
Scientific Programming 13 (2005) 255–263 255
IOS Press

Guest-Editorial

Worldwide computing: Adaptive middleware
and programming technology for dynamic
Grid environments

Carlos A. Varelaa, Paolo Ciancarinib and Kenjiro Taurac

aComputer Science Department, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
bDipartimento di Scienze dell’Informazione, University of Bologna, Mura Anteo Zamboni-40126, Bologna, Italy
cDepartment of Information and Communication Engineering, University of Tokyo, Japan

1. Towards a pervasive Grid: A research agenda

Future-generations cyber-infrastructure must enable
the dynamic coordinated composition of computing
and information services. Resulting applications need
to provide high-performance distributed computing to
end users in a scalable, reliable and secure manner. This
pervasive and ubiquitous grid computing infrastructure
will view physical devices and computational agents
uniformly, enabling radical improvement of existing
applications, and opening the door for applications in
entirely new domains. For example, wireless sensor-
actuator networks deployed in buildings and bridges
can semi-automatically and cooperatively react to nat-
ural or man-made disasters in order to prevent human
losses. Temperature, pressure, and stress-sensing de-
vices can inform authorities about the probability of
structural damage leading to collapse, can automati-
cally activate fire extinguishing equipment, can help
locate survivors and devise exit strategies, and can de-
viate traffic on emergency situations in semi-automated
ways. Another example is virtual surgical planning, in
which a surgeon simulates several surgery plans on a
detailed computational model of a patient’s body. The
surgeon can interactively analyze the effect of differ-
ent plans on the patient’s body fluid dynamics. An-
other example is a distributed camera network coor-
dinated by a real-time data mining component for air-

port surveillance and security. Unusual irregular pat-
terns of human behavior can be detected and commu-
nicated promptly to authorities. A final example is a
manned and unmanned aerial vehicle network that can
exchange sensed information and plans of action, and
combine them with terrain and map databases for de-
centralized coordinated air traffic control. These appli-
cations will directly benefit from coordinated compu-
tational resources offered by the future pervasive grid.

To realize this pervasive grid vision, it is imperative
to develop programming technology and modular mid-
dleware to facilitate systems development on highly
heterogeneous and dynamic cyber-infrastructure. In
closed grid environments, a centralized coordination
module often needs to reserve dedicated network and
computing resources for specific tasks. Furthermore,
users are often expected to manually allocate resources
and install any needed software on target computing
environments. In contrast, open dynamic grid environ-
ments require coordination and resource management
protocols to be automated. Resources in open grid envi-
ronments can be organized into peer-to-peer networks.
These networks are scalable because information lives
in individual nodes and communication is highly, if not
completely, decentralized. In an envisioned grid com-
puting scenario, a process or data item will be created
by a human user in a single node. The process or data
item will get replicated and propagated by middleware

ISSN 1058-9244/05/$17.00 © 2005 – IOS Press and the authors. All rights reserved

256 C.A. Varela et al. / Worldwide computing: Adaptive middleware and programming technology for dynamic Grid environments

layers to a dynamic network of processing and stor-
age resources. The purpose of the middleware will be
to provide high performance through resource profil-
ing and optimization, scalability through dynamic re-
configuration and adaptation, fault-tolerance and data
availability through replication, and privacy through
encryption. All of these must be provided in a com-
pletely decentralized and automated manner.

Realistic grid computing environments will be large-
scale, dynamic, and heterogeneous. Physical and com-
putational agents will span the globe. New computa-
tional nodes will join at any time, for example, because
a user points her web browser to a site coordinating a
search for extraterrestrial intelligence from astronom-
ical data. Nodes will also leave at any time, for ex-
ample, because of user-directed actions or because of
network or node failures. Furthermore, resources will
have very different capabilities and constraints, for ex-
ample, a small robot in a battle field may have energy
constraints. This will prevent the robot from commu-
nicating too frequently with its base, thus preferring
to send digested abstracts after local communication
with nearby robots. Grid computing middleware needs
to coordinate such heterogeneous computational and
physical agents. Middleware must dynamically adapt
applications to changing needs and to evolving under-
lying computational resources. Research in decentral-
ized coordination and global resource optimization is
needed to provide cost-effective services with high re-
liability and performance to end users.

The fundamental research problems the pervasive
grid community faces are:

1. Decentralized coordination: Coordination al-
gorithms and protocols must account for physical
and computational agents entering, leaving and
moving about the system. Decentralized coordi-
nation is needed for systems to scale. Decentral-
ized coordination protocols form the foundation
for other distributed resource management prob-
lems. Modular middleware is critical to plug-in
different coordination protocols to adjust to di-
verse application communication topologies and
computation-to-communication ratios.

2. Resource optimization: Grid computing mid-
dleware needs to continuously map computa-
tional agents to underlying network resources.
Dynamic resource profiling and allocation(e.g.,
see [30]) needs new mathematical models that op-
timize global resource usage with minimal pro-
filing and communication overhead and in the
presence of local, partial, and even inaccurate

knowledge. One potential interesting avenue of
research is novel integrated static and dynamic
program analyses for resource optimization.

3. Programmability: Usability is critical to the
success of grid computing. Research is needed in
new coordination models, abstractions, and lan-
guages that facilitate describing and reasoning
about high-level specifications of distributed re-
source usage, composition, and constraints. For
example, actor-oriented programming models,
languages and infrastructure (e.g., see [32,84])
provide intuitive high-level abstractions and effi-
cient middleware components that support these
abstractions.

