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ABSTRACT

Predictive queries over spatio-temporal data proved toitad in
many location-based services including traffic manageéae
sharing, and advertising. In the last few years, one of thst @o-
citing work on spatio-temporal data management is abowdipre
tive queries. In this paper, we review the current reseaecstds and
present their related applications in the field of predetpatio-
temporal queries processing. Then, we discuss some badic ch
lenges arising from new opportunities and open probleme.gbial

of this paper is to catch the interesting areas and futuré& woder
the umbrella of predictive queries over spatio-temporgda
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1. INTRODUCTION

With the emerging and popularity of GPS enabled mobile de-
vices and wireless communications, processing and magagatio-
temporal data becomes vital for many location based sexod
applications [21, 41, 42]. A typical aim of these applicatas
to answer users’ queries such as range queries [12, 18, .§3], e
"find all restaurants within two miles of my current locatipd -
nearest-neighbori(NN) queries, e.g., "find the nearest pharmacy
within two miles of my current location", and aggregate dg®r
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e.g., "count the number of cars within one mile of a univgrstm-
pus". As a consequence of the wide spread of these locatiarea
devices and the importance of location-based applicat@m®n-
siderable number of research was introduced to handlerefiffe
problems of spatio-temporal data management, such as prery
cessing and optimization [12, 18, 53, 63], indexing and ssiog
techniques [2, 4, 31, 52], and privacy preserving for usexsict
locations [1, 25, 28].

However, the previous examples give more attention to gaeri
related to thecurrent locations of moving objects. Another im-
portant set of location-based services focusepredictivespatio-
temporal queries [19, 23, 24, 27, 36] in which a user can ask th
same previous queries but fluturetime instance rather thagur-
rent time instance. Sucpredictivequeries are too substantial in
many different applications that include location-basakatising,
e.g., "find customers who are predicted to be within five miies
my store in the next 30 minutes”, traffic management, e.qud"fi
areas with predicted traffic jam before it takes place", ar¢ool-
ing and taxi services, e.g., "find drivers who are mostly eige:to
pass by my location after 10 minutes".

In this paper, triggered by its importance, we study the chal
lenges and the opportunities in different research arettzedield
of predictive spatio-temporal query processing and managé
Basically, the meaning of predictive spatio-temporal guerex-
plained in Figure 1. Without loosing the generality, thisifig pro-
vides an example fgoredictive rangegquery which is a main query
type in predictive spatio-temporal queri€3,, to O, are the objects
in the Euclidean space at the current timeThe objects move and
change their locations over time in their trips startingrirtheir
sources at timeé; until reaching their destinations at tinhlg A
user issues query at current tirheasking about the objects pre-
dicted to be inside a query rectangular regRnafter four time
units in the future, ats. As a query result, botD. and O, are
predicted not to show up in the query region, witleand O; are
the objects that probably be inside the query regianp.athe final
answer returned to the user would indicate atand O; are the
two objects expected to be Ry atts.

Our contribution in this paper is as follows. First, we syrve
the current research trends and present their relateccafiplis in
the field of predictive spatio-temporal queries processirgs in-
cludes, (1) query evaluation and optimization, in which thain
concern is to find the optimum or at least a good enough strateg
for executing the received queries, (2) prediction funijowhich
refer to the underlying prediction model employed to aptté
the next/final destination or the complete forthcomingettapry
of a given moving object, (3) spatio-temporal indexing t@ghes,
which attempt to find an efficient way to store and retrieve imgpv
objects data, and (4) uncertainty, which deals with impedata



Figure 1: Example of Predictive Range Query Example

about objects locations, velocities, and directions wéilaluating

the prediction. Second, we highlight the fundamental emaiés
arising from the new opportunities and the open problems. We
illustrate which areas have been well investigated and hvktitl
need more digging.

