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Abstract—We present the Cloud Operating System (COS), a
middleware framework to support autonomous workload elas-
ticity and scalability based on application-level migration as a
reconfiguration strategy. While other scalable frameworks (e.g.,
MapReduce or Google App Engine) force application developers
to write programs following specific APIs, COS provides scal-
ability in a general-purpose programming framework based on
an actor-oriented programming language. When all executing
VMs are highly utilized, COS scales a workload up by migrating
mobile actors over to newly dynamically created VMs. When VM
utilization drops, COS scales the workload down by consolidating
actors and terminating idle VMs. Application-level migration is
advantageous compared to VM migration especially in hybrid
clouds in which migration costs over the Internet are critical to
scale out the workloads. We demonstrate the general purpose
programming approach using a tightly-coupled computation.
We compare the performance of autonomous (i.e., COS-driven)
versus ideal reconfiguration, as well as the impact of granularity
of reconfiguration, i.e., VM migration versus application-level
migration. Our results show promise for future fully automated
cloud computing resource management systems that efficiently
enable truly elastic and scalable general-purpose workloads.

I. INTRODUCTION

Cloud computing is a promising computing paradigm that
delivers computing as a service based on a pay-per-use cost
model [1]. Users can purchase as many computing resources
as they want paying only for what they use. This cost model
gives users the great benefits of elasticity and scalability to
meet dynamically changing computing needs. For example, a
startup Web service company can start with a small budget,
and then later if the business goes well, they can purchase
more computing resources with a larger budget. Moreover, if
you have a large enough budget, you would have the illusion
of infinite resources available on the cloud. Those benefits
have been partly enabled by virtualization technology such as
Xen [2] or VMware [3]. Using virtualization, service providers
can run multiple virtual machines (VMs) on a single physical
machine, providing isolation to multiple user workloads, better
utilization of physical hardware resources by consolidation
of workloads, and subsequent energy savings [4], [5]. For
those who have access to a private cloud environment, a
hybrid cloud, which connects the private cloud to the public
cloud, is an even better option in terms of scalability. When
computational demands exceed the capacity of the private

cloud, the hybrid cloud can let users scale out the computation
by paying for extra resources on the public cloud.

There are several approaches to exploit the scalability of
cloud computing using VMs. Probably one of the most popular
uses of cloud computing is Web services. Rightscale [6]
and Amazon’s Auto Scale [7] offer automated creation of
VMs to handle increasing incoming requests to web servers.
Conversely, when the requests become less frequent, they
automatically decrease the number of VMs to reduce costs.

Another approach to support scalability is to use VM
migration [8], [9], [10], [11]. Sandpiper [12] monitors CPU,
network, and memory usage, and then predicts the future
usage of these resources based on the profile created from
the monitored information. If a physical machine gets high
resource utilization, Sandpiper tries to migrate a VM with
higher resource utilization to another physical machine with
lower resource utilization and balances the load between
physical machines. As a result, the migrated VM gets better
resource availability and therefore succeeds to scale up its
computation.

The above systems utilize VMs as a unit of scaling and
load balancing, and it can be done transparently for oper-
ating systems and applications on the VM. Meanwhile, the
effectiveness and scalability of VM migration are limited by
the granularity of the VMs. For example, the typical size of
memory on a VM ranges from a few Gbytes to tens of Gbytes,
and migrating such large amount of data usually takes tens of
seconds to complete even within a local area network. Even
though downtime by a live migration process is just as low as
a few tens of milliseconds [9], it incurs a significant load on
the network.

On the other hand, it is possible to achieve load balancing
and scalability with finer granularity for migration at the
application workload level. This approach is advantageous
since the footprint of an application workload is much smaller
than that of a VM making workload migration take less time
and use less network resources. Also, it can achieve better
load balancing and scaling that cannot be done by the VM-
level coarse granularity. However, migration or coordination
of distributed execution is not transparent for application
developers in general, and it requires a lot of effort to
manually develop underlying software. Maghraoui et al. [13]



have developed a library to migrate processes autonomously
for MPI applications; however, MPI applications need to be
modified to support migration. Also, in the hybrid cloud
environment, migrating a process from the private cloud to the
public cloud is desirable. One solution to this problem is using
SALSA (Simple Actor Language System and Architecture)
[14]. SALSA is an actor-oriented programming language that
simplifies dynamic reconfiguration for mobile and distributed
computing through its features such as universal naming and
transparent migration over the Internet. Applications com-
posed of SALSA actors can be easily reconfigured at run time
by using actor migration regardless of the network type (e.g.,
LAN or WAN).

