
OCEANUS: A Spatio-Temporal Data Stream System
Prototype

Zdravko Galić
Faculty of Electrical

Engineering and Computing
Department of Applied

Computing
University of Zagreb

Unska 3, 1000 Zagreb, Croatia
zdravko.galic@fer.hr

Krešimir Križanović
Faculty of Electrical

Engineering and Computing
Department of Applied

Computing
University of Zagreb

Unska 3, 1000 Zagreb, Croatia
kresimir.krizanovic@fer.hr

Emir Mešković
Faculty of Electrical

Engineering
University of Tuzla

Franjevačka 2, 75000 Tuzla,
BiH

emir.meskovic@untz.ba

Mirta Baranović
Faculty of Electrical

Engineering and Computing
Department of Applied

Computing
University of Zagreb

Unska 3, 1000 Zagreb, Croatia
mirta.baranovic@fer.hr

ABSTRACT
Recent advances in wireless communication, miniaturization
of spatially enabled devices and global navigation satellite
systems (GNSS) services have resulted in a large number of
novel application domains. Applications in these novel do-
mains (moving objects tracking, sensor networks, fleet man-
agement, real-time intelligent transportation systems, etc.)
process huge volume of continuous streaming data, i.e. data
that is produced incrementally over time, rather than being
available in full before processing. Data stream management
systems (DSMS) have been developed to manage continuous
data streams. Usually based on relational paradigm, they
have rudimentary support for spatial data. Recent research
efforts in data stream management systems focus mainly on
processing continuous queries over traditional data streams,
and only a few papers addressed spatio-temporal continuous
queries. In this paper we present OCEANUS, an ongoing
effort to extend TelegraphCQ DSMS with spatial support
providing a platform for spatio-temporal streaming applica-
tions.

Categories and Subject Descriptors
H.2.8 [Database Management]: Spatial databases and
GIS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL IWGS’12, November 6, 2012. Redondo Beach, CA, USA
Copyright (c) 2012 ACM ISBN 978-1-4503-1695-8/12/11...$15.00

General Terms
Design, Management, Languages

Keywords
Data stream management, Continuous queries, Spatio-temporal
data streams, Moving objects

1. INTRODUCTION
Several research projects provided prototype systems that

manage large and possibly unbounded data streams and con-
tinuous queries as well as common relations and one-time
queries. Recent research efforts in data stream manage-
ment systems focus mainly on processing continuous queries
over traditional data streams, based on simple relational
paradigm. While spatio-temporal DSMS are still in a re-
search phase, there are several commercial relational data
streaming systems and even some standard DBMS [2] of-
fer data stream support. These DSMSs allow continuously
adaptive query processing and support handling of a large
number of continuous queries posed over large and varying
data streams.

However, spatial and temporal properties of both data
streams and continuous queries are disregarded and most of
current DSMSs offer only rudimentary support for spatio-
temporal data. Hence, a new approach in which objects’
movements are considered as continuous, time varying and
possibly unbounded data streams has been introduced.

In a DSMS, data arrives in form of concurrent and contin-
uous data streams. Queries on these data streams are typ-
ically continuous monitoring queries, involving both data
streams and persistent relations, and emitting streaming
data in real time as results. Data streams have several sig-
nificant characteristics different from those of traditional re-
lations [10]:

(i) They are sequences of records, ordered by arrival time

or by another ordered attribute such as generation time
(which is likely to be correlated with, but not equiv-
alent to, the arrival time). These records (or tuples)
arrive in the system over a period of time instead of
being available a priori.

(ii) They are produced by a variety of external sources,
meaning that a DSMS has no control over the arrival
order or the rate at which data arrives.

(iii) They are produced continually and, therefore, have un-
bounded or unknown length. Thus, a DSMS may not
know if or when the stream ”ends”.

