Global snapshot of a distributed system running on virtual machines

Carlos E. Gémez*¥, Harold E. Castro* and Carlos A. Varela®
*Universidad de Los Andes - Bogotd, Colombia; tRensselaer Polytechnic Institute - Troy New York, USA;
YUniversidad del Quindio - Armenia, Colombia
ce.gomezl0@uniandes.edu.co, hcastro@uniandes.edu.co, cvarela@cs.rpi.edu

Abstract—Recently, a new concept called desktop cloud
emerged, which was developed to offer cloud computing ser-
vices on non-dedicated resources. Similarly to cloud computing,
desktop clouds are based on virtualization, and like other
computational systems, may experience faults at any time. As a
consequence, reliability has become a concern for researchers.
Fault-tolerance strategies focused on independent virtual ma-
chines include snapshots (checkpoints) to resume the execution
from a healthy state of a virtual machine on the same or
another host, which is trivial because hypervisors provide this
function. However, it is not trivial to obtain a global snapshot of
a distributed system formed by applications that communicate
among them because the concept of global clock does not exist,
so it can not be guaranteed that snapshots of each VM will be
taken at the same time. Therefore, some protocol is needed to
coordinate the participants to obtain a global snapshot. In this
paper, we propose a global snapshot protocol called UnaCloud
Snapshot for its application in the context of desktop clouds
over TCP/IP networks. That differs from other proposals
that use a virtual network to inspect and manipulate the
traffic circulating among virtual machines making it difficult
to apply them to more realistic environments. We obtain a
consistent global snapshot for a general distributed system
running on virtual machines that maintains the semantics of
the system without modifying applications running on virtual
machines or hypervisors. A first prototype was developed and
the preliminary results of our evaluation are presented.

Keywords-global snapshot; checkpointing; reliability; fault
tolerance; global states.

I. INTRODUCTION

Recently, a new concept called desktop cloud (DC)
emerged, which was developed to offer cloud computing
services on non-dedicated resources. According to [1], DC
originates by merging the concepts of cloud computing and
desktop grid (DG) while [2], [3] suggest that this paradigm
originates by combining the advantages of cloud computing
and the benefits of volunteer computing (VC). The DC
systems goal is to provide cloud computing services without
using dedicated resources as traditional cloud infrastructures
that require specialized data centers. DC systems take ad-
vantage of the unused processing capacity of computers
while users perform their daily activities [3], given that
users use very few computational resources when they are
in interactive sessions [4], [5], [6] or when computers are
fully available. DC is a form of distributed processing
which provides an inexpensive or free computing platform

whose resources can be aggregated for projects such as
scientific projects. The infrastructure is created from shared
computational resources of participants when they are totally
or partially idle.

DCs, like other computer systems, may experience faults
at any time, especially because they run on non-dedicated
resources. In this paper, we propose a global snapshot
protocol called UnaCloud Snapshot for its application in
the context of DCs. This work aims at increasing the
service level of DCs through reliability and fault tolerance
to diversify the range of applications that can utilize these
systems, and running unattended applications, thereby facil-
itating the successful completion of Virtual Machine (VM)
deployments, especially those whose execution is scheduled
for several days or weeks. New applications could be built
to run on such infrastructure. Applications can benefit from
the ability to provide reliable service despite the volatility
of the physical machines, for example, distributed systems
formed by applications that communicate among them.

To validate the work, we use UnaCloud [7], the DC of
Universidad de Los Andes (Bogotd, Colombia). UnaCloud
is a project in constant development, and it has been the
technological support for executing Bag-of-Tasks (BoT)
applications in research projects and doctoral theses in
several areas [8]. However, UnaCloud currently operates in
a best effort way and lack of reliability is one of its main
weaknesses.

The paper is organized as follows. Section II talks about
the background of the paper. Section III includes the related
work. Our approach to carry out the research is described
in section IV. The preliminary evaluation, the results and
discussion are presented in section V. The conclusion and
future work are in the final section.

II. BACKGROUND

In this section, relevant concepts are introduced to
contextualize this research work, namely, desktop cloud,
UnaCloud, checkpointing and Global Snapshot Algorithms.

A. Desktop Cloud

DC is a computational paradigm that originates by com-
bining VC or DG systems and cloud computing [2], [3].
The goal of a DC system is to make available shared



resources to users for providing cloud computing services
without using dedicated resources. Similar to DG or VC,
DC systems use idle computing capacity of the participant
computers. DC is based on virtualization technologies, and
it can provide processing, storage, networks, applications
and services from VMs running operating systems with their
respective applications. DC systems are designed to provide
cloud computing essential services according to [9]: On-
demand self-service, network access, resource pooling, rapid
elasticity and measured service.

