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ABSTRACT
Outsourcing spatial databases, including both road networks
and points of interest, to a third party Cloud service provider
has attracted much attention from individual and business
data owners. With popularity of mobile devices, provid-
ing instant and reliable location-based services to smart-
phones and tablets has been a major means of delivering
spatial data to real-world users. Therefore, ensuring spa-
tial query integrity in database outsourcing paradigms is
critical. In this paper, we propose a novel road network k-
nearest-neighbor query verification technique which utilizes
the network Voronoi diagrams and neighbors to prove the
integrity of the query result. Unlike previous work that ver-
ifies k-nearest-neighbor results in the Euclidean space, our
approach verifies both the distances and the shortest paths
from the query point to its kNN result on the road network.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Application—
spatial databases and GIS

General Terms
Algorithms

Keywords
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1. INTRODUCTION
Geospatial technology has advanced significantly over the

past decades, especially since the introduction of geospatial
technology and location-based services on mobile devices like
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smartphones. The combination of mobile devices and Cloud-
based solutions is creating a versatile ecosystem for reshap-
ing the way geospatial data are stored, managed, served and
shared. In this new ecosystem, also known as database out-
sourcing, the data owner (DO) delegates the management
and maintenance of its database to a third-party Cloud ser-
vice provider (SP), and the SP server is responsible for in-
dexing the data, answering client queries, and updating the
data on requests from the DOs. Mobile clients, which used
to send their queries to the DO, now submit queries to SP
and retrieve results from SP directly. The general architec-
ture of the database outsourcing model is shown in Figure 1.
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Figure 1: Database outsourcing architecture.

However, as the Cloud service provider (SP) is not the
real owner of the data, it might return dishonest or subop-
timal results to clients out of its own interests intentionally.
For example, an SP which hosts a collection of restaurants
might favor some restaurants who pay more advertisement
fees. On the other hand, although commercial SPs are gener-
ally unlikely to provide unfaithful results to users, they could
act malicious involuntarily and serve false results uninten-
tionally to the end users, e.g., when SP is under attack, or
while the communication channel is compromised between
SP and clients. Therefore, providing a mechanism that al-
lows clients verify the integrity of query results is necessary.

Most existing works [1–3, 5, 6, 9, 11] solve query integrity
problems in the Euclidean space where the distance between
two objects is measured by a straight line. That is, the
distance depends only on the locations of the two points.
Unfortunately, Euclidean distance is not an appropriate dis-
tance measure for many real-world applications where ob-
jects can only move on predefined paths, such as streets on a
road network. Furthermore, there might exist multiple paths
between two points on a road network. Therefore, simply
verifying distances is not sufficient for queries on road net-
works. Consequently, we need an approach which can verify
the path between two points. To the best of our knowledge,
the only related work that studies spatial query verifica-
tion based on road networks is [10]. However, approaches



proposed in [10] do not apply to the network k-nearest-
neighbor verification problem because their approach only
verifies whether the path returned by the SP server is the
valid shortest path between two points, but cannot verify
whether a point of interest (POI) is the closest point (or the
ith closest point) to the query point.

Motivated by the above observations, in this paper we
propose a novel query verification approach that can ver-
ify network k-nearest-neighbor queries with regards to both
distance and path, that is, the k resulting objects have the
shortest distances to the query point among all the POIs
in the database and the path from the query point to each
k-nearest-neighbor result is the valid shortest path on the
network. Our approach authenticates network k-nearest-
neighbor query results based on the neighborhood informa-
tion derived from the POI dataset and the underlying road
network. Specifically, before transferring its POI database
and the road network to the SP server, the owner first par-
titions the network into disjoint network Voronoi cells each
of which is governed by a POI object. Next, a signature is
created on each POI and its surrounding neighbors to formu-
late an authenticated object. Finally, all the authenticated
objects are transmitted to the SP server which hosts the
database service and serves query results to users.

The rest of the paper is organized as follows. Section 2
discusses the network Voronoi diagram and its properties.
Section 3 introduces the authentication data structure. Sec-
tion 4 describes the verification algorithm for network k-
nearest-neighbor queries and proves its correctness. Finally,
Section 5 concludes the paper and provide directions of fu-
ture work.

