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ABSTRACT
To study the similarity between moving object trajectories
is important in many applications, e.g., to find the clusters
of moving objects which share the same moving pattern, and
infer the future locations of a moving object from its sim-
ilar trajectories. To define the similarity between moving
objects is a challenging task, since not only their locations
change but also their speed and semantic features vary. In
this paper, we propose a novel approach to measure the sim-
ilarity between trajectories. The similarity is defined based
on both geographic and semantic features of movements.
Our approach can be used to detect trajectory clusters and
infer future locations of moving objects.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial Databases and GIS

General Terms
Algorithms
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1. INTRODUCTION
The research on moving object databases [2] in recent

years has attracted a lot of attention in many applications
such as location-based services, traffic management and hur-
ricane research, etc. Some moving objects in the real world
share the same moving patterns, which is an important fea-
ture and can help people solve real problems. For example,
assume that a large number of taxis take the similar routes
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between two destinations, then we may detect the represen-
tative trajectory between these two destinations, and can
further infer future locations given the historical movement
of a taxi. Intuitively, if two trajectories can be considered
as similar to each other, they should satisfy some particular
requirements, for example, they should be close enough to
each other in the Euclidean space, and further they should
have similar directions. Then a challenging problem is: how
to measure the closeness?

A number of approaches measuring the similarity of the
moving object trajectories are cluster-based methods [5] [3].
A partition-and-group algorithm to cluster similar trajecto-
ries is discussed in [3]. It defines three measurement, i.e.,
perpendicular distance, parallel distance and angle distance
as the measurements of the similarity. While the above mod-
els find the trajectory similarity based on geographic fea-
tures, some recent approaches introduce the semantic tags to
enhance the accuracy of the measurement. The term seman-

tic trajectories has been discussed in [1]. The authors con-
sider trajectories as a set of stops and moves. An approach
which mines the similarity of people’s trajectories based on
location histories is proposed in [4]. It defines a stay point

as the place where a user stays for a while, and it carries
a particular semantic meaning. A recent approach which
detects similarity in semantic trajectories is proposed in [7].
The approach uses the longest common subsequence (LCSS)
algorithm to find the similarity mainly on the semantics. A
continuous work [6] adds geographic feature to measure the
similarity and make prediction. It introduces two measure-
ments, i.e. SemanticScore and GeographicScore. However,
this approach first filters the trajectories by semantic sim-
ilarity and then detect the geographic similarity, therefore
two trajectories which are far from each other might have
a very high similarity score, if their semantic similarity is
high. The difference of our approach is that we compare ge-
ographic similarity at the beginning and then measure the
semantic similarity.

In this paper, we propose a novel approach to measure the
similarity between moving object trajectories. The method
is based on both geographic features as well as semantic
properties of trajectories. Then we combine both similarity
measurements together and define a novel distance function.

The remaining part of the paper is organized as follows.
In Section 2 we give the preliminary and an overview of our
approach. In Section 3, we give the definition of similarity
measurements between trajectories. We draw conclusions
and discuss future work in Section 4.



2. PRELIMINARY
In this section, we give preliminary concepts of our re-

search that will be used in further discussion in the rest of
the paper. Then we show the framework of our approach.
As a human trajectory can show places that a people vis-

ited, we can detect the properties of a place and add seman-
tic tags to it. We call such trajectories semantic trajectories.
The semantic trajectory is defined as follows.

Definition 1 (Semantic trajectory) A semantic trajec-

tory is a list of points < (x1, y1, t1, S1), . . . ,
(xi, yi, ti, Si), . . . , (xn, yn, tn, Sn) >, with the following con-

ditions,

i) n ∈ N, i ∈ {1, 2, ..., n}
ii) ∀1 < i < j < n : ti < tj
iii)∀1 < i < n, Si = {si1, si2, . . . , sim}, (xi, yi)→ Si.

In the above definition, Condition (iii) shows a semantic

mapping process, i.e., each location that visited by a human
can be associated with one or more semantic tags.