Continuous queries are queries over data streams and stan-
dard relations that continuously produce results as new tu-
ples appear in the input streams of the query. At some
point they are registered in the system and start producing
results, and they last until they are cancelled. They can be
used to extract significant parts from a large stream of data,
to periodically output aggregate information or to raise an
alarm if the system steps out of normal working parameters.

In this paper we are concerned with streams that contain
data about objects whose position and/or extent changes
over time. To efficiently manage spatio-temporal data streams
a DSMS that supports spatio-temporal data types and op-
erations is needed.

2. RELATED WORK
Most of relevant research in the area of data streams

was done within several projects each producing a proto-
type DSMS. Within STREAM project [3, 4], streams are
transformed into relations using window operators and then
queried using standard relational operators. Results can
then be transformed back into streams. AURORA project
[1] on MIT does not support a textual query language, using
data flow diagrams to define queries instead. Stream Mill
system [17, 5], developed at UCLA with the emphasis on
data mining, enables the user to define custom aggregates
which are then used to process streaming data. Telegraph
project at UC Berkley [25] explores adaptive dataflow ar-
chitecture which enables it to make scheduling decisions for
each tuple.

Works [24] and [22] try to merge moving objects and data
streams fields of research, viewing data streams in a stan-
dard way, as unbounded ordered relations.

Scalable on-line execution (SOLE) algorithm [21] is one of
the first attempts to furnish query processors in data stream
management systems with the required operators and algo-
rithms to support a scalable execution of concurrent con-
tinuous spatio-temporal queries over spatio-temporal data
streams.

Work presented in [14] defines a geo-stream as data stream
carrying information about geometry or geometries chang-
ing over time. It expands upon data types and operations
given in [7, 12, 13] by adding new data types called stream
and window, also defining their abstract semantic and op-
erations on them. This work resolves two important issues:
definition of windows semantics through a data type based
approach and design of streaming data types, operations
and predicates. It presents a novel approach to handling
streaming data by encapsulating it inside a single attribute
in a relation. This is one of the first works that formally

and successfully merges streams and moving objects, and
our approach shares common ground with that work.

GeoInsight system [15] presents an integration of SQL spa-
tial libraries into the continuous query pipeline of full-fleged
commercial Microsoft StreamInsight engine to support the
real-time processing of geo-stream data.

PLACE [22] views data streams as automatically chang-
ing relations incrementally calculating results and producing
positive and negative updates of the result set. It supports
predicate windows that use predicates to determine when
each tuple expires from the system, and allows the user to
construct complex queries out of simpler operators such as
inside or kNN. The PLACE continuous query processor ex-
tends the processing of continuous sliding window queries
beyond time-based and tuple-count windows - objects are
qualified to be part of the window once they satisfy a cer-
tain query predicate.

Our work may be most similar to that of [24, 23] who
also use open-source TelegraphCQ stream engine, but with
PostgreSQL built-in spatial data types and operators and,
therefore, with rather limited (and non-standard) spatio-
temporal support.

3. THE TYPE SYSTEM
There are three kinds of different temporal predicates in

spatio-temporal queries. Accordingly, the queries can be
classified into three classes: historical, current and future
query [19]. In this section we define a system of data types on
abstract level supporting historical and current queries, us-
ing many-sorted algebra and second-order signature, build-
ing upon work in [7, 12, 14].

Modelling on abstract level allows us to make definitions
in terms of infinite sets, without fixing any finite represen-
tations of these sets. In spatio-temporal context, a moving
point is a continuous curve in 3D (2D + time) or 4D (3D
+ time) space, i.e. mapping from an infinite time domain
into an infinite 2D (or 3D) space domain. Although the
abstract level is the conceptual model we are interested in,
it should be noted that it is not directly implementable and
that additional step of fixing a concrete, finite representation
is needed.

A many-sorted algebra consists of sets and functions. A
signature is a pair of sets (S, Ω), the elements of which are
called sorts and operations respectively. Each operation con-
sists of a (k+2)-tuple

n : s1 × · · · × sk → s, with s1,× . . . sk, s ∈ S and k ≥ 0.