4. Quality of Service: Quality of service (QoS) re-
quirements in grid computing application include
scalability to world-wide computational environ-
ments, reliability in the presence of node and net-
work failures, and enforcement of security poli-
cies, including data privacy, user authentication
and authorization, and secure remote code exe-
cution. There is significant existing grid comput-
ing security research and software infrastructure
(e.g., see [37,41]) but as grid environments be-
come more open and dynamic, new challenges
arise.

2. Middleware and infrastructure for Grid
computing

2.1. Globally distributed computing

Several research groups are trying to achieve dis-
tributed computing on a large scale. Wisconsin’s
Condor project studies high throughput computing by
“hunting” for idle workstation cycles [58]. Berke-
ley’s NOW project effectively distributes computation
on a building-wide scale [8], and Berkeley’s Millen-
nium project exploits a hierarchical cluster structure
to provide distributed computing on a campus-wide
scale [19].

The Globus project seeks to enable the construc-
tion of larger computational grids [37]. Virginia’s Le-
gion meta-system integrates research in object-oriented
parallel processing, distributed computing, and secu-
rity to form a programmable world-wide virtual com-
puter [47]. Caltech’s Infospheres project envisions a
world-widepool of millions of objects (or agents) much
like the pool of documents on the World-Wide Web
today [23]. WebOS seeks to provide operating sys-

C.A. Varela et al. / Worldwide computing: Adaptive middleware and programming technology for dynamic Grid environments 257

tem services, such as client authentication, naming,
and persistent storage, to wide area applications [83].
UIUC’s 2K is an integrated operating system architec-
ture addressing the problems of resource management
in heterogeneous networks, dynamic adaptability, and
configuration of component-based distributed applica-
tions [55].

Berkeley’s SETI@Home project [77] uses idle cy-
cles on the Internet to analyze astronomical data
in search for patterns that might prove the exis-
tence of extraterrestrial life. Stanford’s ProteinFold-
ing@Home [66] has over a million participants world-
wide volunteering their processing power in a compu-
tational attempt to understand protein folding.

2.2. Grid computing middleware

Grid computing has made great progress in the last
few years. The basic mechanisms for accessing remote
resources have been developed as part of the Globus
Toolkit [38] and are now widely deployed and used.
The grid community is now concentrating on middle-
ware that enables the composability and interoperabil-
ity of different service-oriented grid solution compo-
nents by using Web Service standards.

The emerging generation of grid middleware, based
on the Open Grid Services Architecture (OGSA) [39,
40] is tackling interoperability and composability by
using XML-based developments including WSDL for
service definition, SOAP for data interchange, and
UDDI for service registration and discovery. OGSA
specifies the requirements for a layered set of proto-
cols and services as follows: (i) Connectivity layer,
concerned with communication and authentication, (ii)
Resource layer, concerned with negotiating access to
individual resources, and (iii) Collective layer, con-
cerned with the coordinated use of multiple resources.

2.3. Process migration and replication

Research on process and data migration for grid ap-
plications includes [73,81,82]. A key idea behind these
approaches is to detect service degradations and re-
act to such events by dynamically reconfiguring appli-
cation processes to effectively use available computa-
tional resources. Research on data and process replica-
tion includes [5,24,25,64,68,71,75,85]. Most of these
approaches only consider immutable data replication to
avoid having to devise and implement expensive replica
consistency protocols. An adaptive middleware layer is
needed, capable of migrating and replicating data and

processes proactively based on the dynamically chang-
ing availability of resources on the grid [4,30,56,57,
78].

While adaptive process and data migration and repli-
cation can have a large impact on the performance
of grid computing applications, they both assume a
reasonable underlying model of resource usage and
expected future performance and availability of grid
resources. Two mechanisms to predict performance
based on profiling resource usage are the Network
Weather Service (NWS) [90] and the Globus Meta Dis-
covery Service (MDS) [28]. Recent research has de-
vised and evaluated different mechanisms for resource
management in dynamic heterogeneous grid environ-
ments – e.g., see [6,7,10,28,43,49,51,92]. However,
how to map application resource needs onto dynami-
cally changing computational resources in a transparent
and efficient manner is still an open problem. A promis-
ing approach is to use econometric market-driven re-
source exchange based on supply and demand – the
more applications that want to use a resource the more
expensive it is, and conversely the more resources that
are available to applications the cheaper they need to
be to remain competitive. Research in this direction
includes [88,89].

An important consideration when adapting appli-
cations to dynamic grid environments through proac-
tive data and process migration and replication is that
the failure semantics of applications changes consider-
ably. Research on fault detection and recovery through
checkpointing and replication includes [16–18,33,74].
Notice that an application checkpointing mechanism
is necessary for adaptive application migration and
can readily be used for fault tolerance as well. More
fine-grained process-level rather than application-level
checkpointing and migration requires logging mes-
sages in transit to properly restore a distributed appli-
cation state upon failure [33].

2.4. Application-level support for Grid application
development

Although some advances have been made in the area
of application-level support for grid applications, much
work still needs to be done. An MPI implementa-
tion using the Globus Toolkit allows execution of clus-
ter computing programs in grid environments [36,52].
One system that in particular targets numerical relativ-
ity is the Cactus system [7]. Cactus allows users to
write application-specific modules and interface them
to the Cactus framework which can run these modules

258 C.A. Varela et al. / Worldwide computing: Adaptive middleware and programming technology for dynamic Grid environments

on the grid. While enabling communication across het-
erogeneous environments provides an important step
towards enabling grid execution of applications writ-
ten for cluster environments, the latency incurred over
wide area networks makes highly synchronized itera-
tive programs run inefficiently in typical grid environ-
ments (e.g., see [13]). Due to the economic need to
reuse existing application code, most application-level
support for grid computing tries to impose as few re-
quirements as possible on developers [59]. The goal
is that applications delegate distribution issues com-
pletely to middleware, and therefore remain largely un-
changed. However, it is also important to devise higher-
level programming models to enable faster software
development cycles and more efficient and effective
middleware-triggered dynamic application reconfigu-
ration [9,14,45,84]. An open research question is how
to integrate application-level load balancing (as, e.g.,
in adaptive parallel applications [29,34,35,69,72])with
middleware-level load balancing [30] without compro-
mising the efficiency of the former or the transparency
of the latter.

