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Abstract—Cloud computing’s pay-per-use model greatly re-
duces upfront cost and also enables on-demand scalability as
service demand grows or shrinks. Hybrid clouds are an attractive
option in terms of cost benefit; however, without proper elastic
resource management, computational resources could be over-
provisioned or under-provisioned, resulting in wasting money or
failing to satisfy service demand. In this paper, to accomplish
accurate performance prediction and cost-optimal resource man-
agement for hybrid clouds, we introduce Workload-tailored Elastic
Compute Units (WECU) as a measure of computing resources
analogous to Amazon EC2’s ECUs, but customized for a specific
workload. We present a dynamic programming-based scheduling
algorithm to select a combination of private and public resources
which satisfy a desired throughput. Using a loosely-coupled
benchmark, we confirmed WECUs have 24% better runtime
prediction ability than ECUs on average. Moreover, simulation
results with a real workload distribution of web service requests
show that our WECU-based algorithm reduces costs by 8-31%
compared to a fixed provisioning approach.

I. INTRODUCTION

Growing demand for “Big Data” analytics applications
requires a corresponding growth in “big computing” resources,
making hybrid clouds an increasingly attractive infrastructure.
A hybrid cloud enables users who have access to their own
private cloud to scale out to public computing resources only
occasionally. Especially for massively-parallel applications,
for which the “cost-associativity” quality of the cloud comput-
ing model holds [1], we can get results faster by paying more
money for public cloud resources; however, to orchestrate
distributed virtual machine (VM) instances in hybrid clouds
in a cost-efficient manner is a non-trivial task.

Amazon created the Elastic Compute Unit (ECU) as a
measure of computing power of their various VM instance
types depending on the price and quality of service (QoS)
they offer to help users choose appropriate virtual environ-
ments. Their explanation of ECU is as follows: “We use
several benchmarks and tests to manage the consistency and
predictability of the performance of an EC2 Compute Unit.
One EC2 Compute Unit provides the equivalent CPU capacity
of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor” [2].
ECU helps as a relative performance measure for a wide
range of workloads, but it cannot be accurate for all types

of workloads. Moreover, in the hybrid cloud model, ECU
is not defined for private computing resources. Therefore, to
accurately schedule resources not only on the public cloud, but
also on the private cloud, the computational power of private
computing resources must be quantified for better hybrid cloud
performance prediction.

To get accurate performance predictions and associated cost
reduction over hybrid clouds, we introduce the notion of
Workload-tailored Elastic Compute Unit (WECU) as a unit
of computing power for a specific type of workload on a
specific virtual or physical machine type. WECU is obtained
by actually running the target workloads on available VM
instances on the target machine for a short period. Thus, the
use of WECU is only meaningful for long running workloads
such as computationally-intensive scientific workloads and
web services. In this paper, we choose farmer-worker loosely-
coupled computationally intensive workloads and a web ser-
vice receiving fluctuating requests as benchmarks of long-
running workloads. With these benchmarks, we compare the
performance and cost prediction capability of using WECUs
vs. using Amazon EC2’s ECUs.

In addition to improving the performance prediction based
on WECU, we also consider application-level migration to
support dynamic workload scalability. When dynamically
scaling up the computation of long-running farmer-worker
programs, migrating the workers from a private cloud to a
public cloud is an effective approach because it is light-
weight compared to VM-level migration and is able to let
the workers continuously run without restarting [3] . The au-
thors previously worked on application-level migration within
private clouds using the actor-oriented programming language
called SALSA (Simple Actor Language System and Architec-
ture) [4], which supports transparent application-level migra-
tion at the language level. In this paper, we implement the
farmer-worker programs in SALSA and simulate fluctuating
web service scalability based on application-level migration.

In summary, the main contributions of this paper are as
follows. First, it presents the notion of WECU and shows
its performance predictability together with a cost-optimal
throughput-constrained resource provisioning algorithm. Sec-



ond, it presents a simulation of dynamic workload scaling
using a real web service request workload distribution. WE-
CUs have significantly better performance predictability which
results in significant improvements in QoS over ECU-based
resource management, and significant cost savings compared
to over-provisioning approaches.