DC and cloud computing providers offer and manage
services for their users differently. Traditional providers rely
on specialized data centers, while DC systems use non-
dedicated resources, with some degree of heterogeneity. In
addition, traditional providers offer users a wider range
of tools and have more robust solutions enabling them to
meet their Service Level Agreements (SLA). Other services
available in cloud providers are monitoring and billing.
Conversely, DCs have a smaller variety of services, but for
certain needs can perform assigned work successfully with
lower costs and in some cases completely free [10]. It is
important to note that DC is a concept, it is not a product,
so its features depend on the implementation. Such is the
case of UnaCloud, which will be described in the following
section.

B. UnaCloud

UnaCloud is an opportunistic virtualization-based DC
developed at Universidad de Los Andes in Bogot4, Colombia
[7]. UnaCloud uses the idle resources of computers that are
part of the computer rooms managed by the Department
of Systems and Computing Engineering in order to support
computing needs of research groups at the same university.
UnaCloud is an active project in continuous development
and corresponds to its own implementation, unlike most sim-
ilar systems based-on BOINC, the most popular volunteer
computing system.

The UnaCloud testbed consists of three computer labs
with 105 computers for undergraduate and master’s pro-
grams. Computers that are currently serving students have
recent technology. The aggregated capacity is significant and
it could be used for processing and storage [6].

UnaCloud has been used for the execution of BoT appli-
cations, which are independent and have no communication
among them. BoT are applications where the problem space
is divided into smaller tasks that can be executed in parallel
[11]. They are temporary applications whose duration is
determined by the amount of data that must be processed
and can be used in solving scientific problems. To date,
research projects and doctoral theses in different areas such
as Chemistry, Bioinformatics, Industrial Engineering and
Civil Engineering have used UnaCloud [8].

Despite the amount of work carried out on UnaCloud,
so far the reliability and fault tolerance have not been

considered among their requirements, since UnaCloud is a
best effort service. Consequently, it has made little effort
to record faults that have been presented in UnaCloud
deployments. Moreover, in the current implementation, a
monitoring system is in development process. It records
resource consumption and keeps track of the hosts that are
running VMs. However, it is the user’s responsibility to track
VMs that are running and restore them manually in case
of fault. Therefore, having a fault tolerance mechanism in
UnaCloud allows it to be extended to increase the range
of applications that can be run, and an automatic fault
recovery function will facilitate the successful completion
of a distributed system running on VMs.

C. Checkpointing

Checkpointing is a fault tolerance strategy that has two
components: a proactive component called checkpoint and
a reactive one called restart. The checkpoint component
saves the state of a system to resume it from that state
when a fail occurs without having to start again from the
very beginning. Naturally, if the system is resumed from
a checkpoint, nothing performed on the system after the
checkpoint was taken is included, so those modifications will
be lost. Checkpointing can be full or incremental [12]. The
first is the procedure through which every time it is invoked,
it saves the complete state of the system. The second saves
the system state from modifications after the last checkpoint
instead of saving the entire checkpoint. So, it is necessary
to keep the files of all previous checkpoints to be possible
to resume the execution.

Several techniques to checkpoint distributed applications
have been used by different researchers, namely, application-
level, library-level, system-level, and virtualization-level
checkpointing [13], [14], [15].

Application-level checkpointing is used when the source
code of the application and the developers are available. In
this case, developers must add lines of code to program
the checkpoint and restart functionalities and verify that
these modifications do not affect the rest of the application.
This technique is not transparent to applications because it
requires modify the application code.

Library-level checkpointing functions linking the applica-
tion code to a checkpointing library such as BLCR! [13],
[16]. This approach does not force to modify the application,
but is strongly coupled with a specific environment [13]. As
a result, portability is not the best attribute of the library-
level checkpointing. However, its main advantage is that the
overhead is marginal.

System-level checkpointing is an approach that rely on
modifications made to the kernel of the operating system or
the load of certain modules. This solution is very specific
and less portable than the previous one, and needs to have

Berkeley Lab Checkpoint/Restart



staff with specialized knowledge and consider particularities
of the environment employed [13], [15].

