

Light-Weight Adaptive Task Offloading from

Smartphones to Nearby Computational Resources
Shigeru Imai

Rensselaer Polytechnic Institute
110 Eighth Street
Troy, NY 12180

+1 (518) 428-8870

imais@rpi.edu

Carlos A. Varela
Rensselaer Polytechnic Institute

110 Eighth Street
Troy, NY 12180

+1 (518) 276-6912

cvarela@cs.rpi.edu

ABSTRACT
Applications on smartphones are extremely popular as users can
download and install them very easily from a service provider’s
application repository. Most of the applications are thoroughly
tested and verified on a target smartphone platform; however,
some applications could be very computationally intensive and
overload the smartphone’s resource capability. In this paper, we
describe a method to predict the total processing time when
offloading part of an application from smartphones to nearby
servers. In our method, if an application developer can (1) define
a basic model of the problem (e.g., f(x)=ax+b) and (2) implement
an algorithm to update the model (e.g., least squares method), the
application quickly adjusts the parameters of the model and
minimizes the difference between predicted and measured
performance adaptively. This accurate prediction helps
dynamically determine whether or not it is worth offloading tasks
and the expected performance improvement. Since this model’s
simplicity greatly reduces the time required for profiling the
performance of the application at run-time, it enables users to start
using an application without pre-computing a performance profile.
Our experiments show that our update parameter protocol for the
performance prediction functions works sufficiently well for a
face detection problem. The protocol requires on average 7.8 trials
to update prediction parameters, and the prediction error stays less
than 10% for the rest of the trials. By offloading the face detection
task to a nearby server for an image of 1.2Mbytes, the
performance improved from 19 seconds to 4 seconds. This
research opens up the possibility of new applications in real-time
smartphone data processing by harnessing nearby computational
resources.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Client/Server

General Terms
Algorithms, Performance, Design, Experimentation

Keywords
Mobile computing, smartphone, task offloading

1. INTRODUCTION
In recent years, applications running on smartphones, such as
Apple iPhone and Google Android Phones, have become very
popular. Most of the released applications work fine on those
platforms, but some of the applications including video
encoding/decoding, image recognition, and 3D graphics rendering,
could take a significant amount of time due to their
computationally intensive nature. Processors on mobile devices
are gradually getting faster year by year; however, without aid
from special purpose hardware, they may not be fast enough for
those computationally intensive applications.

To improve the user experience of such computationally intensive
applications, offloading tasks to nearby servers is a common
approach in mobile computing. Consequently, a lot of research
has been done including [1], which introduces an offloading
scheme consisting of a compiler-based tool that partitions an
ordinary program into a client-server distributed program. More
recent efforts utilize cloud computing technology for task
offloading from mobile devices [2][3]. Both partition an
application and offload part of the application execution from
mobile devices to device clones in a cloud by VM migration.

On one hand, these previous studies are very flexible in terms of
partitioning the program and finding the optimal execution of
distributed programs; also, such methods could be applicable to a
wide range of software applications. On the other hand, for simple
single-purpose applications, which are typical in smartphone
applications, these techniques may be too complex as partitioning,
profiling, optimizing, and migrating the distributed program
significantly increase running time. If an application is simple
enough and a developer of the application is aware of the blocks
that take most of the time, it would be reasonable to statically
partition the program. Also, if application developers have done
experiments on a target problem and are knowledgeable about the
characteristics of the problem, they could formulate a function to
predict the performance or cost of the application execution with
less effort in run-time profiling.

In this paper, we describe a simple model to predict the
performance of distributed programs. The model updates
prediction parameters on each run to adapt to network and server
speed changes in a very light-weight manner. In particular, the
model does not require analyzing and profiling the application
developer’s original program, but it assumes the program contains
a basic model that reflects the nature of the task to predict the
performance. We present the design of the model as well as
implementation and evaluation with a face detection problem
running on an iPhone as an example. Our evaluation shows that

RACS 2011, November 2-5, 2011, Miami, FL, USA.

the model predicts the actual performance very well as we iterate
problem executions.

This paper continues as follows. Section 2 introduces the
motivation of this work with a preliminary result of face detection
performance on an iPhone as a smartphone platform. Section 3
describes our model that predicts the performance of distributed
programs. Section 4 illustrates an instance of the model when
applying it to face detection. Section 5 investigates the accuracy
of the prediction generated from the model instantiated in Section
4. Section 6 and 7 discusses related work and possible future work
respectively. Finally, Section 8 concludes our work.