2.5. Programming models and systems for adaptive
parallelism

Adaptive parallelism refers to parallelism that may
change at runtime based on resource availability. Pro-
grams with adaptive parallelism are also said malleable.
Malleability is desirable in Grid environment where
availability of resources may change dynamically. It is
clearly very difficult for the programmer to write mal-
leable programs without suitable programming mod-
els/languages support.

Challenges in supporting such programs involve (1)
designing programming models in which writing mal-
leable programs and reasoning about their correctness
as well as their localities is easy, and (2) implementing
such models with high performance communication
and with scalability.

Message passing models such as MPI and PVM are
good for the programmer to reason about locality (and
thus performance) of parallel programs. On the other
hand, directly adding malleability to this model adds
significant programming complexity because all the
burden of keeping track of memberships and the map-
ping of data to nodes is on the programmer. Phoenix
parallel programming model [79] improves this situ-
ation by introducing communication via abstract (vir-
tual) node names.

Message passing programs are difficult to be made
malleable because they directly expose “processes” at
the programming model level. High-level parallel pro-
gramming models that hide the mapping between com-
putation/data and physical resources are generally more
amenable to adaptive parallelism. This is because the
programmer does not use process names for commu-
nication and the task of mapping computation/data to
resources is in principle up to the system, not the pro-
grammer. They include distributed shared memory and
object-based models. Their challenges are then how
to provide the programmer with a model of locality,
with which s/he can reason about communication per-
formance of programs.

An important class of algorithms that has demon-
strated an efficient utilization of adaptive parallelism
is divide-and-conquer algorithms [15,91]. Such algo-
rithms divide a problem into smaller sub-tasks. Mal-
leability can be achieved relatively easily by dynamic
load balancing based on random- or latency-aware task
stealing. A nice property is that such dynamic load
balancing schemes do not incur much communication
overhead if sub-tasks do not have dependencies among
them (as is typically the case). Furthermore, under this
assumption, fault-tolerance can be achieved relatively
simply, by redoing sub-tasks that are lost.

3. Programming and coordination technology

3.1. Models of computation

The complexity of distributed software development
and the effectiveness of middleware optimizations are
highly dependent on devising high-level programming
and coordination models and languages for distributed
computing. Nondeterminism, asynchrony, and partial
failures make concurrent, distributed and mobile sys-
tems much harder to reason about and develop than se-
quential systems. Theoretical models of concurrency,
mobility and distribution help reason about and imple-
ment open distributed systems. These models are crit-
ical to create appropriate programming abstractions,
languages and middleware for global distributed com-
puting. Two major schools of thought for concurrent
programmingmodels are process algebras and the actor
model.

The main representative of the process algebra
school is the π-calculus [63], a simple yet expressive
and composable model consisting of processes com-
municating through shared channels. The model pro-

C.A. Varela et al. / Worldwide computing: Adaptive middleware and programming technology for dynamic Grid environments 259

vides primitive operations for synchronously reading
or writing from channels, for creating new channels
with scoped names, and for composing concurrent pro-
cesses. The calculus has a well-developed theory, in-
cluding a structural congruence that relates syntacti-
cally equivalent process expressions, an operational se-
mantics that provides rules for the evolution of compu-
tations, and bisimulations that provide for the seman-
tic equivalence of process expressions. The π-calculus
has influenced work in several high-level programming
languages, for example, Pict and Nomadic Pict [67,
87]. Other representative calculi include the join cal-
culus [42] and mobile ambients [21].

The actor model of concurrent computation [1,48]
defines an actor as a unit of concurrency, mobility and
distribution in open systems. An actor encapsulates
state and reacts to asynchronous messages by modi-
fying its internal state, by creating new actors, or by
sending messages to other known actors. The model
assumes guaranteed message delivery and fairness in
scheduling computations. A leading theory of actor
computation [3] views actors as functional components
and models them as expressions in an extended call-
by-value λ-calculus. Open systems are then viewed
as composable actor configurations and an operational
semantics defines valid transitions between configura-
tions. Observational equivalence is used to equate actor
systems. Among other applications, actor systems have
been used for enterprise integration [80], real-time pro-
gramming [70], fault-tolerance [2], coordination [20,
44], and distributed artificial intelligence [31]. The ac-
tor model has also influenced programming language
design – e.g., ABCL, Erlang, THAL and SALSA [12,
54,84,93].

3.2. Coordination models and languages

There has been much recent interest in coordination
models and languages [11,26,27,46,65]. Linda [22] is
a coordination model that uses a globally shared tuple
space as a means of coordination and communication.
Additional work in this direction includes adding types
to tuple spaces for safety, using objects instead of tu-
ples and making tuple spaces first-class entities [50,
53,61]. Many coordination models rely on reflection,
the ability to introspect and customize basic behavior
(e.g., see [62,76,86,93]). Critical characteristics of a
coordination model and language are the separation of
concerns it provides (not intermixing coordination and
computation code) and its ability to scale to large sys-
tems through decentralized communication.