Virtualization-level checkpointing is a functionality pro-
vided by all hypervisors, in which the entire state of a VM
is stored in a storage medium to form a checkpoint with
the possibility of using it later at any time to resume its
execution from that state. A VM checkpoint stores all disks
attached to the VM, the memory state, and the metadata
needed to configure the VM at the moment of resuming its
execution [17]. Although this technique is flexible, and it is
possible to take a checkpoint from one machine and restart
it on another, portability of checkpoints among hypervisors
is not available due the lack of standardization.

D. Global Snapshot Algorithms

Global snapshot algorithms are essential for distributed
computing. Chandy and Lamport [18] presented the concept
of distributed snapshots to determine a global state of a
distributed system from the states of the processes (local
states) and the states of communication channels among the
processes.

Since in a distributed system the concepts of globally
shared memory or global clock do not exist, and the network
causes unavoidable and unpredictable delays, local states of
the processes in distributed system are not recorded at the
same time [19]. Therefore, to obtain a global state, some
coordination among the participants is required [20].

1) Notation and definitions: A global state (GS) of a
distributed system, consisting of n processes and commu-
nication channels among them, is a set of the local states
(LS) of the processes along with the channel states (C'S)
[18]. That is, GS = {LS, UCS,;} where 0 < i,j < n
represent the processes in the system, LS; represents the
local state of the process i, and C'S; ; represents the state
of the unidirectional channel between the processes 7 and j.

Whenever a message sending or receiving event or inter-
nal event occurs, the state of a process changes. Therefore,
the state of a process at a given moment is the consequence
of the events executed until that moment. If any event occurs
later, it does not belong to that state. A message is in transit
(it belongs to the channel state) if it has been sent by a
process and has not yet been delivered to the destination.

According to [19], there are two conditions required for
a global state to be consistent:

o If a message that has been sent by process ¢ to process
7 belongs to the local state of the sender process, then
either the message is part of the local state of the
channel that goes from ¢ to j (it is in the channel),
or the message is received by the receiver process and
is part of its local state.

o If a message that has been sent by process ¢ does not
belong to the local state of the sender process (it was
sent after recording L.S;), neither the message is part of

the channel state from ¢ to j, nor the message received
is part of the receiver’s local state.

In according to [14], a consistent global state would be the
set of the states of the distributed processes and channels if
they were recorded at the same time, which is not possible.
Instead, authors of [14] uses the concept of “a possible
causally consistent global state” that can be obtained upon
a consistent cut of events. A cut of events can be seen
graphically in a time diagram. In a time diagram, each
process has a timeline that is drawn as a horizontal line
where time progresses from left to right. Points represent
events and arrows represent messages that are sent between
two processes. A cut is a sequence of events (one per
process) where each event (called cutting events) divides the
process history into two parts, the past and the future. Thus,
some events occurred before the cutting event and others
occur later. A cut is consistent if there are no messages sent
in the future that reach their destination in the past [14],[20].

A B
1 S
Py 7 >
1
m, m;
A FUTURE
C D : LN &> LN
P, ~ESNOF i
~
~

M3 mys N

|
P ® — >

2 G 1 H “time
Figure 1. Cut of events

Figure 1 shows an example of a cut of events for a
distributed system formed by three processes: Py, P; and
P5. Dashed line represents the cut of events. This picture
does not correspond to a consistent cut of events because
my is sent from P, after the cutting of events and m; is
received by P before. In this picture, m; is an example of
a message sent in the future and received in the past.

The challenge here is to determine not only which mes-
sages are included in each local snapshot but also when each
process should do so, to satisfy the conditions required for
a global state to be consistent [19].

To obtain a consistent global snapshot, there are two main
approaches: Chandy and Lamport’s algorithm for FIFO?
communication channels [18] and Mattern’s algorithm for
Non-FIFO communication channels [20], which are de-
scribed as follows.

2) Chandy and Lamport’s Global Snapshot Algorithm: In
1985, Chandy and Lamport proposed their recognized algo-
rithm for computing a consistent global state of a distributed
system at runtime with FIFO communication channels [18].
According to the authors, a global state consists of the local
states of the processes and the communication channels
among them.

2Firt-In Firt-Out



The algorithm assumes that:

o There are n processes forming a completely connected
network, so each pair of processes have two unidirec-
tional reliable and FIFO channels for communication
between them, so all messages arrive correct, only once,
and in-order.

« Any process can initiate the execution of the algorithm
without stopping the processes.

The general idea of the Chandy and Lamport’s algorithm
is that a process records its local state and immediately sends
a special message called marker to all other processes. A
marker establishes the boundary between messages that are
sent before and after a process records its local state.

