
Impact of Cloud Computing Virtualization Strategies on Workloads’ Performance

Qingling Wang, Carlos A. Varela
Department of Computer Science

Rensselaer Polytechnic Institute, Troy, NY, USA
http://wcl.cs.rpi.edu/

{wangq9, cvarela}@cs.rpi.edu

Abstract—Cloud computing brings significant benefits for
service providers and users because of its characteristics: e.g.,
on demand, pay for use, scalable computing. Virtualization
management is a critical task to accomplish effective sharing
of physical resources and scalability. Existing research focuses
on live Virtual Machine (VM) migration as a workload consol-
idation strategy. However, the impact of other virtual network
configuration strategies, such as optimizing total number of
VMs for a given workload, the number of virtual CPUs
(vCPUs) per VM, and the memory size of each VM has
been less studied. This paper presents specific performance
patterns on different workloads for various virtual network
configuration strategies. For loosely coupled CPU-intensive
workloads, on an 8-CPU machine, with memory size varying
from 512MB to 4096MB and vCPUs ranging from 1 to 16
per VM; 1, 2, 4, 8 and 16VMs configurations have similar
running time. The prerequisite of this conclusion is that all 8
physical processors are occupied by vCPUs. For tightly coupled
CPU-intensive workloads, the total number of VMs, vCPUs
per VM, and memory allocated per VM, become critical for
performance. We obtained the best performance when the ratio
of the total number of vCPUs to processors is 2. Doubling
the memory size on each VM, for example from 1024MB to
2048MB, gave us at most 15% improvement of performance
when the ratio of total vCPUs to physical processors is 2. This
research will help private cloud administrators decide how to
configure virtual resources for given workloads to optimize
performance. It will also help public cloud providers know
where to place VMs and when to consolidate workloads to be
able to turn on/off Physical Machines (PMs), thereby saving
energy and associated cost. Finally it helps cloud service users
decide what kind of and how many VM instances to allocate
for a given workload and a given budget.

I. INTRODUCTION

Cloud computing is an emerging distributed computing
paradigm that promises to offer cost-effective scalable on
demand services to users, without the need for large up-front
infrastructure investments [3]. Through the use of virtualiza-
tion, cloud computing provides a back-end infrastructure that
can quickly scale up and down depending on workload [2].

Cloud computing brings significant benefits for both ser-
vice providers and service users. For service users, they
pay the computing resources only on demand and without
worrying about hardware, software maintenance or upgrade.
For service providers, with VMs, they can shrink or expand
the utilization of physical resources based on workloads’

requirements. Therefore, it is possible for providers to make
higher profit without affecting users’ satisfaction.

Thus, it is worthy to investigate more deeply into adaptive
virtual network management techniques. A high ratio of
VMs to PMs enables sharing of resources yet guarantee-
ing isolation between workloads. In contrast to physical
resources, VMs provide dynamic control on their system
settings, i.e., vCPUs, virtual memory. Mature virtualization
infrastructures, like Xen and VMware, provide resource
modulation on VMs. For example in Xen, you can stati-
cally set memory size, vCPU number for each VM in the
configuration file when starting a VM; and you can also
change these settings dynamically.

Although it is known that resource reallocation is pos-
sible in virtual infrastructure, no specific data shows how
these settings impact workloads’ performance. In previ-
ous preliminary work [11], we studied the impact of VM
granularity (different VM/PM ratios) on two categories of
workloads. Our performance evaluation indicated that, for
tightly coupled CPU-intensive workloads, VM granularity
indeed affects the performance significantly; by contrast, the
impact of VM granularity on the performance of loosely
coupled network intensive workloads is not critical. This
paper goes beyond studying the impact of VM granularity on
performance. We also consider the impact of different virtual
network configurations, namely, the number of vCPUs per
VM and the allocated virtual and physical memory. We also
study a third category of workload: loosely coupled CPU-
intensive workloads. In summary, we tackle the following
problem: given a class of cloud computing workloads, what
kind of virtual network configuration (i.e., number of VMs,
number of vCPUs per VM, memory size of each VM)
optimizes the workload’s performance and the utilization of
physical resources?

