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ABSTRACT
Aerial LiDAR (Light Detection and Ranging) point clouds
are gathered by a downward scanning laser on a low-flying
aircraft. Due to the imaging process, vertical surface fea-
tures such as building walls, and ground areas under tree
canopies are totally or partially occluded, resulting in gaps
and sparsely sampled areas. These gaps produce unwanted
holes and uneven point distributions that often produce ar-
tifacts when visualized using point-based rendering (PBR)
techniques. We show how to extend PBR by inferring the
physical nature of LiDAR points for visual realism and added
comprehension. More specifically, the class of object a point
is related to augments the point cloud in pre-processing
and/or adapts the online rendering, to produce visualiza-
tions that are more complete and realistic. We provide ex-
amples of point cloud augmentation for building walls and
ground areas under tree canopies. We show how different
types of procedurally generated geometry can be used to re-
cover building walls. These methods are generic and can
be applied to any aerial LiDAR data set with buildings
and trees. Our work also incorporates an out-of-core strat-
egy for hierarchical data management and GPU-accelerated
PBR with extended deferred shading. The combined sys-
tem provides interactive visually-complete rendering of vir-
tually unlimited-size LiDAR point clouds. Experimental re-
sults show that our rendering approach adds only a slight
overhead to PBR and provides comparable visual cues to
visualizations generated by off-line pre-computation of 3D
polygonal urban models.

Categories and Subject Descriptors
I.3.3 [Computer Graphics]: Picture/Image Generation;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism

General Terms
Algorithms
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1. INTRODUCTION

(a)

(b)

Figure 1: Shaded views of a point cloud color coded
by classes. Green trees, brown ground and pink
buildings. (a) Using basic PBR, white holes are
visible where wall points and ground points under
trees are missing. (b) Using our extended PBR with
added blue point-walls.

Light Detection and Ranging (LiDAR) is a terrain and
urban information acquisition technique based on laser tech-
nology. LiDAR data sets consist of 3D points without con-
nectivity that can be complemented by intensity, RGB color
values and classification labels. Aerial LiDAR is gathered by
mounting a downward-scanning laser on a low-flying aircraft
while terrestrial LiDAR is gathered by mounting a portable
scanner on a tripod and scanning horizontally. The use of



aerial LiDAR data for urban modeling [30, 33] and visualiza-
tion [20, 22] has received increased attention in recent years,
primarily due to its use in conjunction with Global Position-
ing System technology [27]. The interactive visualization of
LiDAR data sets is relevant to a number of areas includ-
ing quality control, security, land management and urban
planning [10, 13, 27].

This paper is primarily concerned with the visualization of
aerial LiDAR point cloud data. Importantly, aerial LiDAR
data can be characterized as being 2.5D in nature, in that
the sensor is only able to capture dense details of the surfaces
facing it [34]. Only a few points typically appear on vertical
surfaces such as building walls and such areas are either
completely occluded or severely under-sampled, as is the
case for ground areas under tree canopies. To provide useful
point-based visualizations of this type of data, one needs
to fill in or augment missing or under-sampled areas that
often produce artifacts like holes as in Figure 1(a). Our
work focuses on augmenting scenes with buildings and trees,
as these objects are predominant in urban areas where the
occlusions and under-sampling is most severe.

We extend the PBR framework to augment aerial LiDAR
point cloud in the offline pre-processing and/or procedurally
generate geometries in the online GPU-accelerated rendering
for more complete and realistic visualizations, by informing
the system with cues relating to the physical properties of
the scanned points, inferred from readily available classifi-
cation information of point clouds.

The 2.5D characteristic of building structures is formally
observed and defined in [34], as “building structures being
composed of detailed roofs and vertical walls connecting roof
layers”. Inspired by exploitation of this characteristic in
building reconstruction [23, 26, 30, 31, 34, 35], we intro-
duce the characteristic to the visualization problem. To re-
construct building walls, for any building point on building
boundaries, we attach a piece of vertical wall connecting to
the ground. Three distinct geometries are explored to use
as wall primitive: point, quadrangle and axis-aligned rectan-
gular parallelepiped (ARP). Point-wall is produced by aug-
menting the point cloud in the pre-processing. Quadrangle-
wall and ARP-wall are procedurally generated in the ren-
dering.