SALSA is a general-purpose actor-oriented coor-
dination language, especially designed to facilitate
the development of dynamically reconfigurable open
distributed applications. In addition to the actor
model’s first-class support for unbound concurrency,
asynchronous message passing, and state encapsula-
tion, SALSA follows a universal naming model with
Internet- and Java-based support for actor migration
and location-transparent message passing. Further-
more, to facilitate coordination of concurrent activities,
SALSA provides three high-level abstractions for pro-
grammers: token-passing continuations, join blocks,
and first-class continuations [84]. The SALSA plat-
form provides an important research testbed to eval-
uate higher-level programming and coordination ab-
stractions. SALSA as a coordination language, can be
used to develop middleware agents that profile the net-
work, exchange information, make distributed resource
management decisions, and reconfigure distributed ap-
plication components written in other conventional pro-
gramming languages such as C++ or Java [60].

While programming and coordination models and
languages help raise the level of abstraction for build-
ing grid computing systems, they do not guarantee
high performance in distributed execution. Compila-
tion technology and middleware research is needed to
ensure efficient execution of distributed applications in
dynamic grid environments.

4. Introduction to the special issue on dynamic
Grids and worldwide computing

Keahey, Foster, Freeman and Zhang introduce the
concepts of virtual workspaces and resource capabil-
ities as abstraction layers between grid resources and
grid applications. These abstractions enable more ef-
ficient matchmaking of distributed resources and ap-
plications and also have the potential for improving
quality of service (QoS) for grid applications. The au-
thors present two potential instantiations of the virtual
workspace abstraction: (i) a dynamic account, repre-
senting a leased UNIX account mapped to a grid user
identity, and (ii) a virtual machine, encapsulating and
virtualizing access to physical machines. The taxon-
omy of virtual workspaces, including an XML Schema
for representing them, can prove to be an important
contribution in the definition, discovery, matching, and
deployment of distributed grid resources. The paper
presents an authoritative futuristic vision of dynamic
grid computing.

260 C.A. Varela et al. / Worldwide computing: Adaptive middleware and programming technology for dynamic Grid environments

Pike, Dorward, Griesemer and Quinlan present a
system for massively parallel analyses of very large
semi-structured data sets. The system contains a front-
end that performs independent computation on locally
stored data chunks, and a back-end that combines the
results from the independent computations into a single
result. While the system leverages results from previ-
ous work – mostly the Google File System (GFS) and
MapReduce/Workqueue – for fault-tolerance and work
distribution, it incorporates two key innovations: (1) a
high-level domain specific language, called Sawzall, to
specify the front-end computations, and (2) a set of so-
called aggregators to efficiently and conveniently com-
pose the partial results. The system has been success-
fully used in relatively simple examples to highlight its
expressive power and value.

Andreozzi, Montessi and Moretti present XMatch, a
query language enabling the expression of user requests
in terms of the expected satisfaction over XML-based
representation of available resources. XMatch enables
users to describe their expectations in regards to Grid
resources in terms of their preferences. It provides an
evaluation method that is the basis for the maximization
of the global preference.

Herrera, Huedo, Montero and Llorente describe their
experiences on porting scientific applications written
in several styles to the Grid environment. They use
a proposed standard for distributed resource manage-
ment API (DRMAA), for a variety of programming id-
ioms, including parameter-sweep applications, master-
worker applications, and workflow.

Jeannot, Caron, Desprez, DelFabbro and Nicod pro-
pose an extension to Grid RPC systems so that data can
persist across multiple remote procedure calls. RPC
is a popular programming style in Grid environments,
but is often inefficient because of the lack of data per-
sistence. That is, all data necessary for the server to
perform their computation must be sent on every RPC,
and all data necessary for the client to continue the
computation must be sent back to the client on every
RPC. They propose an extended API and a scheduler
to lower the cost of data transmission in the Grid RPC
model.

5. Conclusion

Grid systems enable to integrate and even virtu-
alize geographically dispersed resources offered, and
used, by distributed and dynamic virtual organizations.
These resources can belong to domains owned by dif-

ferent organizations, making thus difficult their orches-
trated working. In fact, current Grid implementations
are able to federate worldwide distributed resources
across different domains. Nevertheless, there are a
number of important issues to be addressed in order
to deal with dynamic and adaptive Grid systems. An
aspect to consider is the user-oriented selection of Grid
resources meant as the capability of identifying the re-
sources better fitting the users expectations. Another
aspect concerns the proper configurationof the selected
resources so that the user application can profitably in-
teract with them. The interoperability among different
Grid implementations is also an open issue due to the
lack of adoption of common standards for the manage-
ment and use of the provided resources. Finally, the
definition and study of suitable programming models
for exploiting in a coordinated way several Grid re-
sources is a meaningful aspect as well. The aspects
mentioned above represent the domain of investigation
of this special issue.

Acknowledgements

We would like to thank the authors for their excel-
lent contributions to this special issue, and B. Szyman-
ski and R. Perrott for their guidance and suggestions
in putting the issue together. Two articles were in-
vited and three were selected among eleven submis-
sions. All of them were peer-reviewed and we thank
the following people for volunteering their time to
make this a truly special issue: Sibel Adali, Kento
Aida, Marian Bubak, Rajkumar Buyya, Travis De-
sell, Jim Doherty, John Field, Dan Grigoras, Kenji
Kaneda, Jacek Kitowski, Shiding Lin, Malik Magdon-
Ismail, Kaoutar El Maghraoui, Dave Musser, Hide-
moto Nakada, Tatsuo Nakajima, Keith Power, Marcel
Rosu, Eunice Santos, Atsuko Takefusa, Osamu Tatebe,
Roman Wyrzykowski, and Zheng Zhang.

References

[1] G. Agha, Actors: A Model of Concurrent Computation in
Distributed Systems, MIT Press, 1986.