The rest of the paper is organized as follows. Section II
describes technical background. Section III introduces the
concept of Workload-tailored ECU with preliminary results
for a loosely-coupled benchmark. Section IV describes the
throughput-constrained resource configuration algorithm for
hybrid clouds based on dynamic programming. Section V
describes the hybrid cloud management middleware applying
the algorithm mentioned in Section IV. Section VI presents
the results of performance prediction in a real hybrid cloud as
well as simulation results of dynamic scaling of web request
workloads. Section VII describes related work, and finally,
Section VIII concludes the paper and describes potential future
directions.

II. TECHNICAL BACKGROUND

A. SALSA Programming Language

SALSA is a general-purpose actor-oriented programming
language. It is especially designed to facilitate the develop-
ment of dynamically reconfigurable distributed applications
as needed for example for truly elastic cloud computing.
SALSA supports the actor model’s unbounded concurrency,
asynchronous message passing, and state encapsulation [5],
[6]. In addition to these features, it implements a universal
naming model for application semantics-preserving actor mi-
gration and location-transparent message sending.

B. Workload Scalability over a Hybrid Cloud

We use application-level migration as a means to support
dynamic workloads. When dynamically scaling up the com-
putation of farmer-worker programs, we can migrate some of
the workers from one node to another which gives them extra
computing power. SALSA actors do not leave any residual
dependencies [7] or create resource conflicts when moving
around computing nodes. This approach is effective because it
is light-weight compared to other migration techniques such as
VM-level migration [8] and is able to keep the workers running
without restarting the application as opposed to check-point
restart approaches [9].

Moreover, we can not only scale up and down the computa-
tion within a private cloud by migrating actors, but also scale
it out to a public cloud transparently from the application’s
point of view (See Figure 1).

III. WORKLOAD-TAILORED ECU

There are quite a few VM instance types available in
Amazon EC2 associated with various ECUs and prices. Some
of the instance types are shown in Table I. To find out
the actual performance difference between instance types, we
did a preliminary experiment evaluating a simple benchmark
application called Trap on each instance type as well as on
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Fig. 1. Workload scalability over a hybrid cloud (taken from [3]).

two other nodes, A and B, in our private cloud. Trap is a
massively parallel application written in SALSA and computes
a trapezoidal numerical integration for a given function with
a given interval (see Section VI for details). The task size is
defined as the number of trapezoids.

TABLE I
AMAZON EC2 ON-DEMAND INSTANCES (AS OF SEPTEMBER 2013).

Instance Type vCPU ECU Price[USD] Price/ECU
m1.small 1 1 0.06 0.06
m1.medium 1 2 0.12 0.06
m1.large 2 4 0.24 0.06
m1.xlarge 4 8 0.48 0.06
m3.xlarge 4 13 0.5 0.038
m3.2xlarge 8 26 1 0.038
c1.medium 2 5 0.145 0.029
c1.xlarge 8 20 0.58 0.029
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Fig. 2. Relative performance of Amazon EC2 instances and private physical
nodes (node A and B). The performance of m1.small is 1.0.

For task sizes ranging from 100,000 to 1,600,000, we
observe relative runtime performance results in Figure 2. In
this figure, the base performance is defined as the runtime for
the m1.small instance and the other relative performances
are divided by the m1.small’s runtime. As the graph clearly
shows, ECU does not always show the exact performance dif-
ferences for the Trap application. For example, c1.medium
has five ECUs while its relative performance is only about
four, also c1.xlarge has 26 ECUs while its relative perfor-
mance is ranging from 12 to a little over 16.



TABLE II
ECU AND WECU VALUES FOR THE TRAP APPLICATION

(1 WECU = 2758.54 [TASKS/SEC]).

Instance Type ECU WECU Price/WECU
m1.small 1 1.0 0.06
m1.medium 2 1.882 0.0632
m1.large 4 4.156 0.0594
m1.xlarge 8 7.940 0.0617
m3.xlarge 13 8.380 0.0610
m3.2xlarge 26 16.604 0.0615
c1.medium 5 4.070 0.0359
c1.xlarge 20 16.316 0.0366
node A n/a 4.795 n/a
node B n/a 14.223 n/a

These results tell us that ECUs are not very accurate in
predicting the performance of the Trap application, and thus
we need to define a new performance measurement unit called
Workload-tailored Elastic Compute Unit (WECU). WECU is
defined as follows: one WECU corresponds to the throughput
of a one-ECU instance on a specific workload. General WECU
values associated with arbitrary instance types processing the
same workload are defined by dividing their throughput by
the base throughput. In short, it is a relative performance
unit based on the actual workload throughput. For the Trap
application and instances used in the preliminary experiment,
we define the base throughput as m1.small’s throughput,
that is, 1 WECU = 2758.54 [tasks/sec]. All obtained values
of WECUs are shown in Table II. Please note these values
are computed after the performance converges. Since we will
use WECU for long-running workloads, we want to use the
throughput in steady-state conditions.

