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Abstract—This paper studies the impact of VM granularity
on workload performance in cloud computing environments.
We use HPL as a representative tightly coupled computational
workload and a web server providing content to customers as
a representative loosely coupled network intensive workload.
The performance evaluation demonstrates VM granularity has
a significant impact on the performance of the computational
workload. On an 8-CPU machine, the performance obtained
from utilizing 8VMs is more than 4 times higher than that
given by 4 or 16 VMs for HPL of problem size 4096; whereas
on two machines with a total of 12 CPUs 24 VMs gives the
best performance for HPL of problem sizes from 256 to 1024.
Our results also indicate that the effect of VM granularity
on the performance of the web system is not critical. The
largest standard deviation of the transaction rates obtained from
varying VM granularity is merely 2.89 with a mean value of
21.34. These observations suggest that VM malleability strategies
where VM granularity is changed dynamically, can be used
to improve the performance of tightly coupled computational
workloads, whereas VM consolidation for energy savings can
be more effectively applied to loosely coupled network intensive
workloads.

Index Terms—Cloud Computing; Granularity; Malleability;
Performance; Virtual Machine;

I. INTRODUCTION

Cloud computing is an emerging distributed computing
paradigm that promises to offer cost-effective scalable on-
demand services to users, without the need for large up-front
infrastructure investments [1]. A key enabling technology for
cloud computing is virtualization. With virtualization, service
providers can ensure isolation of multiple user workloads,
provision resources in a cost-effective manner by consolidating
virtual machines (VMs) onto fewer physical resources when
system load is low, and quickly scale up workloads to more
physical resources in peak periods. Cloud computing users
also benefit from VM abstraction in that they can quickly
deploy VM images with preloaded operating systems, software
applications, and application data onto cloud environments
without being concerned with lower-level physical infrastruc-
ture details.

As cloud computing brings significant benefits to service
providers and users, it also introduces new challenges. Its pay-
per-use business model gives service users such flexibility in
purchasing a service that they could try a service with lower
cost and turn away from a service whenever they like, which
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results in fluctuating user workloads. Meanwhile, the available
physical resources for one VM image are non-dedicated and
dynamic, because service providers usually multiplex multiple
VMs onto one single physical machine (PM) and would turn
on/off PMs from time to time for the sake of maintenance
or energy savings. In such a computing environment, VMs
are likely to be either overprovisioned, incurring unnecessary
cost, or underprovisioned, which may degrade the quality of
service. Thus, in order for the cloud computing paradigm
to fulfill its promises, it is necessary to investigate adaptive
VM management techniques that enable the VMs to achieve
optimal quality of service in spite of fluctuating user workloads
and available physical resources. As a step towards adaptive
VM management, we tackle the following problem: given a
workload and a set of physical computing resources, what
ratio of VMs to physical processors optimizes the workload’s
performance?

While existing works on adaptive VM management mainly
focus on VM migration [2], [3], [4], the impact of VM
granularity on the performance of a cloud environment has
not yet been explored. In this paper, we study the impact
of VM granularity on two categories of workloads: tightly
coupled computational workloads and loosely coupled network
intensive workloads. Our performance evaluation indicates that
the relationship between VM granularity and workloads’ per-
formance is subtle and depends on the nature of the workloads.
For tightly coupled computational workloads VM granularity
indeed affects the performance significantly and the right VM
granularity could enable service providers to improve user
satisfaction by reducing the time and cost required for user
tasks, serve more users in the same amount of time and hence
utilize resources more fully. By contrast, the impact of VM
granularity on the performance of loosely coupled network
intensive workloads is not critical and service providers could
more effectively apply VM consolidation to such workloads
for energy savings.

This paper continues as follows. Section II introduces our
approach of exploring the impact of VM granularity on
workloads’ performance. Section III describes the performance
evaluation of the tightly coupled computational workload:
HPL. Section IV investigates the influence of VM granularity
on the performance of our loosely coupled network intensive
workload: a VM-based web service workload. Section V
discusses our evaluation results and introduces our future work
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Fig. 1. General architecture of our performance evaluation system: given a
workload and a set of physical processors, how many VM instances optimize
the workload’s performance?

on VM malleability. Section VI presents related work. Section
VII concludes this paper.