2. PRELIMINARIES
A road network can be modeled as a weighted graphG(V,E,W)

consisting of a set of vertices V = {p1, p2, . . . , pn} and a set of
edges E = {e1, e2, . . . , ek} connecting vertices. W represents
the cost of each edge in E, for example, the distance, the
traveling time or the toll fees. Given a set of points of inter-
est (POI) P (P⊂V) which are restricted to the edges on the
road network, one can construct the Network Voronoi Dia-
gram (NVD) by expanding shortest path trees from each
POI simultaneously until the shortest path trees meet. The
meeting points are called border points with the property
that the costs from the border point to the two neighboring
POIs are the same.

p2p1 p4 p5

p6 p7

p8 p9 p10

p

p11

p12

p3

p13p12

p14 p15 p16

(a) Road network.

b1 p2p1 1

b2
b5

b
v

b6

b4
b7

b3

b7

p3

(b) Network Voronoi dia-
gram.

Figure 2: An example of road network and network

Voronoi diagram.

An example of a road network and a set of POIs are shown
in Figure 2(a), where p1, p2, and p3 are points of interest
and p4-p16 are intersections on the road network. The corre-
sponding network Voronoi Diagram is shown in Figure 2(b).
In a road network, the distance between any two points p

and q is measured by the shortest path, denoted as dn(p, q).
For each POI pi, we define the following:

Definition 1. Dominance Region

Dom(pi, pj) = {p|p ∈
k⋃

i=1

ei, dn(p, pi) ≤ dn(p, pj), i 6= j}

pi and pj are POIs. The dominance region defines all the
points on all edges in E that are closer to pi than to pj (or
have equal distances to pi and pj).

Definition 2. Network Voronoi Cell

V (pi) =
⋂

j 6=i

Dom(pi, pj)

All road segments closer to pi form the V (pi), and pi is
called generator of the V (pi). If two generators share one
or more border points, they are Voronoi neighbors. In Fig-
ure 2(b), the network Voronoi cell of p1, p2 and p3 are rep-
resented by line segments with different style separated by
border points b1-b7. Note that network Voronoi cells are
mutually exclusive (they do not overlap, except at border
points) and collectively exhaustive (every point on the road
network belongs to at least one generator). Consequently,
the network Voronoi diagram can be defined as follows.

Definition 3. Network Voronoi Diagram

NVD(P ) = {V (p1), . . . , V (pn)}

Given the Voronoi diagram of a set of POIs P and a road
network G, the first nearest neighbor of a query point q has
the following property [8].

Property 1. Let V (p) be the Voronoi cell of p on a road
network, the nearest neighbor of a query point q is p, if and
only if q ∈ V (p).

Furthermore, the following property holds for the k near-
est neighbors of a query point q on a road network [4].

Property 2. Given the network Voronoi diagram of P

and a query point q on a road network, let p1, p2, . . . , pk−1 be
the k−1 nearest neighbors of q, then the kth nearest neighbor
of q is among the Voronoi neighbors of p1, p2, . . . , pk−1.

3. AUTHENTICATION DATA STRUCTURE
Before outsourcing the dataset to the Cloud, DO first com-

putes the network Voronoi cell V (p) for each generator p.
Next, Voronoi neighbors of each generator are retrieved and
stored in a vectorNbr(p). In Figure 2(b), the Voronoi neigh-
bors of p1 are p2 and p3.

After computing the network Voronoi cells, DO signs each
POI p along with the Voronoi cell V (p) and its neighbors
Nbr(p) to create an authenticated network Voronoi cell oanvc

as follows:

oanvc = 〈p, V (p), Nbr(p),S〉

S = sign(h(p)|h(V (p))|h(Nbr(p)))

where h is a one-way, collision-resistant hash function and
‘|’ represents the concatenation of two binary strings. Next,
DO transmits the authenticated network Voronoi cells, de-
noted as O, to SP which hosts the database service, builds
spatial indexes such as VR-tree [4] for the data, and pro-
cesses kNN queries on behalf of the DO.



Subsequently, the SP server constructs the verification ob-
ject (VO) for the kNN query result which contains the POIs,
the shortest path to each POI, the network Voronoi cell
and the Voronoi neighbors of each POI, together with the
signatures generated by the DO. When there are multiple
signatures, the SP server employs a signature aggregation
technique [7] to condense multiple signatures into one, thus
reducing the size of the VO. Finally, the SP server transfers
the VO back to the query client.

