
A Non-Blocking Reference Listing Algorithm for

Mobile Active Object Garbage Collection

Wei-Jen Wang and Carlos A. Varela

Department of Computer Science, RPI

Automatic garbage collection (GC) gives abstraction to distributed application development, pro-
moting code quality and improving resource management. Unreachability of active objects or
actors from the root set is not a sufficient condition to collect actor garbage, making passive
object GC algorithms unsafe when directly used on actor systems. In practical actor languages,
all actors have references to the root set since they can interact with users, e.g., through standard
input or output streams. This feature makes every unblocked actor live, and thus we call it the
live unblocked actor principle. Following this idea, we introduce pseudo-roots: a dynamic set of
actors that can be viewed as the root set. Pseudo-roots use protected (undeletable) references
to ensure that no actors are erroneously collected even with messages in transit. The pseudo-

root approach simplifies distributed actor garbage collection by representing in-transit messages
in the actor reference graph even if both application and system messages are unordered (non-
FIFO) and communication is asynchronous. Our algorithm also supports systems not following
the live unblocked actor principle and therefore, is applicable to more traditional actor garbage
collection. We formalize the computing model of the pseudo-root approach and provide proofs of
correctness. Furthermore, we summarize empirical results on the performance and scalability of
distributed GC using a particle physics maximum likelihood evaluation fitter on a 72-processor
cluster environment.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Memory
management; D.4.2 [Operating Systems]: Storage Management—Garbage collection; D.4.7

[Operating Systems]: Organization and Design—Distributed systems

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Distributed garbage collection, Reference listing, Actors,
Active objects, Mobile objects

1. INTRODUCTION

Large applications running on the grid, or on the internet, require runtime recon-
figurability for better performance, e.g., relocating application sub-components to
improve locality without affecting the semantics of the distributed system. A run-
time reconfigurable distributed system can be easily defined by the actor model of
computation [Agha 1986; Hewitt, C. 1977]. The actor model provides a unit of
encapsulation for a thread of control along with internal state (see Figure 1). An
actor is either unblocked or blocked. It is unblocked if it is processing a message
or has messages in its message box, and it is blocked otherwise. Communication
between actors is purely asynchronous: non-blocking and non-First-In-First-Out
(non-FIFO). However, communication is guaranteed: all messages are eventually
and fairly delivered. In response to an incoming message, an actor can use its

Author’s address: W. Wang and C. Varela, Dept. of Computer Science, RPI, 110 8th street,
Troy, NY 12180.

RPI

2 · W. Wang and C. Varela

Internal variables

Message handlers

State

Message boxMessage

Thread of control

Int a, b;
.......

void m() {
 a=1; b=a+1;
}

(1)

Actor

(2)

(3)

Message

Internal variables

Message handlers

State

Message boxMessage

Thread of control

Int a, b;
.......

void m() {
 a=1; b=a+1;
}

(1)

Actor

(2)
(3)

Internal variables

Message handlers

State

Message boxMessage

Thread of control

Int a, b;
.......

void m() {
 a=1; b=a+1;
}

(1)

Actor

(2)
(3)

(4)

Node 2

Node 1

Fig. 1. An actor is a reactive entity which communicates with others by asynchronous non-FIFO
messages. In response to an incoming message, it can use its thread of control to 1) modify its
internal state, 2) send messages to other actors, 3) create actors, or 4) migrate to another host.

thread of control to modify its encapsulated internal state, send messages to other
actors, create actors, or migrate to another host.

Many programming languages have partial or total support for actor semantics,
such as SALSA [Varela and Agha 2001], ABCL [Yonezawa 1990], THAL [Kim 1997],
and Erlang [Armstrong et al. 1996]. Some libraries also support actor creation and
use in object-oriented programming languages, such as the Actor Foundry [Open
Systems Lab 1998] and ProActive [Baduel et al. 2006] for Java, Actalk [Briot 1989]
for Smalltalk, and mobile MPI processes [El Maghraoui et al. 2005] for C++. In
designing these languages or systems, memory reuse becomes an important issue
to support dynamic data structures — such as linked lists. Automatic garbage
collection is the key to enable memory reuse and to reduce programmers’ efforts on
their error-prone manual memory management.

The problem of distributed garbage collection (GC) is difficult because of: 1)
information distribution, 2) lack of a global clock, 3) concurrent activities, and
4) possible failures of the network or computing nodes. These factors complicate
detection of a consistent global state of a distributed system. Comparing to object-
oriented systems, a pure actor system demands automatic GC as well, even more,

RPI

A Non-Blocking Reference Listing Algorithm for Mobile Active Objects · 3

Blocked ActorRoot Actor Unblocked Actor Reference

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

1 2 3 4

5 6 7

Actor Reference Graph

Root Object Object Reference

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx1 2 3 4

5 6 7

Passive Object Reference Graph

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

8

9
xxxx
x
x
x
x
x
x
x
xxxx

8

9
xxxx
x
x
x
x
x
x
x
xxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

Live Actor
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

Live Object

Fig. 2. Actors 3, 4, and 8 are live because they can potentially send messages to the root. Objects
3, 4, and 8 are garbage because they are not reachable from the root.

because of its distributed, mobile, and resource-consuming nature. Actor GC is
traditionally considered as a harder problem than passive object GC because of
two additional difficulties to overcome:

(1) Simply following the references from the root set of actors does not work in the
actor GC model. Figure 2 explains an important difference between actor GC
and passive object GC: an actor’s internal thread or control may render it live
even if unreachable from the root set.

(2) Unordered asynchronous message delivery complicates actor GC. Most existing
algorithms cannot tolerate out-of-order messages.

Previous distributed GC algorithms (including actor GC algorithms) rely on
First-In-First-Out (FIFO) communication which simplifies detection of a consis-
tent global state. A distributed object GC algorithm either adopts: 1) a lightweight
reference counting/listing approach which cannot collect distributed mutually refer-
enced data structures (cycles), 2) a trace-based approach which requires a consistent
state of a distributed system, or 3) a hybrid approach [Abdullahi and Ringwood
1998].

Actor mobility is another new challenge to overcome. The concept of in-transit
actors complicates the design of actor communication — locality of actors can
change, which means even simulated FIFO communication with message redelivery
is impractical, or at least limits concurrency by unnecessarily waiting for message
redelivery. FIFO communication is an assumption of existing distributed GC al-
gorithms. For instance, distributed reference counting algorithms demand FIFO
communication to ensure that a reference-deletion system message does not pre-
cede any application messages.

In actor-oriented programming languages, an actor must be able to access re-
sources which are encapsulated in service actors. To access a resource, an actor
requires a reference to it. This implies that actors keep persistent references to
some special service actors — such as the file system service and the standard
output service. Furthermore, an actor can explicitly create references to public
services. For instance, an actor can dynamically convert a string into a reference to
communicate with a service actor, analogous to accessing a web service by a web
browser using a URL.

RPI

4 · W. Wang and C. Varela

This paper extends [Wang and Varela 2006a] by considering actor garbage col-
lection without assuming the live unblocked actor principle holds. Furthermore, we
provode a computing mode and its correctness proofs. The algorithm differs from
previous actor GC models by introducing: 1) asynchronous, unordered message de-
livery of both application messages and system messages, 2) resource access rights,
and 3) actor mobility.

Outline of This Paper

The remainder of the paper is organized as follows: In Section 2 we give the def-
inition of garbage actors. In Section 3 we describe the pseudo-root approach —
a reference listing algorithm for mobile actor garbage collection. In Section 4 we
present our implementation of the pseudo-root approach. In Section 5 we introduce
the formal computing model of the pseudo-root approach, along with its correct-
ness proofs. In Section 6 we show the experimental results. In Section 7 we discuss
related work. Section 8 contains concluding remarks and future work.

2. GARBAGE IN ACTOR SYSTEMS

The definition of actor garbage comes from the idea of whether an actor is doing
meaningful computation. Meaningful computation is defined as having the ability
to communicate with any of the root actors, that is, to access any resource or public
service. The widely used definition of live actors is described in [Kafura et al. 1990].
Conceptually, an actor is live if it is a root or it can either potentially: 1) receive
messages from the root actors or 2) send messages to the root actors. The set
of actor garbage is then defined as the complement of the set of live actors. To
formally describe our new actor GC model, we introduce the following definitions:

—Blocked actor: An actor is blocked if it has no pending messages in its message
box, nor any message being processed. Otherwise it is unblocked.

—Reference: A reference indicates an address of an actor. Actor ap can only send
messages to Actor aq if ap has a reference pointing to aq, denoted as apaq.

—Inverse reference: An inverse reference is a conceptual reference in the counter-
direction of an existing reference.

—Acquaintance: Let Actor ap have a reference pointing to Actor aq. aq is an
acquaintance of ap, and ap is an inverse acquaintance of aq.

—Root actor: An actor is a root actor if it encapsulates a resource, or if it is a
public service — such as I/O devices, web services, and databases.

The original definition of live actors is denotational because it uses the concept
of “potential” message delivery and reception. To make it more operational, we
assume instant message delivery and use the term “potentially live” [Dickman 1996]
to define live actors.

—Potentially live actors:

—Every unblocked actor and root actor is potentially live.
—Every acquaintance of a potentially live actor is potentially live.

—Live actors:

—A root actor is live.

RPI

A Non-Blocking Reference Listing Algorithm for Mobile Active Objects · 5

—Every acquaintance of a live actor is live.
—Every potentially live, inverse acquaintance of a live actor is live.

3. THE PSEUDO-ROOT APPROACH

Together with reference listing, the core concept of the pseudo-root approach is to
integrate message delivery and reference passing into the reference graph represen-
tation — sender pseudo-roots and protected references. It thus enables the use of
unordered, asynchronous, and non-instantaneous communication.

The pseudo-root approach was mainly devised for actor programming languages,
which abide by the live unblocked actor principle — a principle which says every
unblocked actor should be treated as a live actor. Nevertheless, the pseudo-root
approach can also be used for actor marking algorithms without the assumption of
the live unblocked actor principle.

The Live Unblocked Actor Principle

Without program analysis techniques, the ability of an actor to access resources
provided by an actor-oriented programming language implies explicit reference cre-
ation to access service actors. The ability to access local service actors (e.g. the
standard output) and explicit reference creation to public service actors make the
following statement true: “every actor has persistent references to root actors”.
This statement is important because it changes the meaning of actor GC, making
actor GC similar to passive object GC. It leads to the live unblocked actor prin-
ciple, which says every unblocked actor is live. The live unblocked actor principle
is easy to prove. Since each unblocked actor is: 1) an inverse acquaintance of the
root actors and 2) defined as potentially live, it is live according to the definition
of actor GC.

With the live unblocked actor principle, every unblocked actor can be viewed as
a root. Liveness of blocked actors depends on the transitive reachability from un-
blocked actors and root actors. Without considering in-transit messages, a blocked
actor, which is transitively reachable from an unblocked actor or a root actor, is
defined as potentially live. With persistent root references, such potentially live,
blocked actors are live because they are inverse acquaintances of some root actors.
This idea leads to the core concept of pseudo-root actor GC.