II. APPROACH

This paper aims at exploring the effects of VM granularity
on workloads’ performance given a set of physical computing
resources. With this goal, we design benchmarking experi-
ments to evaluate the performance of one tightly coupled
computational application and one loosely coupled network
intensive application running on various numbers of VMs. The
general architecture of our performance evaluation system is
shown in Figure 1.

The representative computational workload we use is HPL
2.0. We run HPL on top of up to 32 guest Xen domains
deployed on a 8-CPU PM and up to 48 guest Xen domains
deployed on 2 PMs with a total of 12 CPUs. The evaluation
results demonstrate that VM granularity has a significant im-
pact on the performance of HPL and it is non-trivial to identify
the optimal VM granularity even for our HPL benchmark
workload and static physical computing environment.

To form a better understanding of the impact of VM
granularity on the HPL performance, we use the profiling
tool MPIP-3.2.1 and the system command top to collect
performance statistics such as MPI time percentage, CPU
time percentage per process, and load average. Based on the
profiling results, we reach several conclusions. First, the time
spent on MPI dominates the overall running time of HPL under
the setup of our experiments. Second, the total load average
of the VMs can serve as a good indicator of the workload’s
performance: the lower the total load average, the better the
workload’s performance.

Next, to study the impact of VM granularity on the per-
formance of network intensive workloads, we deploy a VM-
based web system upon up to 28 Xen domains deployed on
a 8-CPU PM and benchmark the performance of the web
system using the open source http/https benchmarking utility
SIEGE 2.69. The experimental results indicate that the effect
of VM granularity on the performance of the web system is
not critical.

HPL Data Distribution

(=}
—
LS}

<o
2
i

il

il

A5 A

NN

2 s
= =
e u\ﬁzﬂ?/;r '::> AT ,Tsé : i
4 | R ARA 53
— | — | |
=2=7 AT
Poo Py P Py Py P
MPI Processes
Xen Domains | VM, VM, VM,

Fig. 2. Architecture of a VM-based computing system.

ITI. COMPUTATION INTENSIVE EVALUATION

A. Experimental Design We start by investigating how
VM granularity affects the performance of tightly coupled
computational workloads running on top of VMs. The bench-
mark we use is HPL 2.0 [5], a benchmark that has been used
extensively in the computing industry to measure the floating
point computing power of a system.

HPL solves a linear system of order n: Az = b by first per-
forming LU factorization of the N-by-N+1 coefficient matrix
[Ab] = [[L,U]y] and then solve the upper triangular system
Ux = y to get the solution x. The N-by-N+1 coefficient
matrix is partitioned into NB-by-NB blocks that are cyclically
distributed onto a two-dimensional P-by-Q grid of processes.
As HPL is run as a MPI job, the processes in the P-by-Q
grid are actually MPI processes. The MPI processes are in
turn mapped onto a number of VMs in a round-robin way.
The parallel HPC computation is tightly coupled, since the
computations on the blocks rely on each other and hence
the processes to which the blocks are assigned intensively
communicate with each other. HPL reports the performance
of the underlying distributed system in Gflops (i.e. one billion
floating-point operations per second). The architecture of our
VM-based computing system is shown in Figure 2.

B. Evaluation Setting We conduct experiments in our
Rensselaer cloud computing environment. In the experiments,
we deploy VMs on 2 PMs: the first PM is equipped with a
quad-processor, dual-core Opteron processor and the second
one has a quad-processor, single-core Opteron processor. The
Opteron processors run at 2.2GHz, with 64KB L1 cache and
IMB L2 cache. The dual-core PM has 32GB RAM and the
single-core PM has 16GB RAM. The communication between
the 2 PMs is at 10GB/sec bandwidth and 7usec latency Infini-
band, and 1GB/sec bandwidth and 100usec latency Ethernet.