For under-sampled ground areas under tree canopies, we
augment the point cloud with occluded ground points di-
rectly under tree points in the pre-processing.

The large size of aerial LiDAR datasets usually exceeds
the memory capacity of a computer system. Our frame-
work also applies an out-of-core scheme that processes only
a manageable subset of the data at any one time. For per-
formance consideration, it is coupled with a quadtree as the
multi-resolution data structure to provide view-dependent
level-of-detail (LOD). Objects near the viewer are displayed
with more detail than those that are farther away.

Contributions: To the best of our knowledge, we are the
first to utilize the 2.5D characteristic of building structures
to improve visualization.

• We show that the demonstrated framework success-
fully fills the gaps between ground and roofs as well as
under-sampled or missing points under tree canopies,
thus providing comparable visual cues to visualizations
generated by off-line pre-computation of 3D polygo-
nal urban models. Our method has low overhead and
achieves interactive frame-rates.

• We introduce three distinct primitives to reconstruct
building walls.

• We demonstrate how procedural geometry can be im-
plemented at the rendering level of a PBR framework.

• We extend the deferred shading of PBR to handle both
point splats and polygonal geometries.

The rest of the paper is organized as follows. Section 2
summarizes the related literature. A brief overview of the
framework is given in Section 3 followed by implementation
details. Section 4 introduces data structures and the out-
of-core strategy. Section 5 explains the operations that take
place during the pre-processing stage while Section 6 details
the operations carried out in the rendering stage. Finally,
we present experimental results in Section 7 and conclusions
in Section 8.

2. RELATED WORK
LiDAR point clouds are often visualized by using trian-

gles, points or splats.

2.1 Triangles
Many Geographical Information Systems such as ArcGIS [5]

and GRASS GIS [3], and a majority of the systems listed
in [14] support triangular irregular network (TIN) render-
ing of LiDAR data. Because a TIN is generated by directly
triangulating point clouds, missing or under-sampled areas
are recovered by the space-filling nature of triangle meshes.
TIN visualizations also provide the user with important cues
such as surface orientation, lighting and occlusion. How-
ever, TIN visualizations have known drawbacks. (i) Tri-
angulated surfaces emphasize the noisy nature of LiDAR
points so these visualizations are often visually misleading.
(ii) TIN methods are unsuited to vegetation since they are
not well-modeled using continuous surfaces. (iii) Triangu-
lation is compute-intensive due to the lack of connectivity
between points in raw sensor data. (iv) In the case of very
dense point clouds, triangles often cover only one or a par-
tial pixel, making the rendering very inefficient and highly
prone to aliasing.

Alternatives to TIN visualizations are the 3D model ex-
traction methods [17, 35, 36], where a point cloud is trans-
formed into a collection of approximating polygonal surfaces.
These methods have the advantage of providing data re-
duction for large urban scenes, but they commonly discard
points for objects and details that are not modeled such as
fine architectural details, vegetation, street lights, and power
cables.

2.2 Points
To overcome the disadvantages of triangle-based visual-

izations, there are methods for directly displaying points.
Points without connectivity offer unaltered visualizations of
scanner data. Recent systems such as Exelis ENVI [2], Ex-
elis E3De [1], LViz [4], and most software listed in [14] allow
direct rendering of raw 3D points using simple primitives
like pixels, squares or smoothed circles. These primitives
are fix-sized, non-oriented and non-blended, thus the imple-
mentations are fast, but often result in aliased images with
holes lacking important 3D cues.



2.3 Splats
With the advance of programmable shaders, PBR tech-

niques that represent points as oriented discs, commonly
referred to as splats, are now practical for interactive use. A
comprehensive survey of PBR is found in [19]. The book [15]
offers more detailed comparisons of various PBR algorithms.
In the area of LiDAR visualization, the work of [20] applies
a two-pass rendering to efficiently blend splats and the sys-
tem of [22] combines splatting with deferred shading [11] in
a three-pass rendering algorithm.