In this paper, we present the Cloud Operating System
(COS), a middleware framework that supports 1) opportunis-
tic creation and removal of VMs and 2) autonomous actor
migration on VMs to enable cloud computing applications to
effectively scale up and down. COS works as a PaaS (Platform
as Service) infrastructure so that application programmers
can focus on their problem of interest and leave resource
management to COS. Actors on COS autonomously migrate
between VMs if it is beneficial in terms of resource availability
in the target node, communication cost with other actors, and
the cost for migration.

To enable elastic and scalable cloud computing applications,
we have created the following design policies towards the
construction of the COS middleware:

Migration by actor granularity: Application-level granular-
ity should be a key to good load balancing. Also, we can ex-
pect application-level migration to take significantly less time
compared to VM migration due to the footprint difference.
Actor migration as supported by SALSA is a reasonable choice
since the migration can be done transparently for application
developers. Another advantage from this approach is that we
can migrate an application workload over the Internet. Xen
only allows VM migration to be done within the same L2
network (to keep network connection alive), whereas SALSA
application actors can migrate to any host on the Internet
without service interruption thanks to its universal naming
model [15]. Note that this approach works on both private and
public clouds while VM migration typically is not allowed for
users to do in the public cloud environment.

Separation of concerns: Application programmers should
focus on their problem of interest and leave resource manage-
ment to the underlying middleware. Furthermore, developers
should not be constrained to specific programming patterns or
application domains.

Runtime reconfiguration of applications: Migration of
workloads should be completely transparent from the appli-
cation programmer and should be done autonomously only if
doing so is beneficial to the users. Furthermore, it should be
possible to migrate complete applications or only parts of them
(e.g., some of the component actors).

Autonomous resource management: To fully harness the
power of cloud computing, the middleware should scale up
and down computing resources depending on the intensity

of workloads. The middleware should autonomously create
more VMs using available resources when all existing VMs
are highly loaded and remove VMs to save energy and costs
when it detects under-utilized VMs.

The rest of the paper is organized as follows. Section II
describes how workloads scale by migrating actors. After ex-
plaining key technologies in Section III, Section IV introduces
our distributed computation middleware, the Cloud Operating
System. Section V compares the performance of VM-level
and application-level migration. Section VI shows the results
of autonomous reconfiguration experiments with a tightly-
coupled workload. We present related work in Section VII,
and finally conclude the paper with future work in Section
VIIL

II. WORKLOAD SCALABILITY

The granularity of VM makes significant impact on work-
load performance in cloud computing environments [16]. To
fine-tune the granularity of VMs transparently from users, we
need to split a VM image into several parts and merge multiple
VMs into fewer VM at run-time, which are complicated tasks.
Some processes have residual dependencies on a particular
host and those dependencies might be broken after merging
or splitting the VMs. Another issue is a resource conflict such
as two web servers using port 80 migrating into one VM.
We can easily see that realizing completely transparent VM
malleability is a challenging task.

However, we view migrating actors to newly created VMs
as equivalent to splitting a VM and migrating actors from
multiple VMs to one VM as equivalent to merging VMs.
This notion of VM split and merge can be applicable to a
hybrid cloud model as shown in Figure 1. We can not only
scale up and down the computation within a private cloud by
migrating actors, but also scale out and in to/from a public
cloud seamlessly from the application point of view.

This VM granularity adjustment is possible because an
actor encapsulates its state and does not share memory with
other actors. In a word, they are natively designed to be
location-agnostic, and therefore they do not have any residual
dependencies and resource conflicts when moving around
computing nodes. COS automatically adjusts the granularity
of VMs by migrating actors over dynamically created VMs.
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Fig. 1. Workload scalability over a hybrid cloud



III. TECHNICAL BACKGROUND

In this section, we introduce two key technological ingredi-
ents of our distributed computation middleware, SALSA [14]
and the Internet Operating System (I0S) [17].