4. VERIFYING NN ON ROAD NETWORKS
Generally, a query verification process consists of two se-

quential steps, that is, signature verification and geometry
verification. In the signature verification step, on receiving
the result of a kNN query, a client first examines the sig-
nature attached to the VO to ensure that all objects in the
result set originated from DO. On receiving an aggregate
signature, the client verifies the signature by employing the
corresponding aggregate signature verification algorithm [7].

Next, the client verifies the geometry property of the kNN
result using the road network kNN verification algorithm
shown in Algorithm 1. The inputs to the algorithm are the
query point q, the verification object VO, and the parame-
ter k. The verification object VO contains the authenticated
network Voronoi object of every POI in the kNN result, in-
cluding the generator POI, the Voronoi cell of the generator
and its neighbors. The method VO.getkNN(i) returns the
network Voronoi object of the ithNN on line 2 and line 9. H
is a min-heap containing all the Voronoi neighbors of already
verified NNs and objects in H are sorted by their network
distances to the query point q, represented as h.nd. V isited

is a set which maintains all the POIs that the client has seen
so far to avoid examining the same object twice.

The network kNN verification algorithm starts with veri-
fying the first NN of the result (lines 3-5). According to Prop-
erty 1, we know that the query point q must be on a road
segment inside the Voronoi cell of its first NN. Therefore,
given the first NN p1 and its Voronoi cell V (p1), a client
checks whether the query point q falls on one of the road
segments inside V (p1). If this is false, p1 is not the first NN
of q and the verification fails. Otherwise, the generator p1
is the first NN of q. The actual distance and the shortest
path from q to the generator p1 can be verified using the
Dijkstra’s algorithm on the subgraph inside V (p1).

Lemma 1. Let V (p) be the network Voronoi cell of p,
the shortest path from any point q ∈ V (p) to the generator
p only goes through road segments within V (p).

Lemma 1 can be also generalized to the shortest path from
a query point to its kth nearest neighbors on a road network.

Lemma 2. Given the network Voronoi diagram of P and
a query point q on a road network, let p1, p2, . . . , pk−1 be the
k − 1 nearest neighbors of q and V (p1), V (p2), . . . , V (pk−1)
be the corresponding network Voronoi cells. the shortest path
from q to the kth nearest neighbor pk only goes through the
union of {V (p1), V (p2), . . . , V (pk−1), V (pk)}.

Lemma 1 and Lemma 2 can easily be proved by contra-
diction. Due to the space limitation, the proof is omitted.
Actually, Lemma 1 ensures the shortest path from q to p1 is
fully contained in V (p1). Therefore, the Voronoi cell V (p1)
is sufficient for computing the shortest path from q to p1 on

Algorithm 1 VerifyNetworkkNN(q,VO,k)

1. H ← ∅; Visited ← ∅; g ← ∅;
2. (p, Vlink , Nbrs) ← VO.getNN(1);
3. if (q /∈ Vlink) then

4. return false;{the 1st NN fails by Property 1}
5. end if

6. Visited.add(p);
7. g ← Vlink; H ← Nbrs; Visited ← Nbrs;
8. for i = 2 to k do

9. (p, Vlink , Nbrs) ← VO.getNN(i);
10. if p /∈ H then

11. return false;{Property 2}
12. end if

13. g ← g ∪ Vlink ;
14. minDist ← MaxValue; minPt ← null ;
15. for all (h ∈ H ) do

16. h.nd = computeSP (g, q, h.poi); {Lemma 3&Lemma 4}
17. if (h.nd < minDist) then

18. minDist ← h.nd ;
19. minPt ← h;
20. end if

21. if (minDist < p.nd) then

22. return false; {minPt is closer to q than p to q}
23. end if

24. end for

25. if (p.nd == minDist) then

26. H.remove(minPt);{the ithNN is verified}
27. for all (nbr ∈ Nbrs) do

28. if (nbr /∈ Visited) then

29. H ← H ∪ nbr; Visited ← Visited ∪ nbr;
30. end if

31. end for

32. else

33. return false;{the ithNN is not verified}
34. end if

35. end for

36. return true;

the client. As a result, both the distance and the shortest
path from query point q to first NN p1 can be verified.

Next, before verifying the second NN, the road segments
Vlink inside the Voronoi cell of p1 are merged with g, which
is a subgraph of the road networks inside the Voronoi cells of
already verified NNs, and all the neighbors of p1 are inserted
into H and V isited set (lines 6-7). Then the subsequent for
loop (lines 8-35) iterates through each object in the kNN
result set obtained from VO (line 9).