Operation names (operators) are denoted by n; s1, . . . , sk, s ∈
S are sorts. In the case k = 0 the operation is called a con-
stant of sort s. Informally, a sort denotes a name of a type,
and an operation denotes a function [18].

A second-order signature consist of two coupled many-
sorted signatures. The first signature defines a type system.
In this context sorts are called kinds and denote collections
of types and operators are type constructors. This signature
generates a set of terms, which are exactly the types. Second
signature defines operations over terms of the first signature.

Definitions of tuple, stuple, and srelation type construc-
tors, in table 1, already use some extensions to the basic con-
cepts. The first is that a type constructor may use as sorts
not only kinds but also types. The second extension makes
it possible to define operators taking a variable number of
operands. The notation s+ denotes a list of one or more

operands of sort s. The third extension is that if s1, ..., sn
are sorts, then (s1 × ...× sn) is also a sort [11].

The concept of temporal types requires additional consid-
eration, and will be described briefly. To model values of a
spatio-temporal type σ that changes over time, we introduce
the notion of temporal function which is an element of type

τ(σ) : time9 σ

Temporal functions are the basis for an algebraic model
of spatio-temporal data types, where σ is assigned one of
the spatial data types point, multiPoint, lineString, mul-
tiLineString or polygon, resulting in movingPoint as val-
ues of type τ(point), movingMultiPoint as values of type
τ(multiPoint) and movingPolygon as values of type τ(polygon).

Table 1 shows a signature defining data types that a spatio-
temporal DSMS should support. Abstract semantics of BASE,
SPATIAL, TIME, RANGE and TEMPORAL sorts has been
precisely defined in [7, 11, 12, 13]. When applied to a com-
patible simple data type, type constructors produce a new
data type e.g. range(int), moving(lineString), etc. TEM-
PORAL constructor can be applied to BASE and SPATIAL
data types.

IDENTIFIER, TUPLE, and RELATION sorts, as well
as id, tuple and relation constructors, are cornerstones of
(object-) relational algebra. That subset of sorts, i.e. sub-
set of algebra, is a basis for building spatio-temporal DBMS
in extensible DBMS environment, such as SECONDO [6],
with the goal to support modelling and querying history of
movement.

Sorts STUPLE and STREAM are used to model data
stream analogous to relations, sort WINDOW captures the
concept of sliding windows, and sort IRELATION is used to
apply windows to data streams.

3.1 Abstract semantic
Data stream represents a potentially unbounded sequence

of elements generated at a data source. Data stream ele-
ment consists of a tuple with schema Σ and a timestamp
representing actual time when the tuple is generated. A
single data stream may contain elements from a number of
different data sources if their tuples have the same schema
Σ.

For stream element arrivals we assume a continuous and
linear time domain T , which represents valid time. A time
instant τ is any value from T , i.e. τ ∈ T .

Definition Data stream S is a possibly infinite sequence of
elements 〈s, τ〉 where s is a tuple belonging to the schema
(type) of S.

Each data stream element is mapped to exactly one times-
tamp that represents its unique time reference. If a data
source moves around in space, i.e. represents a spatio-temporal
object, then a spatial stamp is also attached to the ele-
ments of corresponding data stream. It represents location
and/or geometry of a data source when element is generated.
Timestamp and spatial stamp together uniquely determine
spatio-temporal status of an object and are explicitly in-
cluded in data stream schema.

Definition Spatio-temporal data stream SST is a mapping
SG : T × G → 2R from time domain and (geo)spatial do-
main to the powerset of the set R tuples with schema Σ. In

addition to an attribute AT , another attribute AG acts as
the geospatial reference for the represented entity and ob-
tains its values exclusively from the (geo)spatial domain G
[24].