When a process receives a marker:

o If the process has not recorded its local state: The
process records its local state; the process records the
state of the channel through which it received the
marker as an empty message sequence; the process
starts recording the messages that arrive through the
other channels; and the process sends a marker to all
other processes in the system.

« If the process had already recorded its local state, the
process records the state of the channel through which
it received the marker as the sequence of messages
received by that channel until it received the marker.

When all processes have received a marker sent by each of
the other processes, the global state is complete. If needed,
a storage solution can be used to collect the files to manage
them more easily.

3) Mattern Algorithm: On the other hand, Mattern in
1993 proposed an algorithm to calculate a causally con-
sistent global state of a distributed system with non-FIFO
channels. The algorithm is based on the Lai and Yang
scheme [21] that consists of sending state information within
the application messages (piggybacked). According to the
Lai and Yang scheme, processes and messages use two
colors, white, to indicate that a process has not recorded
its local state, and red to indicate that it has already done
so. This way, at the beginning, each process is white and
becomes red after recording its local state. The color of a
message is the color of the process that sends it, that is, a
message sent by a white process is white and a message
sent by a red process is red. In addition, a local snapshot
can be taken by a process at any time, whenever before a
red message can be received. The color is represented by
a bit and is included in the messages that the applications
exchange. Mattern introduced a third color that allows the
algorithm to be executed repeatedly by always leaving an
available color. The colors are represented by the values 0,
1 and 2 in a circular form.

III. RELATED WORK

Several works have been published around the consistent
snapshots for entire systems. The most relevant are VCCP

[15], based on [18], and VIOLIN Snapshot [14], based
on [20], which have adapted these algorithms to obtain
global snapshots of distributed systems running on virtual
machines, as shown in Figure 2.

Type of channels
Type of hosts
Physical Machines
| virtual Machines

FIFO Non-FIFO

Mattern
| VIOLIN Snapshot |

Chandy and Lamport
[ VCeP

Figure 2. Related Work

VCCP: A Transparent, Coordinated Checkpointing System
for Virtualization-based Cluster Computing is a transparent
checkpointing system for distributed applications that run
on a cluster of VMs. VCCP is inspired by the Chandy
and Lamport global snapshot algorithm [18]. This system is
supported by a virtual network that guarantees reliability and
FIFO communication channels. The virtual network allows
VCCP to control data link layer frames that move the mes-
sages between adjacent devices. Thereby, the coordination
among participant nodes is implemented in the data link
layer rather than the application layer. The algorithm has
an initiator and includes a pause in the VMs to prevent the
transmission of messages while capturing the snapshot.

The contributions of VCCP are: A layered architecture to
separate the main functionalities, the checkpointing mech-
anism to obtain the global snapshot, and the correctness
analysis of the solution.

On the other hand, VIOLIN Snapshot is a work designed to
achieve a consistent global snapshot for a distributed system
running on VMs without modifying the applications running
on them.

VIOLIN is a virtual network environment that provides
the same services of a physical network. VMs are connected
via VIOLIN switches, and there is one switch on each host.
VIOLIN switches intercept traffic between VMs and send
Ethernet frames through UDP? tunneling to the destination
VM if it is running on another PM.

VIOLIN Snapshot simplifies Mattern’s global snapshot al-
gorithm for systems with non-FIFO communication channels
[2]. VIOLIN snapshot, similar to VCCP, is supported by a
virtual network, which is used to control the data link layer
frames. The virtual network is called VIOLIN and formed
by VIOLIN switches. The data link frames are intercepted to
identify the piggybacked colors in application messages to
know if a message was sent before or after that the the local
snapshot was taken by the sender VIOLIN switch. After that,
the VIOLIN switch forwards the traffic to the destination by
UDP tunneling or discards it to prevent a frame that does
not belong to the global snapshot reaches its destination if
the local snapshot has not been taken.

The contributions of VIOLIN Snapshot are: the adaptation
of a classical theoretical algorithm to a practical scenario,

3User Datagram Protocol



and the explanation about its correctness.