If the current NN p is not in H (i.e. the current NN
returned is not one of the Voronoi neighbors of previously
verified NNs), then p is not the ithNN of q (according to
Property 2), and the verification fails on line 11. Otherwise,
p is one of the neighbors of already verified NNs, and we need
to verify that the network distance of p is the smallest among
all the Voronoi neighbors (line 13-34). Next, we first verify
the second NN by utilizing the Voronoi neighbors Nbr(p1)
of the first NN.

Lemma 3. Given a query point q, the first NN p1, the
network Voronoi cell V (p1), and the Voronoi neighbors Nbr(p1)
of p1, the shortest path distance from q to the second NN of
q can be verified.

Proof : According to Property 2, the second NN must
be one of the Voronoi neighbors of the first NN. Therefore,
if we know the network distance from the query point to
each of the Voronoi neighbors in Nbr(p1), then we know
which generator is the second NN. Given the query point
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Figure 3: Shortest path on road networks.

q, the first NN p1, V (p1), and Nbr(p1), we can compute
the shortest path distance from q to each Voronoi neighbor
of p1 based on the subgraph inside V (p1). Specifically, we
first compute the distances from q to all the border points
on V (p1) using the Dijkstra’s algorithm based on the sub-
graph inside V (p1). Next, because the network distances
from a border point to the adjacent generators are the same,
the distance from each border point to the neighbor gener-
ators of p1 can be replaced by the distance from the border
point to p1, which can be easily calculated based on the
subgraph inside V (p1). As a result, the distances from q

to each Voronoi neighbor of p1 is equivalent to the sum of
the distances from q to a border point and from that bor-
der point to p1. For example, in Figure 3, the distance
from q to p3: dn(q, p3) = dn(q, b3) + dn(b3, p1). In the
case where there are more than one border point between
two adjacent generators, we pick the one with the smaller
distance (shortest path). For example, both b6 and b7 are
border points between p1 and p2. The distance from q to p2:
dn(q, p2) = min(dn(q, b6)+dn(b6, p1), dn(q, b7)+dn(b7, p1)).
Note that the distances computed on the subgraph inside
V (p1) are not necessarily the shortest distances from q to
all neighbor generators on the original graph G. However,
for the generator which is the second NN of q, the short-
est path distance computed on the subgraph inside V (p1) is
identical to the shortest distance on the original graph G.
(Lemma 1 & Lemma 2).

Lemma 3 can be also generalized to the verification of
distance from a query point to its kth nearest neighbors on
a road network.

Lemma 4. Given a query point q, the k−1 nearest neigh-
bors p1 , p2, . . . , pk−1, the union of subgraphs inside V (p1),
V (p2), . . . , V (pk−1), and the Voronoi neighbors of the k− 1
NNs, the shortest path distance from q to the kthNN can be
verified.

Proof : This is a generalization of Lemma 3. Given the
network Voronoi cells of all k− 1 NNs of p, by union all the
road segments inside these Voronoi cells, we get a connected
network g which is a subgraph of the whole road network G.
The shortest path from q to all the border points on the sub-
graph g can be computed using Dijkstra’s algorithm. Next,
as the distances from the border point to its two neighbor
generators are the same, the shortest distance from q to all
the neighbors of p1 , p2, . . . , pk−1 can be calculated based on
g. Again, the shortest path distances computed based on
the subgraph g are not necessarily the same as the short-
est path distances on the original graph G. However, for the

kthNN, pk, Lemma 2 ensures that the shortest path distance
between q and pk on the subgraph g and the original graph
G are the same.

Consequently, given a query point q, the k nearest neigh-
bors p1 , p2, . . . , pk, the union of subgraphs inside V (p1),
V (p2), . . . , V (pk), and the Voronoi neighbors of the k NNs,
both shortest path (according to Lemma 1 & Lemma 2)
and distance (according to Lemma 3 & Lemma 4) from q

to the kthNN can be verified.

5. CONCLUSIONS
In this paper, we studied the query integrity problem for

k-nearest-neighbor queries on outsourced road networks and
points of interest databases. While existing approaches pro-
posed in this domain cannot verify both the distance and the
shortest path to the kNN results simultaneously, we present
a network Voronoi diagram based verification approach that
utilizes the network Voronoi cell of each result object to
verify the correctness and completeness of the kNN result
with regards to both distance and path. We plan to extend
our solution to handle other types of spatial queries on road
networks in the future.
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