Because streams are unbounded, when a stream is used in
an SQL-like query, the system must be told how and when
to consider the data in the stream. In most existing DSMS
this is usually done using a window specification derived
from SQL-99 to map from streams to relations. Stream-to-
relation mapping is based on the concept of a sliding window
over a stream, i.e. a window that at any point in time con-
tains a historical snapshot of a finite but unbounded subset
of the stream. In what follows, we focus on time-based sliding
windows only, extending the approach for stream-to-relation
and relation-to-stream operators presented in [4, 14] and our
previous work [16, 20]. Table 2 shows abstract semantics of
time-based sliding windows and corresponding SQL-like no-
tation, which will later be used for the purpose of language
embedding.

A data type is defined my specifying its name and its
set of possible values called carrier set or domain. Carrier
set of a type t is denoted by Dt. Carrier set for the type
constructor now is the value of the current instant of time,
and the carrier set of the type constructor past

past : instant× now→ range(instant)

is a closed time interval, having now on the right side.
Data type streaming(σ), similar to moving(σ), can be

considered as a partial function from instant to σ.

streaming(σ) : instant9 σ

In that context, we can talk about values of a streaming
data type at a given time. Both data types streaming(σ)
and σ can have value undefined.

4. SPATIO-TEMPORAL OPERATORS
To make potentially unbounded data streams easier to

manage, sliding window operators based on SQL-99 expanded
by spatial windows introduced in [22] and [24] are used.
Window operators enable the user to view only a part of
a data stream. Tuple based sliding windows are not ap-
propriate in the context of spatio-temporal streams, and we
limit our discussion to time-based windows only. For time-
based and spatial windows a sliding effect can be achieved
by specifying a sliding step. In that case, a new window
state and query results are calculated each sliding step (e.g
every 5 minutes or 50 meters).

After applying window now to data type streaming(σ),
result is of type σ. After applying time interval window
of size tsize to data type streaming(σ), result is of type
streaming(σ), where it retains its values for time in (now−
tsize, now], and has value ⊥ otherwise.

At some situations it might be convenient for a window
over a data stream to refer to a time interval in the past.
For example, if the current data in the stream needs to be
compared to the data from yesterday. To specify this time-
shifted window, a starting point and window size need to be
specified.

4.1 Temporal lifting
Operations on BASE, SPATIAL, TIME and RANGE

data types are applied to TEMPORAL data types using

Table 1: Type system as a signature

Type constructor Signature Target sort

int, real,
string, bool → base
point, multiPoint, lineString
multiLineString, polygon → spatial
instant → time
range base ∪ time → range
moving, intime base ∪ spatial → temporal

id → identifier
tuple (id×(base∪spatial∪time∪range∪temporal))+ → tuple
relation tuple → relation

stuple ((id×(base ∪ spatial ∪ time))+× time) → stuple
stream stuple → stream
now, unbounded,
past → window
srelation stream × window → irelation
rstream irelation → stream
streaming base ∪ spatial → temporal

Table 2: Window abstract semantic and CSQL notation

window Abstract semantic CSQL notation

now Dnow = now <now>

past Dpast = {X ⊆ Dinstant | ∀x ∈ X(x ≤ now) ∧ <past time interval>
∀y ∈ Dinstant(x < y ≤ now ⇒ y ∈ X)}

unbounded Dunbounded = (∞, now] <unbounded>

temporal lifting. Temporal lifting is the key concept for
achieving consistency of operations on nontemporal and tem-
poral types. The idea is to allow argument sorts and target
sort of a signature (the arguments and the result of the cor-
responding operation) to be of temporal type. Formally, for
each operation with signature

o : s1 × · · · × sn → s

its corresponding temporally lifted version is defined by:

⇑ o : τ(s1)× · · · × τ(sn)→ τ(s)

Consistency of operation on moving and non-moving data
types is achieved by first defining all operations on non-
moving data types, and afterwards systematically extended-
ing them to corresponding moving data types changing the
resulting data type into a moving data type as well. The
same principle can be applied to streaming data types.