Pseudo-Root Actor Garbage Collection

It is impossible to ignore in-transit messages in a distributed system and correctly
perform actor garbage collection simply based on the actor reference graph. As a
consequence, we introduce the concept of sender pseudo-root actors and protected
references for actor garbage collection. Pseudo-root actor GC starts by identifying
some live (not necessarily root) or even garbage actors as pseudo-roots. There
are three kinds of pseudo-root actors: 1) root actors, 2) unblocked actors, and 3)
sender pseudo-root actors. The sender pseudo-root actor refers to an actor which
has sent a message and the message has not yet been received. The goal of sender
pseudo-roots is to prevent erroneous garbage collection of actors, either targets of
in-transit messages or whose references are part of in-transit messages. A sender
pseudo-root always contains at least one protected reference — a reference that
has been used to deliver messages which are currently in transit, or a reference to

RPI

6 · W. Wang and C. Varela

Case1

Blocked Actor Sender
Pseudo-Root

Message

ap

Case 2

In-transit
Reference

Protected
Reference

Stage 1 Stage 2 Stage 3 Stage 4

Blocked Actor Unblocked Actor Reference Deleted Reference Message

aq

ap

aq au

ap ap ap ap

aq aq aq aqau au au au

Fig. 3. The left side of the figure shows a possible race condition of mutation and message passing.
The right side of the figure illustrates both kinds of sender pseudo-root actors.

represent an actor referenced by an in-transit message — which we call an in-transit
reference. A protected reference cannot be deleted until the message sender knows
the in-transit messages have been received correctly.

Asynchronous communication introduces the following problem (see the left side
of Figure 3): application messages from Actor ap to Actor aq can be in transit,
but the reference held by Actor ap can be removed. Stage 3 shows that Actor aq

and au are likely to be erroneously reclaimed, while Stage 4 shows that all of the
actors are possibly erroneously reclaimed. Our solution is to temporarily keep the
reference to Actor aq undeleted and identify Actor ap as live (Case 1 of the right
side of Figure 3). This approach guarantees liveness of Actor aq by tracing from
Actor ap. Actor ap is named the sender pseudo-root because it has an in-transit
message to Actor aq and it is not a real root. Furthermore, it can be garbage but
cannot be collected. The reference from ap to aq is protected and ap is considered
live until ap knows that the in-transit message is delivered.

To prevent erroneous GC, actors pointed by in-transit references must uncondi-
tionally remain live until the receiver receives the message. A similar solution can
be re-used to guarantee the liveness of the referenced actor: the sender becomes a
sender pseudo-root and keeps the reference to the referenced actor undeleted (Case
2).

Using pseudo-roots, the persistent references to roots can be ignored. Figure
4 illustrates an example of the mapping of pseudo-root actor GC. We can now
safely ignore: 1) dynamic creation of references to public services and 2) persistent
references to local services.

Imprecise Inverse Reference Listing

In a distributed environment, an inter-node referenced actor must be considered
live from the perspective of local GC because it can possibly receive a message
from a remote actor. To know whether an actor is inter-node referenced, each actor
should maintain inverse references to indicate if it is inter-node referenced. This
approach is usually called reference listing. Maintaining precise inverse references
in an asynchronous way is performance-expensive. Fortunately, imprecise inverse
references are acceptable if all inter-node referenced actors can be identified as
live — an inter-node referenced actor can be a new kind of pseudo-root actor (the

RPI

A Non-Blocking Reference Listing Algorithm for Mobile Active Objects · 7

Blocked ActorRoot Actor Unblocked Actor Reference

a0

Root Actors Root Actors

Persistent Reference Deleted Reference Message

Blocked ActorPseudo-Root Reference

An Example of the Real World The Corresponding Pseudo-Root Actor Reference Graph

a1

a2

a3

a4

a5

a6

a7

a8

a9

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

Fig. 4. An example of pseudo-root actor garbage collection which maps the real state of the given
system to a pseudo-root actor reference graph.

global pseudo-root), or transitively reachable from some local pseudo-root actors to
guarantee their liveness.

Actor Garbage Collection without the Live Unblocked Actor Principle

Without the live unblocked actor principle, the pseudo-root approach still supports
actor garbage collection in a distributed environment by changing two definitions
as follows:

—Sender pseudo-roots should be considered as unblocked actors.

—Global pseudo-roots should be considered as roots, and thus we call them global
roots. There are two kinds of global roots. The first kind of global root ac-
tor, namely the unblocked-reachable global root, is transitively reachable from an
unblocked actor and has a reference pointing to a remote (or migrating) actor.
It must be considered live because it can possibly send a message to a remote
root actor. The second type of actor, the remotely referenced global root, has an
inverse reference pointing to a remote actor. The pseudo-root approach cannot
directly identify the unblocked-reachable global roots, which must be handled by
an actor marking algorithm.

The pseudo-root approach in actor garbage collection also guarantees that if
an actor is remotely referenced, it either has an inverse reference to figure out it is
remotely referenced (the remotely referenced global root), or it is reachable from an
unblocked actor and the unblocked actor can reach an unblocked-reachable global
root. Once an actor marking algorithm follows the new definitions to identify live
actors, all local garbage can be reclaimed, including the actors which are potentially
live and yet garbage.

4. IMPLEMENTATION OF THE PSEUDO-ROOT APPROACH

To implement the pseudo-root approach, we propose the actor garbage detection
protocol. The actor garbage detection protocol, implemented as part of the SALSA
programming language [Varela and Agha 2001; Worldwide Computing Laboratory

RPI

8 · W. Wang and C. Varela

a b

deletion
OnReferenceDelete

Remove
Inverse
Reference

sender receiver

MOnSend
OnReceiveack

ACK

sender receiver

M(&c)OnSend OnReceive

ack

ACK
ACK

c

OnReceive

ack
ack

ACK

migrator remoteSystem

immigrantOnMigrate OnReceive

localSystem

Redeliver
Temporarily
Stored
Messages

requestRedeliver

resendingMessages
Receive

Messages

The Asynchronous ACK Protocol The Reference Passing Protocol

The Actor Migration Protocol The Reference Deletion Protocol

invRefRegistration

Fig. 5. The actor garbage detection sub-protocols.

2007], consists of four sub-protocols — the asynchronous ACK protocol, the refer-
ence passing protocol, the migration protocol, and the reference deletion protocol.
Messages are divided into two categories — the application messages which require
asynchronous acknowledgements, and the system messages that not always require
an acknowledgement.

The Asynchronous ACK Protocol

The asynchronous ACK protocol is designed to help identifying sender pseudo-
roots. Each reference maintains a counter, the expected acknowledgement count. A
reference can be deleted only if its expected acknowledgement count is zero. An ac-
tor is a sender pseudo-root if the total expected acknowledgements of its references
is greater than zero. The protocol is shown in the left upper part of Figure 5, in
which actor sender sends a message to actor receiver. The event handler OnSend
is triggered when an application message is sent; the event handler OnReceive is
invoked when a message is received. If a message to receive requires an acknowl-
edgement, the event handler OnReceive will generate an acknowledgement to the
message sender. The asynchronous message handler ACK is concurrently executed
by an actor to decrease the expected acknowledgement count of the reference to
actor receiver held by actor sender. With the asynchronous ACK protocol, the
garbage collector can identify sender pseudo-roots and protected references from
the perspective of implementation:

—A protected reference is one whose expected acknowledgement count is greater
than zero. A protected reference cannot be deleted.

—A sender pseudo-root is one which has at least one protected reference.

RPI

A Non-Blocking Reference Listing Algorithm for Mobile Active Objects · 9

The Reference Passing Protocol

The reference passing protocol specifies how to build inverse references in an asyn-
chronous manner. A typical scenario of reference passing is to send a message M con-
taining a reference to c, from sender to receiver. Reference sender receiver and
Reference sender c are protected at the beginning by increasing their expected ac-
knowledgement counts. Then sender sends the application message M to receiver.
Right after receiver has received the message, it generates a special system mes-
sage invRefRegistration to c to register the corresponding inverse reference of
Reference receiver c in c. Requiring invRefRegistration to be acknowledged is
to ensure that reference deletion of reference (receiver,c) always happens after c
has built the corresponding inverse reference. Two special acknowledgements from
c to sender, which can be combined into one, are then sent to decrease the counts
of the protected references sender c and sender receiver. The protocol is shown in
the right upper side of Figure 5.

The Migration Protocol

Implementation of the migration protocol requires assistance from two special ac-
tors, remoteSystem at a remote computing node, and localSystem at the local
computing node. An actor migrates by encoding itself into a message, and then de-
livers the message to remoteSystem. During this period, messages to the migrating
actor are stored at localSystem. After migration, localSystem delivers the tem-
porarily stored messages to the migrated actor asynchronously. Every migrating
actor becomes a pseudo-root by increasing the expected acknowledgement count
of its self reference. The migrating actor decreases the expected acknowledgement
count of its self reference when it receives the temporarily stored messages. The
protocol can be simply viewed as that the migrating actor sends a message to it-
self, and it will receive the message until it has finished migration. The protocol is
shown in the left lower side of Figure 5.

The Reference Deletion Protocol

A reference can be deleted if it is not protected — its expected acknowledgement
count must be zero. The deletion automatically creates a system message to the
acquaintance of the actor deleting the reference to remove the inverse reference held
by the acquaintance. The protocol is shown in the right lower side of Figure 5.

5. COMPUTING MODEL AND THE PSEUDO-ROOT APPROACH PROPERTIES

In this section, we define the model of the pseudo-root approach, and then prove
the safety and liveness properties of the pseudo-root approach.

5.1 Computing Model

To implement the concept of protected references, we introduce the data structure
of actor references, which consists of three elements — the source and target ad-
dresses to describe which actor holds a reference to another actor, a counter to track
the expected incoming acknowledgements, and a boolean variable to indicate if a
reference has been deleted at the application level. Then we define a set of messages
along with their explanations. These notations help define the actor system with

RPI

10 · W. Wang and C. Varela

the pseudo-root approach, which is an abstract machine with a given initial state,
identified by a set of actor names, a map from actor references to their meta-data,
a set of inverse references, and a set of in-transit messages.

Definition 5.1. The meta-data map of actor references.
A meta-data map (function) of actor references is described as

R ≡ {a0a1 7→ 〈n0, d0〉, a2a3 7→ 〈n1, d1〉, ...}.

Its domain, dom(R) = {a0a1, a2a3, ...}, is a set of actor references while its range,
{〈n, d〉 | n ∈ N ∧ d ∈ {true, false}}, is the meta-data of the actor reference, where

—n is an integer to keep track of expected incoming acknowledgements, and

—d ∈ {true, false}, where false denots a normal reference, and true denotes a
deleted reference at the application level.

Definition 5.2. The extended meta-data map of actor references.
For a given meta-data map of references R, R′ = R[aiaj 7→ 〈n, d〉] is defined as the
extended amp, such that R′(aiaj) = 〈n, d〉 and R′(x) = R(x) for x 6= aiaj.