Overlapped oriented splats can create a visually-continuous
surface without the need for costly triangulation to form sur-
faces among points. Terrain and rooftops are well suited to
PBR because dense splats form good approximations of con-
tinuous surfaces. Rendering vegetation as splats also pro-
duces a more realistic image than the TIN representation
because branches, stems and leaves are represented without
the artifacts of surfaces created by triangulation. However,
an important drawback of splatting appears in areas with
sparse or no points due to occlusions (facades and areas
under tree canopies). These areas appear as holes, often
impairing the comprehension of the rendered image as illus-
trated by Figure 1(a). Our methods address this problem
by extending the PBR with deferred shading [11] framework
which achieves the best trade-off between performance and
rendering quality [15].

3. FRAMEWORK OVERVIEW
An overview of the framework is presented in Figure 2

where the yellow path represents a basic PBR pipeline. Our
framework consists of two parts: an offline pre-process and
an online GPU-accelerated rendering. Pre-processing per-
forms one time operations that are needed to augment the
point cloud and to set-up rendering. The rendering stage
provides the standard rendering passes (detailed in Section 6)
as well as functions to procedurally generate wall geometries
where needed. Users can select from three geometries (point,
quadrangle and ARP) to reconstruct walls. The workflow
varies depending on the choice of geometry, as shown in
Figure 2.

The input is a 3D LiDAR point cloud, as produced by
most scanners. The preliminary classifier attaches labels
to each point for three primary classes of ground, tree and
building. The point cloud is then augmented by adding miss-
ing ground points under trees. Next, building points that lie
on the perimeter of rooftops are labeled as boundary points.
The positions of such points are later used to anchor building
walls. After this step, we have four valid classes: ground,
tree, building and building boundary. Normal vectors are
then computed for all points, this is the last common step
shared by three wall reconstructions as follows.

Point-wall After the additional step to compute nor-
mals for the wall surfaces, point-walls are created by adding
points connecting the building boundaries and the ground.
In the rendering stage, augmented points are rendered as
splats, like all other points, using the standard three PBR
passes.

Quadrangle-wall With the information acquired from
the wall normal estimation step, all points are sent to the
rendering. After the visibility pass that renders points of
all classes as splats, boundary points are processed to create
walls by generating a quadrangle for each boundary point.

Figure 2: Pre-processing and rendering for basic
PBR (yellow), and for our completion methods:
augmented wall points (green), procedurally gener-
ated quadrangle walls (blue) and procedurally gen-
erated ARP walls (red). Corresponding section
numbers are listed in parentheses.

Both quadrangles and splats are sent to the attribute pass
to accumulate per-pixel normals and colors. And finally the
shading pass provides the Phong shading [29].

ARP-wall In many cases it is appropriate to consider the
vertical wall primitive as axis-aligned, so the step to estimate
wall normals is skipped. The remaining rendering steps are
similar to the quadrangle case.

Note that the view-dependent PBR processes will poten-
tially render point splats and quads surfaces each frame.

4. DATA MANAGEMENT
A LiDAR data set is often too large to load and process in

main memory. A common solution is to partition the data
into several manageable subsets and to process these subsets
in sequence in an out-of-core manner [20, 21, 22]. Our sys-
tem utilizes a quadtree hierarchy to manage subsets as [20].
The quadtree construction is inexpensive and the domain



of quadtrees is effectively 2.5D, which is a good match for
aerial LiDAR. The generated structure is light-weight so it
can reside in main memory and be efficiently traversed.

We predefine a maximum number of points to be stored in
each quadtree node and the input LiDAR point cloud is spa-
tially partitioned as a hierarchical quadtree. The root node
covers the whole area and each interior node contains its
bounding box and four pointers to its children. Leaf nodes
contain the bounding box of each subset of the original point
cloud. The quadtree of [20] only stores index information of
points that belong to the bounding box in a leaf node. It
does not apply to our case where indices are dynamic as
the input point cloud is augmented. We write the point
data of each leaf node in sequence to storage as a single file
and attach index information in the file to corresponding
leaf nodes. Although this takes additional time for the one-
time file write operations, our per-frame read operations are
faster than that of [20]. Because our accesses are spatially
coherent, but read operations of [20] extract sparsely located
points from the large original input data file.