Private cloud owners, service providers and service users
will all benefit from our experiments. Private cloud owners
have the ability to change virtual network configurations at
any time. They will benefit by knowing how to configure
and place VMs for limited physical resources, and when to
consolidate VMs to be able to turn off servers to save energy
without affecting performance. Service providers will benefit
by knowing the proper time and way to consolidate VMs,
thus to maximize profit but still keeping well-provisioned

Table I
CATEGORIES OF WORKLOADS

hhhhhhhhhhhWorkloads
Resources CPU-intensive Network-intensive

Internal Communication External Communication
Stars

√

Heat
√ √

Web System
√

VMs to guarantee service quality. Finally, service users will
be able to analyze what kinds of (for example, small, or
large? high-memory or high-CPU?) and how many VM
instances maximize a workload’s performance under a given
budget.

This paper is organized as follows. Section II describes
our system architecture. The experimental results are shown
in Section III. Section IV presents the analysis of the
results. Section V positions our research among related
work. Finally, Section VI concludes the paper and discusses
future work.

II. SYSTEM AND EXPERIMENTS SETUP

This study aims to find the relationship between virtual
network configuration strategies and performance of cat-
egories of cloud computing workloads. We have built a
testbed for experimentation and performance evaluation of
strategies for virtual network configurations.

Figure 1. Benchmark architecture

A. Testbed Setup

In order to minimize the influence of other factors, for
example bandwidth, and to concentrate on the relationship
between the virtual and the physical layer, we deploy most
of our experiments on one server machine. The server is
equipped with a quad-processor, dual-core Opteron. The
Opteron processors run at 2.2GHz, with 64KB L1 cache
and 1MB L2 cache. The machine has 32GB RAM. The
hypervisor is Xen-3.4.1 and the operating systems of the
VM instances are Linux 2.6.18.8 and Linux 2.6.24-29.

B. Workloads

We study three different categories of workloads: the first
one is Stars Distance Computing, a loosely coupled CPU-
intensive workload; the second is a Heat Distribution prob-
lem, a tightly coupled CPU-intensive workload. They are
both developed in SALSA [10], using actors [1] to perform
distributed sub-tasks. Load balancing is taken into account
in our experiments such that each actor is responsible for
the same amount of work. We also give a brief analysis for
a loosely coupled external network-intensive workload - a
Web 2.0 system. Table I shows the corresponding categories
of the three workloads.

Stars Distance Computing: The goal of this problem
is to analyze three-dimensional data from the Sloan Digital
Sky Survey, in particular, stars from the Milky Way galaxy.
The program computes the closest and farthest neighbor
stars, which are the set of pairs of stars that minimize and
maximize pairwise distance respectively; the ideal hub stars,
which minimize the maximal distance to any other star; the
ideal jail stars, which maximize the minimal distance to any
other star and the ideal capital stars, which minimize the
average distance to all other stars.

In this problem, each actor is responsible for computing a
certain number of stars, it holds the immutable data it needs,
and therefore the actors are independent from each other.

Heat Distribution: This problem simulates heat distri-
bution on a two-dimensional surface. Suppose the surface
is a square grid and it has some size (for example, 122
by 122). The initial temperature is 100 degrees for some
coordinates (for example, {(y, 0)|30 < y < 91}) and 20
degrees for all other points in the surface. The temperature
for a grid element at a given time step is the average of the
grid element’s neighbors at the previous time step (boundary
elements remain constant over time.) This workload sim-
ulates heat transfer for certain time steps to approximate
equilibrium temperatures.

In this problem, each actor is in charge of specific sub-
blocks of the grid and all the actors have to communicate
with neighbors to get the temperatures of the boundary
elements.