IV. RESOURCE CONFIGURATION ALGORITHM

The resource configuration algorithm consists of four
steps as shown below to support cost-optimal throughput-
constrained resource management.

• Step 1. Compute target throughput and set a correspond-
ing computational power requirement.

• Step 2. Check if the private cloud can satisfy the com-
putational power requirement.

• Step 3. If Step 2 cannot satisfy the requirement, use extra
resources in the public cloud.

• Step 4. Assign workers to the instances allocated in Steps
2 and 3.

The details of each step are explained below in order.

Step 1: Target Throughput and Computational Requirement

Given variables:

• tdeadline: deadline to finish the tasks.
• tcurr: current time.
• tasks: total number of tasks to process.
• tasksdone: total number of completed tasks.
• λ: throughput per WECU.
• ∆curr: current throughput.
• τ : throughput threshold for activating reconfiguration.

The target throughput ∆target is computed as follows1:

∆target = (tasks− tasksdone)/(tdeadline − tcurr).

If |∆target−∆curr

∆target
| < τ , the algorithm does nothing and quits,

otherwise it computes a required computational power ηtarget
as follows:

ηtarget = ∆target/λ. (1)

Note that ηtarget is in WECU units, which is defined
in Section III. We need to achieve ηtarget with computing
instances collectively allocated from the private and public
clouds so that the target throughput ∆target can be maintained.

Step 2: Private Cloud Resource Configuration

Given variables:
• Rpriv = {(type1, η1, cpu1, num1), ..., (typeN , ηN , cpuN ,

numN )}: N types of VM instances available in the
private cloud, where typei is the VM instance type,
ηi is the computational power, cpui is the number of
virtual CPUs, and numi is the available number of the
ith instance type respectively.

• ηtarget: target computational power computed in Equa-
tion 1.

Algorithm 1 outputs the following:
• Apriv : a set of instances to be allocated in the private

cloud. ith element is a 4-tuple (typei, ηi, cpui, numi).
• σpriv : total computational power provided by Apriv .
• ηremain : remaining computational power needed to

satisfy target throughput.

input : Rpriv, ηtarget
output: Apriv, σpriv, ηremain

Apriv = ∅; σpriv = 0.0; ηremain = ηtarget; i = 1;
while i ≤ N and 0 < ηremain do

if ⌈ηremain/ηi⌉ ≤ numi then
num = ⌈ηremain/ηi⌉;

end
else

num = numi;
end
Apriv = Apriv ∪ {(typei, ηi, cpui, num)};
σpriv = σpriv + num× ηi;
ηremain = ηremain − num× ηi;
i = i+ 1;

end
return Apriv, ηremain;
Algorithm 1: Private Cloud Resource Configuration.

Algorithm 1 allocates resources giving priority to instance
types in the order they appear in Rpriv . It simply deducts
available computing power from ηremain. If ηremain ≤ 0,

1For non-terminating workloads, we assume a target throughput is given in
tasks/second.



then the algorithm outputs Apriv and goes to Step 4 to assign
workers, otherwise it proceeds to Step 3 to further allocate
more instances from the public cloud.

Step 3: Cost Optimal Public Cloud Resource Configuration

Given variables:
• Rpub = {(type1, η1, cpu1, price1), ..., (typeM , ηM , cpuM ,

priceM )}: M types of VM instances available in the
public cloud, where typei is the VM instance type, ηi is
the computational power, cpui is the number of virtual
CPUs, and pricei is the hourly price of the ith instance
type respectively.