The hypervisor we use is Xen-3.4.1 and the operating
system of the VM instances is Linux 2.6.18.8. The VM
instances on the dual-core PM have the default configuration
of 1 virtual CPU, 384MB virtual RAM running on 1 physical
CPU and 384MB physical RAM, while the VM instances on
the single-core PM have the default configuration of 1 virtual
CPU, 768MB virtual RAM running on 1 physical CPU and



TABLE I
CONFIGURATION OF VMS DEPLOYED ON 2 PMs

On the Dual-core PM On the Single-core PM
Total # | # of # of Vir- # of # of Vir-
of VMs VMs tual/Physical VMs tual/Physical
CPUs per VM CPUs per VM
3 2 4 1 4
6 4 2 2 2
12-48 8-32 1 4-16 1
TABLE II TABLE III
HPL PARAMETERS FOR RUNNING ~HPL PARAMETERS FOR RUNNING
VMs oN | PM VMS ON 2 PMs
N NB | P-by-Q N NB | P-by-Q
512 32 4*8 256-8192 64 4*12
1024 16 4*8 8192 16 4*12

2048 | 32 4*8
4096 | 64 4*8

768MB physical RAM. When the number of VMs is smaller
than the number of the physical CPUs, which means the VMs
are unable to use all the physical CPUs given the configuration
of one virtual CPU per VM, we increase the number of virtual
CPUs per VM so that the VMs can fully utilize the physical
CPUs. When the number of the VMs is larger than the number
of the physical CPUs, Xen timeshares the CPU time between
the VMs. The dual-core PM hosts 2/3 of all the VMs while
the single-core PM hosts 1/3, when VMs are deployed on both
PMs. Table I lists the configuration of the VMs deployed on
2 PMs. Besides, each PM hosts a unique management VM
(i.e. Domain 0) with fixed configuration: 8§ virtual CPUs, 2GB
virtual RAM running on 8 physical CPUs and 2GB physical
RAM on the dual-core PM, and 4 virtual CPUs, 2GB virtual
RAM running on 4 physical CPUs and 2GB physical RAM
on the single-core PM.

We measure the performance of HPL executing on different
numbers of VMs under various HPL parameters. Table II
and III list the setting of the three HPL parameters that have
significant effects on our evaluation: problem size N, block
size NB and process grid P-by-Q. For other configuration
parameters, we conform to the tuning guidelines of HPL.
For each configuration, we run HPL 10 times and compute
the mean, maximum and minimum value over the collected
performance values.

C. Results Figure 3 plots the mean, maximum and mini-
mum value of the performance of the HPL application running
on top of up to 32 VMs deployed on the 8-CPU PM. We can
see that in this experiment running HPL on 8 VMs generates
the best performance. Based on the evaluation results, we
argue that identifying the VM granularity that gives the opti-
mal performance not only can save users significant amount
of time, but also let them accomplish their jobs much more
economically in the cloud computing context. We consider the
scenario that a user sends a request to execute HPL of problem
size 4096 to our VM-based computing system for illustration.
Assume the user currently rents 4 VMs to run HPL, then
renting 4 more VMs would enable him to accomplish his task

with 86% less time, since the Gflops given by 8VMs is 6.09
times higher than that given by 4VMs. Since the cost per hour
of renting 4 VMs with 2 CPUs each is approximately the same
as that of renting 8 VMs with 1 CPU each, the total cost of
the job is proportional to the time it consumes. So utilizing
8 VMs also reduces the total cost of the job by 86%. More
interestingly, the user can have his job done with less time
and lower cost by renting less VMs. In this case, if the user
consolidates his task running upon 16 VMs to 8 VMs, he could
finish with 81% less time, because Gflops given by 8VMs is
4.33 times higher than that obtained from running 16VMs.
The total cost the job is cut by 81%, since the cost per hour
of renting 16 VMs with 0.5 CPU each is roughly the same as
that of renting 8 VMs with 1 CPU each.