The quadtree is also used as the multi-resolution structure
for managing LOD during rendering. Hierarchical traversal
of the bounding boxes enables efficient visibility testing for
the rendering stage. The LOD implementation of [20] loads
points of a visible leaf node into multiple OpenGL Vertex
Buffer Objects [8] (VBOs) and distributes VBOs uniformly
among levels of the quadtree. An interior node does not have
complete data until the collection of VBOs from all descen-
dants are accessed. Our multi-resolution method does not
propagate VBOs from leaf nodes to interior nodes. Rather,
for a visible leaf node, given a current camera position and
the user-defined LOD factor f , we compute the number of
screen pixels n by projecting the bounding box of the leaf
node onto the screen. We then randomly select f ×n points
from the leaf node, load them into VBOs and send them
directly to the rendering pipeline. Since n decreases as the
distance between the leaf node and the camera increases,
the LOD image is created by displaying more points near
the camera and fewer points for areas far from the camera.
To avoid frequent points selection and update, we define an
interval around n and reload points only when the current
calculated n′ is beyond the interval defined by the previous
n. In the experiments, we use [ n√

2
, n
√

2] as the interval.

When processing a subset of points, a k-d tree is built for
each class of points to enable rapid in-class neighborhood
selection. To facilitate rapid between-class neighborhood
selection, the k-d trees are partitioned on the x-y plane to
enable fast accessing of all points with similar (x, y) values.
Given a point (Px, Py, Pz) in class A, its neighbors in class
B are located by seeking points near (Px, Py) in B’s k-d tree
regardless of the difference in z values.

5. PRE-PROCESSING
Pre-processing handles operations that only need one-time

offline computations.

5.1 Classify Ground, Trees and Buildings
The input data are assumed in LAS [24] format. The LAS

standard defines several standard LiDAR classes including
ground, building, water, low vegetation, etc. Our test data
and many other LiDAR point clouds come with classifica-
tion information. In cases where classification tags are not
available, third-party software such as LAStools [18] or those

listed in [14] can be used to generate class information.
Our framework requires points in classes of ground, build-

ing, and all levels of vegetation. For simplicity, we treat all
vegetation as tree points regardless of their sub-classes.

5.2 Augment Ground Points Under Trees
Trees do not possess the 2.5D characteristic, so laser scans

often include both canopy points and ground points under
the tree crown. However, sampling of the ground under the
tree canopy is often sparse as in Figure 3(a). To provide a
hole-free ground visualization, we augment the point cloud
with new ground points in under-sampled areas.

(a) (b)

Figure 3: The demonstration of augmenting ground
points under trees. Tree points are rendered in
green and ground points in brown. (a) Before. (b)
After.

Given an input data resolution d points/m2, a tree point
with position (Tx, Ty, Tz), if there is no ground point at po-
sition (Tx, Ty), we consider the ground as possibly occluded.
In this case, we count the number of ground points n at
position (Tx, Ty) within a radius r in the ground k-d tree.
If n < πr2d, the ground area is considered under-sampled
and we augment the input data with a new ground point
(Gx, Gy, Gz) under the tree point as follows:

Gx = Tx, Gy = Ty, Gz =

∑n
i=1 ziwi∑n
i=1 wi

(1)

where each ground point i in the neighborhood of radius r
has position (xi, yi, zi), and the weight wi is based on its 2D
distance to the new ground point:

wi =
1√

(xi −Gx)2 + (yi −Gy)2
(2)

The radius of the neighborhood r is adjusted depending on
the resolution d of the data set. Experiments on several data
sets with d ranging from 0.5 points/m2 to 25 points/m2 show
that 16 neighbors yield good results and performance, so we

use r =
√

16
πd

for our tests. This method effectively fills the

ground holes under trees as seen in Figure 3(b).

5.3 Label Building Boundaries
Classification only provides categories of ground, trees,

and buildings. To locate walls, points on building bound-
aries (roof edges) need to be identified. We use a threshold
on the number of neighboring ground points to identify if a
building point belongs to the boundary.

Figure 4 shows a bird-eye view of various cases where a
point lies on building boundaries. A building point may be
adjacent to the ground (point A), another building (point



Figure 4: Various cases of boundary points.