Web 2.0 System: The web system is built as a dis-
tributed system and serves to process continuous requests
from clients. Since the server nodes in the system are
independent from each other, the web system is a loosely
coupled external network intensive workload.

(a) Performance change on different number of
VMs and different number of vCPUs per VM
(memory size of each VM is 512MB)

(b) Performance change on different number of VMs
and different memory size per VM (number of vCPUs
per VM is 4)

(c) Performance change on different number of
vCPUs and different memory size per VM (number
of VMs is 4)

Figure 2. Performance of Stars running on different virtual network configurations

C. Benchmark Architecture

Figure 1 shows the architecture of our performance eval-
uation system. We use Xen as our virtual machine manager.
The virtual network configuration controller is responsible
for dynamically controlling and refining the total number of
VMs, vCPU number per VM, and memory size allocated
to each VM. The resource usage monitor, running on both
virtual and physical layers, periodically collects CPU and
memory utilization information.

D. Experimental Design

The overall objective of our experiments is to quantify the
slowdown or improvement in performance of a given work-
load when the virtual network configurations are changed
in a fixed physical environment. We conduct overlapping
experiments on the workloads with different virtual network
configurations:

VMs and vCPUs: In this experiment, we set the mem-
ory size of each VM as a constant, change the total number
of VMs from 1 to 16 and the number of vCPUs of each VM
from 1 to 16. We collect the running time on every pair of
VMs and vCPUs per VM.

VMs and virtual memory: Similar to the first experi-
ment, we make the number of vCPUs of each VM constant,
for example 4, change the total number of VMs from 1
to 16 and the memory size of each VM from 512MB to
4096MB. We collect the running time on every pair of VMs
and memory size per VM.

vCPUs and virtual memory: Last, we make the total
number of VMs in our experimental environment constant,
for example 4, change the number of vCPUs from 1 to 16
and the memory size of each VM from 512MB to 4096MB.
We collect the running time on every pair of vCPUs and
memory size.

III. EXPERIMENTAL RESULTS

A. Loosely Coupled CPU-Intensive Workload

Figure 2(a) shows the performance change on different
number of VMs with different number of vCPUs per VM.
When the total number of vCPUs is less than the number of
physical processors, either increasing the number of VMs or
the number of vCPUs per VM will reduce the running time
significantly; increasing the number of vCPUs per VM alone
cannot bring down running time as quickly as increasing
number of VMs.

After all the physical processors are occupied, increasing
number of VMs or vCPUs per VM has no significant
influence on performance. Instead, too many vCPUs (e.g.,
the total number of vCPUs is greater than the number of
actors) will eventually decrease the performance.

Performance on different number of VMs with different
memory size of each VM is shown in Figure 2(b). In
this experiment, we fix the number of vCPUs on each
VM as 4. Figure 2(b) indicates that adding VM instances
or allocating more virtual memory to each VM will not
necessarily improve performance. On the contrary, it may
raise VM configuration exceptions and cause a downtime if
servers do not have enough physical memory to allocate. In
our experiment, increasing memory becomes a performance
problem when the total virtual memory gets to 16GB, which
is only half the available physical memory (32GB.)

Figure 2(c) presents the impact of different number of
vCPUs and virtual memory size per VM on performance. In
this experiment, the number of VMs is fixed at 4. The results
indicate that allocating larger memory to VMs will not
necessarily improve performance; or conversely that smaller
memory size of each VM will not worsen performance.
Adding more vCPUs per VM after all physical CPUs are
occupied is not better either. On the contrary, it will worsen
performance, though not significantly.

(a) Performance change on different number of
VMs and different number of vCPUs per VM
(memory size of each VM is 1024MB)

(b) Performance change on different number of VMs
and different memory size per VM (number of
vCPUs per VM is 4)

(c) Performance change on different number of vC-
PUs and different memory size per VM (number of
VMs is 4)

Figure 3. Performance of Heat running on different virtual network configurations

B. Tightly Coupled CPU-Intensive Workload

Figure 3(a) shows the performance change on different
number of VMs and vCPUs. The number of VMs becomes
critical in this workload.

