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ABSTRACT 
Applications on smartphones are extremely popular as users can 
download and install them very easily from a service provider’s 
application repository. Most of the applications are thoroughly 
tested and verified on a target smartphone platform; however, 
some applications could be very computationally intensive and 
overload the smartphone’s resource capability. In this paper, we 
describe a method to predict the total processing time when 
offloading part of an application from smartphones to nearby 
servers. In our method, if an application developer can (1) define 
a basic model of the problem (e.g., f(x)=ax+b) and (2) implement 
an algorithm to update the model (e.g., least squares method), the 
application quickly adjusts the parameters of the model and 
minimizes the difference between predicted and measured 
performance adaptively. This accurate prediction helps 
dynamically determine whether or not it is worth offloading tasks 
and the expected performance improvement. Since this model’s 
simplicity greatly reduces the time required for profiling the 
performance of the application at run-time, it enables users to start 
using an application without pre-computing a performance profile.  
Our experiments show that our update parameter protocol for the 
performance prediction functions works sufficiently well for a 
face detection problem. The protocol requires on average 7.8 trials 
to update prediction parameters, and the prediction error stays less 
than 10% for the rest of the trials. By offloading the face detection 
task to a nearby server for an image of 1.2Mbytes, the 
performance improved from 19 seconds to 4 seconds. This 
research opens up the possibility of new applications in real-time 
smartphone data processing by harnessing nearby computational 
resources. 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Client/Server 

General Terms 
Algorithms, Performance, Design, Experimentation 
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Mobile computing, smartphone, task offloading 

 

 

 

1. INTRODUCTION 
In recent years, applications running on smartphones, such as 
Apple iPhone and Google Android Phones, have become very 
popular. Most of the released applications work fine on those 
platforms, but some of the applications including video 
encoding/decoding, image recognition, and 3D graphics rendering, 
could take a significant amount of time due to their 
computationally intensive nature. Processors on mobile devices 
are gradually getting faster year by year; however, without aid 
from special purpose hardware, they may not be fast enough for 
those computationally intensive applications. 

To improve the user experience of such computationally intensive 
applications, offloading tasks to nearby servers is a common 
approach in mobile computing. Consequently, a lot of research 
has been done including [1], which introduces an offloading 
scheme consisting of a compiler-based tool that partitions an 
ordinary program into a client-server distributed program. More 
recent efforts utilize cloud computing technology for task 
offloading from mobile devices [2][3]. Both partition an 
application and offload part of the application execution from 
mobile devices to device clones in a cloud by VM migration.  

On one hand, these previous studies are very flexible in terms of 
partitioning the program and finding the optimal execution of 
distributed programs; also, such methods could be applicable to a 
wide range of software applications. On the other hand, for simple 
single-purpose applications, which are typical in smartphone 
applications, these techniques may be too complex as partitioning, 
profiling, optimizing, and migrating the distributed program 
significantly increase running time. If an application is simple 
enough and a developer of the application is aware of the blocks 
that take most of the time, it would be reasonable to statically 
partition the program. Also, if application developers have done 
experiments on a target problem and are knowledgeable about the 
characteristics of the problem, they could formulate a function to 
predict the performance or cost of the application execution with 
less effort in run-time profiling.  

In this paper, we describe a simple model to predict the 
performance of distributed programs. The model updates 
prediction parameters on each run to adapt to network and server 
speed changes in a very light-weight manner. In particular, the 
model does not require analyzing and profiling the application 
developer’s original program, but it assumes the program contains 
a basic model that reflects the nature of the task to predict the 
performance. We present the design of the model as well as 
implementation and evaluation with a face detection problem 
running on an iPhone as an example. Our evaluation shows that 
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the model predicts the actual performance very well as we iterate 
problem executions.  