A. SALSA

SALSA is a general-purpose actor-oriented programming
language. It is especially designed to facilitate the develop-
ment of dynamically reconfigurable distributed applications.
SALSA supports the actor model’s unbounded concurrency,
asynchronous message passing, and state encapsulation [18].
In addition to these features, it implements a universal naming
model for actor migration and location-transparent message
sending.

The name service, part of the SALSA runtime, binds a
Universal Actor Name (UAN) to a Universal Actor Locator
(UAL) and keeps track of its location, so that the actor can be
uniquely identified by its UAN throughout its lifetime. This
universal actor naming method enables high-level migration
support and migration to any device hosting the SALSA run-
time. SALSA greatly reduces the development cost of COS.
Therefore, we use SALSA as the basis of our middleware and
illustrate COS with applications written in SALSA.

B. Internet Operating System (10S)

IOS is a distributed middleware framework that provides
support for dynamic reconfiguration of large-scale distributed
applications through opportunistic load balancing capabilities.
It has been shown that it is a scalable solution for distributed
applications to well balance the load on cluster and grid
environments [17], [19].

The load balancing algorithm used in IOS is a pull-based
algorithm where an under-utilized IOS agent tries to ’steal’
some work from other IOS agents. This process is executed in
a decentralized manner, that is, one IOS agent passes a work-
stealing request message to other IOS agents connected locally.
Thus, this algorithm shows a good scaling performance, and it
is stable: an overloaded node does not generate work-stealing
requests.

If an IOS agent receives a work-stealing request message, it
makes a decision whether to migrate an actor or a set of actors
to a foreign node or not based on the following information.

Given:

e R={rg,...r}: A set of resources

o A=/{ag,...an}: A set of actors

e w(r, A): A weight based on importance of the resource
r to the performance of a set of actors A, where 0 <
w(r,A)<land ) w(r,A)=1

e «(r, f): The amount of resource available at foreign node
f

e v(r,l, A): The amount of resource used by actors A at
local node [

e M(A,l, f): The estimated cost of migration of actors
from [ to f

o L(A): The average life expectancy of the actors A,

the predicted increase in overall performance I' gained by
migrating A from [ to f, where I < 1:

D= (w(r, A)xA(r,1, f,A)) = M(A,L, f)/(10+logL(A)),

where

A, f,A) = (alr, ) = v(r, 1, A) (alr, ) + v(r,1, A)).

When work is requested by f, IOS migrates actor(s) A with
greatest I', only if positive. If the migration fails for some
reason (e.g., network failure), the IOS agent simply waits for
the next work-stealing message to come, which works fine
since the sender of the work-stealing message keeps sending
it as long as its utilization is low.

IV. CLoUuD COMPUTING MIDDLEWARE

In this section, the system architecture, runtime behavior,
and load balancing method of the Cloud Operating System
are presented.

A. System Architecture

COS uses the Xen hypervisor and Linux is used as a guest
OS. It consists of several modules as shown in Figure 2. Each
module is explained in order as follows.

e Actors: Application actors are implemented in the
SALSA programming language. They represent work-
loads to be executed on any SALSA runtime environment.

e SALSA Runtime: The running environment for SALSA
actors. It provides necessary services for actors such as
migration, execution of messages, message reception and
transmission from/to other actors, standard output and
input, and so on.

e IOS Agent: An 10S agent monitors available CPU re-
sources and communication between actors running on a
particular SALSA Runtime. It makes a decision whether
to migrate or not from the monitored information as
described in Section III-B. As a result of migration, actors
communicating often tend to be collocated in the same
SALSA runtime [17].

e VM Monitor: A VM Monitor monitors the CPU utiliza-
tion from /proc/stat on a linux file system on Domain-U.
It notifies an event to the Node Manager on Domain-0 if
it detects consistently high or low CPU utilization.

e Node Manager: A Node Manager resides on Domain-
0 and reports CPU load statistics to the COS Manager.
Also, it creates and terminates VMs in response to event
notifications from the COS Manager.