Consider binary topological predicate inside for points
and polygons, with signature:
inside : point× polygon→ boolean

Applying lifting to streaming data types results in follow-
ing three signatures:
inside : streaming(point)×polygon→ streaming(boolean)
inside : point×streaming(polygon)→ streaming(booelan)
inside : streaming(point)× streaming(polygon)→
streaming(boolean)

It is worthy to note that while the process of lifting pro-
duces signatures for all possible operations on streaming and
moving data types, it does not define how to implement each
of those lifted operations.

4.2 Streaming data operations
In the context of spatio-temporal data streams both stream-

ing and moving data types attempt to model the same real
world phenomena: a unit of data changing over time. How-
ever, there are some differences. Moving data types do
not change without explicit instructions from the user while
streaming data types are changed by an outside source.
While moving data types can be defined continuously, stream-
ing data types always have a stepwise sliced representation:
one value holds until next one arrives. Since both sets of
data types refer to same objects in the real world, most of
operations defined for moving data types can be applied to
streaming data types as well.

All operations applicable to BASE and SPATIAL data
types can also be applied to streaming data types through
lifting. Several groups of operations defined specifically for
moving data types classified into projection to domain
and range and interaction with domain and range
are defined in [12]. Here we present a subset of them, ap-
propriate for streaming data types:
deftime : streaming(σ)→ range(instant)
trajectory : streaming(point)→ lineString

streaming(multiPoint)→ multiLineString
atinstant : streaming(σ)× instant→ intime(σ)
atperiods : streaming(σ)×range(instant)→ streaming(σ)
at : streaming(σ)× σ → streaming(σ)
streaming(σ)× range(σ)→ streaming(σ)
present : streaming(σ)× instant→ bool
streaming(σ)× range(instant)→ bool

Since streaming and moving data types are so similar and
capture the same real world phenomena, it is reasonable to
include a function to convert streaming data types to moving
data types. If it was allowed to use such a function inside

a continuous query, a result would be a moving data type
that changes with time in effect a streaming(moving(σ)).
To avoid unnecessary complexity such a function cannot be
used within continuous queries. Its intended purpose is to
store historical streaming data as moving object data types
in a more efficient manner and to facilitate the use of indexes
available for moving data types.

Function atperiods also takes a streaming data type at
input and produces a moving data type at output.

5. IMPLEMENTATION
A discrete model, as a finite instantiation of an abstract

model is needed for implementation. The discrete model
uses so-called sliced representation: temporal changes of a
value along the time dimension are decomposed into frag-
ment intervals called slices and temporal changes for moving
points can be represented within each slice by simple linear
function.

Abstract type system supports standard data types (int,
real, bool, string), data type to represent time (instant),
spatial types (point, multiPoint, lineString, multiLineString,
polygon) [8], temporal data types obtained by a type con-
structors moving and streaming, type that represents a set
of intervals obtained by a type constructor range and a type
whose values are pairs consisting of an instant of time and
a value of the respective argument type obtained by type
constructor intime.

Each of the abstract model data types can be directly
implemented in terms of corresponding types of a program-
ming language, except for temporal types. In a discrete
model, moving and streaming constructors are replaced by
a type constructors that enable so-called sliced representa-
tion of temporal types. Type constructor mapping repre-
sents a set of unit types whose values are pairs consisting
of a time interval and a simple function describing temporal
development of a value during that time interval.

Spatial stamp and timestamp represent two separate at-
tribute values - usually implemented in the context of spatio-
temporal databases with related, but separate spatial data
type and data type that represents time. Together they rep-
resent a unique spatio-temporal reference of a data stream
element and we propose its implementation in DSMS with
composite temporal data type whose values are pairs of in-
stant in time and location in space. This data type is derived
using the type constructor intime, presented in table 1. In-
stant component implicitly used in type constructor intime
represents valid time.