The remainder of the paper is organized as follows. We sur-
vey existing work in different areas related to predictiyatso-
temporal queries in Section 2. Then, we discuss the chakeng
in six key topics, namelguery processingn Section 3prediction
functionsin Section 4,uncertaintyin Section 5,monitoring and
trackingin Section 6,privacyin Section 7, andwuthenticationin
Section 8. Finally, we conclude in Section 9

2. SURVEY OF EXISTING WORK

In this section, we give a survey for the existing work redate
different branches of predictive spatio-temporal querid& start
by reviewing the existing work about query processing anii op
mization, then summarizing the commonly used predictiarcfu
tions, indexing data structures, and finally discussingideal tech-
nigues to handle uncertainty while evaluating predictiverigs.

2.1 Query Processing and Optimization

Existing algorithms for predictive query processing andi-op
mization can be classified according to the supported qugy t
into the following categories:

(1) range queriese.g., [24, 56, 70]. A predictive range query
has a query regio® and a future time, and asks about the objects
expected to be insid® after timet. A mobility model [24] is used
to predict the coming path of each of the underlying objecis a
employ the prediction results to evaluate predictive ramgeries.
Most of existing work considers query region as a rectarighes-
ever the Transformed Minkowski Sum supports range querits w
circular regions [70]. This is done by determining wheth¢inze
parameterized bounding rectangular, as a moving objeetrsects
a moving circle that represents a range query. The initicthre
gle of the object and the velocity of each edge in this redtaage
considered to compute the position and the rectangle aftertain
duration of time in the future.

(2) K-nearest-neighbor querie®.g., [5, 50, 70]. A predictive
K-nearest-neighbor query has a location pdita future timet,
and asks about thE objects expected to be closestRafter time
t. Two algorithms, RangeSearch and KNNSearchBF, [70] are in-
troduced to traverse spatio-temporal index tree (TPR/TFRPEe)
to find the nodes that intersect with the query circular nediar
Range and KNN queries, respectively. Sometimes an expirg ti

interval is attached to ANN query result [57, 58]. Thus, th&NN

query answer is presented in the form eésult interval>, where
the interval indicates the future interval during which theorted
answer is valid.

(3) reverse-nearest-neighbor querjes.g., [5, 64]. Unlike the
predictive KNN query which finds the objects expected to be the
nearest to a given query region, predictive reverse neasigh-
bor (RNN) query finds out the objects expected to have the query
region as their nearest neighbor. This query is useful nisedis-
tribution applications such as ad-hoc networking to assighile
devices to the nearest communication service point. Fanpla
an algorithm [5] is proposed to evalua®NN queries during some
specific future time duration starting at the query time.sTork
assumes the objects movements to be in a linear behavior.

(4) aggregate queriesi.e., [55]. A predictive aggregate query
has a query regioR and a future time, and asks about the number
of objects\ predicted to be insid& after timet. A comprehensive
technique [55] that employs adaptive multi-dimensionatdgram
(AMH), historical synopsis, and stochastic method is useplro-
vide an approximate answer for aggregate spatio-tempasaiep
for the future, in addition to the past, and the present.

(5) continuous queriee.g., [26, 36, 41, 63]. The difference be-
tween asnapshopredictive query and eontinuousone is that the
later needs to be continuously reevaluated many timesghrout
its life in the system. The rate of reevaluation depends ernithe
gaptqap between each two consecutive reported answers specified
in the received quer®. Accordingly, continuous quer® needs to
be stored at the server side until the end of its life. For gsam
a quadratic-based kNN [36] algorithm is introduced for s
ing predictive continuougCNN queries, and a differential update
technique is used to maintain the query answers. Next, apiid
tic evaluation [12, 18, 63] is considered for processingticoious
range queries.

Additional work considersjuery selectivityvhich plays a com-
plementary role in the area of predictive spatio-tempouairyg pro-
cessing and optimization, i.e., [11, 13, 61, 60]. Selettipredic-
tion is defined as the number of objects expected to be rettiev
divided by the size of the underlying objects data set. Aateur
estimation for the predicted query selectivity is esséimiguery
optimization and evaluation. For example, spatio-temipbist
tograms [11, 61] are used to predict spatio-temporal quelscs
tivity.