From the service provider’s view, running the workloads at
the right VM granularity is beneficial as well. For example, a
service provider has a queue of users who request to execute
HPL of problem size 4096. Running these HPL tasks on 8
VMs enables each user to finish his job with 86% less time and
the provider to serve 6.09 times more users than assigning the
HPL tasks on 4 VMs. Therefore, with the right VM granularity
the provider can improve user satisfaction by reducing the time
and cost required for user tasks, serve more users in the same
amount of time and hence utilize resources more fully.

From Figure 3, we also observe that the performance of
HPL improves as the problem size grows from 512 to 4096.
The reason is that the computation to communication ration
increases as the problem size grows and thus HPL can spend
more time in computing the linear equation. Furthermore, the
difference between the performance gained by having 8 VMs
and that obtained from running 4 or 16 VMs becomes more
drastic as the problem size increases.

Next, we evaluate the performance of the HPL application
under various configurations and VM granularities with the
VMs deployed on 2 PMs. Figure 4 shows the performance
of the HPL application of smaller problem sizes running on
3 to 48 VMs deployed on 2 PMs and Figure 5 depicts the
performance of the HPL application of larger problem sizes.
From these figures, we can see that for the problem sizes from
256 to 1024 the optimal VM granularity is 24 VMs on the 2
PMs: the performance achieved is up to 1.40 times higher
than that of having 12 VMs and 16.62 times higher than that
of utilizing 48 VMs. Meanwhile, for the problem sizes from
2048 to 8192, having 12 VMs on the 2PMs generates the best
performance: up to 14.54 times higher than that of running
6 VMs and 1.28 times higher than that of utilizing 24 VMs,
except for the configuration of N = 8192 and NB = 64.

The results obtained from our computational evaluation
demonstrate that the value of the optimal VM granularity
depends on both the available physical resources and the
characteristics of the given workload. It is already non-
trivial to identify the right VM granularity that optimizes
performance even for our HPL benchmark workload and static
physical computing environment. Furthermore, a VM-based
system that adopts static VM configuration strategies could
not continuously achieve optimal performance as its workloads



change. Instead, dynamic configuration strategies are needed
to enable a VM-based system to adapt to different workloads.

D. Analysis To form a better understanding of the impact of
VM granularity on the HPL performance, we use the profiling
tool MPIP-3.2.1! and the system command top to collect
performance statistics such as MPI time percentage, CPU time
percentage per process, and load average. We use top in batch
mode to get its output in files with the delay being 1/20 of the
running time of HPL and the iteration limit 10.

MPI Time Percentage: We measure the time spent in MPI
when HPL is run on VMs deployed on 2 PMs using MPIP. The
mean value of MPI time percentage is 92.45 with a standard
deviation of 2.46. This high MPI time percentage can be
explained by the fact that in our experiments the size of the
linear system is small while the number of the participating
processes is relatively large.

CPU Time Percentage per Process: We collect CPU time
percentage per process when running HPL on VMs deployed
on 2 PMs and observe that the mean value of CPU time
percentage per process is 23.49 with a standard deviation of
1.49. This corresponds to that the CPU time of 12 CPUs is
divided among 48 processes and consequently each process
gets 25% of the CPU time.

Load Average: Unix/Linux operating systems report three
load average numbers corresponding to the system load during
the last 1, 5, and 15 minutes. We gather the load average per
VM for the last one minute from the output files of top. Then
we divide the load average per VM by the number of CPUs
per VM to get the load average per CPU, and multiply the load
average per VM with the number of the VMs to obtain the
total load average. Figure 6 plots the 3 load average metrics
gathered from running HPL on the 8-CPU PM with N = 2048,
NB = 32.