Definition Spatio-temporal reference of a spatio-temporal
data stream element is obtained by applying type construc-
tor intime to the appropriate spatial data type, i.e. intime
(σ).

Carrier set for data type intime(σ), at discrete level, is
Dintime(σ) := Dinstant ×Dσ

5.1 User-defined aggregate functions
A set of aggregate functions available to users of a data

stream system is usually limited to five standard functions:
min, max, count, sum and avg. However, many data stream
systems allow the user to extend the set of available aggre-
gate functions by defining user-defined aggregate functions
(UDAF).

To create a UDAF, the user must implement at least three
functions:

Init This function is used to initialize any variables needed
for the computation later on. Intuitively, it is similar
to a constructor.

Accumulate This function is called once for each value ag-
gregated. Generally, this function will ”add” the value
to the running total computed thus far.

Terminate This function is used to end the calculation and
return the final value of the aggregate function. It
may involve some calculations on variables which were
defined for use with the aggregate function.

Similar to a continuous query, UDAF is considered block-
ing [10] if it requires its entire input before it can return a
result (blocking UDAFs always have terminate operation).
Such blocking aggregates can only be applied over data streams
using a window operator and are termed windowed aggre-
gates, while UDAFs invoked without a window operator are
termed base aggregates. UDAFs in which terminate opera-
tion is not defined are called non-blocking and can be applied
to data streams freely.

The proposed temporal data type for representing a spatio-
temporal reference of a data stream element enables imple-
mentation of sliced representation for spatio-temporal ob-
jects. Spatio-temporal object is formed of unit types each
consisting of a time interval and a value describing simple
function on the unit time interval. For example, for two suc-
cessive spatio-temporal data stream elements with spatio-
temporal references consisting of successive point locations
and time instants, it is possible to define the unit type that
describes movement of the corresponding point object as a
linear function of time.

Complete sliced representation presents a moving object
as a set of temporal units whose time intervals are dis-
joint, and if adjacent their values are different. Assembling
unit types into a moving object based on spatio-temporal
references of data stream elements can be achieved using
UDAF. Aggregation can be defined as a state that is mod-
ified with every input data. In terms of spatio-temporal
data streams, such state represents a moving object in a
form of described sliced representation (mapping(upoint)
data type), while spatio-temporal reference of data stream
element represents new input data (intime(point) data type).
Function iterate, that is used in UDAF, performs creation
of unit type and adds it to the moving object. Since this
function computes a new state (moving object) from the old
one and the value of spatio-temporal reference of a new data
stream element, UDAF for extracting moving object out of
data stream doesn’t need a terminate function and is thus
considered non-blocking. Moving object is not defined be-
fore the first input value has arrived, and initial value for the
internal state is NULL. This concept can be implemented
using following PostgreSQL-like syntax:

CREATE AGGREGATE toMoving (intime(point))

(

SFUNC = iterate,

STYPE = mapping(upoint),

INITCOND = NULL

);

Definition Sliced representation of an spatio-temporal ob-
ject is obtained by applying an aggregate function over spatio-
temporal references of data stream elements.

In combination with different window operators, i.e. stream-
to-relation operators [4], proposed UDAFs produce spatio-
temporal objects as intermediate results of a continuous spa-
tial query. DSMSs that support not only data streams but
persistent relations as well, can be extended with ability
to store intermediate results of continuous queries into re-
lations. With this approach, movement history of objects
extracted out of spatio-temporal data streams can easily be
persisntenly stored. A powerful set of previously unavail-
able continuous queries can be achieved by joining relations
containing history of movements with data streams carrying
information about current movements.

5.2 Continuous SQL: CSQL
Approach proposed in previous chapter is implemented by

user defined aggregate function named toMoving, that takes
a spatio-temporal reference of a data stream element in-
time(point) as its only argument. Aggregate function toMoving

produces moving object of the appropriate temporal data
type.