To sum up, although the extensive investigation for the majo
ity of different types of predictive queries, but each of &xésting
work supports one or two query types and ignore the rest. Con-
sequently, there is still a lack for one general framewosgk ttan
support all or at least most of the mentioned query types.

2.2 Prediction Functions

In terms of the underlying prediction function, existingya
rithms for predictive spatio-temporal query processing loa clas-
sified into three categories:

(1) Linearity-based predictionwhere the underlying prediction
function is based on a simple assumption that objects moee in
linear function in time along the input velocity and directi So,
query processing techniques in this category, e.g., [558058,
60], take into consideration the position of a moving poihaa
certain time reference, its direction, and the velocity ¢onpute
and store the future positions of that object in a TPR-trasetd
index [52]. When a predictive query is received, the quences-
sor retrieves the anticipated position in the given time).[53art
of the related work in this category concerns with the appiins
of linearity-based prediction models to answer neareghtosir



queries [50] and reverse nearest neighbor queries [5],estimate
the query selectivity [60].

(2) Historical-based predictionwhere the predication function
uses object historical trajectories to predict the objextt trajec-
tory. Then, query processing techniques in this categogy, F,
15, 24, 27, 33, 30, 55] are applied to trajectory of locatiomfs.
Existing work in this category is based on either mobilitydab{24]
or ordered historical routes [7, 15, 30]. The mobility mofid]
is used to capture different possible turning patterns firéint
roads junctions, and the travel speed for each segment iro#ue
network for each single object in the system. Then, the mizdel
used to predict the future trajectory of each object, ancdan
that they can answer predictive range queries. The maineconc
of that model is to put more focus on the prediction of the obje
behavior in junctions based on historical data of objecetto-
ries. In the ordered historical routes, the stored pastdtajies
are ordered according to the similarity with the currentetiend
location of the object and the top route is considered thet pus
sible one [7, 15, 30, 32, 33]. Some of the existing work in this
category is employed for predicting the current objecettgry in
non-euclidian space [27] such as road-level granularity.eiam-
ple, a Predictive Location Model (PLM) [27] is proposed tedgtict
locations in location-based services. This model consither start
point as the object current location while the end point ddus
any of the possible exit points. PLM computes the shorteit pa
trajectory between the current location and each of thepmiitts,
then the trajectory with the highest probability is considkthe
predicted path. Moreover, a probabilistic prediction fimt based
on Markov models [33] is introduced for short-term routedice
tion, while Bayes rule is adapted to predict the final desitmaof
a moving object [15, 32, 35].

(3) Other prediction functionswhere more complicated predic-
tion functions are employed to realize better predictioouaacy.
Query processing techniques in this category, e.qg., [2368670]
are adjusted based on the outcome of the prediction fundEist-
ing work in this category either exploits a single functi&®] 70],
or mixes between two or more functions to form a hybrid preoiic
model [23, 69]. As an example for a single function, a Trarmsfed
Minkowski Sum [70] is used to answer predictive queries with
cular regions, while Recursive Motion Function (RMF) [56Lised
to predict a curve that best fits the recent locations of a ngpgb-
ject and accordingly answer range queries. In the hybridtfans
category, two methods [23, 69] are combined to evaluategiesl
range and nearest neighbor queries in highly dynamic anertaic
environments.

Unfortunately, all the employed prediction functions eith(a)
support only short-term prediction in terms of seconds,utds, or
next edge prediction, (b) support long-term predictiondsgume a
linearity movement of the underlying moving objects whismbt
a realistic assumption, or (c) based on complex techniquésav
significant computation cost that can not scale up for largalyer
of objects. As a result, there is still a need for predictioodeis
that can support long-term prediction as well as short-terdic-
tion with the ability to scale up to huge query workloads aendé
number of moving objects.

2.3 Indexing Techniques

A wide variety of data structures are proposed to index gpati
temporal data to support predictive query evaluation andgss-
ing. Some of the existing work assumes simple movementrpatte
for the underlying moving objects while others handles nuane-
plex objects behavior. The most popular spatio-tempordices
can be categorized with respect to the base data structum#-as

lows.