To explain the results in Figure 6, we review the configura-
tion of our experiment in Table IV. In addition, we compare
the number of processes per CPU and the load average per
CPU. It can be seen that the load average per CPU is usually
close to the number of processes per CPU. This is because the
computation of load average is based on CPU queue length,
which in turn is determined by the number of processes per
CPU to a large extent. When HPL runs on 1, 2 and 4 VMs, the
number of processes per CPU is 4 and the load average per
CPU is almost 4. This indicates that the 4 HPL processes are
usually in runnable state and waiting for the CPU while only
1 process can be scheduled into the CPU. However, the load
average per CPU is only 2.61 even if the number of processes
per CPU is 4 when HPL is executed upon 8 VMs, which means
the processes spend less time waiting in the CPU queue. This
corresponds to our previous observation that 8 VMs on top of
the 8-CPU PM is the VM granularity that achieves the best
performance. However, the load average per CPU becomes
close to the number of processes per CPU again as the number
of the underlying VMs continues to grow.

Figure 7 and 8 depict the total load averages of the VMs

Uhttp://mpip.sourceforge.net/

LOAD AVERAGE PER CPU AGAINST VM GRANULARITY FOR RUNNING
HPL oN 1 PM WITH N = 2048, NB = 32

TABLE IV

# of Vir-
# of Fof 1 alPhysical|  *Of Load
VMs Processes CPUs per Processes Average
per VM VM per CPU per CPU
1 32 8 4 391
2 16 4 4 3.87
4 8 2 4 3.88
8 4 1 4 2.61
16 2 1 2 1.86
32 1 1 1 1

under different configurations and VM granularities with the
VMs deployed on 2 PMs. The two figures show that the
optimal VM granularity that generates the lowest total load
average is 24 VMs on the 2 PMs for the problem sizes
from 256 to 1024, whereas the optimal VM granularity is
12 VMs on the 2 PMs for the problem sizes from 2048 to
8192 except for the configuration of N = 8192 and NB =
64. This is consistent with the observation we obtained from
the performance evaluation results and indicates the following
relationship between total load average and performance: the
lower the former, the higher the latter.

However, the VM granularity that generates the lowest total
load average cannot be identified easily, because the total
load average is the product of two interrelated factors: the
load average per VM and the number of VMs. As Figure 6
shows, the load average per VM decreases while the number of
VMs increases as we move forward along the x axis. In our
experiments, having too few VMs does not give the lowest
total load average, but increasing the number of VMs beyond
a certain point also incurs unnecessary penalty.

IV. NETWORK INTENSIVE EVALUATION

A. Experimental Design Intensive use of network can be
a common feature of many cloud computing applications as
one typical scenario of the cloud computing paradigm is that
users request services that are hosted in remote data centers.
Therefore, we study the effect of VM granularity on the
performance of network intensive tasks in this section.

We choose a web system serving content to customers as
the representative loosely coupled network intensive workload.
Our web system adopts the standard LAMP stack, which is
composed of Linux 2.6.18.8, Apache HTTP Server 2.2.14,
MySQL 6.0.11, and PHP 5.3.1. To enable our web service
to keep up with the ever increasing client requests, the web
system is built as a distributed system consisting of multiple
cooperating server nodes. However, the underlying server
nodes are VMs instead of PMs. For the client end, we use
an open source http/https benchmarking utility SIEGE 2.692.
In the experiments, we utilize two features of SIEGE. First,
SIEGE enables us to stress test the target web server with a

Zhttp://www.joedog.org/index/siege-home
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Fig. 9. Architecture of a VM-based distributed web system.

specified number of concurrent simulated users. The stress on
the web server generated by a number of simulated users is
equal to many times of that generated by the same number of
real users, because real users take time to read the web pages
they have requested. Secondly, SIEGE can read URLs from a
configuration file and hit the URLs sequentially. We use this
feature to simulate the situation that clients have the ability
to determine the server nodes of the web server to connect
to, which is a feasible way of hosting a web server across a
set of server nodes [6]. In our experiments the server nodes
of the web server do not depend on each other, therefore the
web system is loosely coupled. The system architecture of our
VM-based web system is depicted in Figure 9.