VCCP shares some characteristics with VIOLIN Snap-
shot. Both of them are designed to work without modifying
the applications running on the VMs. Similarly, VCCP and
VIOLIN Snapshot use a custom virtual network through
which traffic is intercepted. On the other hand, there are
aspects in which they differ. VCCP is inspired by the Chandy
and Lamport’s algorithm and is oriented to systems with
FIFO channels, while VIOLIN snapshot is inspired by the
Mattern’s algorithm and as a result, it obtains a global
snapshot on systems with channels that can not guarantee
FIFO property. In addition, VCCP uses control messages
called markers, while VIOLIN snapshot uses piggybacking
to implement the concept of colors in messages. VCCP
pauses execution of the VMs and VIOLIN snapshot does
not; and VCCP logic is implemented in nodes while the VI-
OLIN Snapshot logic is implemented in VIOLIN switches.

We identified some opportunities upon analyzing VIOLIN
Snapshot. VIOLIN switches causes additional consumption
of resources, a bottleneck that increases latency, and of
course, a single point of failure on each host. In addition,
when using UDP tunnels to send frames passing from one
PM to another, reliability can be affected if the application
running on the VMs uses TCP* as the transport protocol. The
overhead and latency caused by encapsulation is increased.
Therefore, considering the valuable work done by [14] in
the VIOLIN Snapshot solution, along with the improvement
opportunities identified, we are proposing our system of
global snapshot, which is presented in next section.

IV. APPROACH

One of the challenges of DC systems is their ability to
provide reliable services running on unreliable infrastructure
because their computational resources are non-dedicated,
heterogeneous and may present high volatility. In this work,
we propose a checkpointing based fault tolerance approach
for DC systems that execute distributed systems formed by
applications communicating among them.

This work emerges from the need to ensure that the
execution of a distributed system on a DC can finalize
successfully. This is important because after an execution
is interrupted, the work on the compromised VMs can be
lost if the DC is not prepared to face this situation. We
aim to increase the service level and diversify the range
of applications that can utilize these systems. Moreover, it
enables running unattended applications on a DC. We obtain
a consistent global snapshot for a general distributed system
running on VMs that maintains the semantics of the system
based on the algorithm used by VIOLIN Snapshot [14]. A
first prototype was developed and it is described below.

4Transmission Control Protocol

A. Global Snapshot Protocol

Since almost any distributed application can run on VMs,
our global snapshot protocol offers a solution with a high
degree of generality. However, as these are snapshots of
complete VMs, it is unavoidable to assume that it is an
expensive solution that will not necessarily be convenient
in all cases or for all types of users. The general principle
is that neither the applications running on the VMs nor the
hypervisor are going to be modified. We use the concept of
colors in the node to determine whether or not a network
message is part of the global state of the application. So,
in our implementation, it is only required to add a small
amount of rules to the firewall on each VM. The global
snapshot protocol is an external application that runs on the
host at the same level as the hypervisor, and we can not
assume that the channels are FIFO. As a consequence, we
adapted the simplified Mattern algorithm published in [14]
for operation on a TCP/IP network. In our case, a node called
Coordinator is in charge of controlling the global snapshot
algorithm. Each participant must color outgoing messages
accordingly if they have been sent before or after obtaining
the local snapshot. The idea is to mark those packets using
colors in the sender side and recognize these colors in the
destination side for discarding, supported by a firewall that
runs on the VMs.

Assign a color consists of setting an arbitrary number and
introduce it on each outgoing packet, without modifying the
message. In this version of our solution, we use the DiffServ
field (previously Type of Service) of the IP datagram to carry
the specified value.

To modify the packets, we use the iprables firewall that
is available in the almost every distributions of the Linux
operating system. Iptables was configured to set an output
rule on the mangle table (which is used to modify network
packets) to assign the chosen number (the color), for exam-
ple 0x10. Each VM is configured to verify that the color
(the number assigned) corresponds to the expected value if
the local snapshot has been taken or not. This configuration
is also done by creating a rule for iptables in charge of
examining all incoming packets that have a specified value
in the DiffServ field. Each package that meets this rule will
be discarded and will not reach its destination. An example
of the configuration rules used can be seen in the Figure 3.

iptables -t mangle -A QOUTPUT -j DSCP —-set-dscp @x1@

iptables -A INPUT -m dscp —-dscp ©@x18 -j DROP

Figure 3. Iptables configuration rules

The implementation is a pure peer-to-peer system that de-
pends of a metadata server to keep the network information
for exchanging messages among the processes. Any process
can be the coordinator, but this role is assumed by the first



process that contacts the metadata server.

Figure 4 shows the global snapshot protocol we developed
in this work, in which for simplicity, the metadata server is
not shown.