(1) R-tree basede.g., [4, 51, 52, 53, 59]. Time Parameter-
ized R-tree (TPR-tree) [52] is an extension of R-tree by agldi
the time parameter which can be used to support queryingmurr
and projected future positions of moving objects. The TRR-t
was enhanced to the TPRree [59] by introducing some improved
construction algorithms. RP-tree [51] is proposed as an access
method that indexes the current and predicted locationsoofiig
objects assuming that their positions expire after spekciiiee pe-
riods. A different technique based on convex hull prope8lyi$
introduced for indexing objects with nonlinear trajecésrusing a
traditional index structure.

(2) B-tree basede.g., [9, 22, 67]. An indexing schema called
B”-tree [22] based on B-tree, uses a linear technique to index
changes in the underlying data values such as moving-chjsz-
tions. Based on this Btree index, some algorithms were provided
to answer predictive range afkdNN queries on near-future posi-
tions of the indexed objects.’B*-tree is an enhancement of B-tree
by taking into consideration the velocity in addition to tloea-
tion while indexing the moving objects [67]. Next, a Selfriable
Spatio-Temporal B-tree, termed S™B-tree, is introduced [9] to
handle frequent updates for objects locations. This is dynal-
lowing automatic online rebuilding of its subtrees usingfecent
set of reference points and different grid size without sigant
overhead. The key for an entry in the %BFtree index consists of
a time part in addition to a space part. The time part is based o
dividing the dimension into equivalent partitions, whiletspace
part is based on the Voronoi diagram for dividing the space.

(3) kd-tree basegde.g., [6, 14, 44, 62]. MOVIES is a main mem-
ory indexing technique [6, 14] proposed to handle the highdent
updates while guaranteeing fast response to predictiveeguen
moving objects data. It is based on the kd-tree data streifa4r,
62] and its main idea is to create new indexes for the mosttadda
pieces of the main index and throw them away from the main mem-
ory after some short time period.

(4) Quad-tree baseck.g., [48]. A dual transformation is used in
an indexing method called STRIPES [48] to index the preditia-
jectories in a dual transformed space. Trajectories foeaibjin a
d-dimensional space become points in a higher-dimensi¢aat-
dimensional), space. This dual transformed space is trdaxéad
using a regular hierarchical grid decomposition indeximgciure.
More detailed review and comparison between the existin-te
nigues for indexing the current and predictive locationsnof/ing
objects is covered in [8, 40, 44].

2.4 Uncertainty

Unlike most of existing work in predictive queries that asgu
the deterministic behavior of objects movements, few neseti-
als assume uncertainty about these movements. Basicatlgr-u
tainty deals with stochastic, (probabilistic movementgrais), of
the underlying objects with respect to object locations eldci-
ties at different time stamps. The existing few trials in #nea of
predictive queries over uncertain moving objects data eaolds-
sified according to their aim as follows.

(1) Indexinge.qg., [69]. To index uncertain motions of a set of
moving objects, the Btree is enhanced and two movement infer-
encing techniques are introduced to obtain anticipategatdjoca-
tions in non-deterministic format. This work assumes utaiety
for the given past locations and velocities. The adaptedr& and
the inference techniques are employed to evaluate preglicthge
and K'NN queries.

(2) Modelinge.g., [49, 56]. Unlike the work that is based on a de-
terministic linear movement, a Recursive Motion FunctiRiVif) [56]
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Figure2: Example of Space Sharingin Overlapped Regions

is presented to model uncertain motion patterns in diffesbapes
e.g. polynomial, sinusoid, circle, and ellipse. This wossames
uncertainty about the representation of objects movenperttsrns.
Moreover, a Spatio-Temporal Prediction tree, STP-treg [56n-
troduced to index these uncertain movement patterns ancsvoesa
predictive queries. Next, a model called PutMode [49] isant
duced to predict next trajectory using uncertain data abbjects
locations. However, none of the predictive spatio-temipguaries
are explicitly supported.