B. Evaluation Setting The experimental environment is
similar with that of the computational experiments, with the
following differences. The VMs hosting the web server are
deployed on the 8-CPU PM. The client end is hosted on a SUN
Blade 1000 machine with 2 processors running at 750MHz
and 2GB RAM. The communication between the client end

on 3 to 48 VMs deployed on 2 PMs with 12 on 3 to 48 VMs deployed on 2 PMs with 12

CPUs in total.

and the VMs is at 100MB/sec bandwidth and 350usec latency
Ethernet. The default configuration of a VM is as follows: 1
virtual CPU, 1GB virtual RAM running on 1 physical CPU
and 512MB physical RAM.

The workload of the VM-based web system is generated
by having a number of concurrent clients request 512KB data
from the web server. We conduct three sets of experiments,
corresponding to the following three cases: 1) 100% of the data
that our web clients request is from a static file, 2) 50% of the
data is from a static file and 50% from the database, and 3)
100% of the data is from the database. The performance metric
of the web system is the transaction rate reported by SIEGE
and each performance value is averaged over 10 executions.

C. Results Figure 10 shows the transaction rate of our VM-
based web system under various numbers of concurrent clients
and VM granularities for the three sets of experiments. The
figure indicates that the transaction rate fluctuates to a small
extent when the granularity of the VMs changes. To be more
specific, we present the standard deviations and mean values of
the transaction rates corresponded with the different numbers
of concurrent clients in Table V. The largest standard deviation
of the transaction rates obtained from varying VM granularity
is merely 2.89 with a mean value of 21.34. Our explanation
for the results is that the bottleneck of the web system is the
network bandwidth from the SIEGE client to the web system,
not the CPU time or memory space.

D. Analysis Based on the observation that VM granularity
is not critical in determining the performance of our VM-
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TABLE V
STANDARD DEVIATION AND MEAN OF TRANSACTIONS RATES

# of
Concurrent Standard Deviation/Mean
Clients
100% O™ | 509 from File | 100% from DB
8 0.43/4.05 0.44/3.86 0.28/3.97
16 0.44/7.66 0.46/7.47 0.36/7.67
32 0.88/14.3 0.96/13.94 1.50/13.28
64 0.73/19.67 0.84/19.74 2.30/19.42
128 0.54/20.74 0.54/20.78 2.89/21.34

based web server, we conclude that VM consolidation can be
more effectively applied to loosely coupled network intensive
workloads. To illustrate this, we consider an example where
two PMs PM, and PMp located within the same subnet
are hosting 10 VMs respectively and these VMs are used as
server nodes of a web system. Consolidating the web system
by running all of the 20 VMs on PM 4 and freeing PMp will
save 50% of the energy cost without degrading performance
observably given the bottleneck of the web system is the
available bandwidth of the subnet.

V. DISCUSSION AND FUTURE WORK

As our performance evaluation demonstrates that VM gran-
ularity affects the performance of tightly coupled computa-
tional workloads to a large extent, we realize that it is desirable
to equip a cloud computing system with the capability of
reconfiguring VM granularity to optimize the performance of
tightly coupled computational workloads. However, it is not
trivial to identify the optimal VM granularity even for our
fixed workload and static physical computing environment.
Considering that realistic cloud computing environments are
much more complex and dynamic than our experiments il-
lustrate, we claim that malleability, which is the ability to
change the granularity of the VM instances dynamically, is
needed to enable a VM-based system to adapt to different
workloads and changing computing environments. Our VM
malleability model is composed of two parts: split and merge.
First, one VM can be split into multiple VMs and newly
created VMs can be migrated onto other PMs if needed. On

VM;, ‘ VM,
M;, ‘ VM;,
VM; 8 8 VM,
O O
VM, ‘ VM,,
Split Merge

Fig. 11. VM Malleability includes 2 capabilities: Split and Merge.

the other direction, multiple VMs, which might be located on
different PMs, can be merged into one VM on demand.

Following, we sketch our VM malleability model including
algorithms for splitting and merging VMs (see Figure 11) and
an approach to deal with network and disk resources.