Definition 5.3. Message
Let x be a unique id. A message
msg ≡ mx〈ai, aj〉 (Regular message from ai to aj.)

| mackx〈ai, aj〉 (Acknowledgement for aiaj.)
| mrx〈ah, ai, aj〉 (Reference passing, from ah to ai with

a reference to aj.)
| mirx〈ah, ai, aj〉 (Inverse reference registration, initialized

by ah to register aiaj.)
| mdx〈ai, aj〉 (Deletion message of the inverse reference

of aiaj.)
| mmx〈ai〉 (Migration of ai.)

Definition 5.4. Actor system configuration
An actor system configuration

S ≡ 〈A,R, IR,M〉,

is a 4-tuple where

—A is the set of actor names, {a0, a1, ...}.

—R is the map from actor references to their meta-data.

—IR is the set of inverse references, {a0a1, a2a3, ...}.

—M is the set of messages, {msg0,msg1, ...}.

The initial state of S is defined as

〈{ainit}, [ainitainit 7→ 〈0, false〉], {ainitainit}, ∅〉.

A state of the actor system can evolve to another state according to a set of
rules, usually called a labeled transition system (LTS). Following the actor model,
the transition rules of the proposed abstract machine can be classfied into two cat-
egories. The first type consists of the spontaneous transitions by unblocked actors,
including actor creation, reference passing, actor-exit (to migrate out), reference

RPI

A Non-Blocking Reference Listing Algorithm for Mobile Active Objects · 11

deletion (application or GC level), and message sending. The other type of transi-
tions, the message-driven transitions, is the consequent transition triggered by the
spontaneous transition, including actor-enter (to migrate into), reference reception,
inverse reference registration, acknowledgement, and inverse reference deletion. We
define two different reference deletion transition rules because of protected refer-
ences — a deleted protected reference must remain visible to garbage collectors
but invisible to applications — The application-level reference deletion transition
makes the reference invisible to the application, while the GC-level reference dele-
tion transition deletes the reference physically and will trigger the deletion of the
corresponding inverse reference. The label of a transition rule follows the format,
op(p1, p2, ...), where op is the name of the transition rule and p1, p2, ... are parame-
ters. The transition rules are shown as follows:

Definition 5.5. Transitive relationship on actor system configurations.
The transition notation, →, is defined as follows:

—Spontaneous transitions:

—AC(ai, aj): Actor creation of aj by ai.

〈A,R, IR,M〉
AC(ai,aj)
−−−−−−→

〈A ∪ {aj}, R[aiaj 7→ 〈0, false〉, ajaj 7→ 〈0, false〉], IR ∪ {aiaj , ajaj},M〉,
where aj is fresh ∧ ai ∈ A.

—RC1(ah, ai, aj): Reference passing from ah to ai with a reference to aj .

〈A,R[ahai 7→ 〈n0, false〉, ahaj 7→ 〈n1, false〉], IR,M〉
RC1(ah,ai,aj)
−−−−−−−−−→

〈A,R[ahai 7→ 〈n0 + 1, false〉, ahaj 7→ 〈n1 + 1, false〉], IR,M ∪
{mrx〈ah, ai, aj〉}〉,
where x is fresh ∧ {ah, ai, aj} ⊆ A.

—MM1(ai): Actor-exit of ai.

〈A,R[aiai 7→ 〈n, false〉], IR,M〉
MM1(ai)
−−−−−−→

〈A− {ai}, R[aiai 7→ 〈n+ 1, false〉], IR,M ∪ {mmx1〈ai〉,mackx2〈ai, ai〉}〉,
where x1 and x2 are fresh ∧ ai ∈ A.

—MS1(ai, aj): Message sending from ai to aj .

〈A,R[aiaj 7→ 〈n, false〉], IR,M〉
MS1(ai,aj)
−−−−−−−→

〈A,R[aiaj 7→ 〈n+ 1, false〉], IR,M ∪ {mx〈ai, aj〉}〉,
where x is fresh ∧ {ai, aj} ⊆ A .

—RDA(ai, aj): Application-level reference deletion of aj at ai.

〈A,R[aiaj 7→ 〈n, false〉], IR,M〉
RDA(ai,aj)
−−−−−−−−→

〈A,R[aiaj 7→ 〈n, true〉], IR,M〉,
where {ai, aj} ⊆ A ∧ ai 6= aj.

1

—RD1(ai, aj): GC-level reference deletion of aj at ai.

〈A,R[aiaj 7→ 〈0, true〉], IR,M〉
RD1(ai,aj)
−−−−−−−→

1We assume an actor always keeps a reference to itself and thus self-reference deletion is impossible.

RPI

12 · W. Wang and C. Varela

〈A,R, IR,M ∪ {mdx〈ai, aj〉}〉,
where x is fresh ∧ {ai, aj} ⊆ A . 2

—Message-driven transitions:

—RC2(ah, ai, aj): Reference reception of aj by ai, initialized by ah.

〈A,R, IR,M ∪ {mrx〈ah, ai, aj〉}〉
RC2(ah,ai,aj)
−−−−−−−−−→

〈A,R[aiaj 7→ 〈1, false〉], IR,M ∪ {mirx1〈ah, ai, aj〉}〉,
where aiaj and x1 are fresh ∧ {ah, ai, aj} ⊆ A.

—RC3(ah, ai, aj): Inverse reference registration at aj from ai, initialized by ah.

〈A,R, IR,M ∪ {mirx〈ah, ai, aj〉}〉
RC3(ah,ai,aj)
−−−−−−−−−→

〈A,R, IR ∪ {aiaj},M ∪ {mackx1〈ai, aj〉,mackx2〈ah, ai〉,mackx3〈ah, aj〉}〉,
where x1, x2, and x3 are fresh ∧ {ah, ai, aj} ⊆ A.

—MM2(ai): Actor-enter of ai.

〈A,R, IR,M ∪ {mmx1〈ai〉}〉
MM2(ai)
−−−−−−→

〈A ∪ {ai}, R, IR,M〉.
—MS2(ai, aj): Message reception of aj from ai.

〈A,R, IR,M ∪ {mx〈ai, aj〉}〉
MS2(ai,aj)
−−−−−−−→

〈A,R, IR,M ∪ {mackx1〈ai, aj〉}〉,
where x1 is fresh ∧ {ai, aj} ⊆ A.

—RD2(ai, aj): Inverse reference deletion of aiaj .

〈A,R, IR ∪ {aiaj},M ∪ {mdx〈ai, aj〉}〉
RD2(ai,aj)
−−−−−−−→

〈A,R, IR,M〉,
where {ai, aj} ⊆ A.

—ACK(ai, aj): Decreasing expected acknowledgements for aiaj .

〈A,R[aiaj 7→ 〈n, d〉], IR,M ∪ {mackx〈ai, aj〉}〉
ACK(ai,aj)
−−−−−−−−→

〈A,R[aiaj 7→ 〈n− 1, d〉], IR,M〉,
where d ∈ {true, false} ∧ {ai, aj} ⊆ A.

The pseudo-root actors play important roles in the pseudo-root approach since
they are the starting point to identify live actors. Unblocked actors and root actors
can be identified easily by garbage collectors, while the sender pseudo-root actors
and the global pseudo-root actors are implementation dependent. As a consequence,
definitions for the sender pseudo-root actors and the global pseudo-root actors are
mandatory. We first define sender pseudo-roots, and we defer the definition of
global pseudo-root actors (Definition 5.17) until we define the partial view of an
actor system (Definition 5.16).

Definition 5.6. Sender pseudo-root actors.
An actor, ap, is a sender pseudo-root actor in an actor system 〈A,R, IR,M〉 if and
only if

∃aq ∈ A : (R(apaq) = 〈n, d〉 ∧ n > 0).

2GC-level reference deletion only happens when the reference to delete is removed by the appli-
cation and no longer protected.

RPI

A Non-Blocking Reference Listing Algorithm for Mobile Active Objects · 13

5.2 The Pseudo-Root Approach Properties

The discrete timeline of an actor system can be identified by the order of executed
transitions (events) because only transitions can change the state of the actor sys-
tem. The timeline helps chronological reasoning about an actor system. It is defined
by a set of ordered time points:

Definition 5.7. Timeline of an actor system.
A timeline of a given actor system consists of time points, where a time point, t, of
the timeline of the given actor system S, is the time period from the time that the
tth transition occurs and right before the (t+ 1)th transition happens. The original
point of the timeline is 0, representing the time period when the initial state S0

exists.

The computing model of the pseudo-root approach maintains paired references
in most cases, which means an actor reference usually has a corresponding in-
verse reference. Under some circumstances, some references exist without their
corresponding inverse references or some inverse references exist without their cor-
responding actor references. However, the pseudo-root approach guarantees the
following property all the time as an invariant — if an actor aq is pointed by an
unpaired actor reference, then there exists a sender pseudo-root actor ap which has
a paired reference pointing to aq. To formally describe the property, we introduce
the following definitions:

Definition 5.8. Paired references, unpaired references, and unpaired inverse
references of an actor.
Let S = 〈A,R, IR,M〉 be the state of the actor system at time point t. Let aq ∈ A.

—Paired references to aq at time t:
PRS(S, aq) ≡ {apaq | apaq ∈ dom(R) ∧ apaq ∈ IR}.

—Unpaired references to aq at time t:
URS(S, aq) ≡ {apaq | apaq ∈ dom(R) ∧ apaq /∈ IR}.

—Unpaired inverse references from aq at time t:
UIRS(S, aq) ≡ {apaq | apaq /∈ dom(R) ∧ apaq ∈ IR}.

Definition 5.9. Inverse reference registration messages and inverse reference
deletion messages of an actor.
Let S = 〈A,R, IR,M〉 be the state of the actor system at time point t. Let aq ∈ A.

—Inverse reference registration messages for aq at time t:
MIRS(S, aq) ≡ {mirx〈ap1, ap2, aq〉 | mirx〈ap1, ap2, aq〉 ∈M}.

—Inverse reference deletion messages for aq at time t:
MDS(S, aq) ≡ {mdx〈ap, aq〉 | mdx〈ap, aq〉 ∈M}.

There are some invariants of the pseudo-root approach which can be used for
theorem proofs. Lemma 5.10 says that the total number of unpaired inverse refer-
ences from aq at S is always equal to the total number of inverse reference deletion
messages for aq at S (i.e., |UIRS(S, aq)| = |MDS(S, aq)|), which will be used in
the liveness property proof.

Lemma 5.10. Let S = 〈A,R, IR,M〉 be an actor system configuration and aq ∈
A. In the actor system, the following equation is true:

RPI

14 · W. Wang and C. Varela

|UIRS(S, aq)| = |MDS(S, aq)|.

Proof. The only two transitions that can affect |UIRS(S, aq)| or |MDS(S, aq)|
are RD1 and RD2. RD1 increments |UIRS(S, aq)| and |MDS(S, aq)| by one and
RD2 decrements |UIRS(S, aq)| and |MDS(S, aq)| by one. Thus they don’t affect
the equation. Because the initial state of the actor system follows the equation
and no transition can change the equation, |UIRS(S, aq)| = |MDS(S, aq)| must be
true.

Lemma 5.11 says that the expected acknowledgement count of an actor reference
can never be decremented to a negative number. In fact, it is equal to the size of a
set of messages. The equation can be used to prove Lemma 5.12, which says that
a reference must exist if some messages exist.