e COS Manager: The COS Manager analyzes reports from
Node Managers and requests new VM creation or termi-
nation to Node Managers based on its decision criteria.
The system administrator of COS has to give available
node information to the COS Manager. Currently, we
create only one SALSA Runtime per guest domain with
multiple vCPUs per node. The reason is because we have
confirmed that doing so performs better than creating
multiple nodes each with one SALSA Runtime with
fewer vCPUs per node.
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Fig. 2. System architecture of the Cloud Operating System

B. Runtime Behavior of COS

Following, we show the steps of COS when scaling up a
computation. Analogous steps apply in the case of scaling
down.

e Step 1. A VM Monitor in Domain-U periodically (e.g.,
every 5 seconds) checks /proc/stat for CPU utilization to
see if it exceeds certain utilization (e.g., 75%). If it does,
the VM Monitor then checks if more than k_HIGH out
of n past utilization checks exceed the threshold just as
Sandpiper [12] does. If it is true, it means the high CPU
utilization is persistent, so the VM Monitor notifies a high
CPU utilization event to the Node Manager in Domain-0
of the same physical node.

e Step 2. When the Node Manager receives a high CPU
utilization event, it just passes the event to the COS
Manager.

o Step 3. Just after the COS Manager receives a high CPU
utilization event, it checks if it is feasible to create a
new VM. Note that the COS Manager ignores frequent
high CPU events to avoid too quick scaling of computing
resources (Please see Section IV-C for detail).

o Step 4. If it is feasible to create a new VM, COS Manager
sends a request to another Node Manager to create a new
VM with a file path to the configuration file required for
Xen-based VM creation.

o Step 5. Upon receiving reception of a new VM creation
request from the COS Manager, a Node Manager calls the
xm create command to create a Xen-based new VM.
After the successful creation of the VM, a VM Monitor,
a SALSA Runtime, and an IOS agent automatically start
running. Once they are ready, the just launched VM
Monitor sends a VM start event to the Node Manager.

The Node Manager then replies a VM creation event to
the COS Manager with an assigned IP address of the VM
as well as the port number for the IOS agent.

e Step 6. When the COS Manager receives a VM creation
event from a Node Manager, it connects available I0S
agents using given IP addresses and port information, so
that the IOS agents can start communicating with each
other and balancing the load between them.

C. Stable Creation and Termination of VMs

To avoid thrashing behavior due to frequent VM creation
and termination, the following heuristics is implemented.
We choose this threshold approach because it is simple yet
effective to avoid thrashing behavior as we have experienced
in [17].

e The COS manager decides to create a new VM only if
it has received high CPU utilization events from all of
the running nodes within a certain time range (e.g., 10
seconds). The reason is that there may still remain under-
utilized VMs and IOS agents may be able to balance the
load and decrease the overall CPU utilization of VMs.

e Some workloads alternate between high and low CPU
usage. If criteria of terminating VMs are too strict, this
type of workload suffers very much. Let the constants
to detect low and high CPU utilization be k_LOW and
k_HIGH respectively for checking past n utilization. We
set a higher value on k_LOW than k_HIGH to make
VM termination more difficult than creation.

e A VM Monitor sends a low CPU utilization event to a
Node Manager only after it detects persistent low CPU
utilization since it takes some time until an IOS agent
gets some workload from other IOS agents.



V. VM-LEVEL VS APPLICATION-LEVEL MIGRATION

We conduct a preliminary experiment to confirm the char-
acteristics of VM-level migration and application-level migra-
tion.

In this experiment, we use two machines. Each has quad
core Opteron processors running at 2.27 GHz, connected via
1-Gbit Ethernet. We create VMs by using Xen-3.4.1 which
works with Linux 2.6.18.8 and do regular migration between
the two machines with the memory sizes from 0.5 Gbytes to
10 Gbytes. Note that no user applications are running at the
time of experiments.

Figure 3 shows the result of VM migration time as a
function of VM memory size.
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Fig. 3. VM migration time within a local network

VM migration time linearly increases as the memory size
gets larger. Roughly it takes 10 seconds per 1 Gbytes of
memory, and the average bandwidth is 743.81 Mbps during the
experiment. Although the size of application workloads totally
depends on each application, it is expected to be much smaller
than the size of VMSs. In the case of SALSA actor migration,
a minimal actor (with empty state) migrates in 150-160 ms
and a 100 Kbytes actor takes 240-250 ms on a LAN, whereas
the minimal actor takes 3-7 seconds and the 100 Kbytes actor
takes 25-30 seconds on a WAN (migrating from Urbana, IL,
USA to Paris, France to Tokyo, Japan). [14].