A high ratio of actors to VMs is undesirable, since that
means more actors would be assigned to the same VM,
which causes more CPU and memory contention between
actors. The intense CPU and memory competition will
influence the computing speed of each actor and meanwhile
slow the communication between each other. For example,
in our experiment when we have 2 VMs, no matter how
many vCPUs per VM we have, running time is always very
high.

Too many VMs or too low a ratio of actors to VMs is
also inadvisable. In such case, memory utilization is not
optimal, since an actor’s memory no longer fits in the lower
levels of the memory hierarchy (L1 and L2.) Therefore, an
optimum number of VMs exists to get the best performance.
For vCPUs setting, it is also not trivial. Too few vCPUs per
VM can not make full use of physical CPUs but too many
vCPUs will add significant context switching overhead. In
our experiment, when we set the total number of vCPUs
to 2 times the number of processors, we obtain the best
performance.

Figure 3(b) indicates the relationship between perfor-
mance and the configuration of different number of VMs
and memory size per VM is subtle. Higher memory size
per VM is generally better except when the number of VMs
grows. Memory becomes a bottleneck when the number of
VMs is small. The reason is that less VMs means more
actors on each VM and thus more memory is needed for
a VM to save both raw data and intermediate results. The
graph shows that 2 VMs with 512MB or 1024MB memory
per VM configuration has a very bad performance, several
times worse than other configurations; when allocating more

memory to each VM (for example, 2048MB or larger), the
running time decreases to some ideal point. However, always
keeping a large memory for every VM is not reasonable.
The reasons are as follows. First, as the number of VMs
grows, memory size becomes not critical and the perfor-
mance improvement caused by increasing memory size is
inconsequential; for example, in our experiment when the
number of VMs is greater than 2, performance improvement
by doubling the memory size of each VM has been around
10%. Second, creating new VMs becomes unworkable due
to lack of free physical memory, in this experiment, when we
have 8 VMs, the largest memory we can allocate to each VM
is 2048MB; while when having 16 VMs, the largest memory
can be allocated is 1024MB. Once again, we can efficiently
use only half the available physical memory (32GB.) Lastly,
a VM with large memory takes more time doing migration.

The last experiment is about the impact on workloads’
performance when given different number of vCPUs and
different virtual memory size on each VM. We set the total
number of VMs in the system as 4 and the results are shown
in Figure 3(c). As mentioned before, running time becomes
really large when the number of vCPUs per VM is low,
especially when the memory size of the VM is also small.
This is because all actors will fall into a vicious cycle due to
low CPU utilization but high memory consumption. In such
case, either larger memory size or more vCPUs per VM
will make an improvement. Figure 3(c) also indicates that a
special configuration exists to give the best performance. In
this experiment, 4 vCPUs per VM give the best performance
if given the same size of memory on VMs. More vCPUs will
slightly bring down performance because of the less effective
memory hierarchy utilization.

C. External Network Intensive Workload

Figure 4 shows the transaction rate of the web system
under different number of concurrent clients. The figure

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 12 16 20 24 28

T
ra

ns
ac

tio
ns

 R
at

e
(t

ra
ns

/s
ec

)

Number of VMs

8 Concurrent Clients
16 Concurrent Client

32 Concurrent Clients
64 Concurrent Clients

128 Concurrent Clients

Figure 4. The impact of VM granularity on network-intensive workload’s
performance (results come from [11])

indicates that given a certain number of concurrent clients,
the transaction rate fluctuates at a small extent when the
number of VMs changes. VM granularity is not critical for
the performance of loosely coupled network intensive work-
loads, which provides an opportunity for VM consolidation.