(x2, y2, t2,{Museum})

(x3, y3, t3,{Shop, Restaurant})

(x4, y4, t4,{Airport, Hotel})

(x1, y1, t1,{Park})

Figure 1: An examples of a semantic trajectory (b)

An example of a semantic trajectory is shown in Figure 1.
We notice that the third point contains two semantic tags
which are Shop and Restaurant, while the last point contains
semantic tags of Airport and Hotel.
Given a large number of trajectories with semantic infor-

mation, we perform the similarity measurement. We define
the geographic and semantic similarities respectively, and
calculate the similarity scores between all trajectories. In
the end we calculate the total distance between two trajec-
tories on top of the similarity scores.

3. DEFINE SIMILAR TRAJECTORIES
In this section, we define the similarity between trajecto-

ries. We consider in two aspects, the geographic similarity
and semantic similarity.

3.1 Geographic Similarity
First, we define the similarity measurement between tra-

jectories in geometry. A common problem in measuring the
similarity of trajectories and trajectory clustering is the han-
dling of sub-trajectories [3]. Given a trajectory which con-
sists of a list of GPS points tra =< (x1, y1, t1), (x2, y2, t2),
. . . , (xn, yn, tn) >, a sub-trajectory trak is a partial list
of tra, and trak =< (xk1

, yk1
, tk1

), . . . , (xkm
, ykm

, tkm
) >,

where 1 ≤ k1 < k2 < . . . < km ≤ n. If a sub-trajectory
contains only two GPS points, then it is a trajectory seg-

ment. A problem cost by not identifying sub-trajectories
is shown in Figure 2a. Assume that we have a trajectory
tra1 =< a1, a2, a3, a4, a5 >, where a1, a2, . . . are a list of
GPS points, and tra2 =< b1, b2, b3 >, we find that portions
of tra1 and tra2 are very similar. However, if we compare the
entire trajectory of tra1 with tra2, it’s hard to tell whether
tra1 and tra2 are similar, because tra1 has a sudden turn at

point a3. We call such point a turning point. But if we par-
tition tra1 into two sub-trajectories as tra11 =< a1, a2, a3 >
and tra12 =< a3, a4, a5 >, we are able to measure the simi-
larity between tra11 and tra2. Therefore, an important task
is to detect the turning points of a trajectory and partition
it into a list of sub-trajectories.
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a5

(a) (b)

Figure 2: An example that a whole trajectory may
not work in identifying clusters (a); using turns to
detect the point to partition sub-trajectories (b)

A turning point is detected by given a specific parameter
ϕ which shows the degree of turns made by a trajectory.
We define θi as the absolute bearing (direction to north)
of the i-th segment. Given the latitude and longitude of a
spatial point, its bearing can be determined. Let ϕi denote
the degree that a trajectory turns at the i-th point, then
ϕ = θi − θi−1, as shown in Figure 2 b. Then we can select
a range of ϕ, so that if the absolute value of the degree
of a turn is greater than ϕ, we split the trajectory at this
turning. In one extreme case, if we choose ϕ to be 0, then
each segment will be partitioned. In the other case, if we
choose ϕ to be π, then no trajectories will be split.

The next criteria that we want to consider to partition
a trajectory is a temporal constraint. Previous algorithms
only consider the similarity between the shapes of trajecto-
ries. However, we consider that time is an important fea-
ture in the moving pattern of a moving object. For example,
a person’s trajectory may consist of two parts: in the first
part, he walks with the speed of 4 km/h, while in the second
part he takes a taxi and travels with the speed of 50 km/h.
Since these two parts show different moving patterns, we
will split them. Therefore we define a speed ratio of the i-th

segment τi and a temporal constraint τ as τi =
vi
v̄i
, where

vi is the average speed of the moving object at the i-th seg-
ment, and v̄i is the average speed so far. If τi exceed the
threshold τ we set, then we will partition the trajectory at
the i-th point.

After partitioning trajectories into sub-trajectories, we are
able to define the similarity between sub-trajectories.

(a) (b) (c)

Figure 3: Two trajectories which are “far” from each
other (a); two trajectories overlap but their direc-
tions are different (b); two trajectories have similar
directions and different lengths (c).

.



When measuring the similarity between spatial objects,
an intuitive way is to measure how close in distance they
are to each other. A method is to consider these two spatial
objects as two point sets, and find the minimum distance,
as shown in Figure 3a. However, this is not a correct as-
sumption. For example, if two trajectories overlap, then
the distance will be zero, and these two trajectories will be
considered “similar”, shown by Figure 3b, which is not accu-
rate. Therefore, we need to consider their directions in the
similarity measurement. Further, we must take into con-
sideration the difference of the lengths between trajectories.
A short trajectory will not be similar to a long trajectory
(Figure 3c). With the careful consideration of all the above
issues, we introduce the following concepts which are neces-
sary for us to define the trajectory similarity.