B), or trees (point C). We claim that boundary points have
half of their neighboring points in radius r as ground points.
An ideal example is point A. If r does not overlap with the
adjacent building, the claim also holds for point B. Since
ground points under trees are recovered prior to this pro-
cess (in Section 5.2), the claim is still valid for point C. The
neighborhood of any point on roof corners contains even
more ground points than that of point A, B or C, thus cor-
ner points satisfy the claim as well. However, this simple
criterion assumes a constant point sample density. For ar-
eas with a variable point density, and areas that only the
building points near the boundary (for example, point D) in
stead of those right on the edge (point A, B and C) are sam-
pled, there may be too few ground points. In these cases,
we adjust a tolerance δ to find boundary points. Given a
neighborhood radius r and a building point, we count the
number of building points Nbp and the number of ground
points Ngp in the neighborhood. The building point is la-
beled as a boundary point if:

Ngp
Ngp +Nbp

>= 0.5− δ (3)

Equation (3) is only valid if Nbp refers to points from a
single building. In practice, the neighborhood is chosen to
be small enough to only contain points from a single build-
ing as well as to contain a sufficient number of samples for
a valid measurement. Our experiments use a fixed radius
r = 2, corresponding to 2 meters (the datasets are in UTM
coordinates), a distance that is smaller than the distance
between any two buildings yet provides enough samples for
the estimation of (3) given the datasets. A value of δ = 0.1
produces good results in our experiments.

Once a boundary point is identified, the corresponding
ground point directly under it is estimated similarly to aug-
menting the ground point under a tree point (Section 5.2).
Because these two points share the same x-y value, only the
z value of the ground point, i.e. Gz, needs to be stored with
the boundary point. By processing all building points, the
building boundaries are approximated and stored in a sepa-
rate k-d tree. Note that a point labeled as boundary is also
a building point, so it occurs in both k-d trees.

This threshold method is simple but provides good results
in our experiments. If needed, more sophisticated methods
like [9, 12] can approximate building boundary more pre-
cisely with the trade-off of more pre-processing time.

5.4 Estimate Normals
The input of this step is points labeled as trees, ground,

buildings and building boundaries. Only neighbors of the

same class are used to estimate the normal of a point.
We calculate the normal of a tree point as in [20] by the

cross product of vectors formed with two neighbors. Since
tree points are usually sparse and randomly sampled, noisy
normals computed this way lead to a natural appearance of
vegetation.

Since ground points form a large continuous surface, we
use Principal Component Analysis [28] over k nearest neigh-
bors of a point for a more precise normal estimation. As in
Section 5.2, we use k = 16. Since Principal Component
Analysis determines a normal up to a sign, we fix the sign
so that the ground normal points skyward, i.e., the angle
between the normal and the unit vector along z-axis should
be smaller than 90 degrees.

Building points corresponding to a single building form a
continuous surface, so Principal Component Analysis is also
applicable to estimate these normals. However, the segmen-
tation of separate buildings is not available, so we analyze
the k points within the neighborhood radius r = 2 as in Sec-
tion 5.3 to ensure that all neighbors of a building point are
constrained to the same building as the point. The sign of a
building normal is fixed similar to that of a ground normal,
as points on building roofs also faces the sky.

Because boundary points are also building points, they
share the normals computed as above.

Figure 5: Geometric interpretation of Principal
Component Analysis.

5.5 Estimate Wall Normals
When computing the normal of a boundary point as in

Section 5.4, Principal Component Analysis also provides
axes directions of the underlying tangent plane. Let l1 ≥
l2 ≥ l3 be the sorted eigenvalues of the covariance matrix,
and v1, v2, v3 the associated eigenvectors. As shown in the
geometric interpretation in Figure 5, v1 estimates the axis
with greatest variance of the tangent plane, v2 estimates
the other axis of the tangent plane, and v3 the normal at
the point.

To attach a piece of wall to a given boundary point, only
the vertical direction (unit vector along z-axis) of the wall
is assumed and fixed. We use the largest tangent plane axis
direction v1 of the corresponding boundary point to estimate
the horizontal direction of the wall, because the two vectors
are parallel as depicted in Figure 5. The normal of the
wall is then calculated as the cross product of its horizontal
direction and its vertical direction.

5.6 Augment Wall Points
When the user selects point as the primitive to reconstruct

missing walls, a set of augmented points are created to model
the walls.

We know the approximate data resolution d points/m2 of
input LiDAR data. For a boundary point (Bx, By, Bz) with



Gz as the ground height at the foot of the corresponding
wall, the two end points of a vertical line within the wall are
known. Augmented points are created by linear interpola-
tion along z-direction of this line. A number of (Bz−Gz√

d
−2)

equidistant wall points are created and assigned the same
wall normal calculated in Section 5.5 for the boundary point.
The augmented points are then added to a separate k-d tree
for walls. Figure 8(b) shows a rendering result for point
represented walls.