D. Resource Usage
In this section, we will discuss the CPU and memory con-

sumption for the CPU-intensive workloads. We developed a
sub-module, the resource usage monitor, which runs on both
PMs and VMs, to collect CPU and memory statistics during
the workloads’ execution. These statistics were collected and
measured from the /proc file system in 10ms intervals. All
experiments were repeated five times and averaged. In our
experiments, we collected the usage statistics on all kinds
of configuration strategies. However, we cannot present all
of them here due to limited space. We choose some typical
settings which can sufficiently express the key inside points.

(a) 1vCPU (b) 2vCPUs

(c) 4vCPUs (d) 8vCPUs

Figure 5. CPU usage of Stars on different number of vCPUs per VM

1) Resource Usage of Stars Workload: Figure 5 displays
the measured CPU usage on 4 VMs (each has 1024MB
memory) when having different number of vCPUs.

In Figure 5(a), CPU utilization stays at 100% for a long
time and is relatively high during other time intervals. This

demonstrates that the VMs have a heavy workload for low
number of vCPUs configurations (i.e. 1vCPU per VM in our
experiments). In Figure 5(b), Figure 5(c) and Figure 5(d),
the vCPUs are not as busy as Figure 5(a).

Throughput is relatively low for high number of vCPUs
per VM configurations; take Figure 5(d) for example, the
CPU utilization is less than 20% during a long time interval
and only get 100% at some time points; the throughput is
lower when having 16 vCPUs per VM. Though we have
low throughput for high number of vCPUs configurations,
the work load for each vCPU becomes relatively light. That
is why we get similar performance for different number of
vCPUs configurations.

In Figure 6, we show the memory usage (by percent) on
4 VMs (2vCPUs per VM) when having different memory
size.

(a) 512MB (b) 4096MB

Figure 6. Memory usage of Stars on different memory size per VM

Figure 6(a) has a relatively high memory utilization,
greater than 40% for most of the time. The utilization in
Figure 6(b), which has a much larger memory on every VM,
falls into a very low level (< 10%). Since the workload is
loosely coupled, no more significant memory is needed dur-
ing runtime once all data are loaded at the start. Increasing
memory size for each VM thus will not bring improvement
on performance. It is also a waste to allocate larger memories
for VMs, which may preclude VM consolidation.

(a) CPU utilization on 4VMs (b) CPU utilization on 8VMs

(c) Memory utilization on 4VMs (d) Memory utilization on 8VMs

Figure 7. CPU and memory usage of Stars on different number of VMs

We have discussed the resource usage on different number
of vCPUs and different virtual memory size. Given fixed
number of vCPUs and memory size per VM, we consider
resource utilization for different number of VMs. Each VM
is allocated 4vCPUs and 1024MB memory. Figure 7 shows
the corresponding CPU, memory utilization on 4 VMs and
8 VMs respectively.

They have similar CPU and memory utilization and
both are in a reasonable level. Therefore the 4VMs virtual
network configuration is enough. Doubling the virtual re-
sources (including CPU, memory) for loosely coupled CPU-
intensive workloads will not necessarily improve perfor-
mance.

2) Resource Usage of Heat Workload: Figure 8 displays
the measured CPU usage on different number of vCPUs of
4VMs (each VM has 1024MB memory).

(a) 1vCPU (b) 4vCPU

(c) 8vCPU (d) 16vCPU

Figure 8. CPU usage of Heat on different number of vCPUs per VM

In Figure 8(a), we can see that CPU utilization is high (>
90%) for almost all the time. The utilization is generally less
than 30% in Figure 8(d). This demonstrates the VMs have
a very high work load for low number of vCPUs settings
(i.e. 1vCPU per VM in our experiments) , but have a low
throughput for high number of vCPUs setting (16vCPUs per
VM in our experiments). Figure 8(c), which has 8vCPUs
per VM has better CPU utilization than Figure 8(d), but is
still not efficient enough. Figure 8(b), the 4vCPUs per VM
setting, is the best one of all. It has a reasonable utilization
(> 60%), not high as Figure 8(a) and also not low as 8vCPU
or higher setting. 2vCPUs per VM setting is not shown here.
It has similar CPU utilization with Figure 8(b).