3. CHALLENGE 1. QUERY PROCESSING

In this section, we study the challenges and opportunitias t
are still open problems and need to have an insight look iatéa
of query processing and optimization. Basically, exissoutions
suffers from the following limitations.

(1) Each one of the existing work is applicable for only one-pr
dictive query type or two at most. So, there is a lack for a gene
predictive query processor that can support to a wide yaoét
query types i.e., rangd{NN, aggregate, revers&NN. General-
ity of predictive query processor is not only in terms of quitpe
but also it expands to include the shape of query region. ,Taus
generic query processer should be able to answer queriéféein d
ent shapes such as rectangular, circular, or any otheuleregoly-
gons. Another generality dimension is query continuity. éffier a
predictive query is snapshot or continuous, or stationamaving,

a complete query processor should be able to support alleskth
essential variations.

(2) Existing solution do not introduce a sufficient level ek
ability. Most of existing techniques were tested against\ork-
loads i.e., in terms of thousands of objects and/or quesiee real
needs require processing technique to scale to millionsjefcts
and queries within very short time unit. Yet, realistic stxlity
with low computation cost and fast response time is stillrapar-
tant challenging problem.

(3) To the best of our knowledge, none of the existing sohgio
can be supported by the existing infrastructure of databzee-
agement systems. The reason for that is because existingfroe
cessing techniques rely on special indexing structure STRIPES
or TPR-tree or assumes a certain framed processing enw&mmnm
i.e., linear movements of all moving objects. Yet, in aduitto the
generality and scalability features illustrated in theves lines, it
is a vital research point to introduce predictive query pssor that
is feasible to integrate with conventional data manageisystems
without major modification in their infrastructure.

One of the common concepts employed to allow generality of
query processor isharingwhich can be used to maximize the ben-
efit from the overlapping among received queries. Usingdbis
cept can significantly reduce the total computation cosanies
of sharing include.

(a) Sharing parts of the queries interest, e.g., quargsls "find
out all vehicles expected to be in region Bfter 30 minutes" and
query Q asks "find out taxi vehicles expected to be in regian R

Query Table
ID | Region
Q R

Query Table
ID |Region| Answer
Q. R, 3

Answer
{ij 09» Ol«‘f’}

(a) Range Query (b) Aggregate Query

Figure3: Exampleof Data StructureSharingto Serve Different
Query Types

after 30 minutes". Clearly, there is a relationship betwtberinter-
est of Q and the one for @that can be expressed as Q Q;. So,
we can make use of {answer to get the answer for @ithout the
need to reprocesssQdrom scratch.

(b) Sharing parts of the space between query regions. For ex-
ample, assume we have region 8f query Q and region R of
another query @where R N Rz # ¢. By applying the sharing
concept, we can use the overlapped space from one query-to pre
pare the answer for other queries. The example given in Eigur
provides that the region R fully covered by the other three re-
gions. Consequently, the predicted answer inc&n be returned
without further computation as it simply can be composethftbe
existing answers of the overlapped parts from other quegigsen
they have a common interest in other variables such as ftitnee
period.

(c) Sharing the same piece of data structure. For example an
answerfield can by used to answer range query by carrying a list
objects inside a given region and also can be customizedsteean
an aggregate query by counting the number of objects exghecte
to show up in that region. Figure 3 illustrates sharing theesa
data structure element to serve different type of queribss don-
cept of sharing is employed by thiandasystem [19] to support
a wide variety of predictive spatio-temporal queries idahg pre-
dictive range KNN, and aggregate queries. However, there is still
a question about its ability to scale up to large network lgnafih
millions of nodes and edges rather than a space partitianted i
hundreds or thousands of grid cells.