Center of mass.
The center of mass of an arbitrary 2D shape (x̄, ȳ) is the

geometric center of this shape. We use ctr(tra) to denote
the center of mass of the trajectory tra. It is calculated by,

ctr(tra) = (x̄, ȳ) = (

∫
xf(x)dx

∫
f(x)dx

,

∫
yf(y)dy

∫
f(y)dy

)

where f(x) and f(y) denote the density distribution on
x-coordinate and y-coordinate respectively.
Assume that we have a sub-trajectory<(x1, y1, t1), (x2, y2, t2),

. . . (xn, yn, tn) >, and if we assume a uniform distribution
of density, f(x) = f(y) = 1, then the center of mass is,

(x̄, ȳ) = (

∑n−1

i=1
(x2

i+1 − x2
i )

2
∑n

i=1
(xi+1 − xi)

,

∑n−1

i=1
(y2

i+1 − y2
i )

2
∑n

i=1
(yi+1 − yi)

)

A special case is to find the center of a segment, i.e., a sub-
trajectory just contains two points (x1, y1, t1), (x2, y2, t2).

The center is (
x1 + x2

2
,
y1 + y2

2
), which is in accordance

with the above equation. It is obvious that the center of
mass of a trajectory may or may not lie on the trajectory,
as shown by Figure 4a and Figure 4b.

Displacement.
The displacement of a trajectory tra is the shortest dis-

tance from its origin to its destination (Figure 4c). We in-
troduce this concept because it shows a short cut of a tra-
jectory. The short cut always leads to the right destination
and is useful in identifying representative trajectories. We
use the term s to denote the displacement.

Cosine similarity.
The cosine similarity between two vector is a measure of

the cosine of the angle between them, and the value is be-
tween [-1,1]. Here we use it to measure the similarity be-
tween the directions of two sub-trajectories. We calculate
the cosine similarity between the displacements of two tra-
jectories. A larger value shows a higher similarity and a
smaller distance, therefore we add this metric as an nega-
tive term. Let s1, s2 denote the displacement of trajectory
tra1 and tra2 respectively, the cosine similarity is defined
as,

cos(s1, s2) =
s1 · s2
‖s1‖‖s2‖

Now we are able give the definition of the geometric dis-
tance between two sub-trajectories.

tra1

ctr(tra1)
tra2

ctr(tra2)

(a) (b)

disp(tra1)

dist(ctr(tra2),ctr(tra2))

(c) (d)

Figure 4: Center of mass lies outside the trajectory
(a); center of mass lies on the trajectory (b); the
euclidean distance between the center of mass (c);
the displacement of a trajectory (d)

Definition 2 (Geographic distance) Let tra1 and tra2

denote two trajectories. Let s1 and s2 denote the displace-

ment of tra1 and tra2 respectively, and ‖tra‖ denote the

length of tra. The geographic distance between tra1 and tra2

is defined as,

geoDist(tra1, tra2) = ctrDist(tra1, tra2)

+ ctrDist(tra1, tra2)×
| ‖tra1‖ − ‖tra2‖ |

max(‖tra1, ‖tra2‖)

− avg(‖s1‖, ‖s2‖)× cos(s1, s2)

The first term measures the distance between the centers
of mass. The second term measures the difference between
the length of the trajectories. As we have shown in Fig-
ure 3c, the lengths of the trajectories effect their similarity,
so that we consider the ratio of the difference to the max-
imum length of two trajectories. While the third term is
the cosine similarity times the average length of two trajec-
tories, which reduces the distance between trajectories. An
advantage of this definition is that the distance function is
symmetric, i.e., the distance from tra1 to tra2 is the same
from the distance from tra2 to tra1. We show this property
in the following lemma.