In Figure 9, we show the memory usage (by percent) on
different memory size of 4 VMs (2vCPUs per VM).

Figure 9(a) has a relatively high memory utilization,
greater than 60% for most time; The utilization in Figure
9(b), which has a much larger memory on every VM,
falls into a very low level (< 20%). As mentioned before,
larger memory is generally better. However it is a waste of
resources if the memory is too large.

We have discussed the resource usage on different vCPU

(a) 512MB (b) 4096MB

Figure 9. Memory usage of Heat on different size of virtual memory per
VM

and virtual memory configurations. The resource utilization
of different number of VMs (each VM has 2vCPUs and
1024MB memory) is shown in Figure 10.

First, memory is not a bottleneck in these two cases and
they have similar memory utilization. The 8VMs configu-
ration has a better CPU utilization. It is also a proven fact
that it improves the performance about 15% by increasing
VM number from 4 to 8 with the configuration of 2vCPUs
and 1024MB per VM. Since we are using the same physical
resources, it is better to double the virtual resources and get
better performance.

(a) CPU utilization on 4VMs (b) CPU utilization on 8VMs

(c) Memory utilization on 4VMs (d) Memory utilization on 8VMs

Figure 10. CPU and memory usage of Heat on different number of VMs

IV. ANALYSIS

Our experimental results show that for CPU-
intensive workloads, the total number of vCPUs
(i.e.,VMs*vCPUs/VM) has to be large enough to fully
utilize all available physical processors. The total virtual
memory of all VMs allocated to a physical machine, has to
be less than the physical memory of the machine to avoid
poor performance due to swapping.

For loosely coupled CPU-intensive workloads, the number
of vCPUs and memory size of VMs have no significant
impact on performance. The effect of VM granularity is also
not critical. We get slightly better results by using a large
number of VMs with a small number of vCPUs per VM
versus using a few VMs with a large number of vCPUs per
VM.

For tightly coupled CPU-intensive workloads, the virtual
network configurations become critical for performance.
First, if the number of VMs is small, there should be
large memory allocated to each VM to ensure efficient
inter-process communication (e.g., in our experiments, if
we have only 2 VMs, they should each be allocated at
least 2GB of virtual memory). Second, the impact of VM
granularity (number of VMs) on performance is significant
(see Figure 3(a)). Last, given a number of VMs, too large a
ratio of vCPUs to CPUs (for example greater than 2 in our
experiments) will hinder performance (see Figure 3(c)).

For external network-intensive workloads, virtual network
configuration is not critical for performance. It provides an
opportunity to apply VM consolidation without sacrificing
quality of service.

Service providers benefit by knowing where, when and
how to place VMs: first, system administrators or mid-
dleware need to guarantee all physical processors will be
occupied when placing or consolidating VMs; second, con-
solidation is only feasible when physical memory is enough.
If the workload is external network-intensive, consolidation
can be more effectively applied. Private cloud owners can
configure virtual resources from the results for these two
kinds of workloads: first, the ratio of total number of vCPUs
to processors has to be greater than 1 to guarantee a reason-
able performance; second, memory shrinking to consolidate
VMs and save energy is feasible. For tightly coupled CPU-
intensive workloads, private cloud owners need to balance
between performance and different configuration strategies.
Small number of VMs with small number of vCPUs and
small size of memory of each VM should always be avoided.
The number of VMs should be the first parameter to
optimize in order to stay clear of the poor performance
regions. Large memory is good, but if VM migration is
required, the administrator or middleware should consider
to shrink the memory size. Service users can learn what
kind of instances they actually need for a given workload.
For loosely coupled CPU-intensive and external network-
intensive workloads, it is a waste of money to request large
or high-memory or high-CPU VM instances. It is better
to request more smaller VMs. For tightly coupled CPU-
intensive workloads, a few large memory VM instances have
comparable performance to more small memory ones (see
Figure 3(b)), so the decision on the cheapest well-performing
configuration depends on the public cloud providers’ pricing
for large/small VM instances.