4. CHALLENGE 2: PREDICTION FUNC-
TION

Except few attempts, most of the existing work assumes arine
movement pattern for moving objects. Initially, that asption
is not realistic, since actual objects have more complexamant
patterns as they rarely move in straight lines. Althougheofithe
used prediction functions to answer predictive queriesstguport
long-term prediction, but they share major drawbacks ssqtoar
accuracy, scalability limitation, and bad response timefatt, the
majority of existing prediction functions can fit only in stéerm
prediction. The term short-term prediction can be defineti vé-
spect to time in terms of few seconds in the future and withees
to space in terms of next turn, junction or destination, while
term long-term prediction can be defined in terms of tens @f-mi
utes in the future time, next complete trajectory, or aptited final
destination.

Figure 4 gives an example for a long-term prediction functio
used to predict a final destination [15, 32] of a given movihgeot.
The way this prediction function works is demonstrated #evics.
Initially, the given space in which objects move is partigd into
6 x 6 squared cells numbered from 1 to 36. The current trajectory
of objectO; is drawn as a line started at c€ll; and headed to
cell C1s. The sequence of cells representigin its current trip
is So, ={Cis, Cis, Ca2, Ca3, Cig}. The color of a cell indicates
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Figure 4: Final Destination Prediction

its probability of being a destination to the obj&at given its se-
quenceSo,. The darker the cell color, the higher the probability
of this cell to be a destination 0. As the object moves toward
its final trip destination, the prediction function updaitsscompu-
tation. So, some of the grid cells become more likely detitina
(e.g.,C24), and others become less, (e@;;). However, this func-
tion suffers from two main shortcomings. First, it can ontggtict

a final destination for a moving object and it fails to predistnext
complete pass. Second, it does not have the sense of timeh whi
means it can not predict the location of objéxt after a specified
time periodt in the future.

Not only predicting forthcoming location/trajectory of aowing
object is challenging, but also predicting its anticipasére and
shape is challenging, specially in highly dynamic enviremts.
For example if a tornado, as a moving object, has a rectangula
shape in the current time and its current location is knowis i
not an easy task to predict the answer for a question like Hird
commuters that might be hit by this tornado in the next 30 min-
utes". This example is one of the most difficult predictiveks as
commuters change their locations and velocities and alsaah
nado modifies its shape, size, speed, and direction. Takirf a
these factors into consideration makes prediction moreptmm
and challenging.

Challenges in the area of prediction functions can be suiaetr
in the following statement. There is still an essential neeiihd a
well-designed prediction function that is able to pregissipport
long-term as well as short-term prediction, has the sensinef,
able to capture changes in objects recent behavior, andeeffic
scale up to large numbers of moving objects.

5. CHALLENGE 3: UNCERTAINTY

In this section, we discuss the challenging points that lshioe
addressed while designing a model for predicting next/fileestti-
nation, or complete trajectory of moving objects given iegise
spatio-temporal data.

The importance of dealing with uncertainty while procegsin
predictive queries comes from the fact that spatio-tempat is
usually imprecise. Data uncertainty results from many&esisuch
as the erroneous in GPS readings, accuracy limitation irsonee
devices, infrequent readings due to battery shortage, conua-
tion delays and computation limitations, inexact velo@stima-
tions, environmental obstacles such as buildings and seveather
that obstruct the communication between reading devicgsate!-
lites, and the stochastic objects motion behavior. As atgbere
is a vital need to take into consideration data uncertairtijersup-
porting predictive query processing. Basically, not cdesing the

now
X X
Past

now

Sfuture Sfuture

Past

(a) Exact Trajectory (b) Imprecise Trajectory

Figure5: Impact of Uncertainty on Prediction

imprecise nature of data leads to inaccurate predictiorolijpect
future location.

Figure 5illustrates the difference between defining anailja-
jectory using exact location points (Figure 5)a versus the de-
fined using imprecise locations (Figure 5b). In Figure (Fégbb),
object locations at different time stamps are expressedrdalar
regions rather than exact points. Accordingly, giving thaspre-
cise locations to a predictive query processor as an inmayzes
imprecise prediction for its next path.