6. RENDERING
Our rendering algorithm is based on a GPU-accelerated

PBR with deferred shading framework [11]. The rendering
of points is summarized in three basic passes.

1. Visibility pass calculates the splat size (radius) and
shape of a corresponding point, and renders the splats
only to the depth buffer with ε-offset that determines
the maximum distance between the two blended splats.

2. Attribute pass renders the splats again. Because
this pass uses the depth buffer from the visibility pass
and disables writing to it, only splats within ε-distance
are blended. Besides depth buffer, other rendering
buffers supported by OpenGL Multiple Render Tar-
gets are used to store accumulated normals and colors
of blended splats.

3. Shading pass traverses pixels of the screen to nor-
malize the accumulated normals and colors stored in
rendering buffers of the attribute pass and to apply
accurate per-pixel Phong shading.

If point-wall representation is selected, the point data is
complete when rendering. The above mentioned 3-pass ren-
ders, blends, and shades points of all classes together to
generate the final image.

If quadrangle or ARP is selected to represent wall geome-
try, the rendering process is modified as depicted in Figure 2.
A procedure runs after the visibility pass to generate wall-
surface geometry as detailed in Section 6.1 and Section 6.2.
The rendering loop is modified to handle both splats and
polygonal primitives as described in Section 6.3.

6.1 Generate Wall Quadrangles
The 2.5D characteristic of building structures assumes

vertical walls, so it is natural to use vertically-oriented quad-
rangles as wall primitives.

For a boundary point (Bx, By, Bz) with Gz as the ground
height at the foot of the wall, a vertical quadrangle is gen-
erated to connect the boundary point to the ground. The
quadrangle height is Bz − Gz and its normal is calculated
in Section 5.5. The width of the quadrangle is 2r, where
r is the radius of the corresponding rendered splat of the
boundary point. Since the splat radius r is calculated in
the visibility pass, the generation of quadrangles can occur
immediately after that pass. We procedurally generate a
triangle fan representing the wall quadrangle in a geometry
shader [7] whenever the splat of a boundary point passes the
visibility pass. As splat radius is designed to ensure overlap-
ping with neighboring splats, quadrangles created this way
also overlap with neighboring quadrangles.

If quadrangles are rendered with a solid color, shading
aliasing artifacts often occur when two quadrangles with dif-
ferent normals overlap, as seen in Figure 6(a). To alleviate

the problem, we render quadrangles with gradient color, so
overlapped quadrangles have smooth color changes as shown
in Figure 6(b). Figure 8(c) shows a rendering result for
quadrangle represented walls.

(a) (b)

Figure 6: Rendering of two overlapping wall pieces
with different normals. (a) Using the same solid
color. (b) Using the same gradient color.

6.2 Generate Wall ARPs
For point clouds that have very low data resolution, the

horizontal direction and normal of a piece of wall surface
estimated in Section 5.5 is often inaccurate. Quadrangles
with inaccurate orientations may produce holes in overlap-
ping areas with neighbors, but rectangular parallelepipeds
are always watertight when viewed from any direction, as
seen in Figure 7. We devise this approach of using ARPs to
represent solid walls without computing their orientations
based on normals.

Figure 7: Comparison of ARP-walls (red rectangles)
and quadrangle-walls (blue segments) over the same
group of boundary points (black dots), viewed from
top. When viewed along the directions of yellow
segments, gaps are found in quadrangle-walls. While
ARP-walls are watertight in all directions.

Because walls stand between the ground and roofs, the
top and bottom faces of an ARP will always be hidden by
the splats of points at the top and bottom. Therefore, only
the vertical faces need to be generated for the ARP. For
the four vertical faces, at most two of them can be seen at
anytime. Similar to the quadrangle approach of Section 6.1,
we use 2r as the width of each vertical face, use the geometry
shader after the visibility pass to generate a triangle fan
representing the two visible faces of a ARP, and use gradient
colors for faces to alleviate shading aliasing. Figure 8(d)
shows a rendering result for ARP represented walls.