• ηtarget: ηremain obtained in Step 2.
The minimal cost that satisfies arbitrary computational

power η is given by recursive Equation 2. It compares the
cost of choosing instance i out of M instance types recursively
until it finds an instance which has larger computational power
than the required η. Using a dynamic programming algorithm
directly derived from this equation, the following variables are
obtained:

• Apub: instances to be allocated from the public cloud
• costpub: total cost of Apub

• σpub: total computational power of the instances in Apub,
where

Apub = {(type1, η1, price1, num1), ...,

(typeL, ηL, priceL, numL)},

costpub =
∑

ith instance type ∈Apub

pricei × numi,

σpub =
∑

ith instance type ∈Apub

ηi × numi.

COST (η) = min
1≤i≤M

 pricei (η ≤ ηi)
pricei + (otherwise)
COST (η − ηi)

(2)

Our dynamic programming algorithm’s running time is
O(ηM). Cost-optimality of Equation 2 can be visually con-
firmed by Figure 3. As the figure shows, obtained resource
configurations produce cost-optimal configurations among
other possible ones.

Step 4: Workers assignment

Given tasks,Apriv, σpriv, Apub and σpub from the previous
steps, Algorithm 2 outputs the following worker assignment:

• Wpriv: contains a set of tuples (workeri, tasksi) for
instance type i, where workeri is the number of workers
and tasksi is the number of tasks to be assigned to
instances of type i.

• Wpub: contains the same information as above for the
public cloud.

• tasksper worker: the number of tasks per worker.
Algorithm 2 assigns tasks in proportion to an instance type’s

computational power while keeping the number of tasks for

Fig. 3. Cost-optimal configurations among other possible configurations.

input : tasks,Apriv, σpriv, Apub, σpub

output: Wpriv,Wpub, tasksper worker

Wpriv = ∅; Wpub = ∅;
foreach instance type i in Apriv do

tasksi = tasks× ηi

σpriv+σpub
× 1

numi
;

end
foreach instance type j in Apub do

tasksj = tasks× ηj

σpriv+σpub
× 1

numj
;

end
tasksper worker = min1≤i≤N,1≤j≤M{ tasksi

cpui×2 ,
tasksj
cpuj×2};

foreach instance type i in Apriv do
workeri = ⌈ tasksi

tasksper worker
⌉;

Wpriv = Wpriv ∪ {(workeri, tasksi)};
end
foreach instance type j in Apub do

workerj = ⌈ tasksj
tasksper worker

⌉;
Wpub = Wpub ∪ {(workerj , tasksj)};

end
return Wpriv,Wpub, tasksper worker;

Algorithm 2: Workers Assignment.

each worker constant. By assigning tasks to workers this way,
we are able to balance the load between heterogeneous VM
instances just by migrating workers. Also, tasksper worker

is determined in connection to the number of virtual CPUs.
This is because it is known that the granularity of workers has
an impact on the workload performance on a given number
of processors [10]. To be in a region of high performance,
tasksper worker is chosen so that the number of workers is
at least twice as many as the number of virtual CPUs.

V. HYBRID CLOUD MANAGEMENT MIDDLEWARE

The system architecture of the middleware that implements
the resource management algorithm for the hybrid cloud is
shown in Figure 4.

This middleware interacts with the user and the hybrid cloud
as follows:

1) Submit a config file: The user prepares a configuration
file that contains deadline, application to execute, num-
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ber of tasks, throughput per one WECU, and information
about clouds which the user wants to use (i.e., credential,
cost, and WECU for each instance type, and so on), and
then the user submits the configuration file to the Hybrid
Cloud Scheduler.

2) Schedule resources: Based on the algorithm described
in Section IV, the Hybrid Cloud Scheduler computes re-
quired resources to achieve the throughput derived from
the given deadline. The generated resource configura-
tions (i.e., Apriv, Apub,Wpriv,Wpub, tasksper worker)
are passed to the App Manager.

3) Start applications:The App Manager accordingly starts
application runtimes such as Xen and Java VMs. Subse-
quently, it distributes workers over the private and public
clouds to start the application.

4) Report progress: The workers constantly report their
progress to the Hybrid Cloud Scheduler.

5) Update resource configuration: The Hybrid Cloud
Scheduler periodically executes Step 1 of the algorithm
presented in Section IV. If the current throughput ∆curr

diverges from the target throughput ∆target by more
than threshold τ , it executes the rest of the steps and
schedules the new resource configurations to occur right
before the next billing period.

