38(1):45–58, 2003.

[5] M. Benkert, J. Gudmundsson, F. Hübner, and
T. Wolle. Reporting flock patterns. Computational
Geometry, 41(3):111–125, 2008.

[6] A.R. Brodtkorb, T.R. Hagen, and M.L. Sætra.
Graphics processing unit (gpu) programming
strategies and trends in gpu computing. Journal of
Parallel and Distributed Computing, pages –, 2012.

[7] K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler,
and J. Luo. Detecting commuting patterns by
clustering subtrajectories. Int. J. Comput. Geometry
Appl., 21(3):253–282, 2011.

[8] H. Cao, O. Wolfson, and G. Trajcevski.
Spatio-temporal data reduction with deterministic
error bounds. The VLDB Journal, 15(3):211–228,
2006.

[9] Nvidia Corporation. Nvidia CUDA 4.1 sdk samples.
http://developer.nvidia.com/gpu-computing-sdk.

[10] A. Driemel, S. Har-Peled, and C. Wenk.
Approximating the fréchet distance for realistic curves

in near linear time. In Symposium on Computational
Geometry, pages 365–374, 2010.

[11] A. Dumitrescu and G. Rote. On the Fréchet distance
of a set of curves. In CCCG, pages 162–165, 2004.

[12] S. Gaffney, A. Robertson, P. Smyth, S. Camargo, and
M. Ghil. Probabilistic clustering of extratropical
cyclones using regression mixture models. Climate
Dynamic, 29(4):423–440, 2007.

[13] S. Gaffney and P. Smyth. Trajectory clustering with
mixtures of regression models. In Proceedings of the
Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 63–72,
1999.

[14] J. Gudmundsson, J. Katajainen, D. Merrick, C. Ong,
and T. Wolle. Compressing spatio-temporal
trajectories. Computational Geometry - Theory and
Applications, 42(9):825–841, 2009.

[15] J. Gudmundsson, P. Laube, and T. Wolle. Movement
analysis. In W. Kresse and D. M. Danko, editors,
Handbook of Geographic Information, chapter 22,
pages 725–741. Springer, 2012.

[16] J. Gudmundsson and M.J. van Kreveld. Computing
longest duration flocks in trajectory data. In Rolf A.
de By and Silvia Nittel, editors, GIS, pages 35–42.
ACM, 2006.

[17] J.G. Lee, J. Han, and K.-Y. Whang. Trajectory
clustering: a partition-and-group framework. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 593–604,
2007.

[18] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou,
Y. Tao, and D. Cheung. Mining, indexing, and
querying historical spatiotemporal data. In
Proceedings of the 10th International ACM Conference
On Knowledge Discovery and Data Mining, pages
236–245. ACM, 2004.

[19] M. Nanni and D. Pedreschi. Time-focused clustering
of trajectories of moving objects. J. Intell. Inf. Syst.,
27(3):267–289, 2006.

[20] CUDA Programing Guide 4.1. Technical report,
Nvidia Corporation, 2011.

[21] CUDA C Programming Best Practices Guide 4.1.
Technical report, Nvidia Corporation, 2011.

[22] M. Vlachos, D. Gunopoulos, and G. Kollios.
Discovering similar multidimensional trajectories. In
Proceedings of the 18th International Conference on
Data Engineering, pages 673–682, 2002.