This paper continues as follows. Section 2 introduces the 
motivation of this work with a preliminary result of face detection 
performance on an iPhone as a smartphone platform. Section 3 
describes our model that predicts the performance of distributed 
programs. Section 4 illustrates an instance of the model when 
applying it to face detection. Section 5 investigates the accuracy 
of the prediction generated from the model instantiated in Section 
4. Section 6 and 7 discusses related work and possible future work 
respectively. Finally, Section 8 concludes our work. 

 

2. MOTIVATION 

2.1 Sample Application: Face Detection 
Face detection is an application of image processing that 
determines the locations and sizes of human faces on given digital 
images as shown in Figure 1. It is commonly used in digital 
cameras that detect faces to make those faces look better through 
image processing. Another example is a photo sharing service; 
such as Google Picasa or Facebook, which helps users add name 
tags for detected faces on photos. In those uses of face detection, 
the processing speed is pretty fast; users may even do not notice 
when those photos are processed because they are processed on 
fast hardware for image processing or on servers where plenty of 
computational resources are available. 

However, there may be a case that users want to detect faces right 
after they take a photo using smartphones. One example of such 
usage is a make-up game application where the user can try 
various make-ups or hair styles with the photo without specifying 
a region of the face. For this kind of application, immediate face 
detection is critical for a good user experience. 

 

Figure 1. Example Result of Face Detection 

2.2 Offloading Tasks from Phone to Server 
To measure the performance of face detection on real smartphone 
hardware, we implement a face detection application on an Apple 
iPhone 3GS using the OpenCV [5] library based on an existing 
implementation [6]. OpenCV is a widely used open-source library 
for computer vision and provides general-purpose object detection 
functionalities.  

In addition to the standalone face detection on the iPhone, the 
application is capable of sending an image to a server and 

receiving detected results. The system diagram of the application 
is shown in Figure 2. 

The view controller on the iPhone first takes an image from the 
photo library specified by the user and then gives the selected 
image to the face detection client. Based on a predetermined 
setting, the face detection client does either (1) local processing or 
(2) remote processing. In the case of (1) local processing, the face 
detection client processes the image using the local OpenCV 
library and gets the face detection results. In the case of (2) 
remote processing, the face detection client sends a face detection 
request to the server over a network (e.g., WiFi or 3G) connection. 
Once the face detection server receives the request, it processes 
the image using the OpenCV library on the server and sends the 
result back to the face detection client on the iPhone. Finally, the 
view controller receives the detection results from the face 
detection client and visualizes the results as shown in Figure 1. 

Figure 2. System Diagram of Application Task Offloading 

 

2.3 Experimental Setup 
In the experiment of face detection, we use an Apple iPhone 3GS 
(OS: iOS 4.2.1, detail specifications of CPU and memory have not 
been made public) and a server computer (CPU: Dual Core AMD 
Opteron Processor 870 2GHz, Memory: 32GB, OS: Linux 
2.6.18.8). Both the iPhone and the server are connected in the 
same network segment via WiFi 802.1g. 

The experiment tested 33 different images whose sizes range from 
500K to 1.2 Mbytes. Those images contain at least a single face 
and at most eleven faces. 

The version of OpenCV is 2.1.0, which is used in both the iPhone 
and the server side. The main function to detect faces is 
cvHaarDetectObjects() function provided by the OpenCV library, 
and the last four parameters given to the function are as follows: 
scale_factor = 1.1, min_neighbors = 3, flags = 0, min_size = 
cvSize(20,20). 

During the experiment, no user applications on the iPhone other 
than the face detection application are launched. Bluetooth and 3G 
communication capabilities are turned off as well. 

2.4 Speedup by Remote Processing 
We tested the performance of both local and remote processing 
for the 33 images and computed speedup by the remote processing 
compared with the local processing. We show the result 
processing time in Figure 3 and speedup in Figure 4 respectively.  