6) Reconfigure resources: Once the instance alloca-
tions are done, the App Manager, instead of re-
flecting newly obtained worker assignments (i.e.,
Wpriv,Wpub, tasksper worker), migrates the existing
workers to balance the load in the new virtual configu-
ration.

VI. EVALUATION

In this section, the runtime predictability, consequent QoS,
and cost saving ability of the WECU-based resource con-
figurations are evaluated and compared against ECU-based
approaches.

A. Workload: Trapezoidal Numerical Integration

The Trap application written in SALSA computes an
approximated value of

∫ b

a
f(x)dx. The farmer actor breaks the

interval [a, b] into n trapezoids and assigns a certain number
of trapezoids to each actor program. After all the worker
actors compute the value of f for given trapezoids, the farmer
sums up all the partial trapezoid values returned from workers.
Since the computation of each trapezoid does not depend on
others, each worker can work without communicating with
other workers.

B. Experimental Settings

Hybrid Cloud Environment: We have two host machines,
node A and B, as the private cloud hosts. Node A has AMD
Opteron 848 processor (4 cores) running at 2.2 GHz and 15
Gbytes of memory. Node B has Intel Xeon CPU E31220
processor (4 cores) running at 3.1 GHz and 6 Gbytes of
memory. We dedicate node A to the name service required
by SALSA and the farmer actor while node B is used to
run worker actors. As the public cloud, we use Amazon EC2
with VM instance types presented in Table I. Also, in the
following experiments, information shown in Table II is used
as computational power in ECU and WECU units.

ECU-based approach: The resource configuration algo-
rithm presented in Section IV is also applicable for ECU, if
ECU is used as a unit of computational power η. Therefore,
we use ECU values depicted in Table II and compare the same
algorithm with WECU and ECU units respectively. Note that
for nodes A and B, 4 and 14 are used as computational power
η for the ECU-based approach.

C. Experiment 1: Runtime Prediction

The Trap application is tested in the hybrid cloud with the
following conditions:

• tdeadline: 60 seconds.
• tasks (the number of trapezoids): {3× 106, 6× 106, 9×

106, 12× 106}.
• over-provisioning rate [%]: {0, 2, 4, 6, 8, 10}.
Over-provisioning is typically used to account for the lack

of accuracy in predicting workload performance. For example,
if the over-provisioning rate is 10%, then the over-provisioned
deadline will be 54 seconds and the algorithm takes this value
as the new deadline tdeadline.

The runtimes results for (a) ECU-based and (b) WECU-
based approaches are shown in Figure 5. Also, the throughput
and costs observed in the same experiments are shown in
Figure 6 and 7 respectively.

From Figure 5, we can clearly tell that the WECU-based
resource configuration better predicts the actual performance
compared to the ECU-based approach. The average differences
between initial predicted runtime and the actual runtime are:
4.59% for WECU and 29.25% for ECU. Even though initial
worker distribution overhead is not accounted, WECU-based
approach succeeded to meet the deadline for over-provisioning
rates larger than 6%. This prediction performance difference



can be explained in connection with throughput and costs:
As shown in Figure 7, the ECU-based approach spends less
money than the WECU-based approach, resulting in less
throughput as shown in Figure 6. In other words, the ECU-
based approach overestimates the performance of some of the
VM instances resulting in significantly more missed deadlines.
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Fig. 6. Throughput results for ECU-based and WECU-based resource
configurations.

D. Experiment 2: Throughput/Cost Simulation for Fluctuating
Web Requests

To simulate a real workload, daily access statistics for the
cloud computing article of Wikipedia [11] were used. The data
is for the month of June 2013 and contains the number of daily
requests to the article. The purpose of the experiment is two-
fold. First, we evaluate how well both WECU and ECU-based
approaches satisfy dynamically changing requests. Second, we
evaluate cost savings achieved with our resource management
algorithm against fixed-provisioning approaches.
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Fig. 7. Cost used for ECU-based and WECU-based resource configurations.