Coordinator Process Process

[—
Steps TA"EJNAPsHor e
=

Steps

. — \
/ ooN Steps

/ oo 7]
/

Figure 4. Global Snapshot Protocol

time

The protocol starts when the coordinator sends a
TAKE_SNAPSHOT message to the other participants and
then it takes the local snapshot. The other processes, upon
receiving the message, take the local snapshot, in the same
way as the coordinator. Then, they send the DONE message
to the coordinator, who terminates the protocol upon receiv-
ing a DONE message from each of the other processes.

Steps in the Figure 4 consist in coloring outgoing packets
with the presnapshot color, configure the iptables firewall to
prevent delivering packets with postsnapshot color, take the
local snapshot, coloring outgoing packets with the postsnap-
shot color and accept the arrival of postsnapshot packets.

B. Restore Protocol

The restore protocol takes place when a system fault
is detected. Its goal is to resume the execution of the
distributed system from the last consistent global snapshot
stored. It behaves similarly to the global snapshot proto-
col. The coordinator process sends a RESTORE message
to the other processes. Then, all processes (including the
coordinator) restore the VMs of the system from the last
snapshot. Processes send a RESTORE_DONE message to
the coordinator after restoring the VMs. In the same way as
the global snapshot protocol, the restore protocol ends when
the coordinator receives a RESTORE_DONE message from
all other processes.

V. EVALUATION, RESULTS AND DISCUSSION

This section reports the results of our preliminary evalua-
tion of UnaCloud Snapshot, considering the following met-
rics: global snapshot time, local snapshot time and overhead.
We describe the platform where the tests were carried out.
Then, we show the results and the analysis.

We have tested in two different environments. The first
one was made using two heterogeneous computers, while
for the second one was used a computer room formed by
16 desktops with homogeneous configuration.

e First environment: To perform the experiments, we

used two computers. A physical server with an Intel(R)

Xeon(R) CPU E31220 @ 3.10GHz processor, with 8
GB of RAM and Ubuntu Linux as operating system,
and a MacBookPro laptop with a 2,3 GHz Intel Core
i5 processor, 16 GB 1600 MHz DDR3 RAM, and
MAC OS X. The computers are connected through the
RPI field network, and they are located in different
buildings. Using Oracle VirtualBox Hypervisor, four
identical VMs were installed on each host with 1
CPU core, 650 MB, 20 GB of hard disk and Debian
GNU/Linux 8.7 (jessie) as operating system with text
mode only.

e Second environment: The computer room is composed
of 16 desktop computers with Intel (R) Core i5-2300 @
2.80GHz processor, with 8 GB of RAM and Microsoft
Windows 7 as operating system. This computer room
is connected by a 1 Gbps local area network. In this
case, we used the same hypervisor and VMs as in the
first environment.

We developed the distributed system for the experiments.
This is a ring token passing, in which one process is running
on each VM forming an ordered ring. This is a network and
CPU intensive application given that a numbered token is
exchanged among processes and it performs a determined
amount of float-point operations after a process receives the
token. This application has a deterministic outcome, so it
allows us to check the correct termination, independently
if during the process the global snapshot protocol were
performed or not, or if the execution finished upon restoring
the system from a global snapshot.

Since the results vary from one execution to another, we
realized five executions for each scenario, for each test.

A. Heterogeneous Environment

1) Global Snapshot Time vs Local Snapshot Time: For
this test, we executed the distributed system considering
three scenarios. 1) Two VMs, one on each host; 2) Four
VMs, two on each host; and 3) eight VMs, four on each
host.

Global Snapshot Time vs Local Snapshot Time

Time [Seconds]

2VMs 4 VMs 8VMs
EGSTime 3,96 591 12,26
OLS Time-Server 3,38 3,58 4,12
OLS Time-Laptop 3,02 4,11 10,5

BGSTime OILS Time-Server OILS Time-Laptop

Figure 5. Environment 1: Global Snapshot Time vs Local Snapshot Time

Figure 5 shows the global and local snapshot times
experienced by the server and the laptop. We note that the
global snapshot time is limited by the slowest computer, in



this case the laptop. In addition, performance degradation
is noticeable when the number of VMs increases especially
when the laptop performs the local snapshot for 4 VMs.
It is important to take into account that in a heterogeneous
environment, the coordinator of the global snapshot protocol
must be executed on the host with better features because it
is necessary to guarantee that its local snapshot is finished
before it receives the DONE messages from other hosts.

2) Overhead: To measure the overhead, we executed
the ring token passing system considering the same three
scenarios with 100,000 and 200,000 tokens exchanged. We
were interested in determining the impact of the global
snapshot protocol on the distributed system run time. So,
we measured five times the total run time with and without
the global snapshot, and we analyzed the average.