 



 

Figure 3. Performance of Local and Remote Processing 

 

Figure 4. Speedup by Remote Processing 

In Figure 3, the X-axis represents the size of each image, the plot 
Local represents the time required for local processing and the 
plot Remote(Server) represents the time required for the server to 
process an image when processing remotely. Remote(Total) 
represents the total time required for remote processing including 
Remote(Server) and the time for communication, i.e., sending the 
request from the iPhone and receiving the response from the 
server. From the graph, the remote processing is much faster than 
the local processing on the iPhone, and we can see the processing 
time of the images grows linearly for both local and remote 
processing. 

Efficiency of the remote processing is clearly reflected in speedup 
as shown in Figure 4. On average, the remote processing is about 
3.5 times faster than the local processing on the iPhone. An image 
of 1.2Mbytes improved the performance from 19 seconds to 4 
seconds, which is the biggest improvement of all the images.  

The network metrics over WiFi are RTT (Round-Trip Time) = 
0.0142 seconds and bandwidth = 12.8701 Mbps at the time of the 
experiment. The performance of the remote processing totally 
depends on the network environment and the speed of the server, 
and it works effectively if both the network and the server are fast. 
In the real world, there are various combinations of networks and 
servers, and the condition of the network changes from time to 
time. Therefore, the question is when to process locally or 
remotely. To answer this question, we need a model that predicts 
the performance at run-time. Similar models can be developed for 
battery consumption. 

3. DISTRIBUTED COMPUTATION 
MODEL 

3.1 Remote Processing Model 
We use the model depicted in Figure 5 to estimate total processing 
time when the client requests remote processing to the server. 
First, the user selects a problem to solve, and then the client takes 
it and sends a request with the problem to the server. Next, the 
server computes the received problem and responds a result to the 
client. Finally, the client shows the result to the user. 

 
Figure 5. The Model for Remote Processing 

Suppose the user selects a problem x, then the total processing 
time ௢ܶ௙௙௟௢௔ௗሺݔሻ can be formulated as a function of x as follows: 

௢ܶ௙௙௟௢௔ௗሺݔሻ ൌ ௖ܶ௢௠௠ሺݔሻ ൅ ௦ܶሺݔሻ, 

where ௦ܶሺݔሻ is the time required for the requested computation on 
the server and  ௖ܶ௢௠௠ሺݔሻ  is the time required for sending the 
request and receiving the response. 

Let  ௖ܶሺݔሻ be the time required for the client to process problem x 
locally without help from the server; it is beneficial to offload the 
problem to the server clearly if  ௢ܶ௙௙௟௢௔ௗሺݔሻ ൏ ௖ܶሺݔሻ. 

The assumption here is that the client and the server know about 
basic equations of ௖ܶ௢௠௠ሺݔሻ, ௦ܶሺݔሻ , and  ௖ܶሺݔሻ  for a specific 
problem, but do not know about the parameters of the equations 
initially. This is because the client is a mobile device, and the user 
may use it on different networks and connect it with different 
servers. Moreover, because applications running on the client or 
the server can be downloadable on devices with various hardware 
settings, it is fair to assume that the applications do not know how 
fast the devices are until they actually run a problem on particular 
hardware. 

 

3.2 Parameter Update Protocol 
The client and the server communicate to update their internal 
parameters for a better prediction of computation time. To predict 
and compare both the local and remote processing time, we need 
to compute problems both locally and remotely for the first 
execution. From the second execution, the model predicts and 
compares the performance based on the parameters before running 
the computation, and updates the parameters accordingly from 
computation results. A protocol and a method to update those 
parameters are explained in order. 

Update Protocol for ࢙ࢀሺ࢞ሻ	ࢊ࢔ࢇ		࢓࢓࢕ࢉࢀሺ࢞ሻ:  We update ௦ܶሺݔሻ and 
௖ܶ௢௠௠ሺݔሻ as shown in Figure 6. First, the client sends a process 

ServerClient

௦ܶሺݔሻ

time

User

Problem x

Result

User

௢ܶ௙௙௟௢௔ௗሺݔሻ



request x' to the server, and the server processes it and measures 
the process time as ௦ܶ

ᇱ ൌ ௦ܶሺݔሻ . Using a ( ,′ݔ ௦ܶ
ᇱ ) pair and an 

approximation method such as least squares, the server updates 
௦ܶሺݔሻ to approximate a set of measured data observed in the server. 