[2] G. Agha, S. Frolund, R. Panwar and D. Sturman, A linguistic
framework for dynamic composition of dependability proto-
cols. In Dependable Computing for Critical Applications III,
pages 345–363. International Federation of Information Pro-
cessing Societies (IFIP), Elsevier Science Publisher, 1993.

[3] G. Agha, I.A. Mason, S.F. Smith and C.L. Talcott, A founda-
tion for actor computation, Journal of Functional Program-
ming 7 (1997), 1–72.

C.A. Varela et al. / Worldwide computing: Adaptive middleware and programming technology for dynamic Grid environments 261

[4] G. Agha and C. Varela, Worldwide computing middleware, in:
Practical Handbook on Internet Computing, M. Singh, ed.,
CRC Press, 2004, pp. 38.1–21.

[5] W.E. Allcock, J. Bester, J. Bresnahan, A.L. Chervenak, I.T.
Foster, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel and
S. Tuecke, Data management and transfer in high-performance
computational grid environments, Parallel Computing 28(5)
(2002), 749–771.

[6] G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu, T.
Radke, E. Seidel and J. Shalf, The Cactus Worm: Experi-
ments with dynamic resource selection and allocation in a
grid environment, International Journal of High-Performance
Computing Applications 15(4) (2001), 345–358.

[7] G. Allen, T. Dramlitsch, I. Foster, N. Karonis, M. Ripeanu,
E. Seidel, and B. Toonen, Supporting efficient execution in
heterogeneous distributed computing environments with Cac-
tus and Globus. In Supercomputing 2001 (SC 2001), Denver,
November 2001.

[8] T.E. Anderson, D.E. Culler and D.A. Patterson, A Case for
Networks of Workstations: NOW, IEEE Micro 15(1) (Febru-
ary 1995), 54–64.

[9] D. Angulo, R. Aydt, F. Berman, A. Chien, K. Cooper, H. Dail,
J. Dongarra, I. Foster, D. Gannon, L. Johnsson, K. Kennedy, C.
Kesselman, M. Mazina, J. Mellor-Crummey, D. Reed, O. Siev-
ert, L. Torczon, S. Vadhiyar and R. Wolski, Toward a frame-
work for preparing and executing adaptive grid programs, in
International Parallel and Distributed Processing Symposium
(IPDPS 2002), 2002.

[10] D. Angulo, I. Foster, C. Liu and L. Yang, Design and evalua-
tion of a resource selection framework for grid applications,
in IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC-11), Edinburgh, Scotland, July
2002.

[11] F. Arbab and C. Talcott, eds, Fifth International Conference
on Coordination Languages and Models (COORDINATION
’2002), number 2315 in LNCS, Berlin, Springer-Verlag, 2002.

[12] J. Armstrong, The development of Erlang, in Proceedings of
the ACM SIGPLAN International Conference on Functional
Programming, ACM Press, 1997, 196–203.

[13] S. Barnard, R. Biswas, S. Saini, R. Van der Wijngaart, M.
Yarrow, L. Zechter, I. Foster and O. Larsson, Large-scale
distributed computational uid dynamics on the Information
Power Grid using Globus, in The Seventh Symposium on the
Frontiers of Massively Parallel Computation, 1999, 60–71.

[14] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D.
Gannon, L. Johnson, K. Kennedy, C. Kesselman, J. Mellor-
Crummey, D. Reed, L. Torczon and R. Wolski, The GrADS
project: Software support for high-level grid application de-
velopment, International Journal of High-Performance Com-
puting Applications 15(4) (2002), 327–344.

[15] R.D. Blumofe and P.A. Lisiecki, Adaptive and reliable parallel
computing on networks of workstations, in Proceedings of
USENIX ’97 Conference, 1997.

[16] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fdak, C.
Germain, T. Hrault, P. Lemarinier, O. Lodygensky, F. Mag-
niette, V. Nri and A. Selikhov, MPICH-V: Toward a scalable
fault tolerant MPI for volatile nodes, in Supercomputing 2002,
Baltimore, USA, November 2002, 1–18.

[17] A. Bouteiller, F. Cappello, T. Hrault, G. Krawezik, P.
Lemarinier and F. Magniette, MPICH-V2: A fault tolerant
MPI for volatile nodes based on the pessimistic sender based
message logging, in Supercomputing 2003, Phoenix, USA,
November 2003.

[18] A. Bouteiller, P. Lemarinier, G. Krawezik and F. Cappello,
Coordinated checkpoint versus message log for fault tolerant
MPI, in Cluster 2003, Hong Kong, China, December 2003.

[19] P. Buonadonna, A. Geweke and D.E. Culler, An implemen-
tation and analysis of the Virtual Interface Architecture, in
Proceedings of Supercomputing ’98, Orlando, FL, November
1998.

[20] C. Callsen and G. Agha, Open Heterogeneous Computing in
ActorSpace, Journal of Parallel and Distributed Computing
(1994), 289–300.

[21] L. Cardelli and A.D. Gordon, Mobile Ambients, in Foundations
of System Specification and Computational Structures, LNCS
1378, Springer Verlag, 1998, 140–155.

[22] N. Carriero and D. Gelernter, How to Write Parallel Programs,
MIT Press, 1990.

[23] K.M. Chandy, A. Rifkin, P.A.G. Sivilotti, J. Mandelson, M.
Richardson, W. Tanaka and L. Weisman, A World-Wide Dis-
tributed System Using Java and the Internet, in Proceedings of
the Fifth IEEE International Symposium on High Performance
Distributed Computing, New York, USA, Aug. 1996.