Little work has been done in this area. For example, in a tecen
work [65], a new concept based anbisector is used to evalu-
ate two types of{NN queries, namely, Possible Nearest Neighbor
Query (PNNQ) and Trajectory Possible Nearest Neighbor Quer
(TPNNQ) given imprecise object location represented asulgr
regions rather than exact points. However, this work do¢suno-
port evaluation of predictive queries. Even for those faaldrthat
attempt to support predictive queries, they still have esxy gen-
erality, and scalability issues. Consequently, it is @rajing to
process different kinds of predictive queries given imgeand
uncertain data about objects locations, velocities, amdetermin-
istic motion behaviors. Expected solutions should comdidéng
online, which means consuming less computation time a<thje
dynamically change their locations and velocities.

6. CHALLENGE 4: MONITORING

Tracking and monitoring moving objects is a fundamental-cha
lenge in the area of predictive spatio-temporal queriese ab-
jective of this challenge is to capture moving objects upsldhat
result from changing their locations, directions, and/eloeities,
and efficiently handle the effect of those updates. To thedfeke
authors’ knowledge, existing literatures do not addresstibving
objects monitoring and tracking problem while considerprg-
dictive queries. They only consider it for queries in therent
time such ag{NN and range queries [38, 43, 68]. The challeng-
ing in this point arises from the fact that many factors stidug
optimized. These factors not only include correctly captiob-
jects updates, but also reducing the number of updates tareap
and send to the server, hence, reducing the communicatisin co
between the server and the moving objects, which in turnsssaf
the computation time required to handle the received updalie
achieve this objective, expected solution can benefit floertéch-
nigues used in the previous work which include, (a) spewdyi
some regions in the given space in which objects movemeats ar
known to mostly affect queries results, and outside thog®mns
updates are neglected, and (b) predicting the next trajecfoan
object and report only updates if its real movement is déffiefrom
the predicted one.



7. CHALLENGES: PRIVACY PRESERVING

Although preserving users privacy while evaluating theiedes
is a fundamental issue for the database filed in general arttido
spatio-temporal data processing in specific, but none ofxi-
ing work, to the best of authors’s knowledge, discusses tivagy
issue in predictive spatio-temporal query processingotigiy pri-

vacy means we assume that users are willing to reveal their ex

act trajectories data while asking for some location-basgdices
which is not always true assumption in many applicationscily
with data management outsourcing.

Concealing moving objects’ trajectories while evaluatimgdic-
tive query is challenging because of the fact that there iacon-
rate prediction output if there is no precise history as in8o at
one side, query processor needs to have an image of objeges mo
ments to be able to answer predictive queries. However, en th
other side, users do not want to uncover their privacy byaiavg
all of their movements. In order to resolve this issue, mamy-c
mon techniques for dealing with privacy while answeringalian-
based queries in the current time can be adapted for pnogeati-
vacy while responding to location-based queries for theréutEx-
amples for these techniques inclugieonymizatior{1, 29] which
aims to make an object’s location unrecognized amingther ob-
jects,cloaking[17, 25, 39] which aims at expressing locations into
bounding rectangles rather than exact poiptxturbationwhich
replaces or stuffs the real location values with synesthetiues
such as noise addition [34Jryptography{16] which turns location
readings into unreadable format to anyone except those &b® h
the decryption key, anttansformation[28] which protects users
locations by converting the underlying space into anotpecs.

Each of the aforementioned techniques has some merits awd dr
backs. For exampleloakingcan achieve sufficient privacy while
providing an accurate answer for predictive queries abmuiado
movements in a given city or zip code rather than an exacttpoin
However, for predictive nearest neighbor quer@sakingcan not
provide such accurate answer. A comprehensive study isregqu
to assert which technique can be adjusted to support pregict
spatio-temporal queries while preserving privacy of thdartying
moving objects.

8. CHALLENGE 6: AUTHENTICATION

hroo=h(N12|h3s)

has=h(hs|hs)

[ he=htts) | [ he=ntts) |

h12=h(h4|hy)

| hi=h(ty) | | ha=h(t2) |

Figure6: Example of Authenticated Index (MH-tree)

result [47].