Next, the server responds with the computed result of x' back to 
the client as well as measured ௦ܶ

ᇱ  and updated ௦ܶሺݔሻ . Once the 
client receives those parameters, then it calculates ௖ܶ௢௠௠′  by 
subtracting  ௦ܶ

ᇱ from the measured ௢ܶ௙௙௟௢௔ௗ
ᇱ  by the client. Finally, 

the client updates its ௖ܶ௢௠௠ሺݔሻ by ௖ܶ௢௠௠′ and make a local copy 
from the received ௦ܶሺݔሻ. 

Client Server

Request to process x'

Process x'

Update Ts(x)
Ts'

Result of process x',

Ts', Ts(x)
Tcomm' 

Toffload' - Ts'

Update Ts(x), 
Tcomm(x)

time

Toffload'

Figure 6. Update Protocol for ࢙ࢀሺ࢞ሻ and ࢓࢓࢕ࢉࢀሺ࢞ሻ 

Update Method for ࡯ࢀ:  For the first execution of the problem or 
in the case ௢ܶ௙௙௟௢௔ௗሺݔሻ ൐ ௖ܶሺݔሻ is true, the client locally processes 
the problem x'. It also measures the time required for the local 
process as ௖ܶ

ᇱ. Just as the server updates ௦ܶሺݔሻ, it updates ௖ܶሺݔሻ 
using a (ݔ′, ௖ܶ

ᇱ) pair to approximate the measured computation time. 

Apart from the processing time itself, the protocol and method to 
update parameters are light-weight so that they are able to apply at  
run-time without serious overhead. If a prediction error either for 

௢ܶ௙௙௟௢௔ௗ or ௖ܶ becomes less than a certain threshold (e.g., 10%), 
the above update protocols pause since it can be considered that 
the prediction works well enough, therefore there is no need to 
update the parameters. Conversely, the protocols resume if the 
prediction error (measured periodically with progressively less 
frequency) becomes greater than a certain threshold. When 
resuming, all the previous trained data will be reset to adapt to the 
new environment. 

 

4. MODEL INSTANTIATION 
We choose the face detection as an application of the model 
described in the previous section.  Table 1 shows the relationship 
between the parameters used in the model and their instantiation 
in the face detection problem. 

Table 1. Model Instantiation 

Model Instance 

x An image 

Processing x Detecting face regions from an 
image x 

௦ܶሺݔሻ, ௖ܶሺݔሻ and ௖ܶ௢௠௠ሺݔሻ Linear functions of the size of an 
image x 

Update method for 

௦ܶሺݔሻ, ௖ܶሺݔሻ and ௖ܶ௢௠௠ሺݔሻ

Least squares method 

 

The reason why we choose linear functions as the models for 
௦ܶሺݔሻ, ௖ܶሺݔሻ, and 	 ௖ܶ௢௠௠ሺݔሻ is that for this problem we know those 

functions to be linear as confirmed by preliminary experiments 
reported in Section 2. Appropriate functional models and 
corresponding approximation methods for updating the functions 
are necessary for this model to work properly. 

 

5. EXPERIMENTAL RESULTS 
In this section, we present a detailed evaluation of our model 
implementation by predicting the remote processing time of the 
face detection task. We use the model instantiation described in 
Section 4, and we can find out how well the model predicts the 
remote processing time when we pick images from the 33 images 
used in the experiment in Section 2. 

We perform the experiment with three different cases: 1) The 
network and server are stable; 2) The network becomes 
temporarily slow; and 3) The server becomes temporarily busy. 
For each case, we tested ten randomly selected sequences each 
consists of 33 images and measured the average time of remote 
processing ( ௢ܶ௙௙௟௢௔ௗ) and compare it with the predicted value.  