Lemma 5.11. The expected acknowledgement count equation.
Let the configuration of the actor system be S = 〈A,R, IR,M〉. Let R(aiaj) =
〈n, d〉. Then
n = |{mrx〈ai, am, aj〉 | mrx〈ai, am, aj〉 ∈M}| +

|{mrx〈ai, aj , am〉 | mrx〈ai, aj , am〉 ∈M}| +
|{mirx〈ai, am, aj〉 | mirx〈ai, am, aj〉 ∈M}| +
|{mirx〈ai, aj , am〉 | mirx〈ai, aj , am〉 ∈M}| +
|{mirx〈am, ai, aj〉 | mirx〈am, ai, aj〉 ∈M}| +
|{mx〈ai, aj〉 | mx〈ai, aj〉 ∈M}| +
|{mackx〈ai, aj〉 | mackx〈ai, aj〉 ∈M}|

Proof. The proof can be achieved by examining the transitions and the initial
state. The initial state 〈{ainit}, [ainitainit 7→ 〈0, false〉], {ainitainit}, ∅〉 confirms
the lemma. Now, consider the transitions:

—Transition AC(ai, aj) creates a reference with n = 0 and makes the right side of
the equation zero.

—Transitions RC1(ai, am, aj), RC1(ai, aj , am), MM1(ai) where i = j,
MS1(ai, aj), and RC2(am, ai, aj) increase both sides of the equation by one.

—Transitions RC2(ai, aj , am), RC2(ai, am, aj), RC3(ai, aj , am), RC3(ai, am, aj),
RC3(am, ai, aj), and MS2(ai, aj) convert a message to another message de-
scribed in the right side of the equation, which does not change the equation.

—Transition ACK(ai, aj) decreases both sides of the equation by one.

—Other transitions have no effect on the equation.

Lemma 5.12 says that if there exists mrx〈ai, am, aj〉, mrx〈ai, aj , am〉 (an
in-transit message containing a reference), mirx〈ai, am, aj〉, mirx〈ai, aj , am〉,
mirx〈am, ai, aj〉 (an in-transit inverse reference registration message), mx〈ai, aj〉
(an in-transit regular message), or mackx〈ai, aj〉 (an in-transit acknowledgement),
then there exist a protected reference aiaj and a pseudo-root ai.

Lemma 5.12. Existence of actor reference.
Let the configuration of the actor system be S = 〈A,R, IR,M〉. Let the expected
acknowledgement counter equation be:

RPI

A Non-Blocking Reference Listing Algorithm for Mobile Active Objects · 15

Actor Sender
Pseudo-Root

Inverse
Reference

Reference Protected
Reference

a0

...
am-1

a1

apaq

mir
Message

Fig. 6. Lemma 5.13: safe imprecise inverse references.

n = |{mrx〈ai, am, aj〉 | mrx〈ai, am, aj〉 ∈M}| +
|{mrx〈ai, aj , am〉 | mrx〈ai, aj , am〉 ∈M}| +
|{mirx〈ai, am, aj〉 | mirx〈ai, am, aj〉 ∈M}| +
|{mirx〈ai, aj , am〉 | mirx〈ai, aj , am〉 ∈M}| +
|{mirx〈am, ai, aj〉 | mirx〈am, ai, aj〉 ∈M}| +
|{mx〈ai, aj〉 | mx〈ai, aj〉 ∈M}| +
|{mackx〈ai, aj〉 | mackx〈ai, aj〉 ∈M}|

Then the following statement is true:

n > 0 =⇒ R(aiaj) = 〈n, d〉.

Proof. The lemma can be proven by contradiction. Let the current time of the
system be te. Let aiaj /∈ dom(R) at time te. Since n > 0 at te, ∃ts : aiaj ∈ dom(R)
at time ts and aiaj /∈ dom(R) at time ts+1, such that ts < te and ts is the closest
point to te (no re-creation allowed). Since the reference has been deleted and
never re-created during ts to te, n = 0 at ts and ts+1, implying no message of
the right side of the equation is in transit. Consequently, n = 0 at te which
contradicts the assumption. Therefore, aiaj ∈ dom(R) at time te. By Lemma 5.11,
R(aiaj) = 〈n, d〉 for some d and proves the lemma.

From the perspective of the safety property of a reference listing algorithm, a
referenced actor, namely aq, must have at least one inverse reference to figure out
it is referenced. The pseudo-root approach guarantees Lemma 5.13, which is used
to prove the safety property (Theorem 5.14). Then we will use Lemma 5.10 to
prove the liveness property (Theorem 5.15). Figure 6 illustrates Lemma 5.13.

Lemma 5.13. Safe imprecise inverse references.
Let S = 〈A,R, IR,M〉 be an actor system configuration and {ap, aq} ⊆ A. The
following statement is true at any time:

apaq ∈ URS(S, aq) =⇒
∃a0, a1, ..., am : a0aq ∈ PRS(S, aq) ∧

(R(a0aq) = 〈n0, d〉 ∧ n0 > 0) ∧
(mirxi〈ai, ai+1, aq〉 ∈M where i = 0 to m− 1 and am = ap).

Proof. To prove the lemma by induction, we need to build a partial order of
reference creation. The first references to Actor aq are either created by the actor

RPI

16 · W. Wang and C. Varela

creation transition or at the initial state of the actor system because Actor aq

is the initial actor. With the existence of the first references to aq, they can be
duplicated by the reference passing transition RC1. Then the nth RC2 transition
of aq, RC2(aw1, aw2, aq), creates the nth reference to aq, where {aw1, aw2} ⊆ A.

Basis: Prove the lemma for n = 1 (the first references).
First, the initial configuration of an actor system does not have any unpaired ref-
erences. Second, the actor creation transition does not create unpaired references.
Therefore, the basis is true.

Induction step: Assume ∃k : ∀n ≤ k the lemma is true. Now, consider a (k+1)th

reference in any actor system.
Let RC1(au, ap, aq) be the transition to initialize reference creation of apaq,
and RC2(au, ap, aq) be the transition to create apaq. That is, ∃Ss, S1, S2, S3 :

Ss

RC1(au,ap,aq)
−−−−−−−−−→ S1 →∗ S2

RC2(au,ap,aq)
−−−−−−−−−→ S3 →∗ S. Let the corresponding time of

Ss, S1, S2, S3, and S be ts, t1, t2, t3, and t. Now, consider auaq at ts, a reference
whose order is less than k + 1. There are two possible cases:

—auaq ∈ PRS(Ss, aq) at ts: Message mrx1〈au, ap, aq〉 created by Transition
RC1(au, ap, aq) will not be consumed until the system transits to S3. Let
R(auaq) = 〈nu,q, d〉. According to Lemma 5.11, nu,q ≥ 0 between ts and t2,

which also means RD1(au, aq) cannot happen. S2
RC2(au,ap,aq)
−−−−−−−−−→ S3 makes Mes-

sage mrx1〈au, ap, aq〉 to be consumed and then Message mirx2〈au, ap, aq〉 to be
produced, which means nu,q ≥ 1 at t3. We know apaq ∈ URS(S, aq) at t,
which means mirx2〈au, ap, aq〉 is still at t, implying nu,q ≥ 1 by Lemma 5.11.
Therefore, the following property is guaranteed at t: auaq ∈ PRS(S, aq) ∧
(R(auaq) = 〈nu,q, d〉 ∧ nu,q > 0) ∧ (mirx2〈au, ap, aq〉) ∈M .

—auaq ∈ URS(Ss, aq) at ts: There are two sub-cases:
Sub-Case 1: Assume (mirx〈au, ap, aq〉) is not consumed before t, and let
R(auaq) = 〈nu,q, d〉. According to Lemma 5.12, nu,q > 0, and thus auaq is
at t. According to the induction assumption, ∃a0, a1, ..., am : a0aq ∈ PRS(S, aq)
∧ (R(a0aq) = 〈n0, d〉 ∧ n0 > 0) ∧ (mirxi〈ai, ai+1, aq〉 ∈M where i = 0 to m− 1
and am = au). We know apaq ∈ URS(S, aq) at t, which means mirx2〈au, ap, aq〉
is at t and proves this sub-case.
Sub-Case 2: Assume (mirx〈au, ap, aq〉) has been consumed between t3 and t,
which means ∀Sx : auaq ∈ PRS(Sx, aq) where Sx is an actor system configu-
ration existing on a time point from t3 to t. Let R(auaq) = 〈nu,q, d〉. Since
apaq ∈ URS(S, aq) is at t, mirx2〈au, ap, aq〉 is at t. By Lemma 5.11, nu,q > 0.
By Lemma 5.12, R(auaq) = 〈nu,q, d〉. Therefore, the following property is true at
t: auaq ∈ PRS(S, aq) ∧ (R(auaq) = 〈nu,q, d〉∧nu,q > 0) ∧mirx2〈au, ap, aq〉 ∈M .

To conclude, the lemma is true by induction.

Theorem 5.14. Safety property.
Let S = 〈A,R, IR,M〉 be an actor system configuration and {ap, aq} ⊆ A. Let the
current time be t. The following statement is always true:

apaq ∈ dom(R) =⇒ ∃au : auaq ∈ IR

RPI

A Non-Blocking Reference Listing Algorithm for Mobile Active Objects · 17

Proof. If apaq ∈ URS(S, aq) at t is true, ∃a0 : a0aq ∈ PRS(S, aq) is also true
by Lemma 5.13, implying a0aq ∈ IR. Otherwise, apaq ∈ PRS(S, aq) at t must be
true, implying apaq ∈ IR is true. Both cases confirm the theorem.

Theorem 5.15. Liveness property.
Let S = 〈A,R, IR,M〉 be an actor system configuration. Let aq ∈ A such that aq

is not a pseudo-root actor at current time point t. The following statement is true
at any time:

∄ap : R(apaq) = 〈np, dp〉 at S =⇒ ∃Sfuture : S →∗ Sfuture ∧
(|UIRS(Sfuture, aq)| = 0 at Sfuture).

Proof. Let S →∗ Sfuture where the time point of Sfuture is tfuture. Since aq

is not a pseudo-root actor, it cannot execute any spontaneous transition. Thus
∄ap : apaq ∈ dom(R) is always true for any state after S. By Lemma 5.10,
|UIRS(S, aq)| = |MDS(S, aq)| at t. Thus there exist |UIRS(S, aq)| inverse ref-
erence deletion messages of aq, which will trigger |UIRS(S, aq)| inverse reference
deletion transitions of aq. With the fairness assumption of the actor model of com-
putation, all those inverse reference deletion transitions will eventually occur at a
future state Sfuture, making |UIRS(Sfuture, aq)| = 0.

5.3 The Pseudo-Root Approach Properties in a Distributed Environment

The pseudo-root approach can be used to support local marking in a distributed
environment, that is, performing actor marking in a partial view of an actor system
to identify all local garbage. With the concept of the partial view, we can define the
global pseudo-root actors which are treated as roots. The pseudo-root approach
guarantees one-step back-tracing safety (Theorem 5.18). It says that if an actor in
a partial view is referenced by another actor outside the partial view, the actor is
either a global pseudo-root actor or is directly reachable from a sender pseudo-root
actor in the partial view (see Figure 7).