[24] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek,
A. Iamnitchi, C. Kesselman, P. Kunst, M. Ripeanu, B.
Schwartzkopf, H. Stockinger, K. Stockinger and B. Tierney,
Giggle: A framework for constructing scalable replica loca-
tion services, in Supercomputing 2002 (SC2002), November
2002.

[25] A.L. Chervenak, N. Palavalli, S. Bharathi, C. Kesselman and
R. Schwartzkopf, Performance and scalability of a replica
location service, in International IEEE Symposium on High
Performance Distributed Computing, June 2004.

[26] P. Ciancarini and C. Hankin, eds, First International Confer-
ence on Coordination Languages and Models (COORDINA-
TION ’96), number 1061 in LNCS, Berlin, Springer-Verlag,
1996.

[27] P. Ciancarini and A. Wolf, eds, Third International Conference
on Coordination Languages and Models (COORDINATION
’99), number 1594 in LNCS, Berlin, Springer-Verlag, April
1999.

[28] K. Czajkowski, S. Fitzgerald, I. Foster and C. Kesselman,
Grid information services for distributed resource sharing,
in 10th IEEE International Symposium on High-Performance
Distributed Computing (HPDC-10), August 2001.

[29] H.L. de Cougny, K.D. Devine, J.E. Flaherty, R.M. Loy, C.
Özturan and M.S. Shephard, Load balancing for the parallel
adaptive solution of partial differential equations, Appl. Numer.
Math. 16 (1994), 157–182.

[30] T. Desell, K. El Maghraoui and C. Varela, Load balancing
of autonomous actors over dynamic networks, in Proceedings
of the Hawaii International Conference on System Sciences,
HICSS-37 Software Technology Track, January 2004, 1–10.

[31] J. Ferber and J. Briot, Design of a concurrent language for
distributed artificial intelligence, in Proceedings of the Inter-
national Conference on Fifth Generation Computer Systems,
volume 2, Institute for New Generation Computer Technology,
1988, 755–762.

[32] J. Field and C. Varela, Toward a programming model for build-
ing reliable systems with distributed state, Electronic Notes
in Theoretical Computer Science 68(3) (March 2003), 1–19.
http://www.elsevier.nl/locate/entcs/volume68.html.

[33] J. Field and C. Varela, Transactors: A programming model for
maintaining globally consistent distributed state in unreliable
environments, in Conference on Principles of Programming
Languages (POPL 2005), 2005, 195–208.

262 C.A. Varela et al. / Worldwide computing: Adaptive middleware and programming technology for dynamic Grid environments

[34] J.E. Flaherty, R.M. Loy, C. Özturan, M.S. Shephard, B.K.
Szymanski, J.D. Teresco and L.H. Ziantz, Parallel structures
and dynamic load balancing for adaptive finite element com-
putation, Appl. Numer. Math. 26 (1998), 241–263.

[35] J.E. Flaherty, R.M. Loy, M.S. Shephard, B.K. Szymanski, J.D.
Teresco and L.H. Ziantz, Adaptive local refinement with octree
load-balancing for the parallel solution of three-dimensional
conservation laws, J. Parallel Distrib. Comput. 47 (1997),
139–152.

[36] I. Foster, J. Geisler, W. Gropp, N. Karonis, E. Lusk, G. Thiru-
vathukal and S. Tuecke, A wide-area implementation of the
Message Passing Interface, Parallel Computing 24(12) (1998),
1735–1749.

[37] I. Foster and C. Kesselman, The Globus Project: A Status
Report, in: Proceedings of the Seventh Heterogeneous Com-
puting Workshop (HCW ’98), J. Antonio, ed., IEEE Computer
Society, March 1998, pp. 4–18.

[38] I. Foster and C. Kesselman, Globus: A toolkit-based grid
architecture, in The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, 1999, 259–278.

[39] I. Foster, C. Kesselman, J. Nick and S. Tuecke, Grid services
for distributed systems integration, IEEE Computer 35(6)
(June 2002), 37–46.

[40] I. Foster, C. Kesselman, J. Nick and S. Tuecke, The Physiol-
ogy of the Grid: An Open Grid Services Architecture for Dis-
tributed Systems Integration, Open Grid Service Infrastructure
WG, Global Grid Forum, June 2002.

[41] I. Foster, C. Kesselman, G. Tsudik and S. Tuecke, A security
architecture for computational grids, in Proc. 5th ACM Con-
ference on Computer and Communications Security Confer-
ence, 1998, 83–92.

[42] C. Fournet and G. Gonthier, The re exive CHAM and the join-
calculus, In Proceedings of the ACM Symposium on Princi-
ples of Programming Languages, ACM Press, Paris, January
1996.

[43] J. Frey, T. Tannenbaum, I. Foster, M. Livny and S. Tuecke,
Condor-G: A computation management agent for multi-
institutional grids, Cluster Computing 5(3) (2002), 237–246.

[44] S. Frolund, Coordinating Distributed Objects: An Actor-
Based Approach to Synchronization, MIT Press, 1996.

[45] D. Gannon, R. Bramley, G. Fox, S. Smallen, A. Rossi, R.
Ananthakrishnan, F. Bertrand, K. Chiu, M. Farrellee, M.
Govindaraju, S. Krishnan, L. Ramakrishnan, Y. Simmhan,
A. Slominski, Y. Ma, C. Olariu and N. Rey-Cenevaz, Pro-
gramming the Grid: Distributed Software Components, P2P
and Grid Web Services for Scientific Applications, Journal of
Cluster Computing (2002).

[46] D. Garlan and D. Le Metayer, eds, Second International Con-
ference on Coordination Languages and Models (COORDI-
NATION ’97), number 1282 in LNCS, Berlin, Springer-Verlag,
1997.