2. MOTIVATION

2.1 Sample Application: Face Detection
Face detection is an application of image processing that
determines the locations and sizes of human faces on given digital
images as shown in Figure 1. It is commonly used in digital
cameras that detect faces to make those faces look better through
image processing. Another example is a photo sharing service;
such as Google Picasa or Facebook, which helps users add name
tags for detected faces on photos. In those uses of face detection,
the processing speed is pretty fast; users may even do not notice
when those photos are processed because they are processed on
fast hardware for image processing or on servers where plenty of
computational resources are available.

However, there may be a case that users want to detect faces right
after they take a photo using smartphones. One example of such
usage is a make-up game application where the user can try
various make-ups or hair styles with the photo without specifying
a region of the face. For this kind of application, immediate face
detection is critical for a good user experience.

Figure 1. Example Result of Face Detection

2.2 Offloading Tasks from Phone to Server
To measure the performance of face detection on real smartphone
hardware, we implement a face detection application on an Apple
iPhone 3GS using the OpenCV [5] library based on an existing
implementation [6]. OpenCV is a widely used open-source library
for computer vision and provides general-purpose object detection
functionalities.

In addition to the standalone face detection on the iPhone, the
application is capable of sending an image to a server and

receiving detected results. The system diagram of the application
is shown in Figure 2.

The view controller on the iPhone first takes an image from the
photo library specified by the user and then gives the selected
image to the face detection client. Based on a predetermined
setting, the face detection client does either (1) local processing or
(2) remote processing. In the case of (1) local processing, the face
detection client processes the image using the local OpenCV
library and gets the face detection results. In the case of (2)
remote processing, the face detection client sends a face detection
request to the server over a network (e.g., WiFi or 3G) connection.
Once the face detection server receives the request, it processes
the image using the OpenCV library on the server and sends the
result back to the face detection client on the iPhone. Finally, the
view controller receives the detection results from the face
detection client and visualizes the results as shown in Figure 1.

Figure 2. System Diagram of Application Task Offloading

2.3 Experimental Setup
In the experiment of face detection, we use an Apple iPhone 3GS
(OS: iOS 4.2.1, detail specifications of CPU and memory have not
been made public) and a server computer (CPU: Dual Core AMD
Opteron Processor 870 2GHz, Memory: 32GB, OS: Linux
2.6.18.8). Both the iPhone and the server are connected in the
same network segment via WiFi 802.1g.

The experiment tested 33 different images whose sizes range from
500K to 1.2 Mbytes. Those images contain at least a single face
and at most eleven faces.

The version of OpenCV is 2.1.0, which is used in both the iPhone
and the server side. The main function to detect faces is
cvHaarDetectObjects() function provided by the OpenCV library,
and the last four parameters given to the function are as follows:
scale_factor = 1.1, min_neighbors = 3, flags = 0, min_size =
cvSize(20,20).

During the experiment, no user applications on the iPhone other
than the face detection application are launched. Bluetooth and 3G
communication capabilities are turned off as well.

2.4 Speedup by Remote Processing
We tested the performance of both local and remote processing
for the 33 images and computed speedup by the remote processing
compared with the local processing. We show the result
processing time in Figure 3 and speedup in Figure 4 respectively.

Figure 3. Performance of Local and Remote Processing

Figure 4. Speedup by Remote Processing

In Figure 3, the X-axis represents the size of each image, the plot
Local represents the time required for local processing and the
plot Remote(Server) represents the time required for the server to
process an image when processing remotely. Remote(Total)
represents the total time required for remote processing including
Remote(Server) and the time for communication, i.e., sending the
request from the iPhone and receiving the response from the
server. From the graph, the remote processing is much faster than
the local processing on the iPhone, and we can see the processing
time of the images grows linearly for both local and remote
processing.

Efficiency of the remote processing is clearly reflected in speedup
as shown in Figure 4. On average, the remote processing is about
3.5 times faster than the local processing on the iPhone. An image
of 1.2Mbytes improved the performance from 19 seconds to 4
seconds, which is the biggest improvement of all the images.