Definition 5.16. Partial view of an actor system.
Let S = 〈A,R, IR,M〉, and V = 〈A′, R′, IR′〉. V is a partial view of S if and only
if

. A′ ⊆ A ∧

. (∀ap : (ap ∈ A ∧ apaq ∈ dom(R)) =⇒ apaq ∈ dom(R′)) ∧

. (∀aq : aq ∈ A ∧ apaq ∈ IR =⇒ apaq ∈ IR′).

Definition 5.17. Global pseudo-root actor.
Let V be a partial view of S, where V = 〈A′, R′, IR′〉. Actor aq is a global pseudo-
root actor of V if and only if

∃ap : ap /∈ A′ ∧ aq ∈ A′ ∧ apaq ∈ IR′.

Theorem 5.18. One-step back-tracing safety.
Let V be a partial view of S, where V = 〈A′, R′, IR′〉 and S = 〈A,R, IR,M〉.

∃ap, aq : ap /∈ A′ ∧ aq ∈ A′ ∧R(apaq) = 〈n, d〉 =⇒
∃aw : (awaq ∈ IR′ ∧ aw /∈ A′) ∨ (R′(awaq) = 〈n′, d′〉 ∧ n′ > 0 ∧ aw ∈ A′).

RPI

18 · W. Wang and C. Varela

Actor Inverse
Reference

Reference

ap

aq

aw

V

Pseudo-
Root

ap

aq aw

V
Case 1 Case 2

Fig. 7. Theorem 5.18: one-step back-tracing safety.

Proof. Let the current time be t. Now, consider the following two cases:

—Case 1: Let apaq ∈ PRS(S, aq) at t, which means (apaq ∈ IR). aq ∈ A′ implies
(apaq ∈ IR′).

—Case 2: Let apaq ∈ URS(S, aq) at t. By Lemma 5.13, ∃a0 : a0aq ∈ PRS(S, aq)
∧ (∃n0 : R(a0aq) = 〈n0, d〉∧n0 > 0). Now consider two sub-cases. First, a0 ∈ A′

implies (R′(a0aq) = 〈n0, d〉 ∧ n0 > 0). Second, a0 /∈ A′ implies a0aq ∈ IR′.

Therefore, the theorem is true.

5.4 Actor Garbage Collection without the Live Unblocked Actor Principle

The live unblocked actor principle is not always true in actor systems. The pseudo-
root approach also supports actor marking algorithms in this context. In a local
host, we re-define sender pseudo-root actors as unblocked actors. Global pseudo-
root actors are re-defined as global roots, consisting of the remotely referenced
global roots and the unblocked-reachable global roots. Remotely referenced global
roots are defined in Definition 5.17. Theorem 5.19 is the safety property of local
actor marking. It says that if an actor is remotely referenced, it either has an
inverse reference to figure out it is remotely referenced (the remotely referenced
global root), or it is reachable from an unblocked actor and the unblocked actor
can reach an unblocked-reachable global root (see Figure 8).

Theorem 5.19. One-step back-tracing and forward validating safety.
Let V be a partial view of S, where V = 〈A′, R′, IR′〉 and S = 〈A,R, IR,M〉.

∃ap, aq : ap /∈ A′ ∧ aq ∈ A′ ∧R(apaq) = 〈n, d〉 =⇒
∃a0 : (a0aq ∈ IR′ ∧ a0 /∈ A′) ∨

(∃a1, a2, ..., au : R′(a0aq) = 〈n0, d0〉 ∧ n0 > 0 ∧ a0 ∈ A′

∧ R′(aiai+1) = 〈ni, di〉 ∧ au /∈ A′ where i = 1 to u− 1).

Proof. Let us consider two cases:

—Case 1: Let apaq ∈ PRS(S, aq), which means (apaq ∈ IR). aq ∈ A′ implies
(apaq ∈ IR′).

RPI

A Non-Blocking Reference Listing Algorithm for Mobile Active Objects · 19

Actor Inverse
Reference

Reference

ap

aq

a0

V

Sender
Pseudo-Root

ap

aq a0

V
Case 1 Case 2

au-1

au

...

Fig. 8. Theorem 5.19: one-step back-tracing and forward validating safety.

—Case 2: Let apaq ∈ URS(S, aq). By Lemma 5.13, ∃a0, a1, ..., am : a0aq ∈
PRS(S, aq) ∧ (R(a0aq) = 〈n0, d〉 ∧ n0 > 0) ∧ (mirxi〈ai, ai+1, aq〉 ∈ M where
i = 0 to m− 1 and am = ap), which implies (R(aiai+1) = 〈ni, di〉 ∧ ni > 0 where
i = 1 to m − 1 and am = ap) by Lemma 5.12. Now consider the following two
sub-cases.
First, let a0 ∈ A′, which implies R′(a0aq) = 〈n0, d〉 ∧ n0 > 0. Let A0 to u−1 =
{a0, a1, ..., au− 1} ⊆ A′. Notice that m ≥ u ≥ 0 because (a0 ∈ A′ ∧ am /∈ A′).
R(aiai+1) = 〈ni, di〉 ∧ ni > 0 where i = 1 to m − 1 and am = ap) and
(A0 to u−1 ⊆ A′) implies (R′(aiai+1) = 〈ni, di〉 ∧ au /∈ A′ where i = 1 to u − 1).
Thus the theorem is true for this sub-case.
Second, a0 /∈ A′ implies a0aq ∈ IR′.

Therefore, the theorem is true.

6. EXPERIMENTAL RESULTS

The pseudo-root approach is implemented and used as the core garbage collection
mechanism for SALSA programs [Worldwide Computing Laboratory 2007]. SALSA
(Simple Actor Language, System and Architecture) is an actor-oriented program-
ming language designed and implemented to introduce the benefits of the actor
model while keeping the advantages of object-oriented programming [Varela and
Agha 2001]. Abstractions include actors (active objects), asynchronous message
passing, universal naming, migration, and advanced coordination constructs for
concurrency. SALSA is compiled into Java and hence preserves many of Java’s
useful object oriented concepts — mainly, encapsulation, inheritance, and poly-
morphism. Because each actor maintains an encapsulated state, SALSA uses strict
pass-by-value communication 3. SALSA abstractions enable the development of

3Actor references (names) are first-class and therefore they can also be passed by value.

RPI

20 · W. Wang and C. Varela

dynamically reconfigurable applications. A SALSA program consists of universal
actors that can migrate to other computing nodes at run-time.

SALSA provides actor garbage collection, which identifies actor garbage and let
the Java garbage collector reclaim it. Intra-actor garbage produced by updating
references (the assignment operation) is handled by the Java garbage collector as
well. In this section, we will use several types of applications to measure the
performance of our implementation.

Actor GC Mechanism to Measure

To understand the impact of actor garbage collection, we measure actor garbage
collection using three different mechanisms: No-GC, GDP, and LGC. By using
these mechanisms, we can understand the overhead each actor garbage collection
algorithm imposes on the actor system. The mechanisms are described as follows:

—No-GC : Data structures and algorithms for actor garbage collection are not used.

—GDP : The local garbage collector is not activated. Only the garbage detection
protocol (the implementation of the pseudo-root approach) is used.

—LGC : The local garbage collector is activated every n seconds or in the case of
insufficient memory (n=2 for the tests in this section).

6.1 Overhead Breakdown

There are totally four kinds of mutation operations in actor garbage collection: ac-
tor creation, actor reference passing, actor reference deletion, and actor migration.
To understand if the actor garbage collection mechanism is intrusive or not, we also
measure the effect on loops containing multiplication and division operations. Since
the extra execution time required for actor reference deletion and actor reclamation
is handled by Java virtual machines, we do not provide any overhead breakdown
for them. However, their overheads should be proportional to the overhead of actor
creation because the Java garbage collector needs to reclaim extra objects 4 pro-
duced by actor creation. All testing applications used in this section were developed
using SALSA 1.1.1.

Overhead Breakdown of Local Actor GC in a Uniprocessor Environment. The
experiments were performed on a Dell Inspiron 600m laptop, equipped with a 1.6
GHz Intel Pentium M processor and 512 MB of RAM. The operating system used
was Microsoft Windows XP, and the Java VM was Java HotSpot(TM) Client VM
(build 1.5.0 06-b05, mixed mode). Experimental results are shown in Tables I, II,
III, and IV.

Table I shows the overhead of actor creation. The overhead is relatively huge
while creating a small actor because each actor maintains a data structure for
the actor referential relationship. The ratio of the extra data structure for actor
garbage collection goes down while the size of a newly created actor increases. Table
II shows the overhead of message passing. Table III shows the overhead of reference
passing. The overhead is almost 100% for local actor garbage collection because
each reference passing event generates at least 3 extra messages. Table IV shows
the overhead of a regular computation, represented by the multiplication-division

4The total size of the required objects is fixed in the experiments.

RPI

A Non-Blocking Reference Listing Algorithm for Mobile Active Objects · 21

Table I. Actor creation (ms) and its overhead (%) in a uniprocessor environment.
Actor GDP+ GDP GDP+LGC

Creation No-GC GDP LGC Overhead Overhead

Empty Actor 0.872 1.001 1.382 15% 58%
1 KB State 1.412 1.423 1.743 1% 23%
10 KB State 1.873 1.913 2.443 6% 30%

Table II. Message passing (µs) and its overhead (%) in a uniprocessor environment.
Message GDP+ GDP GDP+LGC
Passing No-GC GDP LGC Overhead Overhead

Empty Parameters 6.97 7.13 7.212 2% 3%
1 KB Parameters 57.68 59.08 59.68 2% 3%
10 KB Parameters 59.3 59.28 60.7 0% 2%

Table III. Reference passing (ms) and its overhead (%) in a uniprocessor environment.
Reference GDP+ GDP GDP+LGC
Passing No-GC GDP LGC Overhead Overhead

1 Reference 0.549 1.094 1.118 99% 104%
10 References 0.577 1.156 1.202 94% 102%
100 References 0.691 1.348 1.384 95% 100%

computation whose overhead is negligible. The minus-overhead could be attributed
to the behavior of the operating system or the Java VM. A -1% overhead should
be considered as a precision problem of measurement.

Overhead Breakdown of Local Actor GC in a Concurrent Environment. We used
the same mechanisms and applications described above to measure the overhead
of local actor garbage collection in a concurrent environment. The experiments
were performed on an IBM pSeries 655 machine, equipped with four 1.7 GHz IBM
POWER4 processors and 4 GB of RAM. The operating system used was IBM AIX
5.3, and the Java VM was Classic VM (build 1.4.2, J2RE 1.4.2 IBM AIX 5L for
PowerPC). Experimental results are shown in Tables V, VI, and VII. We decided
not to include the experimental results of the multiplication-division (ms) and its
overhead because it highly depends on the scheduling policy of the operating system
and the Java VM — in some cases the system with actor garbage collection can
outperform the system without actor garbage collection by almost 100%, while
in some cases the system with actor garbage collection can have more than 50%
overhead.