1) Split Algorithm: In the split operation, one source VM is
split into N partitions, which are restored to N target VMs on
N target hosts. The logical steps that a split operation takes
are summarized below.

o Step 1 Reservation and Lock: The algorithm identifies
N target hosts for the split operation through sending
migration requests and receiving response messages. To
guarantee the quality of service provided by the VMs
after split, remote hosts are required to own adequate
available resources for accepting a migration request.
Next, the algorithm gets a lock on the source VM for
the split. A lock is granted if the VM is not participating
in another split or merge operation.

o Step 2 Suspend: The source VM is suspended and all ar-
riving messages except those related to the split operation
are enqueued to be delivered to appropriate target VMs
when the split completes.

o Step 3 Split: The algorithm divides the processes of the
source VM into N groups so that they can be distributed
to N VMs. One complexity involved in process redistribu-
tion is to consider the dependency among the processes,
e.g. processes may share memory or communicate with
signals. To maintain such dependencies, the algorithm
checks the dependencies among the processes and adjusts



the grouping to ensure that processes that are dependent
on each other are put in the same group. The adjustment
might reduce the number of process groups and make the
granularity of the split VMs larger.

o Step 4 Save: Afterwards, each process group is saved into
one chunk file, which keeps the data, stacks, register con-
tents, communication states and relevant kernel contexts
for the processes.

o Step 5 Transfer: The chunk files are transferred to the
target hosts. Techniques like pre-copy [4] and post-
copy [7] could be used to reduce the downtime of the
system caused by this step.

e Step 6 Resume: On each target host, a target VM is
created into which the processes in the transferred chunk
file are imported. After all the processes resume their
execution on the target VMs, the source VM releases its
lock and can be removed from its host.

2) Merge Algorithm: In the merge operation, N source VMs,
which might be located on different hosts, are merged into one
target VM. The logical steps that a merge operation involves
are summarized below.

e Step 1 Reservation and Lock: The algorithm selects a
remote host that has sufficient resources to serve as the
target host for the merge operation and obtains locks on
the N source VMs during merge.

« Step 2 Suspend: The algorithm suspends the source VMs
and enqueues their incoming messages that are not related
to the merge operation. These messages will be delivered
to the target VM after the merge completes.

o Step 3 Save: The processes on each source VM are saved
in one chunk file.

e Step 4 Transfer: The chunk files are transferred to the
target host.

o Step 5 Merge: On the target host, the algorithm creates
a target VM, restores the processes from the chunk files
and imports the processes into the target VM.

o Step 6 Resume: The target VM resumes the execution of
all the processes. The source VMs release their locks and
can be removed afterwards.

3) Local Resources: To achieve VM malleability, we also
need to consider other resources that are part of a VM besides
processes in memory. We will borrow approaches that VM
migration uses to maintain network connections and local
storage into our malleability model. Network redirection can
be implemented with a combination of IP tunneling and
Dynamic DNS [8], in which old connections to a migrated
VM (which is caused by either a split or merge operation)
are redirected to the new IP address through IP tunneling
while new communications are directed to the new IP address
directly due to the updated Dynamic DNS entry. The tunnel
can be revoked after all old connections expire. Our malleabil-
ity model will initially focus on the VM-based systems that
employ a shared storage infrastructure (e.g. SAN or NAS),
which can be assumed for most modern cluster environments.

4) Autonomous VM Malleability Rather than taking VM

malleability as an alternative to VM migration, it can be
employed as a supplementary tool in the repertoire of the
autonomous reconfiguration middleware, such as the Inter-
net Operating System (IOS) [9]. The operational aspects of
VM malleability involving how to split and merge VMs are
solved at the VM level while the strategical aspects of VM
malleability (e.g. when to split or merge VMs, how many
VMs to split or merge) are handled by middleware. This
separation of concerns alleviates the administrator of a VM-
based cloud environment from the difficult tasks of deter-
mining the system-wide workload and resource usage, and
reconfiguring the execution system correspondingly. Instead,
autonomous reconfiguration can be achieved by middleware
that gathers profiling information about applications and the
execution environment and reconfigures the VM-based system
via VM migration or malleability.