[47] A.S. Grimshaw, W.A. Wulf and “the Legion team”, The legion
vision of a worldwide virtual computer, Communications of
the ACM 40(1) (January 1997), 39–45.

[48] C. Hewitt, Viewing control structures as patterns of passing
messages, Journal of Artificial Intelligence 8(3) (June 1977),
323–364.

[49] A. Iamnitchi and I. Foster, On fully decentralized resource
discovery in grid environments, in International Workshop on
Grid Computing, Denver, Colorado, USA, November 2001.

[50] S. Jagannathan, Customization of first-class tuple spaces in
a higher-order language, in: PARLE ’91, volume 2, number
506 in LNCS, E.H.L. Arts, J. van Leeuwen and M. Rem, eds,
Springer-Verlag, 1991.

[51] N. Karonis, B. de Supinski, I. Foster, W. Gropp, E. Lusk
and J. Bresnahan, Exploiting hierarchy in parallel computer
networks to optimize collective operation performance, in
14th International Parallel Distributed Processing Symposium
(IPDPS’00), Cancun, Mexico, May 2000, 377–384,

[52] N. Karonis, B. Toonen and I. Foster, MPICH-G2: A grid-
enabled implementation of the Message Passing Interface, J.
Parallel Distrib. Comput. 63(5) (2003), 551–563.

[53] T. Kielmann, Designing a coordination model for open sys-
tems. In Ciancarini and Hankin [26], 267–284.

[54] W. Kim, THAL: An Actor System for Efficient and Scalable
Concurrent Computing, PhD thesis, University of Illinois at
Urbana-Champaign, May 1997.

[55] F. Kon, R.H. Campbell, M.D. Mickunas, K. Nahrstedt and F.J.
Ballesteros, 2K: A Distributed Operating System for Dynamic
Heterogeneous Environments, in Proceedings of the 9th IEEE
International Symposium on High Performance Distributed
Computing (HPDC’9), Pittsburgh, August 2000, 201–208.

[56] H. Lamehamedi, Z. Shentu, B.K. Szymanski and E. Deel-
man, Simulation of dynamic data replication strategies in data
grids, in Proceedings of the 12th Heterogeneous Computing
Workshop, 2003.

[57] H. Lamehamedi, B.K. Szymanski and E. Deelman, Data repli-
cation strategies in grid environments, in Proceedings of the
Int. Conference on Algorithms and Architectures for Parallel
Processing, 2002, 378–383.

[58] M. Litzkow, M. Livny and M. Mutka, Condor – a hunter
of idle workstations, in Proceedings of the 8th International
Conference of Distributed Computing Systems, June 1988,
104–111.

[59] K. El Maghraoui, J. Flaherty, B. Szymanski, J. Teresco and
C. Varela, Adaptive computation over dynamic and hetero-
geneous networks, in Proc. of the Fifth International Con-
ference on Parallel Processing and Applied Mathematics
(PPAM’2003), number 3019 in LNCS, Czestochowa, Poland,
September 2003.

[60] K. El Maghraoui, T. Desell, B.K. Szymanski, J.D. Teresco and
C.A. Varela, Towards a middleware framework for dynami-
cally reconfigurable scientific computing, in: Grid Comput-
ing and New Frontiers of High Performance Processing, L.
Grandinetti, ed., Elsevier, 2005.

[61] S. Matsuoka and S. Kawai, Using tuple space communica-
tion in distributed object-oriented languages, in ACM Confer-
ence Proceedings, Object Oriented Programming Languages,
Systems and Applications, San Diego, CA, 1988, 276–284.

[62] S. Matsuoka, T. Watanabe and A. Yonezawa, Hybrid group
re ective architecture for object-oriented concurrent re ective
programming, in Proceedings of the European Conference on
Object-Oriented Programming, number 512 in LNCS, 1991,
231–250.

[63] R. Milner, J. Parrow and D. Walker, A calculus of mobile
processes, parts I–II, Information and Computation 100(1)
(1992), 1–77.

[64] M. Nibhanapudi and B.K. Szymanski, High Performance
Cluster Computing, volume I of Architectures and Systems,
chapter BSP-based Adaptive Parallel Processing, Prentice
Hall, New York, 1999, 702–721.

[65] R. De Nicola and G. Meredith, eds, Sixth International Confer-
ence on Coordination Languages and Models (COORDINA-
TION ’2004), number 2949 in LNCS, Berlin, Springer-Verlag,
2004.

[66] V. Pande et al., Atomistic protein folding simulations on the
submillisecond timescale using worldwide distributed com-
puting. Biopolymers, 2002. Peter Kollman Memorial Issue.

C.A. Varela et al. / Worldwide computing: Adaptive middleware and programming technology for dynamic Grid environments 263

[67] B.C. Pierce and D.N. Turner, Pict: A Programming Language
Based on the Pi-Calculus, in: Proof, Language and Interac-
tion: Essays in Honour of Robin Milner, G. Plotkin, C. Stirling
and M. Tofte, eds, MIT Press, 2000, pp. 455–494.

[68] K. Ranganathan and I. Foster, Identifying dynamic replica-
tion strategies for high performance data grids, in Interna-
tional Workshop on Grid Computing, Denver, Colorado, USA,
November 2002.

[69] J.-F. Remacle, J.E. Flaherty and M.S. Shephard, An adaptive
discontinuous Galerkin technique with an orthogonal basis
applied to compressible ow problems, SIAM Review 45(1)
(2003), 53–72.

[70] S. Ren, G.A. Agha and M. Saito, A modular approach for pro-
gramming distributed real-time systems, Journal of Parallel
and Distributed Computing 36 (1996), 4–12.