Case 1 - Network and Server Stable: There is no dynamic 
disturbance from the environment in this scenario, that is, no other 
clients use the network and server. Figure 7 shows the prediction 
result of ௢ܶ௙௙௟௢௔ௗ . As we can see from the graph, the model 
predicts ௢ܶ௙௙௟௢௔ௗ well. The parameters used in this prediction are 
generated by a relatively small number of trials as shown in 
Figure 8. In the training stage, the model generates somewhat 
erroneous predictions, but these prediction errors are unavoidable 
since there are not sufficient learning examples available at the 
early stage of the training. However, the least squares method 
works better as the trials progress. The error becomes below 10% 
threshold after 7.8 trials on average, and the training becomes 
inactive afterwards. During the inactive period of the training, the 
prediction error stays below 10 %. The reason why the model 
predicted ௢ܶ௙௙௟௢௔ௗ  well is that ௢ܶ௙௙௟௢௔ௗ , ௖ܶ௢௠௠ , and ௦ܶ  are  linear 
functions, therefore, the least squares method works well.  

 
Figure 7. Prediction of  ࢊࢇ࢕࢒ࢌࢌ࢕ࢀ 

(Both Network and Server Stable) 



 

Figure 8. Average Prediction Error of  ࢊࢇ࢕࢒ࢌࢌ࢕ࢀ  
(Both Network and Server Stable) 

 

Case 2 - Network Temporarily Slow: In this scenario, the network 
becomes twice slower in the middle of the trials (from the 10th to 
20th) than in the rest of the trials. Figure 9 shows the prediction 
result of  ௢ܶ௙௙௟௢௔ௗ. The plots spread wider than Case 1 due to the 
disturbance, however, the model predicts  ௢ܶ௙௙௟௢௔ௗ relatively well 
as we can see both plots for the measured and predicted are close 
in the graph. 

 

 

Figure 9. Prediction of  ࢊࢇ࢕࢒ࢌࢌ࢕ࢀ 
(Network Temporarily Slow) 

 

Figure 10. Average Prediction Error of  ࢊࢇ࢕࢒ࢌࢌ࢕ࢀ 
(Network Temporarily Slow) 

In Figure 10, the prediction error increases quickly at the 10th trial 
and gradually decreases as the trial progress until it rises up again 
at the 21st trial. After that, the error gradually goes down again. 
Overall, the parameter update protocol works adaptively to the 
network speed change.  

 

Case 3 - Server Temporarily Busy: In this scenario, the server 
becomes busy and twice slower in the middle of the trials (from 
the 10th to 20th) than in the rest of the trials. Figure 11 shows the 

prediction result of ௢ܶ௙௙௟௢௔ௗ. Same as Case 2, the plots spread 
slightly wider than Case 1; however, the model predicts  ௢ܶ௙௙௟௢௔ௗ 
well despite the server overload. 

 

Figure 11. Prediction Error of  ࢊࢇ࢕࢒ࢌࢌ࢕ࢀ  
(Server Temporarily Busy) 

 

Figure 12. Average Prediction Error of  ࢊࢇ࢕࢒ࢌࢌ࢕ࢀ 
(Server Temporarily Busy) 

Same as in the network speed change, we can see that the client 
can follow the server speed degradation as shown in Figure 12, 
however, the peaks of the prediction errors are lower than Case 2. 
This happens because the communication takes more time than 
processing at the server, so the effect for overall time is limited 
relative to the network speed change. 

 

6. RELATED WORK 
Wang and Li [1] introduce a compiler-based tool that partitions a 
regular program into a client-server program. MAUI[4] lets 
developers specify which methods of a program can be offloaded 
for remote execution, focusing on minimizing battery 
consumption. 