Although authentication is an essential issue in the pgradif
data management outsourcing, but we did not come acroseany r
lated work that addresses this issue on moving objects @ittzen
for current time queries nor predictive queries. Even farers
work [20], it handles the authentication problem with presgy
users’ privacy for queries on static objects at current fimséance.
To the best of our knowledge, until now, all existing work st
area deals only with authentication for current time quedeer
stationary objects.

The big portion of those existing techniques for authetgida
query processing is based on, (a) an authenticated datauseu
(ADS) such as MB-tree and MH-tree [37], and MR-tree [47], ethi
stores the outsourced data along with hash values compated f
each tuple and signed by th®Q, Figure 6 , and (b) the concept
of verification objec®O [citations paper list] for carrying out the
answer records with additional digest (hash) values. Atctrent
side, this verification object is used to check the soundaedshe
completeness of the answer where the summation of the egteiv
hash values should be equal to the hash value of the root.

The second main technique used in the authentication mgisti
work is signature aggregation [45, 46], in which each redard
the database has a signature from the data o@@r The dif-
ference between the authenticated data structure teehaiithe
signature aggregation technique is that the later guarartigher
concurrency processing for authenticated transactiomsit meeds
smaller number of verification objects which reduces theroom
nication cost for sending those objects to the users. Hawsige

Authentication is a consequence issue to the age of cloud com 4t e aggregation suffers from significant update overiaahe
puting and data management outsourcing. The emersion of thep sige and also costs more for verifying the received answer at

clouds with its offered services in affordable cost, enages the
outsourcing of data management from the data oW@rside to
be located at the data management service proi@deside. With
this phenomenon, user’s query is received, processed analnth
swer is returned by the service providgP. With the assumption
that service providers are not always trust worthy , thernetd an-
swers from their side are not trusted to be accurate. For pleam

the client side.

Addressing the problem of authenticated processing fatipre
tive spatio-temporal queries is a challenging. The corféecdity of
this challenge comes from the dynamic nature of moving dbjec
updates about their locations, velocities, and directidkigh each
update, the data ownéPO needs to refresh her signature on the
outsourced data and resend the latest copy to the servigg@ro

The ST might be hacked such that a certain instance is added 10 sp - opviously, this will lead to a significant communicationdan

all returned results, or th8P itself might be not trust worthy, so it
might change the results by adding, removing or modifyingieso
parts of the returned answer.

This schema triggers the need for techniques to check the acc
racy of the returned answer at the user side. Consequeathe s
techniques for authenticated query processing [10, 66hicithe
query answer returned by the untrust8® can be tested against
the completeness and soundness are introduced. Compieteie
answer means that no correct piece of data that should hedextl
in the final results is disappeared from the returned ansowgsers.
Soundness means that no modification, neither by adding xon e
istence record nor modifying an existing one, takes placéhen

computation overhead that overwhelms any gains from data ou
sourcing service.

9. CONCLUSION

In this paper, we address the problem of predictive spatigsbral
query processing from different dimensions, namglery opti-
mization prediction functionsindexing and access methodsd
uncertainty We argue that it is the time for data base community to
think in providing a complete, generic, and scalable queoggs-
sor over spatio-temporal data, and being feasible to iategwith
conventional DBMSs. We discussed some of the key challemges



searches should face while thinking to build a solution lfids vital
problem. To handle these challenges, the target solutiondlan-

swer questions such as: (a) how to make the query procestw in

target solution able to support a wide variety of predictiueries

including KNN, range, and aggregate queries, (b) how to provide

a prediction function that acts accurately for long-terradiction
as well as short-term prediction, (c) how to deal the im@redata
about objects locations, directions, and velocities, @@y kb mon-
itor the underlying moving objects such that relevant upsiatre
only captured, (e) how to provide answers for users’ queniate
preserving their location privacy, and finally (f) how to giusers
a tool to validate the correctness, and the completenesseakt
ceived answers in case that the data management is outdource
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