To guide cloud administrators and middleware developers,
the key to performance improvement of loosely coupled
CPU-intensive workloads is the throughput of the CPUs,
they should avoid the heavy CPU load situation (see Figure
5(a)). For tightly coupled workloads, the resource consump-
tion data can help know the proper time to change virtual
network configuration strategies: if CPU utilization is very
high during some time interval (see Figure 8(a)), adding

more vCPUs for each VM or adding more VMs should be
considered; on the other hand, if CPU utilization is very low
during a time interval (see Figure 8(d)), it is better to de-
crease the number of vCPUs or consider VM consolidation.
Memory usage would help private cloud owners know the
proper time for memory ballooning: if memory utilization
is already high at the beginning (see Figure 9(a)), it is more
likely we need to allocate a larger memory; during runtime,
if the slope of memory usage is stiff and utilization is high,
more memory should be allocated to VMs; if the slope is
flat and utilization is relative low (see Figure 6(b) and Figure
9(b)), then memory shrinking is feasible. Service users can
learn from the resource consumption by knowing that large
VM instances may have very low throughput and therefore
may be a waste of money.

V. RELATED WORK

Virtualization management, which refers to the abstraction
of logical resources away from their underlying physical
resources in order to improve agility, flexibility, reduce costs
and thus enhance business value [7], is a critical component
to accomplish effective sharing of physical resources and
scalability. Existing works on virtual network management
mainly focus on VM migration [8], [5], [4]. Sapuntzakis et
al. show that efficient capsule (the state of running computer
across a network, including the state in its disks, memory,
CPU registers, and I/O devices) migration can improve user
mobility and system management [8]. Hansen et al. present
two prototypes that allow application and the underlying
operating system migration together [5]. Clark et al. in-
troduce live migration and achieve impressive performance
with minimal service downtime by carrying out the majority
of migration while keeping OSes running [4]. The results of
our experiments in this paper can help create more efficient
virtual machine networks, thus help improve migration and
adaptation capabilities.

Our results are important middleware level references for
cloud service providers to decide where and how to place
VMs, thus improving resources utilization. Much work has
been done on workload level to improve resource utilization.
Tirado et al. present a predictive data grouping scheme to
scale up and down servers dynamically, aiming to improve
resource utilization and implement load balance [9]. Their
forecasting model is based on access history. It works for a
mature portal web site, like the music portal LastFM men-
tioned in their paper. Wu et al propose resource allocation
algorithms for SaaS (Software as a Service) providers to help
them to minimize infrastructure cost and SLA (Service Level
Agreement) violations [12]. The main method is to decide
where and which type of VMs to be initiated. Marshall et.al.
propose “a cloud infrastructure that combines on-demand
allocation of resources with opportunistic provisioning of
cycles from idle cloud nodes to other processes by backfill

VMs”, targeting to improve the utilization of Infrastructure
Clouds [6].

VI. CONCLUSION AND FUTURE WORK

In this paper, we analyzed three different categories of
workloads on various virtual network configuration strate-
gies (i.e., number of VMs, number of vCPUs per VM, mem-
ory size of each VM). To prevent poor performance regions,
the total number of vCPUs has to be larger than the number
of processors (e.g., twice), and the total virtual memory
allocated to VMs has to be less than physical memory (e.g.,
half.) For tightly coupled CPU-intensive workloads, a key
virtualization parameter for performance is the number of
virtual machines: too many VMs will add significant inter-
VM communication overhead and will limit the amount of
virtual memory per VM; while too few VMs will require
larger virtual memory per VM to obtain reasonable perfor-
mance. Since the performance of a few large memory VM
instances is comparable to more smaller memory ones, the
decision of the best virtual network configuration lies on
VM instances pricing by public cloud providers. For external
network-intensive workloads, virtual machine granularity is
not critical for performance.