6.3 Rendering Extension
The deferred shading of point splats and polygonal ge-

ometries is enabled by sharing the same depth buffer for
the visibility pass and sharing the rendering buffers to accu-
mulate normals and colors. The extended renderer runs as
follows.



(a) (b) (c) (d)

Figure 8: Different wall representations. (a) Orig-
inal roof-only point cloud. (b) Augmented with
point-walls. (c) Augmented with quadrangle-walls.
(d) Augmented with ARP-walls.

1. Points in the classes of ground, trees and buildings are
rendered as splats using the visibility and attribute
passes.

2. Boundary points passing the visibility pass proceed to
a procedure to generate wall geometries as detailed in
Section 6.1 and Section 6.2. To improve performance,
back face culling is implemented for polygons based on
the angle between their normals and the viewing ray.
The visible polygonal geometries are then rendered us-
ing a similar attribute pass as the one used for points.

3. The same shading pass as the basic PBR normalizes
the accumulated normal and color buffers, and applies
per-pixel Phong shading to generate the final image.

7. EXPERIMENTAL RESULTS
The implementations use the C# language under .NET

4.0 environment, OpenGL 2.1, Tao Library [6] and the Cg [25]
language for shaders. Three wall reconstruction approaches
are implemented, we also re-implemented the PBR system
of [11] for comparison.

A computer equipped with dual-core Intel Xeon 2.0GHz
CPU, 4GB RAM, NVIDIA GeForce GTX260 896MB graph-
ics card, Western Digital 7200RPM hard disk and Win-
dows Vista was used for testing. All tests were rendered
at 1280×800 pixels.

7.1 Performance
Table 1 lists basic information of various data sets used

for the experiment. The data of Los Angeles is mostly urban
area consists of buildings and less trees, the other two data
sets are residential areas where plenty of trees can be found.

Table 1: Basic information of test data sets.
Data set Denver Los Angeles Atlanta
File size (MB) 44.0 49.6 104.6

Resolution (pts/m2) 6.6 0.58 22.9
# points (M) 1.64 2.60 5.48
% ground 67 56 42
% building 20 28 16
% tree 13 12 42
% other 0 4 0

The pre-processing is measured in two parts: (i) the time
spent on building up data structures, and (ii) the total time
for all pre-processing operations except classification shown

in Figure 2. Pre-processing is different for different wall re-
construction approaches, so individual times for each choice
of wall primitive are listed. Under default setting, we do ten
runs for each data set with each wall primitive and record
the average time in Table 2. The largest sum of (i) and (ii)
among three wall reconstruction approaches is also listed as
“Maximum total time” for each data set.

The time of (i) is proportionally increasing with the size
of input file and the total number of points. It is also af-
fected by the maximum number of points per quadtree leaf
node. The time of (ii) depends on the number of points
of each class and the actual scene-architectural layout. For
example, given the same number of building points, differ-
ent layouts will obtain varied numbers of boundary points,
thus impacting processing time. Although we cannot de-
fine the precise effects of every factor, the “Average time/M
points” shows that with our test data, the system takes 8-15
seconds to pre-process one million points.

Table 2: Pre-processing time (in seconds) of three
wall reconstruction approaches.

Data set Denver Los Angeles Atlanta
Structure build-up 2.64 4.06 8.56

Point-wall 12.26 18.87 58.23
Quadrangle-wall 11.35 16.64 49.01
ARP-wall 11.16 16.54 48.12

Maximum total time 14.90 22.93 66.79
Avg. time/M points 9.09 8.82 14.91

Ignoring factors like point density and rendering param-
eters such as blending distance ε and splat sizes, the per-
formance of the LOD renderer is mainly dependent on the
number of selected points rather than the total number of
points. By adjusting the LOD parameter, one can always
achieve interactive frame-rates.

For comparisons, we use fixed rendering parameters and
render the scene with full detail, i.e. LOD disabled. The ren-
dering performance of each approach is measured by adjust-
ing the viewport to fit the whole scene area horizontally and
recording the average frame-rate while orbiting the camera
about the scene for a minute. Table 3 demonstrates the ren-
dering performance of three wall reconstruction approaches
and basic PBR with deferred Phong shading where no aug-
mentation or procedurally generated geometries are added
to the input data. All three wall primitives have compa-
rable performance, the quadrangle representation performs
slightly better than the other two. Compared to basic PBR,
the overhead of our method is low. For example, using the
quadrangle wall impacts performance by less than 35% in
these test cases.