Overhead of the Distributed System
500.00
450.00
400.00
350.00
300.00
250.00
200.00
150.00

100.00 --

0.00
2VMs 4VMs 8VMs
m Without Snapshot (100K) 134.11 76.51 59.84
O With Snapshot (100K) 136.44 79.62 79.79

O without Snapshot (200K) 463 272.46 199.31
W With Snapshot (200K) 474.33 284.47 210.27

Time [Seconds]

Figure 6. Overhead of the Distributed System

From the results shown in the Figure 6, we note that the
overhead is minimal in all scenarios. Also, the overhead is
not affected by the duration of the execution of the dis-
tributed system. This can be explained since the distributed
system consists of intensive applications in network and
CPU. Note that when we are running fewer amount VMs on
each host, there are more messages that communicate over
the network. Therefore, latency impacts the the execution
time of the application.

B. Homogeneous Environment

We consider several scenarios using up to four VMs per
host and execution of 4, 8 and 16 VMs. We are interested in
determining the relationship between the global and the local
snapshot times when we are running different combinations
of #VMs and the #VMs and #PMs ratio.

1) Global Snapshot Time vs Local Snapshot Time — One
VM per host: To compare the Global Snapshot Time and the
Local Snapshot Time, we first run the distributed system on
4, 8, and 16 VMs, each running on a host.

Figure 7 shows the global and local snapshot times
experienced by the desktops when one VM was used per host
for 4, 8, and 16 VMs. The results show a similar behavior
in all three cases. In addition, the increase in the number of

Global Snapshot Time vs Local Snapshot Time

4,00
3,50
3,00
2,50
2,00 —
1,50
1,00
0,50
0,00

Time [Seconds]

4VMS, 4 PMs 8 VMs, 8 PMs 16 VM, 16 PMs
[m Global 3,06 3,80 372
[0 Local 1,95 2,41 2,21

Figure 7. Environment 2: Global Snapshot Time vs Local Snapshot Time

VMs does not represent a considerable increase in the local
snapshot time and the global snapshot time.

2) Global Snapshot Time — More than one VM per host:
In order to analyze the impact of running our solution
in a homogeneous environment when multiple VMs are
running at the same time on a host, we tested several
combinations for running 4, 8§ and 16 VMs. Particularly,
we performed an analysis of variance (ANOVA) of two
factors with interaction. The two factors are the #VMs and
the #VMs running on the same host simultaneously. Table I
shows the descriptive information of the tests, including the
confidence interval for the global snapshot time.

#VMs and | Average | Standard | Lower limit | Upper limit
#PMs ratio Deviation
4 3,65 0,33 3,58 3,71
8 5,15 1,22 4,98 5,31
16 20,92 2,55 20,65 21,19
Table 1

SUMMARY OF DESCRIPTIVE STATISTICS

Figure 8 shows the relationship between the global snap-
shot time and the #VMs and #PMs ratio.

Global Snapshot Time vs #VMs and #PMs Ratio
30.00

25.00

8
8

Time [seconds]
@
3

8
8

w
=)
3

V_‘_\
—_— T

o
o
S

1VM/1PM 2VMs /1 PM

#VMs and #PMs Ratio

4VMs /1 PM

Figure 8. Envirenment 2: Global Snapshot Time by Ratio

The results in Table I and Figure 8 show a high consis-
tency of the data, since a low variation of them with respect
to the average value can be appreciated. In addition, we



observe a significant variation in the global snapshot time
when the global snapshot is performed while 4 VMs are
running on the same host at the same time. This time is
mainly due to the competition for the use of the disk when
storing the snapshots of each VM. However, there is no
important difference if we go from having 1 VM to 2 VMs
running on the same PM. This is an interesting result that
can be used along with the resource allocation algorithms
of UnaCloud. In this way, UnaCloud can prevent to locate
more than 2 VMs on the same host, if it is necessary to offer
a reliable service to the user.

VI. CONCLUSION AND FUTURE WORK

We have presented the first version of our checkpointing
based fault tolerance approach to take a global snapshot of a
distributed systems formed by applications communicating
among them running on a set of virtual machines. We
performed experiments for heterogeneous and homogeneous
platforms and obtained our first results, which are interest-
ing, particularly for long-term executions on the desktop
cloud systems. The experimental results of our preliminary
evaluation showed a low overhead and a high data consis-
tency. We found that taking a global snapshot when 4 VMs
are running on a host at the same time presents an evident
increase in the global snapshot time. This can be used in the
resource allocation process of UnaCloud to offer a reliable
service for our users.