Hourly throughput (i.e., processed requests per hour) is
shown in Figure 8, which has characteristic patterns for
1) weekdays, 2) weekends, and 3) a spike observed on June
24th. We performed real hybrid cloud experiments for one
hour for the said three cases each with configurations provided
by WECU-based and ECU-based approaches. Also, to define
the request processing time, the time to process one Wikipedia
request was assumed to be equivalent to the time to process
500,000 Trap application tasks. With tdeadline = 1 hour,
the number of tasks used as tasks inputs to the resource
management algorithm are as follows. For the weekends and
weekdays, we used the maximum numbers of requests during
these periods excluding June 24th (Mon). For the spike of
June 24th, however, due to Amazon EC2’s instance creation
quota (in our case, 20 instances), we could not create instances
for the original 2720 requests per hour for the spike because
27 instances were required (see Table III for detail resource
configurations). Thus, we reduced requests for the spike from
2720 to 1887 requests per hour to fit the Amazon quota limit
for the experiment.

1) Weekends: 539 [requests] = 269,541,667 [tasks]
2) Weekdays: 773 [requests] = 386,479,167 [tasks]
3) Spike (original): 2720 [requests] = 1,360,437,500

[tasks]
4) Spike (reduced): 1887 [requests] = 943,770,834 [tasks]
We chose 6% over-provisioning rate for this experiment

based on results from Experiment 1. It is expected for the
WECU-based approach to meet the throughput constraint with
this over-provisioning rate. So, we set the baseline where the
WECU-based approach would perform reasonably well and
quantified how many requests the ECU-based approach would
miss.

From the parameters mentioned above, we got both WECU-
based and ECU-based resource configurations and associated
costs as shown in Table III. Using these configurations, we
conducted experiments with the Trap application and ob-
tained the throughput results in Figure 8.

As expected, the WECU-based approach satisfies all the
requests including the reduced spike on June 24th, whereas the
ECU-based approach fails to satisfy the demand 11 days of
the month. For the ECU-based approach, the average number



Fig. 8. Throughput simulation results for workload distribution based on Wikipedia ’cloud computing’ article access statistics.

TABLE III
RESOURCE CONFIGURATION AND ASSOCIATED COSTS FOR WORKLOAD
DISTRIBUTION BASED ON WIKIPEDIA ’CLOUD COMPUTING’ ARTICLE

ACCESS STATISTICS.

Category Resource Configurations Cost [USD/hr]
WECU ECU WECU ECU

node B: 1 node B: 1
Weekends c1.medium: 4 c1.medium: 3 0.58 0.495

m1.small: 1
node B: 1 node B: 1

Weekdays c1.medium: 3 c1.medium: 2 1.015 0.87
c1.xlarge: 1 c1.xlarge: 1
node B: 1 node B: 1

Spike c1.medium: 25 c1.medium: 19 4.785 3.915
(original) c1.xlarge: 2 c1.xlarge: 2

node B: 1 node B: 1
Spike c1.medium: 14 c1.medium: 10 3.19 2.61

(reduced) c1.xlarge: 2 c1.xlarge: 2

of missed requests per hour is 18.67, which is equivalent to
13,446 requests per month.

Looking at Table III, even though the WECU-based ap-
proach costs more money than the ECU-based approach,
the former approach successfully generates computationally
more powerful configurations than the latter does. These cost
spending for the WECU-based approach is justified since
it generates higher throughput, and therefore, it succeeds to
satisfy required throughput demands except for the spike on
June 24th.

If a cloud service does not have dynamic scalability un-
like our proposed middleware, it has to statically provision
the resources. If resource configurations generated with the
WECU-based approach that satisfies throughput up to 1000
[requests/hr] is used, it would cost 1044 [USD/month] using
Amazon EC2 on-demand instances and they could not cover
the sudden spike on June 24th. If Amazon EC2 reserved
instances are available under the same condition, the WECU-
based approach could generate a resource configuration that
cost as little as 648 [USD/month] with ten c1.medium
instances; however, to use these instances with a discounted
hourly price (0.09 [USD/hr], price as of September 2013),
you need to pay additional 1610 USD (=161 * 10) as one
year reservation fee. So, the reserved instance based approach

costs 648 + 1610/12 = 782.16 [USD/month] on average. On
the other hand, if they have a dynamic provisioning capability
with the WECU-based approach, the total cost per month
would be 716.88 (=24 hr * (0.58*10 days + 1.015*19 days +
4.785*1 day)) [USD/month] with the on-demand instances.
This is a 31% and a 8.3% cost saving compared to the
on-demand and reserved instance based fixed provisioning
approach respectively. Even though we could not test the
resource configuration that supports the original throughput
spike, from other experimental results, it is likely that the
configuration produced by our middleware would be able to
successfully satisfy the demand including the spike.