The actor garbage collection overhead in the concurrent system shows a signifi-
cant improvement compared to the uniprocessor environment, shown in Tables V,
VI, and VII. We attribute it to the scheduling policy of the native operating sys-
tem — the operating system wisely uses another idle processor for concurrent actor
garbage collection, which avoids CPU time contention with users’ applications. The
minus-overhead in Table V shows that the scheduling policy of the operating sys-
tem (or the Java VM) can have high influence on the performance of concurrent
applications.

Overhead Breakdown of Actor GC in a Cluster Environment. The overhead of
actor migration, message passing, and reference passing are evaluated in this sub-

RPI

22 · W. Wang and C. Varela

Table IV. Multiplication-division (Secs) and its overhead (%) in a uniprocessor environment,
where each actor performs several loops, each of which contains a double-precision multiplication
operation and a double-precision division operation.

GDP+ GDP GDP+LGC
Mul-Div No-GC GDP LGC Overhead Overhead

3 × 108 Loops
× 1 Actor 7.971 7.971 8.181 0% 3%

3 × 107 Loops
× 10 Actors 7.971 7.972 8.116 0% 2%

3 × 106 Loops
× 100 Actors 8.052 8.082 8.146 0% 1%

3 × 105 Loops
× 1000 Actors 8.692 8.603 8.933 -1% 3%

Table V. Actor creation (ms) and its overhead (%) in a quad-core processor environment.
Actor GDP+ GDP GDP+LGC

Creation No-GC GDP LGC Overhead Overhead

Empty Actor 7.594 6.222 6.43 -18% -15%
1 KB State 4.611 4.717 5.191 2% 13%
10 KB State 4.446 5.015 5.442 13% 22%

Table VI. Message passing (µs) and its overhead (%) in a quad-core processor environment.
Message GDP+ GDP GDP+LGC
Passing No-GC GDP LGC Overhead Overhead

Empty
Parameters 9.914 9.924 9.948 0% 0%

1 KB
Parameters 86.6 85.73 87.64 -1% 1%

10 KB
Parameters 86.74 86.15 86.44 -1% 0%

section. We used two IBM pSeries 655 machines (intra-cluster) to measure the
overhead of actor garbage collection. Experiments results are shown in Tables VIII,
IX, and X. The major overhead still comes from reference passing, on average 18%
(Table X). The overhead shown in Tables VIII and IX is negligible.

6.2 Scalability Test

In this subsection, we evaluate the overhead using a scalable application, namely
the maximum likelihood evaluation fitter (MLE fitter), to evaluate a large set of
data, where likelihood is defined as the product of the probabilities of observing
each event (the input data set) given a set of fit parameters [Wang et al. 2006].

The Maximum Likelihood Evaluation (MLE) Fitter. According to particle physics,
particles which make up our universe have wave-like behavior and thus their identi-
ties and properties can be determined by partial wave analysis (PWA) [Cummings
and Weygand 2003]. To discover the identities and properties of particles, and the
forces and interactions between these particles, scientists use a particle accelerator
to create a high energy collision of particles. The collision may produce a spray of
particles. Some of the particles can live long enough to be observed, while some

RPI

A Non-Blocking Reference Listing Algorithm for Mobile Active Objects · 23

Table VII. Reference passing (ms) and its overhead (%) in a quad-core processor environment.
Reference GDP+ GDP GDP+LGC
Passing No-GC GDP LGC Overhead Overhead

1 Reference 0.818 0.948 0.957 16% 17%
10 References 0.852 0.985 0.993 16% 17%
100 References 0.929 1.067 1.113 15% 20%

Table VIII. Actor migration (ms) and its overhead (%) in a distributed environment.
Actor GDP+ GDP GDP+LGC

Creation No-GC GDP LGC Overhead Overhead

Empty Actor 158.875 157.755 158.7 -1% 0%
1 KB State 160.005 159.15 158.91 -1% -1%
10 KB State 159.855 159.605 159.095 0% 0%

Table IX. Message passing (ms) and its overhead (%) in a distributed environment.
Message GDP+ GDP GDP+LGC
Passing No-GC GDP LGC Overhead Overhead

Empty
Parameters 0.149 0.149 0.149 0% 0%

1 KB
Parameters 0.251 0.251 0.251 0% 0%

10 KB
Parameters 0.336 0.337 0.336 0% 0%

may decay 5 into other kinds of particles after an extremely short time, making
them impossible to be observed. The existence of the short lived particles can
only be inferred from correlations in the final state particles into which they decay.
There are many ways of reaching the final system through various intermediate
states, and each possibility must be considered. By varying the amount of each
intermediate state to fit the observed final state, PWA can determine the identities
of the short-lived particles.

The purpose of the fits is to find the most probable intermediate states. The
fits are done using maximum likelihood evaluation (MLE). The likelihood is defined
as the product of the probabilities of observing each event given a set of fit pa-
rameters. In practice, people usually use the negative logarithm likelihood to find
the minimum value, which represents the maximum likelihood. In our case, the
equation is described as:

− ln(L) = −
n

∑

i

ln
(

∣

∣ψp
αψ

d
α(τi)

∣

∣

2
)

− nψp
αΨαα′ψp∗

α′ (1)

where the sum over i runs over all events in the data set, and the sums over
the repeated αs, the fit parameter index, are implicit. The ψp

α are the complex
fit parameters, related to the amount of the intermediate state α produced. The
ψd

α(τi) is the identity (quantum amplitude) for the ith event with angles τi assuming
intermediate state α. The possibility of non-interfering data has been ignored here.
While physically important, it is a detail which further complicates the expression
for the likelihood, yet serves no illustrative purpose for the discussion at hand. The

5Particle decay refers to the transformation of a fundamental particle into other fundamental
particles.

RPI

24 · W. Wang and C. Varela

Table X. Reference passing (ms) and its overhead (%) in a distributed environment.
Reference GDP+ GDP GDP+LGC
Passing No-GC GDP LGC Overhead Overhead

1 Reference 1.063 1.237 1.236 16% 16%
10 References 1.152 1.322 1.326 15% 15%
100 References 1.221 1.398 1.409 15% 15%

second term on the right hand side is the normalization integral, where any known
inefficiencies of the detector are taken into account. The total number of events in
the data being fit is n; and Ψαα′ is the result of the normalization integral, done
numerically before the fit is performed.

We used the simplex algorithm, which finds the most probable fit and iteratively
improves the output, in our implementation of the MLE fitter. Finding the best
fit parameters to a typical data set requires a given set of initial fit parameters
and hundreds or even thousands of trials. In our case the MLE fitter evaluates the
maximum likelihood of a given set of complex amplitudes and the observed events
from collisions of particles. The execution time of the MLE fitter can be improved
by using distributed computing if calculating the summation term of the negative
logarithm likelihood equation requires a long time to finish. For example, if n in
Equation 1 is large enough (> 105).

Results. The test was performed in a cluster consisting of three 4-dual-core 2.2
GHz Opteron machines (8 processors each) with 32 GB of RAM and twelve 4-
single-core 2.2 GHz Opteron machines with 16 GB of RAM. The operating system
used was Linux 2.6.15, and the Java VM was Java HotSpot Server VM (build
1.5.0 08-b03, mixed mode).

We used a set of 9053 × 26 events and 7 complex number parameters as the
input for the MLE fitter. The MLE fitter used a static load balancing approach to
distribute data to each theater 6, where for each processor a theater is started to
host actors. The MLE fitter is sensitive to any delay at any theater because the
execution time per fit function call is the longest execution time per fit function
call among all the participating theaters. Our experiments show that the overall
overhead of our implementations is on average 11% for 16 or more theaters, and on
average 6% for 8 or less theaters (see Figures 9 and 10). The MLE fitter running
on 64 or more theaters has relatively bad performance, which can be attributed to
the execution time per function call being down to 1 second, making it relatively
sensitive to any kind of interruption.

7. RELATED WORK

In this section we introduce related work, including reference counting/listing al-
gorithms, indirect/hybrid algorithms, and actor garbage collection algorithms.

7.1 Reference Counting/Listing

Distributed reference counting (or listing) algorithms, also known as distributed
reference counting protocols, are inherently incremental and thus they do not re-

6A theater can be thought of as a virtual machine for the SALSA programming language, providing
support for distributed computing.

RPI

A Non-Blocking Reference Listing Algorithm for Mobile Active Objects · 25

32

16

8

4

2

1

0.5
6432168421

E
x
e
c
u
ti
o
n
 T

im
e

 p
e

r
F

u
n

c
ti
o

n
 C

a
ll

(s
)

Number of Processors

NO-GC
GDP

GDP+LGC

Fig. 9. Execution time per fit function call vs. the total number of processors. Four kinds of
mechanisms are used to evaluate the implementation of our actor garbage collection algorithms.

quire complex synchronization for garbage collection. Typically, they require that
either a referenced object has to maintain a counter, or a reference table has to
keep track of every incoming/outgoing inter-node reference. Whenever an object
is referenced, its counter has to increment by one (or creates an inverse reference
in the reference table). A common disadvantage of them is that they cannot re-
claim cyclic garbage (mutually referenced objects) unless a hybrid strategy is used.
These reference counting algorithms are similar to the pseudo-root approach but
they tend to be more synchronous — all of them rely on First-In-First-Out (FIFO)
communication or timestamp-based FIFO (simulated FIFO) communication in the
application level, and some of them are even totally synchronous by using remote-
procedure-call. Since actor communication is defined as asynchronous, unordered,
and message-driven, these algorithms cannot be reused directly by actor systems.

The Lermen-Maurer protocol [Lermen and Maurer 1986] is the first distributed
reference counting algorithm. It requires three messages per reference duplication,
and one for reference deletion. The application message with the reference to pass
and the increment system message to the object owner process are sent simultane-
ously. To avoid premature reference deletion, the object owner process must send

RPI

26 · W. Wang and C. Varela

Fig. 10. Breakdown of the actor garbage collection mechanism.

an acknowledgement to the application message receiver process. References can
only be deleted if the total number of received acknowledgements for the reference
is equal to the total number of receipts of the reference from application message
passing. The Lermen-Maurer protocol requires FIFO communication.

The weighted reference counting protocol [Bevan 1987; Watson and Watson 1987]
avoids sending increment messages, and only one decrement message is required for
reference deletion in most cases. The algorithm requires each object and each
reference maintains its weight. The weight of an object is always equal to the sum
of the total weights of the references to the object. A new object and the original
reference to it are created with a predefined maximum weight. When a reference is
duplicated, the weight of the reference is divided into two positive new values, and
the sum of the new values is equal to the original weight of the reference. One value
is assigned to the original reference and the other one to the new reference. While
a reference is deleted, a decrement message containing the weight of the reference
is sent to the object which it is pointing to. An object is deleted safely when its
weight drops to zero. However, an alternative approach must be used when an
object with its weight equal to 1 is going to duplicate, such as creating an indirect
object with a value of max weight and then dividing the value by two to the original
reference and the copied reference. Corporaal et al in 1990 [Corporaal et al. 1990]
use a similar approach by extra reference tables instead of indirect objects.