The network metrics over WiFi are RTT (Round-Trip Time) =
0.0142 seconds and bandwidth = 12.8701 Mbps at the time of the
experiment. The performance of the remote processing totally
depends on the network environment and the speed of the server,
and it works effectively if both the network and the server are fast.
In the real world, there are various combinations of networks and
servers, and the condition of the network changes from time to
time. Therefore, the question is when to process locally or
remotely. To answer this question, we need a model that predicts
the performance at run-time. Similar models can be developed for
battery consumption.

3. DISTRIBUTED COMPUTATION
MODEL

3.1 Remote Processing Model
We use the model depicted in Figure 5 to estimate total processing
time when the client requests remote processing to the server.
First, the user selects a problem to solve, and then the client takes
it and sends a request with the problem to the server. Next, the
server computes the received problem and responds a result to the
client. Finally, the client shows the result to the user.

Figure 5. The Model for Remote Processing

Suppose the user selects a problem x, then the total processing
time ௢ܶ௙௙௟௢௔ௗሺݔሻ can be formulated as a function of x as follows:

௢ܶ௙௙௟௢௔ௗሺݔሻ ൌ ௖ܶ௢௠௠ሺݔሻ ൅ ௦ܶሺݔሻ,

where ௦ܶሺݔሻ is the time required for the requested computation on
the server and ௖ܶ௢௠௠ሺݔሻ is the time required for sending the
request and receiving the response.

Let ௖ܶሺݔሻ be the time required for the client to process problem x
locally without help from the server; it is beneficial to offload the
problem to the server clearly if ௢ܶ௙௙௟௢௔ௗሺݔሻ ൏ ௖ܶሺݔሻ.

The assumption here is that the client and the server know about
basic equations of ௖ܶ௢௠௠ሺݔሻ, ௦ܶሺݔሻ , and ௖ܶሺݔሻ for a specific
problem, but do not know about the parameters of the equations
initially. This is because the client is a mobile device, and the user
may use it on different networks and connect it with different
servers. Moreover, because applications running on the client or
the server can be downloadable on devices with various hardware
settings, it is fair to assume that the applications do not know how
fast the devices are until they actually run a problem on particular
hardware.

3.2 Parameter Update Protocol
The client and the server communicate to update their internal
parameters for a better prediction of computation time. To predict
and compare both the local and remote processing time, we need
to compute problems both locally and remotely for the first
execution. From the second execution, the model predicts and
compares the performance based on the parameters before running
the computation, and updates the parameters accordingly from
computation results. A protocol and a method to update those
parameters are explained in order.

Update Protocol for ࢙ࢀሺ࢞ሻ	ࢊ࢔ࢇ		࢓࢓࢕ࢉࢀሺ࢞ሻ: We update ௦ܶሺݔሻ and
௖ܶ௢௠௠ሺݔሻ as shown in Figure 6. First, the client sends a process

ServerClient

௦ܶሺݔሻ

time

User

Problem x

Result

User

௢ܶ௙௙௟௢௔ௗሺݔሻ

request x' to the server, and the server processes it and measures
the process time as ௦ܶ

ᇱ ൌ ௦ܶሺݔሻ . Using a (,′ݔ ௦ܶ
ᇱ) pair and an

approximation method such as least squares, the server updates
௦ܶሺݔሻ to approximate a set of measured data observed in the server.

Next, the server responds with the computed result of x' back to
the client as well as measured ௦ܶ

ᇱ and updated ௦ܶሺݔሻ . Once the
client receives those parameters, then it calculates ௖ܶ௢௠௠′ by
subtracting ௦ܶ

ᇱ from the measured ௢ܶ௙௙௟௢௔ௗ
ᇱ by the client. Finally,

the client updates its ௖ܶ௢௠௠ሺݔሻ by ௖ܶ௢௠௠′ and make a local copy
from the received ௦ܶሺݔሻ.

Client Server

Request to process x'

Process x'

Update Ts(x)
Ts'

Result of process x',

Ts', Ts(x)
Tcomm' 

Toffload' - Ts'

Update Ts(x),
Tcomm(x)

time

Toffload'

Figure 6. Update Protocol for ࢙ࢀሺ࢞ሻ and ࢓࢓࢕ࢉࢀሺ࢞ሻ

Update Method for ࡯ࢀ: For the first execution of the problem or
in the case ௢ܶ௙௙௟௢௔ௗሺݔሻ ൐ ௖ܶሺݔሻ is true, the client locally processes
the problem x'. It also measures the time required for the local
process as ௖ܶ

ᇱ. Just as the server updates ௦ܶሺݔሻ, it updates ௖ܶሺݔሻ
using a (ݔ′, ௖ܶ

ᇱ) pair to approximate the measured computation time.