Furthermore, as illustrated in [20], the ratio between work-
load granularity and the number of processors has a significant
impact on performance. As a consequence, VM-level coarse
granularity has a disadvantage compared to the actor-level fine
granularity in terms of load balancing. For example, in an
experiment with two physical machines and an odd number
of virtual machines (3 and 5), the execution time is 9.4% and
22.4% slower than using actor-based load balancing.

VI. AUTONOMOUS RECONFIGURATION PERFORMANCE

We have conducted experiments from two perspectives. In
the first experiment, we test COS’ scalability with a minimum
setting. We run COS with only one user and see how it scales
up computing resources as the computation becomes intensive.
Also, we compare the performance of COS with fixed amount

TABLE I
TEST CASE SCENARIOS FOR EXPERIMENT 1

[ Test Case | vCPU/VM [ PM [ VM [ Total vCPUs [ Memory [MB/VM] |

4 1 1 4 1024
Fixed VM 4 2 2 8 1024
4 3 3 12 1024
cos 4 dynamically Qetermined 1024
at runtime

resource cases. In the second experiment, we compare the
performance of autonomous actor migration used in COS
with other migration methods to figure out its advantages and
disadvantages.

A. Workload

The workload used is a Heat Diffusion problem, a
communication-intensive workload. It simulates heat transfer
in a two-dimensional grid in an iterative fashion. At each itera-
tion, the temperature of a single cell is computed by averaging
the temperatures of neighboring cells. In both experiments, we
run the problem for 300 iterations.

This workload is developed in SALSA, using actors to
perform the distributed computation. Each actor is responsible
for computing a sub-block of the grid and the actors have
to communicate with each other to get the temperatures on
boundary cells.

We choose this problem as a benchmark because it is
a general application that utilizes both network and CPU
intensively, and also because it is known to be hard to scale.

B. VM Configuration

Throughout the experiments, we use physical machines
where each of them has quad core Opteron processors running
at 2.27 GHz, and they are connected via 1-Gbit Ethernet. Also,
every VM created during the experiments has four vCPUs and
1024 Mbytes of memory.

C. Experiment 1 - Test COS with Single User

1) Experimental Setup: In this experiment, only one user
runs the Heat Diffusion problem on COS. We also compare
the execution time of the Heat Diffusion problem with the
cases where the number of VMs is fixed, to see how dynamic
allocation of VM affects the performance.

We use three physical machines and create only one VM
per physical machine. While COS dynamically changes the
number of VMs from one to three at runtime, the fixed VM
cases use one, two, and three VMs respectively from the start
to the end of the Heat simulation. Table I summarizes the test
case scenarios used in Experiment 1.

2) Results: VM CPU Utilization: As shown in Figure
4, COS successfully reacts to the high CPU utilization and
creates new VMs. First it starts with VM1 only, and then
creates VM2 at around 21 seconds. Once both VM1 and
VM2 get highly utilized, COS creates VM3 at around 92
seconds. Since the actors are gradually migrated by IOS agents
from VM1 to VM3, not from VM2, the CPU utilization of



VM3 increases whereas the CPU utilization of VM1 decreases
almost by half. Therefore, COS successfully creates VMs
when extra computing power is demanded and in steady-state
conditions it balances the load among the different VMs.

Throughput: Figure 5 depicts the throughput of the Heat
Diffusion simulation. It is clear that the throughput gets higher
as the number of VMs and accumulated VM CPU utilization
(as shown in Figure 4) increases.