Cyber foraging [7] uses nearby surrogate computers to offload the 
computational burden from mobile devices. Similarly, Slingshot 
[8] replicates a remote application state on nearby surrogate 
computers co-located with wireless access points to improve 
performance. These approaches are similar to ours in a sense that 
they assume applications are partitioned before execution and 
utilize nearby computers, but they do not have an explicit 
mechanism to adapt to the environment changes. 

There are approaches using virtual machine (VM) migration 
including Cloudlet [2] and CloneCloud [3]. Application 
developers do not need to modify applications, but both 
approaches require transferring the entire or partial VM image 
from the smartphone to the cloud as well as complex profiling of 

Training 
Active Training Inactive 

Server  
2x Slower 

Network 
2x Slower 

7.8 



the remote execution environment (e.g., network/cloud 
performance) at run-time.   

 

7. FUTURE WORK 
In the future, we plan to apply our method to other applications to 
confirm the generality of the method. Candidate applications 
include but not limited to real-time face detection for video and 
real-time rendering of CFD (Computational Flow Dynamics). The 
face detection for video is a natural enhancement of the example 
we have done this time and is also expected to be pretty 
computationally intensive since we need to detect faces at very 
high frequency. Face recognition (comparing detected faces to a 
DB of images) is even more intensive in terms of computation and 
data requirements, and therefore it requires our task offloading 
approach to be practical. CFD is known as one of the most 
computationally intensive applications in general. Running CFD 
on smartphones sounds too complex, but it might be useful for 
games in terms of creating realistic motion of fluids and 
interaction with them. 

Another direction of enhancement could be on the server side. If 
an nVidia’s or an AMD’s graphics card is available on a server 
computer, we could utilize the GPUs by using CUDA or OpenCL 
and speed the process up greatly. We could also utilize tablets, 
such as Apple’s iPad and Android Tablets, as servers since 
nowadays they use fast multicore processors. Offloading can also 
occur from a tablet to a server or a cloud. Cloud computing is 
suitable for task offloading purpose as well because it can provide 
great scalability in performance and give virtually infinite 
computing resources. Latency between a smartphone and clouds 
would vary depending on the location of the smartphone; 
therefore, light-weight adaptation on the smartphone shown in this 
paper would be critical. 

Using an actor-oriented programming language such as SALSA 
[9] is one way of implementing dynamically reconfigurable 
smartphone applications. In SALSA programming, an actor is the 
unit of execution. Consequently, an application written in SALSA 
is natively partitioned as a collection of actors and is suitable for 
dynamic partioning of the application at run-time. One research 
direction is to enhance the model presented in this paper to 
support dynamic partioning using SALSA while keeping the 
model light-weight. 

 

8. CONCLUSIONS 
We have described a model to predict the total processing time 
when offloading part of an application from smartphones to 
servers. In our model, if an application developer can (1) define a 
basic model of the problem (e.g., f(x)=ax+b) and (2) implement 
an algorithm to update the model (e.g., least squares method), the 
application quickly adjusts the parameters of the model and 
minimizes the difference between predicted and measured 
performance adaptively. We also assume that an application 
developer statically partitions the program for the remote 
execution, however, this model’s simplicity greatly reduces the 
time required for profiling the performance of the application at 
run-time and thus enables users to start using an application 
without pre-computing a performance profile. The model is 

applicable not only to nearby servers, but to servers in distant 
locations. However, it is practical and effective when used with 
nearby servers due to its low-latency network environment. 

The experiments have shown that our update parameter protocol 
for the performance prediction functions works sufficiently well 
for the face detection problem. It takes some time to adapt to the 
network or the server performance change, but the prediction error 
gradually becomes smaller and finally a state is reached where a 
parameter update is no longer required. 

To use our method, the server program has to be downloaded to a 
computer before the user starts using the application on the 
smartphone. Since the proposed task-offloading method is 
adaptive as shown in the experiments, we can use newer/older 
computers and faster/slower networks, yet guaranteeing a higher 
(or at least no lower) quality of service to smartphone users at 
home. Therefore, even slow computers on fast home networks 
could help improve the user experience on smartphones. 
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