Apart from the processing time itself, the protocol and method to
update parameters are light-weight so that they are able to apply at
run-time without serious overhead. If a prediction error either for

௢ܶ௙௙௟௢௔ௗ or ௖ܶ becomes less than a certain threshold (e.g., 10%),
the above update protocols pause since it can be considered that
the prediction works well enough, therefore there is no need to
update the parameters. Conversely, the protocols resume if the
prediction error (measured periodically with progressively less
frequency) becomes greater than a certain threshold. When
resuming, all the previous trained data will be reset to adapt to the
new environment.

4. MODEL INSTANTIATION
We choose the face detection as an application of the model
described in the previous section. Table 1 shows the relationship
between the parameters used in the model and their instantiation
in the face detection problem.

Table 1. Model Instantiation

Model Instance

x An image

Processing x Detecting face regions from an
image x

௦ܶሺݔሻ, ௖ܶሺݔሻ and ௖ܶ௢௠௠ሺݔሻ Linear functions of the size of an
image x

Update method for

௦ܶሺݔሻ, ௖ܶሺݔሻ and ௖ܶ௢௠௠ሺݔሻ

Least squares method

The reason why we choose linear functions as the models for
௦ܶሺݔሻ, ௖ܶሺݔሻ, and 	 ௖ܶ௢௠௠ሺݔሻ is that for this problem we know those

functions to be linear as confirmed by preliminary experiments
reported in Section 2. Appropriate functional models and
corresponding approximation methods for updating the functions
are necessary for this model to work properly.

5. EXPERIMENTAL RESULTS
In this section, we present a detailed evaluation of our model
implementation by predicting the remote processing time of the
face detection task. We use the model instantiation described in
Section 4, and we can find out how well the model predicts the
remote processing time when we pick images from the 33 images
used in the experiment in Section 2.

We perform the experiment with three different cases: 1) The
network and server are stable; 2) The network becomes
temporarily slow; and 3) The server becomes temporarily busy.
For each case, we tested ten randomly selected sequences each
consists of 33 images and measured the average time of remote
processing (௢ܶ௙௙௟௢௔ௗ) and compare it with the predicted value.

Case 1 - Network and Server Stable: There is no dynamic
disturbance from the environment in this scenario, that is, no other
clients use the network and server. Figure 7 shows the prediction
result of ௢ܶ௙௙௟௢௔ௗ . As we can see from the graph, the model
predicts ௢ܶ௙௙௟௢௔ௗ well. The parameters used in this prediction are
generated by a relatively small number of trials as shown in
Figure 8. In the training stage, the model generates somewhat
erroneous predictions, but these prediction errors are unavoidable
since there are not sufficient learning examples available at the
early stage of the training. However, the least squares method
works better as the trials progress. The error becomes below 10%
threshold after 7.8 trials on average, and the training becomes
inactive afterwards. During the inactive period of the training, the
prediction error stays below 10 %. The reason why the model
predicted ௢ܶ௙௙௟௢௔ௗ well is that ௢ܶ௙௙௟௢௔ௗ , ௖ܶ௢௠௠ , and ௦ܶ are linear
functions, therefore, the least squares method works well.

Figure 7. Prediction of ࢊࢇ࢕࢒ࢌࢌ࢕ࢀ

(Both Network and Server Stable)

Figure 8. Average Prediction Error of ࢊࢇ࢕࢒ࢌࢌ࢕ࢀ
(Both Network and Server Stable)

Case 2 - Network Temporarily Slow: In this scenario, the network
becomes twice slower in the middle of the trials (from the 10th to
20th) than in the rest of the trials. Figure 9 shows the prediction
result of ௢ܶ௙௙௟௢௔ௗ. The plots spread wider than Case 1 due to the
disturbance, however, the model predicts ௢ܶ௙௙௟௢௔ௗ relatively well
as we can see both plots for the measured and predicted are close
in the graph.