Execution time: Figure 6 shows the relationship between
the number of vCPUs and the execution time. COS uses 9.002
vCPUs on average, whereas 1, 2, and 3VMs cases use 4, 8§,
and 12 vCPUs respectively. It is clear that more use of vCPUs
makes the execution times faster. Also, the graph suggests that
relationship between the number of vCPUs and the execution
time is linear. Suppose the cost per time is proportional to the
number of vCPUs, the total cost, the product of the number of
vCPUs and the execution time, is almost constant. Therefore,
using 3VMs is the best way to go for the Heat Diffusion
problem; however, COS does better than the cases of 1VM
and 2VMs. It performs quite well if we consider the fact that
COS does not have any knowledge about the complexity of the
problem and the number of vCPUs is dynamically determined
at run-time.
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D. Experiment 2 - Compare COS with Ideal Migrations

1) Experimental Setup: In this experiment, we compare the
performance of autonomous actor migration used in COS with
ideal migration methods. We consider two users submitting
their 8 actors each for the Heat Diffusion problem over two
physical machines (PM1 and PM2). Initially, User 1 submits
his 8 actors on PM1, and then 60 seconds later, User 2 submits
another 8 actors on PM2. How those actors are actually
assigned on VMs depends on test case scenarios described
in Table II. We test autonomous actor migration along with
two ideal cases where migrations are initiated by a human as
described in the next section.

2) Ideal Migration: In the cases of ideal human-driven VM
migration and actor migration, a human monitors the resource
usage on both physical machines and initiates migration to
get the workload balanced as examples shown in Figure 7.
Example 1 shows a case where User 1 has two VMs, where
each VM has 4 actors, on PM1 and then he migrates the second
VM (VM2y;) to PM2. Example 2 illustrates a situation where
User 2 newly submits 8 actors on his two VMs on PMI. In
this case, the human migrates the first VM of User 1 (VM1y1)
to PM2 to collocate the VMs of User 1, which is beneficial for
tightly-coupled workloads. Same policy applies to ideal actor
migrations.

3) Results: The execution time results of each test scenario
are shown in Figure 8. We measure the execution time required
for all tasks to finish. Autonomous actor migration performs
almost the same as ideal VM migration, whereas the ideal
actor migration is the fastest of the three methods and is
about 14% faster than the autonomous actor migration and the
ideal VM migration. This clearly shows the benefit of actor
migration compared to VM migration approach. I0S agents
used by COS do not know anything about applications such
as communication patterns or dependencies between modules;
therefore the IOS agents have to profile available resources
periodically and determine when to migrate actors, and that
is the price autonomous actor migration is paying for the
automated approach. Meanwhile, the ideal actor migration



TABLE I
TEST CASE SCENARIOS FOR EXPERIMENT 2

Test Case Description

Scenarios

VM A human decides when & where to migrate VMs to
migration achieve optimal load balancing

(Ideal) e User 1 has two VMs (VM1y; and VM2y1) on PM1,

and User 2 has two VMs (VMl1ys and VM2ys9) on
PMI.

e Initially, User 1 submits 4 actors on VM1y; on PM1
and another 4 actors on VM2y; on PM1. Right after
the VM submissions, VM2yy; is migrated to PM2 for
the best use of resources (See Figure 7a).

e 60 seconds later, User 2 submits 4 actors on VM1o
on PM1 and another 4 actors on VM 25 on PM1. Right
after the VM submissions, VM 1y is migrated to PM2
to be collocated with VM2y; (See Figure 7b).

Actor migra-
tion

A human decides when & where to migrate actors to
achieve optimal load balancing

(Ideal) e There is one VM (VMI1) on PMI1 and another one
(VM2) on PM2. Users do not have dedicated VMs, but
share VM1 and VM2.

e Initially, User 1 submits 8 actors on VM1 on PMI.
Right after the actor submissions, 4 out of 8 of his
actors are migrated to VM2 on PM2 for the best use
of resources.

e 60 seconds later, User 2 submits 8 actors on VM1
on PMI1. Right after the actor submissions, User 1’s
remaining 4 actors are migrated to VM2 on PM2 to
be collocated with his another 4 actors.