[71] M. Ripeanu and I. Foster, A decentralized, adaptive, replica
location service, in 11th IEEE International Symposium on
High Performance Distributed Computing (HPDC-11), Edin-
burgh, Scotland, July 2002.

[72] M.S. Shephard, J.E. Flaherty, C.L. Bottasso, H.L. de Cougny,
C. Özturan and M.L. Simone, Parallel automatic adaptive anal-
ysis, Parallel Comput 23 (1997), 1327–1347.

[73] O. Sievert and H. Casanova, A simple MPI process swapping
architecture for iterative applications, International Journal of
High Performance Computing Applications (2003).

[74] P. Stelling, I. Foster, C. Kesselman, C. Lee and G. von
Laszewski, A Fault Detection Service for Wide Area Dis-
tributed Computations, in Proceedings of the 7th IEEE Inter-
national Symposium on High Performance Distributed Com-
puting, Chicago, IL, 28-31 July 1998, 268–278.

[75] H. Stockinger, A. Samar, B. Allcock, I. Foster, K. Holtman and
B. Tierney, File and object replication in data grids, Journal
of Cluster Computing 5(3) (2002), 305–314.

[76] D.C. Sturman and G. Agha, A protocol description language
for customizing failure semantics, in Proceedings of the 13th
Symposium on Reliable Distributed Systems, IEEE Computer
Society Press, October 1994.

[77] W.T. Sullivan, D. Werthimer, S. Bowyer, J. Cobb, D. Gedye
and D. Anderson, A New Major SETI Project based on project
SERENDIP data and 100,000 Personal Computers, in Pro-
ceedings of the Fifth International Conference on Bioastron-
omy, Editrice Compositori, Bologna, Italy, 1997.

[78] B. Szymanski, C. Varela, J. Cummings and J. Napolitano,
Dynamically reconfigurable scientific computing on large-
scale heterogeneous grids, in Proc. of the Fifth International
Conference on Parallel Processing and Applied Mathematics
(PPAM’2003), LNCS 3019, Czestochowa, Poland, September
2003.

[79] K. Taura, K. Kaneda and T. Endo, Phoenix: a Paral-
lel Programming Model for Accommodating Dynamically
Joininig/Leaving Re-sources, in Proc. of PPoPP, ACM, 2003,
216–229.

[80] C. Tomlinson, P. Cannata, G. Meredith and D. Woelk, The
extensible services switch in Carnot, IEEE Parallel and Dis-
tributed Technology 1(2) (May 1993), 16–20.

[81] S.S. Vadhiyar and J.J. Dongarra, A performance oriented mi-
gration framework for the grid, In CCGrid, IEEE Computing
Clusters and the Grid, Tokyo, Japan, may 2003.

[82] S.S. Vadhiyar and J.J. Dongarra, SRS – a framework for devel-
oping malleable and migratable parallel applications for dis-
tributed systems, International Journal of High Performance
Applications 2003 and Super-computing 2003 (2003).

[83] A. Vahdat, T. Anderson, M. Dahlin, D. Culler, E. Belani,
P. Eastham and C. Yoshikawa, WebOS: Operating System
Services For Wide Area Applications, in Proceedings of the
Seventh IEEE Symposium on High Performance Distributed
Computing, July 1998.

[84] C. Varela and G. Agha, Programming dynamically re-
configurable open systems with SALSA. ACM SIG-
PLAN Notices, OOPSLA’2001 Intriguing Technology
Track Proceedings 36(12) (December 2001), 20–34.
http://www.cs.rpi.edu/?cvarela/oopsla2001.pdf.

[85] S. Vazhkudai, S. Tuecke and I. Foster, Replica selection in the
Globus Data Grid, in First IEE/ACM International Conference
on Cluster Computing and the Grid (CCGrid 2001), May 2001,
106–113.

[86] T. Watanabe and A. Yonezawa, An actor-based meta-level ar-
chitecture for group-wide re ection, in: Foundations of Object-
Oriented Languages, number 489 in LNCS, J.W. deBakker,
W.P. deRoever and G. Rozenberg, eds, Springer-Verlag, 1990,
pp. 405–425.

[87] P. Wojciechowski and P. Sewell, Nomadic Pict: Language
and Infrastructure Design for Mobile Agents, in First In-
ternational Symposium on Agent Systems and Applications
(ASA’99)/Third International Symposium on Mobile Agents
(MA’99), Palm Springs, CA, USA, 1999.

[88] R. Wolski, J. Plank, J. Brevik and T. Bryan, G-commerce:
Market formulations controlling resource allocation on the
computational grid, in International Parallel and Distributed
Processing Symposium, March 2001.

[89] R. Wolski, S. Plank, T. Bryan and J. Brevik, Analyzing market-
based resource allocation strategies for the computational grid,
International Journal of High Performance Computing Appli-
cations 15(3) (2001), 258–281.

[90] R. Wolski, N.T. Spring and J. Hayes, The Network Weather
Service: A distributed resource performance forecasting ser-
vice for metacomputing, Future Generation Comput. Syst.
15(5–6) (October 1999), 757–768.

[91] G. Wrzesińska, R.V. van Nieuwpoort, J. Maassen and H. Bal,
Fault-tolerant, malleability, and migration for divide-and-
conquer applications on the grid, in Proceedings of IPDPS
2005, 2005.

[92] L. Yang, J.M. Schopf and I. Foster, Conservative scheduling:
Using predicted variance to improve scheduling decisions in
dynamic environments, In Supercomputing 2003 (SC2003),
November 2003.

[93] A. Yonezawa, ed., ABCL An Object-Oriented Concurrent Sys-
tem, MIT Press, Cambridge, Mass., 1990.