Table 3: Rendering performance (in fps) of our
methods and the basic PBR.

Data set Denver Los Angeles Atlanta
Point-wall 42.6 34.1 9.6
Quadrangle-wall 46.8 36 10.6
ARP-wall 42.5 32.5 10.7
Basic PBR 53.2 38.8 16.2
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Figure 9: Denver area. (a) Rendering with quadrangle-walls and LOD factor f = 4. (b) Aerial image from
Microsoft Bing Maps.

7.2 Image Quality
Our method provides visually complete and appealing ren-

derings for both urban areas (Figure 11(a)) and residential
areas (Figure 9(a), Figure 10(a)), despite the variation in
data resolution. Figure 9 and Figure 10 compare our visu-
alizations with corresponding aerial images. Since the point
clouds and images were not acquired at the same time, the
vegetation looks quite different. However, our renderings
provide clear building contours that perfectly match those
in the images.

Figure 8 compares the rendering quality of three wall
primitives. Points provide a unified look of the scene, but
as stated in [20], round and fuzzy splats do not approxi-
mate flat surfaces and edges as well as curved natural fea-
tures. The point-wall is often less visually appealing than
the other two primitives. ARPs represent the sharp corners
of walls best as vertical faces of the primitive form corners
naturally, but because of axis-alignment, they may create
bumpy walls. Quadrangles make the best wall representa-
tion as they provide unified look along vertical direction and
smooth appearance on overlapped areas, if gaps caused by
inaccurate wall orientations are not present.

7.3 Comparison with Other Methods
The state of the art LiDAR visualization systems [20, 22]

were built upon basic PBR with no consideration of occlu-
sions. Figure 1 clearly shows that by adding building walls
and filling ground under canopies, our system provide a bet-
ter visualization than basic PBR.

Figure 11 compares the renderings of our quadrangle-wall
approach with the visualization of complete building mod-
els created offline by [34] on the same Los Angeles area.
Our rendering provides comparable visual information for
buildings as the polygon models provide. The bottom right
close-up even shows finer details of the stadium than the re-
spective model. Since we only consider local neighbors, the
appearance of walls are highly dependent on the quality and
sampling of the raw data. As shown in the top right close-
ups in Figure 11(a), buildings rendered by our method look
less appealing than the corresponding models. However, the
goal of this work is not to compete the image quality with
the compute-intensive urban modeling but to improve the
state of the art interactive city-scale visualization.

8. CONCLUSION AND FUTURE WORK
We are the first to utilize the 2.5D characteristic of build-

ing structures to fill holes in the visualization of aerial Li-
DAR point cloud. We present a system using a hierarchical
and out-of-core approach to data management and GPU-
accelerated PBR with deferred shading. The system treats
points differently by classification and incorporates three
distinct geometries to represent building walls: points, quad-
rangles and ARPs. The method is generic to any data with
buildings and trees regardless of point density. The render-
ing of our PBR system provides comparable 3D cues to those
obtained with polygonal 3D modeling while maintaining in-
teractive frame-rates.

We have found that among the three building wall re-
construction approaches, quadrangle-walls achieve the best
trade-off between performance and image quality. Point-
walls are useful when the processed point cloud is to be
rendered with other rendering algorithms, because the aug-
mented points are added in pre-processing and therefore in-
dependent of run-time rendering algorithm. ARP-walls are
best employed with noisy or low resolution data as this ap-
proach does not require the estimation of a normal vector.

As splats are round and fuzzy, sharp features and corners
are not reproduced accurately with PBR. We will investigate
alternatives to address this problem in our future work. To
improve the visual appearance, texture mapping aerial im-
agery to points is needed and again part of our future work.
The application of non-photorealistic rendering to LiDAR
data is also an interesting area to explore. We also recog-
nize that a semantic framework [16, 32] can further general-
ize and extend the presented approach to other objects than
buildings and trees. The development of a semantic object
description for a more procedural visualization is another
future work.
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Figure 10: Atlanta area. (a) Rendering with quadrangle-walls and LOD factor f = 4. (b) Aerial image from
Microsoft Bing Maps.
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