Actor migra- | VM allocation and actor migration is automated by COS

tion
(Autonomous) | e Initially, User 1 submits 8 actors on a VM allocated
on PM1.
e 60 seconds later, User 2 submits another 8 actors on
the same VM allocated on PM1.
0000 0000 Migration 0000 0000
) [wma] [
‘ PM1 ‘ ‘ PM2 ‘ ‘ PM1 ‘ ‘ PM2 ‘
(a) Example 1
JAVAVAVAN
0000 0000 Migration 0000 OOOO
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(b) Example 2
O : actors submitted by User 1
/\ : actors submitted by User 2
Fig. 7. Examples of ideal VM migration initiated by human

is able to migrate multiple actors to the right place at the
right time. The reason of the ideal VM migration’s moderate
performance is due to the cost of VM migration. As we have
shown in Section V, migration of a 1024 Mbytes memory
VM takes about 10 seconds. During the migration time,
communication between actors suffers significantly, therefore
the performance is degraded. Clearly, human-driven resource
management is not scalable, or even feasible in dynamic en-
vironments; so these results with autonomous actor migration
are quite promising.
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VII. RELATED WORK

Kalé et al. [21] achieves MPI-process level malleability by
using AMPI (an adaptive implementation of MPI), which can
be reconfigured at run-time. Maghraoui et al. [13] explores
process-level malleability for MPI applications, which sup-
ports split and merge operations of MPI processes. Desell
et al. [20] investigates component-level malleability using the
SALSA programming language. They both support dynamic
granularity change by splitting and merging of processes and
application components respectively; however, they require
users to implement how to split and merge. The middleware
presented in this paper does not need cooperation from ap-
plication programmers when the number of actors is larger
than the number of VMs, but when the number of actors is
smaller than the number of VMs, an actor has to split or make
a clone to properly balance the load. IOS supports actor split
and merge functionalities, which we will explore further in the
future.

Wang et al. [16] shows how granularity of virtual machines
affects the performance in cloud computing environments
especially for computation-intensive workloads. Based on their
observations, they suggest that dynamic VM granularity strate-
gies can be used to improve the performance for tightly-
coupled computational workload. Wang et al. [22] thoroughly
investigates the performance impact of VM configuration
strategies such as virtual CPUs and the memory size. They
conclude tightly-coupled computational workloads are sensi-
tive to the total number of VMs, vCPUs per VM, and the
memory size. It is a useful reference to VM management
strategies and we plan to use the results in our future research
to fine-tune the performance of VMs.

VIII. CONCLUSION AND FUTURE WORK

This paper introduced a middleware framework, the Cloud
Operating System, that supports autonomous cloud computing
workload elasticity and scalability based on application-level
migration. To scale a workload up (or out,) COS creates new
VMs (in a public cloud) and migrates application actors to



these new VMs. To scale a workload down (or in,) COS
consolidates actors into fewer VMs and terminates idle VMs.

While VM migration allows for dynamic cloud comput-
ing workload reconfigurations, and it does not require any
knowledge of the guest O.S. or applications, its performance
is prohibitive in hybrid clouds requiring potentially migrating
several gigabytes over the wide area network. It is also an
ineffective approach in applications using mobile devices (i.e.,
smart phones) given their constrained resources. Higher-level
approaches to scalability (e.g., MapReduce [23] or Google
App Engine [24]) impose specific programming patterns or
APIs on applications making these approaches less general.

COS only requires cloud applications to contain migratable
components and does not impose any further restrictions on
workloads. Using application-level migration, workloads can
be elastic and scalable autonomously through middleware-
driven dynamic reconfigurations. Preliminary experiments
with a tightly-coupled computation in a private cloud show
that a completely application-agnostic automated load balancer
performs almost the same as optimal (i.e., human-driven) VM-
level migration. Through ideally-triggered application-level
migration, we could get even better performance (14% in our
experiments).

We plan to keep working to improve the performance
of COS-driven workload reconfigurations. We also plan to
experiment with more heterogeneous and realistic workloads.
We will develop a model to accept high-level policies such as
time-constrained, budget-constrained, and energy-constrained
as well as QoS parameters (such as throughput or dead-
lines) [25] to drive reconfigurations in hybrid clouds. Future
work also includes exploring automating more fine-grained
resource management in COS by dynamically reconfiguring
the number of vCPUs and the memory size of VMs (see [22]
for the potential performance impact of these reconfigurations
performed manually.) Finally, future work includes connecting
mobile device applications to hybrid clouds (e.g., see [26] )
using application-level migration to gain elasticity, scalability,
and efficiency, in a general-purpose programming framework.
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