Given concept is illustrated through CSQL, an SQL-like
query language that supports continuous queries over data
streams. Examples in this paper are based on the following
spatio-temporal data stream schema:

carStream (

id: INTEGER,

driver: SMALLINT,

geom: point,

speed: REAL,

tcqtime: TIMESTAMP TIMESTAMPCOLUMN

)

Attribute tcqtime is a default timestamp column. It spec-
ifies the creation time of a tuple, which is assumed to be
monotonically increasing.

Following two examples illustrate spatio-temporal contin-
uous queries and their visualization (Fig. 1) enabled within
our prototype:
Q1: Continuously report all cars, their speed and location,
within a particular city district.

SELECT id, speed, geom
FROM carStream <NOW>, cityDistrict
WHERE cityDistrict.name = ’Crnomerec’
AND ST_Within(carStream.geom, cityDistrict.geom)

Q2: Find all cars that have travelled more than 50 km during
last hour.

SELECT id, val(final(toMoving(intime(geom, tcqtime))))
FROM carStream <PAST ’1 hour’>
GROUP BY id
HAVING ST_Length(trajectory(toMoving(intime(geom,tcqtime)

))) > 50000

6. CONCLUSIONS
Proposed approach for spatio-temporal data stream man-

agement is based on extending relational-based DSMS with a
full-fledged set of spatio-temporal data types and associated

Figure 1: User interface prototype (with Open-
StreetMap background)

operations. Implementation of abstract data model at dis-
crete level, including spatio-temporal predicates and opera-
tions, is based on the concept of extracting spatio-temporal
objects out of data streams using UDAFs.

Our approach is based on extending TelegraphCQ pro-
totype with PostGIS, enabling continuously adaptive query
processing with full spatial support and taking advantage of
open source processing software and extensible features. Be-
sides that, it supports rich windowing schemes over portions
of data streams and user-defined aggregate functions over
sliding windows. These features enable implementation of
the proposed concept and extension of the continuous query
language, thus allowing posing continuous spatio-temporal
queries.

An important class of queries over data streams can be
only answered by using predicate-window query model [9],
that limits the focus of a continuous query to the stream
tuples that qualify a certain predicate.

Beside predicate-windows, the focus of our future work
will be on a full prototype implementation based on pro-
posed spatio-temporal type system, storing transient results
of continuous queries into spatio-temporal DBMS, and de-
veloping sophisticated graphical user interface.

7. ACKNOWLEDGMENTS
This work was supported by the Geospatial Sensors and

Moving Objects Databases and Semantic Integration of Het-
erogeneous Data Sources research projects, funded by the
Ministry of Science under grant numbers 036-0361983-2020
and 036-0361983-2012.

The authors would like to thank the anonymous review-
ers for their valuable insights, suggestions and constructive
recommendation for improving this paper.

8. REFERENCES
[1] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack,

C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. B. Zdonik. Aurora: a new model and architecture
for data stream management. The International
Journal on Very Large Databases, 12(2):120–139, 2003.

[2] M. H. Ali, B. Chandramouli, J. Goldstein, and
R. Schindlauer. The extensibility framework in
Microsoft StreamInsight. In ICDE, pages 1242–1253,
2011.

[3] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito,
R. Motwani, I. Nishizawa, U. Srivastava, D. Thomas,
R. Varma, and J. Widom. STREAM: The Stanford
stream data manager. IEEE Data Eng. Bull.,
26(1):19–26, 2003.

[4] A. Arasu, S. Babu, and J. Widom. The CQL
continuous query language: semantic foundations and
query execution. The International Journal on Very
Large Databases, 15(2):121–142, 2006.

[5] Y. Bai, H. Thakkar, H. Wang, C. Luo, and C. Zaniolo.
A data stream language and system designed for
power and extensibility. In P. S. Yu, V. J. Tsotras,
E. A. Fox, and B. Liu, editors, CIKM, pages 337–346.
ACM, 2006.