Since this work is under development, there are many
job opportunities to do in the near future. Among them we
can highlight the performance analysis of the system restore
process from a global snapshot and the development of tests
using other platforms to analyze a greater number of VMs
and other distributed systems running on VMs.

REFERENCES

[1] G Fedak. Contributions to Desktop Grid Computing. PhD
thesis, Ecole Normale Supérieure de Lyon, 2015.

[2] V Cunsolo, Salvatore Distefano, Antonio Puliafito, and
Marco Scarpa. Volunteer computing and desktop cloud:
The cloud@home paradigm. In Network Computing and
Applications, 2009. NCA 2009. Eighth IEEE International
Symposium on, pages 134-139. IEEE, 2009.

3

—

A Alwabel, Robert John Walters, and Gary Brian Wills. A
view at desktop clouds. In: ESaaSA 2014.

[4] M Mutka and M Livny. Profiling workstation’s available
capacity for remote execution. University of Wisconsin-
Madison. Computer Sciences Department, 1987.

[5] K Ryu. Exploiting idle cycles in networks of workstations.
Ph.D. dissertation, University of Maryland, College Park,
2001.

[6

—_

C Gémez, E Diaz, C Forero, E Rosales and H Castro. Deter-
mining the Real Capacity of a Desktop Cloud. Latin American
High Performance Computing Conference. Petropolis, Brazil.
Pages 62-72, 2015. Springer, Cham.

(71

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(7]

(18]

[19]

[20]

(21]

E Rosales, H Castro, and M Villamizar. UnaCloud: Oppor-
tunistic cloud computing infrastructure as a service. Cloud
Computing 2011: The Second International Conference on
Cloud Computing, GRIDs, and Virtualization. Rome, Italy.
Pages 187-194, 2011.

H Castro, E Rosales, and M Villamizar. Clusters computa-
cionales para la investigacion - personalizables, eficientes,
amigables y a costo cero. Revista Ingenieria, (37).

P Mell, et al. The NIST definition of cloud computing.
In: Computer Security Division, Information Technology
Laboratory, National Institute of Standards and Technology
Gaithersburg, 2011.

A Abdulelah, R Walters and W Gary. Towards a volunteer
cloud architecture. In: European Workshop on Performance
Engineering, Springer. 248-251, 2012.

D Bakken and R Schlichting. Tolerating failures in the bag-
of-tasks programming paradigm. Fault-Tolerant Computing,
1991. FTCS-21. Digest of Papers., Twenty-First International
Symposium. IEEE. 248-255, 1991.

H Agarwal and A Sharma. A comprehensive survey of
fault tolerance techniques in cloud computing. In 2015
International Conference on Computing and Network Com-

munications (CoCoNet), pages 408—413. IEEE, 2015.

B Nicolae and F Cappello. BlobCR: Virtual disk based
checkpoint-restart for HPC applications on laaS clouds. Jour-
nal of Parallel and Distributed Computing, 73(5):698-711,
2013.

A Kangarlou, D Xu, P Ruth, and P Eugster. Taking snapshots
of virtual networked environments. In Proceedings of the
2nd international workshop on Virtualization technology in
distributed computing, page 4. ACM, 2007.

H Ong, N Saragol, K Chanchio, and C Leangsuksun.
VCCP: A transparent, coordinated checkpointing system for
virtualization-based cluster computing. In 2009 IEEE Inter-
national Conference on Cluster Computing and Workshops,
IEEE, 2009.

P Hargrove and J Duell. Berkeley Lab Checkpoint/Restart
(BLCR) for Linux Clusters. Journal of Physics Conference
Series, vol 46: 494-499, 2006.

Oracle Corporation. Oracle VM VirtualBox: User Manual
Version 5.0.20, 2016.

K Chandy and L Lamport. Distributed snapshots: determining
global states of distributed systems. ACM Transactions on
Computer Systems (TOCS), 3(1):63-75, 1985.

A Kshemkalyani and M Singhal.
principles, algorithms, and systems.
Press, 2011.

Distributed computing:
Cambridge University

F Mattern. Efficient algorithms for distributed snapshots and
global virtual time approximation. Journal of Parallel and
Distributed Computing, 18(4):423-434, 1993.

T Lai and T Yang. On distributed snapshots. Information
Processing Letters, 25(3):153—-158, 1987.