VII. RELATED WORK

Van den Bossche et al. apply linear programming to cost-
optimal resource allocation in hybrid clouds [12]. In [12],
they reported they experienced large variance of problem
solving times. To overcome that issue, they also proposed
heuristics to be able to tackle larger scale problems [13]. In
both papers, they characterize workloads by CPU and memory;
however, we use throughput and associated WECU units for
characterizing workloads and VM instance types.

Both Vecchiola et al. and Calheiros et al. present deadline-
driven resource provisioning on hybrid clouds with the Aneka
middleware [14], [15]. Just as the algorithm presented in this
paper, both of their algorithms keep track of the number of
finished tasks and estimate the required resources to finish all
the tasks before the deadline. Unlike our dynamic program-
ming based approach, their algorithms do not take into account
cost-optimality. Also, they quantify the amount of resources
in a general way and do not evaluate the computational power
of each instance type beforehand.

The performance stability of public cloud VM instances
has been analyzed. Dejun et al. report that CPU and disk
I/O performance on Amazon EC2 m1.small instances are
relatively stable for long-term average, with up to 8% variance.
However, they find that the performance of different VM
instances of the same instance type is at most four times
different [16]. In [17], Iosup et al. compare the performance
of VM instances from four different IaaS cloud service



providers and find that Amazon’s m1.xlarge shows the
smallest performance variance whereas GoGrid’s GG.large
and ElasticHosts’ EH.small instances have up to two times
performance difference.

VIII. CONCLUSION AND FUTURE WORK

We introduced the concept of Workload-tailored Elastic
Compute Unit (WECU) as a measure of computing resources
analogous to Amazon EC2’s ECUs. We present a dynamic
programming-based scheduling algorithm to select resources
which satisfy the desired throughput in a cost-optimal way.
Using a loosely-coupled benchmark running on a hybrid cloud
environment, we confirmed WECUs have 24% better runtime
prediction ability than ECUs on average. Moreover, simulation
results with a real workload distribution of Wikipedia web
service requests show that our WECU-based algorithm reduces
costs by 8-31% compared to a conservative fixed provisioning
approach.

Through the experiments, it is suggested the ECU-based
approach needs a significantly higher over-provisioning rate
to satisfy service demands compared to the one needed by
the WECU-based approach. This means that the ECU-based
approach has a wider search space of over-provisioning rates
than the WECU-based approach does, therefore it is not easy
for the ECU-based to find the right over-provisioning rate.

We have evaluated both WECU and ECU approaches using
the Trap application only. Meanwhile, basic assumption
of the WECU-based approach is that we can get higher
throughput with more WECUs. Bag of tasks applications
and the Trap application satisfies this assumption; however,
for example, tightly-coupled applications may not satisfy this
assumption depending on the network topology they work on.
If their throughput is bounded by the network performance,
adding more VM instances may not help improve the through-
put. We plan to apply the WECU-based algorithm to more
types of applications and further confirm applicability.

We noticed our dynamic programming based algorithm
is in favor of choosing {m1.small, c1.medium,
c1.xlarge} over {m1.medium, m1.large,
m1.xlarge, m3.xlarge, m3.2xlarge} instance
types. This happens because, as shown in Table II, most of
the former group of instance types are better in Price/WECU
ratio than the latter. If a workload is memory or I/O-intensive
and m1 and m3 instance types perform better in such
workloads, we expect that this will be reflected in the
WECU relative performance, and price/performance ratio
will make them favorable. Our performance measurement
and the WECU-based resource configuration methods assume
that instances created from the same instance type have the
same performance. By considering individual variability of
VM instance types, our proposed method could be further
improved. Also, our current algorithm is cost-optimal for
a given computational power, but it is not Pareto-optimal.
We plan to modify our resource management algorithm to
produce Pareto-optimal resource configurations.

Future work also includes implementing a budget-
constrained resource management algorithm and evaluating
our middleware’s adaptability with real applications that have
dynamically changing workloads.
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