[6] V. T. de Almeida, R. H. Güting, and T. Behr.
Querying moving objects in SECONDO. In Mobile
Data Management, pages 47–51. IEEE Computer
Society, 2006.

[7] M. Erwig, R. H. Güting, M. Schneider, and
M. Vazirgiannis. Abstract and discrete modeling of
spatio-temporal data types. In ACM-GIS, pages
131–136, 1998.

[8] Z. Galić. Geospatial Databases. Golden Marketing -
Tehnička knjiga, 2006. [in Croatian].

[9] T. M. Ghanem, W. G. Aref, and A. K. Elmagarmid.
Exploiting predicate-window semantics over data
streams. SIGMOD Record, 35(1):3–8, 2006.

[10] L. Golab and M. T. Özsu. Data Stream Management.
Synthesis Lectures on Data Management. Morgan
Claypool Publishers, 2010.

[11] R. H. Güting. Second-order signature: A tool for
specifying data models, query processing, and
optimization. In P. Buneman and S. Jajodia, editors,
SIGMOD Conference, pages 277–286. ACM Press,
1993.

[12] R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen,
N. A. Lorentzos, M. Schneider, and M. Vazirgiannis. A
foundation for representing and quering moving
objects. ACM Transactions on Database Systems,
25(1):1–42, 2000.

[13] R. H. Güting and M. Schneider. Moving Objects
Databases. Morgan Kaufmann, 2005.

[14] Y. Huang and C. Zhang. New data types and
operations to support geo-streams. In T. J. Cova, H. J.
Miller, K. Beard, A. U. Frank, and M. F. Goodchild,
editors, GIScience, volume 5266 of Lecture Notes in
Computer Science, pages 106–118. Springer, 2008.

[15] S. J. Kazemitabar, U. Demiryurek, M. H. Ali,
A. Akdogan, and C. Shahabi. Geospatial stream query
processing using Microsoft SQL Server StreamInsight.
PVLDB, 3(2):1537–1540, 2010.

[16] K. Križanović, Z. Galić, and M. Baranović. Data types

and operations for spatio-temporal data streams. In
Proceedings of the 12th International Conference on
Mobile data Management, Vol. II, pages 11–14, 2011.

[17] Y.-N. Law, H. Wang, and C. Zaniolo. Query languages
and data models for database sequences and data
streams. In M. A. Nascimento, M. T. Özsu,
D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B.
Schiefer, editors, VLDB, pages 492–503. Morgan
Kaufmann, 2004.

[18] J. Loeckx, H.-D. Ehrich, and M. Wolf. Specification of
Abstract Data Types. Wiley/Teubner computing series,
1996.

[19] X. Meng and J. Chen. Moving Objects Management:
Models, Techniques and Applications. Tsinghua
University Press and Springer-Verlag, 2010.

[20] E. Mešković, Z. Galić, and M. Baranović. Managing
moving objects in spatio-temporal data streams. In
Proceedings of the 12th International Conference on
Mobile data Management, Vol. II, pages 15–18, 2011.

[21] M. F. Mokbel and W. G. Aref. SOLE: scalable on-line
execution of continuous queries on spatio-temporal
data streams. The International Journal on Very
Large Databases, 17(5):971–995, 2008.

[22] M. F. Mokbel, X. Xiong, M. A. Hammad, and W. G.
Aref. Continuous query processing of spatio-temporal
data streams in PLACE. GeoInformatica,
9(4):343–365, 2005.

[23] K. Patroumpas, E. Kefallinou, and T. K. Sellis.
Monitoring continuous queries over streaming
locations. In W. G. Aref, M. F. Mokbel, and
M. Schneider, editors, GIS, page 81. ACM, 2008.

[24] K. Patroumpas and T. K. Sellis. Managing trajectories
of moving objects as data streams. In J. Sander and
M. A. Nascimento, editors, STDBM, pages 41–48,
2004.

[25] TelegraphCQ.
http://telegraph.cs.berkeley.edu/telegraphcq/v2.1/.