Lemma 1 The distance function defined in Definition 2 is

symmetric, which satisfies,

geoDist(tra1, tra2) = geoDist(tra2, tra1)

Proof. The first term of the equation is the euclidean
distance between two points, which is symmetric. The sec-
ond term is the first term times a ratio, and the denominate
of the ratio is the larger value between the two, which is
always the same, while the numerator is the absolute value
of the difference of two numbers. The third term is a ratio,
where the numerator is the dot product of two vectors, which
is commutable, and the denominator will always return the
same value no matter which vector comes first. Therefore
this distance function is symmetric.

3.2 Semantic Similarity
Now we discuss the semantic similarity between trajecto-

ries. We adopt the longest common subsequence algorithm.
Similar method has appeared in [7], where the authors de-
fine the semantic similarity between two trajectories as two
different ratios. However, we consider that the semantic
similarity should be symmetric.



Definition 3 (Semantic similarity) The semantic ratio

between two trajectories is defined as

semRatio(tra1, tra2) =
LCSS(tra1, tra2)

min(|tra1|, |tra2|)

Here we use |tra| to represent the number of GPS points
in tra. We use the dynamic programming approach to cal-
culate the LCSS of two trajectories, as shown in Figure 5.

Algorithm Revised longest common subsequence
Input: two semantic trajectories tra1, tra2

Output: the semantic similarity ratio
1 m← |tra1|, n← |tra2|,
2 Initialize M [m][n] //matrix to store the LCSS
3 for i← 1 to m
4 M [i][0]← 0
5 for j ← 1 to n
6 M [0][j]← 0
7 for i← 1 to m
8 for j ← 1 to n
9 max len←= M [i− 1][j − 1] + 1
10 if max len < M [i− 1][j] and
11 M [i− 1][j] > M [i][j − 1]
12 max len←M [i− 1][j]
13 else if max len < M [i][j − 1] and
14 M [i− 1][j] < M [i][j − 1]
15 max len←M [i][j − 1]
16 M [i][j] = max len
17 // the minimum length of two trajectories
18 len = min(m,n)
19 return M [m][n]/len

Figure 5: The algorithm of revised longest common
subsequence to determine the semantic similarity
ratio between two trajectories

We show that this definition on the semantic similarity is
also symmetric in the following lemma.

Lemma 2 The defined semantic ratio function between two

trajectories in Definietion 3 is symmetric:

semRatio(tra1, tra2) = semRatio(tra2, tra1)

Proof. As the LCSS in the equation always returns the
sub-sequence in common between two trajectories, and the
denominator always returns the minimum length, then the
ratio is always symmetric.

Now we need to combine both measurements together.
If we take a look at Definition 2, we may find that this
is a measurement of the length. However, when we look
into Definition 3 we observe that it is a ratio between [0,1].
An idea is to take the second measurement as a multiplier.
However, the former is a distance function, but the latter
shows a higher score when two trajectories are similar. Thus
we should divide the second factor from the first. Therefore
we give the following definition.

Definition 4 The total distance of two trajectories tra1 and

tra2 measures the similarity between them considering both

geographic and sementic features, and is defined as

totalDist(tra1, tra2) =geoDist(tra1, tra2)

×
1

1 + α× semRatio(tra1, tra2)

where 0 ≤ α ≤ 1

Here we introduce a parameter α to adjust the portion
that how much the semantic features can affect the simi-
larity. As α increases, the higher the portion is, as it will
shrink the value of the final distance and make two tra-
jectories more similar. If we set α to zero, the distance is
measured merely based on geographic distance.

We show that the definition in Definition 3 is symmetric
by the following theorem.

Theorem 1 The total distance function measuring the sim-

ilarity between two trajectories in is symmetric:

totalDist(tra1, tra2) = totalDist(tra2, tra1)

Proof. From Lemma 1 and Lemma 2 we have proved
that the geographic distance and the semantic ratio are both
symmetric, therefore in we will always get the same value
no matter which trajectory comes first.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we draw the problem of finding similar mov-

ing object trajectories. We propose a novel approach to mea-
sure the similarity between trajectories considering both ge-
ometric and semantic properties. We first split a trajectory
into sub-trajectories by considering the trajectory turns and
temporal constraint and then define novel measurements on
geographic similarity between sub-trajectories as well as se-
mantic similarity. After that we define distance functions to
measure the geographic similarity as well as semantic simi-
larity. Our distance functions are proved to be symmetric.
In the future, we will adopt this approach to cluster similar
trajectories and find the representative trajectory to infer
future locations of moving objects.
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