The indirect reference counting algorithm, proposed by Piquer [Piquer 1991],

RPI

A Non-Blocking Reference Listing Algorithm for Mobile Active Objects · 27

avoids sending increment messages in order to optimize the number of extra mes-
sages to send. The algorithm maintains a special data structure for each reference
which includes: 1) the number of duplications, 2) the parent pointer, and 3) the
reference. The number of copies and the parent pointer are used to form an in-
verted diffusion tree to present the history of reference duplications. The root is
the process that owns the object. The parent pointer is not used to point to the
parent object, but for the history of reference duplication. Only the leaf references
of the inverted diffusion tree can be deleted because the algorithm has to maintain
the inverted diffusion tree structure. Object migration is done by changing the
parent process to the migration destination. Deletion of references may produce
extra messages. The algorithm may preserve zombie references because they are
not leaf references.

The SSPC (Stub-Scion Pair Chains) protocol [Shapiro 1991; Shapiro et al. 1992]
is a reference listing protocol which uses the techniques of timestamps to ensure
FIFO communication. If the FIFO order is violated by comparing the timestamps
of messages, a redelivery is occurred to maintain the FIFO order. Synchronous com-
munication of users’ applications is assumed, but the protocol itself is asynchronous.
Whenever a reference is copied, an intermediate stub-scion pair is created to form
an indirect path to connect the reference receiver process to the reference owner
process. The SSPC protocol supports object migration by leaving an intermediate
pointer at the original space to the newly migrated object. Another background
protocol can be applied to reduce extra stub-scion pairs in a reference path to
improve message delivery performance and robustness.

Birrell’s protocol [Birrell et al. 1993] is attributed as a remote-procedure-call,
reference listing algorithm, and thus it is a synchronous algorithm. It is used in
distributed acyclic garbage collection of Java RMI. The algorithm relies on se-
quential remote procedure calls. Upon reference duplication, the original call with
reference parameters to the reference receiver process is made, following by another
dirty call to the object owner process. Reference deletion is implemented as a clean
call from the reference holder process to the object owner process. Moreau et al.
[Moreau et al. 2005] formalize the algorithm and present with correctness proofs,
and also extend the algorithm with non-FIFO communication semantics.

Moreau’s protocol [Moreau 2001] is a reference listing protocol which requires
point-to-point FIFO communication. Each process maintains a table for counting
the references it held, and each object maintains a counter for counting the number
of references to it. Once a reference is passed to another process, the original process
(sender) should increase the counter of the reference and then sends the message
out. If a process receives a message with a reference, it sends a special message INC-
DEC to the process that the referenced object resides in. Upon receiving the INC-
DEC message, a process increases the counter of the referenced object and sends
a DEC message with the identity of the referenced object to the original process
(sender). A process should decrease the counter of the corresponding reference of
the referenced object. Deleting references is similar to the Lermen-Maurer protocol.

7.2 Distributed Trace-Based/Hybrid Algorithms

There are various trace-based/hybrid distributed garbage collection algorithms for
passive object systems, where “hybrid” refers to the approach combining reference

RPI

28 · W. Wang and C. Varela

counting/listing and trace-based strategies. The most important feature of these
algorithms is that they collect at least some distributed cyclic garbage. Hughes’
algorithm [Hughes 1985] uses global timestamp propagation from roots which re-
quires long pause time for garbage collection and is very sensitive to failures. Liskov
et al. [Liskov and Ladin 1986; Ladin and Liskov 1992] present a centralized algo-
rithm which requires every client (local collector) to report inter-node references to
a server. Vestal [Vestal 1987] assumes assistance from acyclic reference counting
and tries to virtually delete a reference to see whether or not an object is garbage,
which cannot detect all cycles. Maheshwari et al. [Maheshwari and Liskov 1995;
1997] and Le Fessant [Le Fessant 2001] propose heuristics-based algorithms which
use the minimal number of inter-node references from a root to suspect some objects
as garbage and then verifies the suspects. Lang et al. [Lang et al. 1992] propose a
trace-based algorithm with the help of a reference listing protocol and local garbage
collection to collect garbage hierarchically, which does not support migration and
must stop the mutators while garbage collection is performing. Rodrigues et al.
[Rodrigues and Jones 1996] present a dynamically partitioning approach which
starts from suspecting an object as garbage, traces from it, and then forms a group
for global garbage collection. During global garbage collection, mutators must be
suspended for local live object marking. Overlapped partition can occur; it either
causes deadlocks or no work can be done. The algorithm proposed by Veiga et al.
[Veiga and Ferreira 2005] is also heuristics-based, and it uses asynchronous local
snapshots to identify global garbage. Any change to the snapshots has to be up-
dated by local mutators, forcing current global garbage collection to quit. Hudson
et al. [Hudson et al. 1997] propose a generational collector where the address space
of each computing node is divided into several disjoint blocks (cars), and cars are
grouped together into several distributed trains. Each train represents a generation
of objects, and forms a ring structure for distributed management. Objects can
only move from an older generation car to a younger generation car, and the oldest
car is eventually inspected. A car/train can be disposed of if there are no incom-
ing inter-car/inter-train references to it. Blackburn et al. [Blackburn et al. 2001]
suggest a methodology to derive a distributed garbage collection algorithm from an
existing distributed termination detection algorithm [Francez 1980; Dijkstra and
Scholten 1980; Matocha and Camp 1998], in which the distributed garbage collec-
tion algorithm developers must design another algorithm to guarantee a consistent
global state. All of the above algorithms cannot be reused directly in actor systems
because actors and passive objects are different in nature.

7.3 Actor Garbage Collection

The definition of garbage actors is different from the perspective of passive ob-
ject garbage collection. For instance, the marking phase of passive object garbage
collection has only two choices, the depth-first-search and the breadth-first-search.
Marking algorithms for actor garbage collection are relatively various, including
Push-Pull, Is-Black by Kafura et al. [Kafura et al. 1990], Dickman’s graph parti-
tion merging algorithm by Dickman [Dickman 1996], and the actor transformation
algorithm by Vardhan and Agha [Vardhan 1998; Vardhan and Agha 2002].

Most distributed actor garbage collection algorithms are snapshot-based due
to the autonomous nature and the asynchronous communication of actors. The

RPI

A Non-Blocking Reference Listing Algorithm for Mobile Active Objects · 29

global Push-Pull algorithm proposed by Kafura et al. [Kafura et al. 1995] uses
the Chandy-Lamport snapshot algorithm [Chandy and Lamport 1985] to deter-
mine a precise global state, which is expensive and requires FIFO communication
to flush communication channels. Garbage collection is hierarchical, consisting of
local garbage collection and global garbage collection. Global roots are defined
as actors with incoming remote references (remote inverse references) or outgoing
remote references. Treating all actors with outgoing remote references as global
roots is over-conservative because not every actor with outgoing remote references
is live — only those reachable from an unblocked actor and have outgoing remote
references should be global roots.

Venkatasubramanian et al. [Venkatasubramanian et al. 1992] assume a two-
dimensional grid network topology, and the algorithm requires FIFO communi-
cation to flush communication channels. The FIFO communication assumption
provides the ability to clear communication channels by a special bulldoze message,
which is used for global snapshot. Any message sent in a cleared channel is marked
as new. Inverse references are built during garbage collection for a distributed actor
marking algorithm. The algorithm has five phases: 1) the pre-GC phase to deter-
mine a global snapshot, 2) the distributed scavenge phase to identify live actors
in the snapshot, 3) the local-clear phase to notify each local collector to terminate
the second phase, 4) the local-clear phase to reclaim garbage, and 5) the post GC
broadcast phase to signal every computing node to terminate this cycle of global
garbage collection.

Puaut proposed a snapshot-based algorithm in [Puaut 1994], which uses a server
for global garbage collection. Each computing node maintains a timestamp vec-
tor to simulate a global clock. FIFO communication is assumed, but completely
unordered communication is also possible by incorporation of timestamp-based mes-
sage redelivery mechanism. Local garbage collectors send local reference graphs to
a centralized server, as well as the timestamps of the last information received by
the local garbage collectors. The server checks if the combined snapshot is consis-
tent according to the timestamps. If this is not true, nothing is done. Otherwise
the server performs global garbage collection, and then informs each local garbage
collector the information of garbage. This approach is not scalable because the
requirement to know every computing node to build the timestamp vector. Fur-
thermore, it makes a message become larger while the number of computing nodes
increases. The increase of the size of the system may also increase the chance of
failure in global garbage collection.

Vardhan’s algorithm [Vardhan 1998] transforms each local actor reference graph
into a passive object reference graph, and uses Schelvis’ algorithm [Schelvis 1989]
for global garbage collection. It assumes: 1) First-In-First-Out (FIFO) commu-
nication, 2) temporarily suspending the message sender which is waiting for an
acknowledgement from the message receiver, and 3) periodically performs stop-the-
world garbage collection.

Wang and Varela [Wang and Varela 2006b] present a snapshot-based distributed
actor garbage collection algorithm with proofs of correctness. The algorithm does
not require First-In-First-Out or blocking communication, nor message logging. Ac-
tor migration is allowed while capturing global snapshots. Partial snapshots can be
safely used to collect distributed garbage (cyclic or acyclic), therefore not requiring

RPI

30 · W. Wang and C. Varela

comprehensive cooperation among all computing nodes. The algorithm assumes
the live unblocked actor principle while capturing a consistent partial global view
of the distributed system. Compared to other actor garbage collection algorithms,
it is less intrusive, less restrictive, and more fault-tolerant to applications. The
drawback of the algorithm is that it may not collect all kinds of active garbage (i.e.
garbage that can mutate or migrate).

To conclude, existing actor garbage collection algorithms, except Wang-Varela
snapshot-based algorithm, violate the asynchronous, non-FIFO assumption of actor
communication, and do not support the concept of actor migration.

8. CONCLUSION AND FUTURE WORK

In this paper, we have redefined actor garbage to make the definition more oper-
ational. We introduced the concept of pseudo-roots, making actor GC easier to
understand and to implement. The most important contribution of this paper is
that it formally describes the first reference listing algorithm for actor garbage
collection, the pseudo-root approach, proving it correct. Pseudo-root actor GC has
been implemented in the open-source SALSA programming language [Worldwide
Computing Laboratory 2007; Varela and Agha 2001]. Unlike existing actor GC
algorithms, the proposed algorithm does not require FIFO communication or stop-
the-world synchronization. Furthermore, it supports actor migration and it works
concurrently with mutation operations. This feature reduces interruption of users’
applications.

Our experimental results confirm that the pseudo-root approach is scalable and
non-intrusive to applications. Together with the overhead of local actor garbage
collection, the total overhead measured by different groups of operations is shown
as follows:

(1) Actor creation: The overhead in a uniprocessor environment ranges from 23%
to 58% while in a concurrent environment it is at most 22%.

(2) Actor migration: The overhead is negligible.

(3) Message passing (without any reference in messages): The overhead is negligi-
ble.

(4) Reference passing: The overhead in a uniprocessor environment is up to 104%
while in a concurrent or distributed environment it becomes reasonable, ranging
from 15% to 20%. These numbers show that the pseudo-root approach is
practical in concurrent or distributed environments.