In reality, the scale of the workloads submitted to a cloud
computing environment is much larger than the benchmarks
in our experiments, the difference of performance, resource
consumption or cost on different virtual network configura-
tions is significant. Therefore, it is important to know the
impact of different virtual network configurations in a cloud
environment for service users, service providers and private
cloud owners. Service providers and private cloud owners
can build a middleware to implement autonomous refining
of virtual network configurations by monitoring the CPU
and memory utilization.

Based on further experimental results, virtualization in our
environment added 9.3% overhead in the loosely coupled
CPU-intensive application, and 12.8% in the tightly cou-
pled CPU-intensive application. Private cloud owners may
choose not to use the virtual environment because of the
overhead. However, considering the scalability benefits of
cloud computing, it is still worthy to have a grid-cloud
hybrid environment.

In next steps, we will design corresponding virtual
network configuration refining policies to implement au-
tonomous virtual network reconfiguration. Moreover, we
will expand our testbed infrastructure to a larger scale en-
vironment, which includes more data-intensive applications
and an interface to request VM instances from a public
cloud.

ACKNOWLEDGMENTS

We would like to thank Ping Wang and Wei Huang for
their previous work and thank Shigeru Imai for his helpful
comments. Funding for this research is provided in part by

NSF CAREER CNS Award No. 0448407 and NSF MRI No.
0420703.

REFERENCES

[1] G. Agha. Actors: a model of concurrent computation in
distributed systems. MIT Press, Cambridge, MA, USA, 1986.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia. A view of cloud computing. Commun. ACM,
53:50–58, April 2010.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia. Above the clouds: A berkeley view of cloud
computing. EECS Department, University of California,
Berkeley, Tech. Rep., UCB/EECS-2009-28, Feb 2009.

[4] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration of
virtual machines. In Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation
- Volume 2, NSDI’05, pages 273–286, Berkeley, CA, USA,
2005. USENIX Association.

[5] Hansen, J. Gorm, and E. Jul. Self-migration of operating
systems. In Proceedings of the 11th workshop on ACM
SIGOPS European workshop, EW 11, New York, NY, USA,
2004. ACM.

[6] P. Marshall, K. Keahey, and T. Freeman. Improving utilization
of infrastructure clouds. In CCGrid 2011, 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Com-
puting, Newport Beach, CA, USA, May 2011.

[7] B. Rimal, E. Choi, and I. Lumb. A taxonomy and survey of
cloud computing systems. In INC, IMS and IDC, 2009. NCM
’09. Fifth International Joint Conference on, pages 44 –51,
Aug. 2009.

[8] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S.
Lam, and M. Rosenblum. Optimizing the migration of virtual
computers. SIGOPS Oper. Syst. Rev., 36:377–390, December
2002.

[9] J. M. Tirado, D. Higuero, F. Isaila, and J. Carretero. Predictive
data grouping and placement for cloud-based elastic server in-
frastructures. In CCGrid 2011, 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, Newport
Beach, CA, USA, May 2011.

[10] C. Varela and G. Agha. Programming dynamically reconfig-
urable open systems with SALSA. SIGPLAN Not., 36:20–34,
December 2001.

[11] P. Wang, W. Huang, and C. A. Varela. Impact of virtual
machine granularity on cloud computing workloads perfor-
mance. In Workshop on Autonomic Computational Science
(ACS’2010), Brussels, Belgium, October 2010.

[12] L. Wu, S. K. Garg, and R. Buyya. SLA-based resource
allocation for software as a service provider (SaaS) in cloud
computing environments. In CCGrid 2011, 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Com-
puting, Newport Beach, CA, USA, May 2011.