VI. RELATED WORK

In this section, we discuss the existing research related
to our work in three fields: process/component malleability,
middleware-driven reconfiguration and virtual machine migra-
tion.

A. Process/Component Malleability [10] investigates the
impact of process granularity on system-level performance
and finds out that while small process granularity generates
unnecessary context-switching overhead and increases inter-
process communication, large granularity of each process may
also yield unsatisfactory performance because the data of
the processes do not fit in the upper level of the memory-
hierarchy or the processes are too few to be distributed onto
the available resources in a balanced way. To enable a parallel
application’s execution system to run with the right process
granularity that utilizes the resources most effectively, process
malleability is introduced and implemented as an extension
to the process check pointing and migration (PCM) library, a
user-level library for iterative MPI applications.

[11] reaches similar observations concerning component
granularity and realizes component malleability in the SALSA
programming language [12] with SALSA actor being recon-
figurable component.

Compared to both process and component malleability,
VM malleability has the following advantages. First, while
process and component malleability require collaboration from
application programmers, VM malleability is transparent to
the application layer. Secondly, it is non-trivial to realize mal-
leable processes or components across different programming
languages, operating systems and hardware architectures. By
contrast, VM malleability is platform independent via the
virtualization layer.

B. Middleware-driven Reconfiguration Both process and
component malleability are integrated with the Internet Oper-
ating System (IOS) [9], a framework for middleware-driven
dynamic reconfiguration of distributed computing systems.
The reconfiguration mechanisms supported by 10S include:
1) profile application communication patterns, 2) evaluate the



dynamics of the underlying physical resources, and 3) recon-
figure processes or components by changing their mappings
to physical resources via migration or malleability.

Since middleware-driven reconfiguration has the benefit of
freeing application developers or system administrators from
dealing with non-functional concerns, the integration of VM
malleability with IOS is also one direction of our future work.

C. Virtual Machine Migration VM migration has been
explored as an adaptive VM management technique that
dynamically changes the mapping between VM instances and
physical resources. [4] proposes the pre-copy approach, which
iteratively copies the memory of a VM from the source to
destination host before releasing the VM at the source and
resuming it at the destination. [7] describes the post-copy
migration that defers the transfer of a VM’s memory until
its processor state has been sent to the target host. To realize
VM migration across wide area network, [8] designs a system
that pre-copies local persistent state to the destination while the
VM still runs on the source host. Meanwhile, a user-level block
device is used to record and forward the write accesses to the
destination to ensure consistency. The system also contains a
network redirection scheme that redirects the existing connec-
tions of the migrated VM using IP tunneling and advertises
its new IP address with Dynamic DNS. Recently, there also
has been significant work on live migration which supports
continuous device access [13], [14].

While VM migration provides VM-based cloud environ-
ments with capabilities such as flexible physical resource
reallocation, system workload consolidation, and on-line main-
tenance, the effectiveness and scalability of VM migration
solutions are limited by the granularity of the VM instances.

VII. CONCLUSION

This paper tackles the problem of identifying the right
ratio of VM instances to physical processors that optimizes
the workload’s performance given a workload and a set of
physical computing resources. To evaluate the impact of VM
granularity on workloads’ performance, we conduct a series
of experiments in which HPL is chosen as the representative
tightly coupled computational workload and a web server
providing content to customers as the representative loosely
coupled network intensive workload. Our results demonstrate
that for the computational workload, VM granularity has
a significant effect on the workload’s performance whereas
for the network intensive workload the influence of VM
granularity is not critical. Based on these two observations,
we conclude that: 1) VM malleability, which is the ability to
change VM granularity dynamically, is desirable to enable a
VM-based system to perform tightly coupled computational
workloads more efficiently, and 2) VM consolidation for en-
ergy savings can be more effectively applied to loosely coupled
network intensive workloads without observable performance
degradation.
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