We also performed a scalability test using a real application, the MLE fitter. It is
an iterative application which evaluates the state of the current iteration and then
applying the evaluation results to the initial state of the next iteration. Parallelism
is achieved by producing independent jobs at each iteration. Our experimental
results show that the pseudo-root approach is scalable, and its total overhead (con-
sidering local GC) ranges from 1% to 15%, depending on the number of processors
and the topology of the network.

The pseudo-root approach supports actor GC even if the computing system does
not follow the live unblocked actor principle. Future research still needs to consider
resource access restrictions, which are part of distributed resource management

RPI

A Non-Blocking Reference Listing Algorithm for Mobile Active Objects · 31

policies. By applying resource access restrictions to actors, the live unblocked actor
principle may not be true — not every actor has references to the root actors, and
potentially live actors can be garbage. The migration privilege and the actor cre-
ation privilege are also important when resource access restrictions are considered.
The reason is that they can change the semantics of actor garbage collection —
an actor can migrate to a host which does not have resource access restrictions, or
create a root actor to become live. Last but not least, testing the GC algorithms
on larger-scale distributed environments is necessary to further evaluate their per-
formance and scalability.

REFERENCES

Abdullahi, S. E. and Ringwood, A. 1998. Garbage collecting the internet: A survey of dis-
tributed garbage collection. ACM Computing Surveys 30, 3, 330–373.

Agha, G. 1986. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press.

Armstrong, J., Virding, R., Wikström, C., and Williams, M. 1996. Concurrent Programming
in Erlang , 2nd ed. Prentice Hall.

Baduel, L., Baude, F., Caromel, D., Contes, A., Huet, F., Morel, M., and Quilici, R. 2006.
Grid Computing: Software Environments and Tools. Springer-Verlag, Chapter Programming,
Deploying, Composing, for the Grid.

Bevan, D. I. 1987. Distributed garbage collection using reference counting. In PARLE’87. Lecture
Notes in Computer Science, vol. 258/259. Springer-Verlag, Eindhoven, The Netherlands, 176–
187.

Birrell, A., Evers, D., Nelson, G., Owicki, S., and Wobber, E. 1993. Distributed garbage
collection for network objects. Tech. Rep. 116, DEC Systems Research Center, 130 Lytton
Avenue, Palo Alto, CA 94301. Dec.

Blackburn, S. M., Hudson, R. L., Morrison, R., Moss, J. E. B., Munro, D. S., and Zigman,

J. 2001. Starting with termination: a methodology for building distributed garbage collection
algorithms. Aust. Comput. Sci. Commun. 23, 1, 20–28.

Briot, J.-P. 1989. Actalk: a testbed for classifying and designing actor languages in the Smalltalk-
80 environment. In Proceedings of the European Conference on Object Oriented Programming
(ECOOP’89). Cambridge University Press, 109–129.

Chandy, K. M. and Lamport, L. 1985. Distributed snapshots: Determining global states of
distributed systems. ACM Transactions on Computer Systems 3, 1, 63–75.

Corporaal, H., Veldman, T., and van de Goor, A. 1990. An efficient reference weight-based
garbage collection method for distributed systems. In Proceedings of the PARBASE-90 Con-
ference. IEEE Press, Miami Beach, 463–465.

Cummings, J. P. and Weygand, D. P. 2003. An Object-Oriented Approach to Partial Wave
Analysis. ArXiv Physics e-prints, 24 pp.

Dickman, P. 1996. Incremental, distributed orphan detection and actor garbage collection using
graph partitioning and Euler cycles. In WDAG’96. Lecture Notes in Computer Science, vol.
1151. Springer-Verlag, Bologna.

Dijkstra, E. W. and Scholten, C. 1980. Termination detection for diffusing computations.
Information Processing Letters 11, 1 (Aug.), 1–4.

El Maghraoui, K., Szymanski, B., and Varela, C. 2005. An architecture for reconfigurable iter-
ative MPI applications in dynamic environments. In Proc. of the Sixth International Conference
on Parallel Processing and Applied Mathematics (PPAM’2005), R. Wyrzykowski, J. Dongarra,
N. Meyer, and J. Wasniewski, Eds. Number 3911 in LNCS. Poznan, Poland, 258–271.

Francez, N. 1980. Distributed termination. ACM Trans. Program. Lang. Syst. 2, 1, 42–55.

Hewitt, C. 1977. Viewing control structures as patterns of passing messages. Journal of Artificial
Intelligence 8, 3 (June), 323–364.

Hudson, R. L., Morrison, R., Moss, J. E. B., and Munro, D. S. 1997. Garbage collecting the
world: One car at a time. SIGPLAN Not. 32, 10, 162–175.

RPI

32 · W. Wang and C. Varela

Hughes, J. 1985. A distributed garbage collection algorithm. In Record of the 1985 Conference on

Functional Programming and Computer Architecture. LNCS, vol. 201. Springer-Verlag, Nancy,
France, 256–272.

Kafura, D., Mukherji, M., and Washabaugh, D. 1995. Concurrent and distributed garbage
collection of active objects. IEEE TPDS 6, 4 (April).

Kafura, D., Washabaugh, D., and Nelson, J. 1990. Garbage collection of actors. In OOP-
SLA’90 ACM Conference on Object-Oriented Systems, Languages and Applications. ACM
Press, 126–134.

Kim, W. 1997. THAL: An Actor System for Efficient and Scalable Concurrent Computing. Ph.D.
thesis, University of Illinois at Urbana-Champaign.

Ladin, R. and Liskov, B. 1992. Garbage collection of a distributed heap. In International
Conference on Distributed Computing Systems. Yokohama.

Lang, B., Queinnec, C., and Piquer, J. 1992. Garbage collecting the world. In POPL’92 ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press, 39–50.

Le Fessant, F. 2001. Detecting distributed cycles of garbage in large-scale systems. In Principles
of Distributed Computing (PODC). Rhodes Island.

Lermen, C. and Maurer, D. 1986. A protocol for distributed reference counting. In ACM Sympo-
sium on Lisp and Functional Programming. ACM SIGPLAN Notices. ACM Press, Cambridge,

MA, 343–350.

Liskov, B. and Ladin, R. 1986. Highly available distributed services and fault-tolerant distributed
garbage collection. In Proceedings of the Fifth Annual ACM Symposium on the Principles on
Distributed Computing, J. Halpern, Ed. ACM Press, Calgary, 29–39.

Maheshwari, U. and Liskov, B. 1995. Collecting cyclic distributed garbage by controlled migra-
tion. In PODC’95 Principles of Distributed Computing.

Maheshwari, U. and Liskov, B. 1997. Collecting cyclic distributed garbage by back tracing. In
PODC’97 Principles of Distributed Computing. ACM Press, Santa Barbara, CA, 239–248.

Matocha, J. and Camp, T. 1998. A taxonomy of distributed termination detection algorithms.
J. Syst. Softw. 43, 3, 207–221.

Moreau, L. 2001. Tree rerooting in distributed garbage collection: Implementation and perfor-
mance evaluation. Higher-Order and Symbolic Computation 14, 4, 357–386.

Moreau, L., Dickman, P., and Jones, R. 2005. Acm transactions on programming languages
and systems (TOPLAS). ACM Trans. on Program. Lang. and Syst. 27, 6, 1344–1395.

Open Systems Lab. 1998. The Actor Foundry: A Java-based Actor Programming Environment.
http://osl.cs.uiuc.edu/foundry/.

Piquer, J. M. 1991. Indirect reference counting: A distributed garbage collection algorithm.
In PARLE’91. Lecture Notes in Computer Science, vol. 505. Springer-Verlag, Eindhoven, The
Netherlands.

Puaut, I. 1994. A distributed garbage collector for active objects. In OOPSLA’94 ACM Confer-
ence on Object-Oriented Systems, Languages and Applications. ACM Press, 113–128.

Rodrigues, H. and Jones, R. 1996. A cyclic distributed garbage collector for Network Objects. In
WDAG’96. Lecture Notes in Computer Science, vol. 1151. Springer-Verlag, Bologna, 123–140.

Schelvis, M. 1989. Incremental distribution of timestamp packets — a new approach to dis-
tributed garbage collection. ACM SIGPLAN Notices 24, 10, 37–48.

Shapiro, M. 1991. A fault-tolerant, scalable, low-overhead distributed garbage collection protocol.
In Proceedings of the Tenth Symposium on Reliable Distributed Systems. Pisa.

Shapiro, M., Dickman, P., and Plainfossé, D. 1992. SSP chains: Robust, distributed references
supporting acyclic garbage collection. Rapports de Recherche 1799, INRIA. Nov.

Vardhan, A. 1998. Distributed garbage collection of active objects: A transformation and its
applications to java programming. M.S. thesis, UIUC, Urbana Champaign, Illinois.

Vardhan, A. and Agha, G. 2002. Using passive object garbage collection algorithms. In
ISMM’02. ACM SIGPLAN Notices. ACM Press, Berlin, 106–113.

Varela, C. A. and Agha, G. 2001. Programming dynamically reconfigurable open systems
with SALSA. ACM SIGPLAN Notices. OOPSLA’2001 ACM Conference on Object-Oriented
Systems, Languages and Applications 36, 12 (Dec.), 20–34.

RPI

A Non-Blocking Reference Listing Algorithm for Mobile Active Objects · 33

Veiga, L. and Ferreira, P. 2005. Asynchronous complete distributed garbage collection. In

IPDPS 2005, O. Babaoglu and K. Marzullo, Eds. Denver, Colorado, USA.

Venkatasubramanian, N., Agha, G., and Talcott, C. 1992. Scalable distributed garbage
collection for systems of active objects. In IWMM’92. Lecture Notes in Computer Science, vol.
637. Springer-Verlag.

Vestal, S. C. 1987. Garbage collection: An exercise in distributed, fault-tolerant programming.
Ph.D. thesis, University of Washington, Seattle, WA.

Wang, W., Maghraoui, K. E., Cummings, J., Napolitano, J., Szymanski, B., and Varela,

C. 2006. A middleware framework for maximum likelihood evaluation over dynamic grids. In
Proceedings of the Second IEEE International Conference on e-Science and Grid Computing.
Amsterdam, Netherlands, 8 pp.

Wang, W.-J. and Varela, C. A. 2006a. Distributed garbage collection for mobile actor systems:
The pseudo root approach. In Advances in Grid and Pervasive Computing, First International
Conference, GPC 2006. Lecture Notes in Computer Science, vol. 3947. Springer, 360–372.

Wang, W.-J. and Varela, C. A. 2006b. A non-blocking snapshot algorithm for distributed
garbage collection of mobile active objects. Tech. Rep. 06-15, Dept. of Computer Science,
R.P.I. Oct.

Watson, P. and Watson, I. 1987. An efficient garbage collection scheme for parallel computer
architectures. In PARLE’87. Lecture Notes in Computer Science, vol. 258/259. Springer-Verlag,
Eindhoven, The Netherlands, 432–443.

Worldwide Computing Laboratory. 2007. The SALSA Programming Language.
http://wcl.cs.rpi.edu/salsa/.

Yonezawa, A. 1990. ABCL An Object-Oriented Concurrent System. MIT Press, Cambridge,
Mass.

RPI