Figure 9. Prediction of ࢊࢇ࢕࢒ࢌࢌ࢕ࢀ
(Network Temporarily Slow)

Figure 10. Average Prediction Error of ࢊࢇ࢕࢒ࢌࢌ࢕ࢀ
(Network Temporarily Slow)

In Figure 10, the prediction error increases quickly at the 10th trial
and gradually decreases as the trial progress until it rises up again
at the 21st trial. After that, the error gradually goes down again.
Overall, the parameter update protocol works adaptively to the
network speed change.

Case 3 - Server Temporarily Busy: In this scenario, the server
becomes busy and twice slower in the middle of the trials (from
the 10th to 20th) than in the rest of the trials. Figure 11 shows the

prediction result of ௢ܶ௙௙௟௢௔ௗ. Same as Case 2, the plots spread
slightly wider than Case 1; however, the model predicts ௢ܶ௙௙௟௢௔ௗ
well despite the server overload.

Figure 11. Prediction Error of ࢊࢇ࢕࢒ࢌࢌ࢕ࢀ
(Server Temporarily Busy)

Figure 12. Average Prediction Error of ࢊࢇ࢕࢒ࢌࢌ࢕ࢀ
(Server Temporarily Busy)

Same as in the network speed change, we can see that the client
can follow the server speed degradation as shown in Figure 12,
however, the peaks of the prediction errors are lower than Case 2.
This happens because the communication takes more time than
processing at the server, so the effect for overall time is limited
relative to the network speed change.

6. RELATED WORK
Wang and Li [1] introduce a compiler-based tool that partitions a
regular program into a client-server program. MAUI[4] lets
developers specify which methods of a program can be offloaded
for remote execution, focusing on minimizing battery
consumption.

Cyber foraging [7] uses nearby surrogate computers to offload the
computational burden from mobile devices. Similarly, Slingshot
[8] replicates a remote application state on nearby surrogate
computers co-located with wireless access points to improve
performance. These approaches are similar to ours in a sense that
they assume applications are partitioned before execution and
utilize nearby computers, but they do not have an explicit
mechanism to adapt to the environment changes.

There are approaches using virtual machine (VM) migration
including Cloudlet [2] and CloneCloud [3]. Application
developers do not need to modify applications, but both
approaches require transferring the entire or partial VM image
from the smartphone to the cloud as well as complex profiling of

Training
Active Training Inactive

Server
2x Slower

Network
2x Slower

7.8

the remote execution environment (e.g., network/cloud
performance) at run-time.

7. FUTURE WORK
In the future, we plan to apply our method to other applications to
confirm the generality of the method. Candidate applications
include but not limited to real-time face detection for video and
real-time rendering of CFD (Computational Flow Dynamics). The
face detection for video is a natural enhancement of the example
we have done this time and is also expected to be pretty
computationally intensive since we need to detect faces at very
high frequency. Face recognition (comparing detected faces to a
DB of images) is even more intensive in terms of computation and
data requirements, and therefore it requires our task offloading
approach to be practical. CFD is known as one of the most
computationally intensive applications in general. Running CFD
on smartphones sounds too complex, but it might be useful for
games in terms of creating realistic motion of fluids and
interaction with them.

Another direction of enhancement could be on the server side. If
an nVidia’s or an AMD’s graphics card is available on a server
computer, we could utilize the GPUs by using CUDA or OpenCL
and speed the process up greatly. We could also utilize tablets,
such as Apple’s iPad and Android Tablets, as servers since
nowadays they use fast multicore processors. Offloading can also
occur from a tablet to a server or a cloud. Cloud computing is
suitable for task offloading purpose as well because it can provide
great scalability in performance and give virtually infinite
computing resources. Latency between a smartphone and clouds
would vary depending on the location of the smartphone;
therefore, light-weight adaptation on the smartphone shown in this
paper would be critical.

Using an actor-oriented programming language such as SALSA
[9] is one way of implementing dynamically reconfigurable
smartphone applications. In SALSA programming, an actor is the
unit of execution. Consequently, an application written in SALSA
is natively partitioned as a collection of actors and is suitable for
dynamic partioning of the application at run-time. One research
direction is to enhance the model presented in this paper to
support dynamic partioning using SALSA while keeping the
model light-weight.

8. CONCLUSIONS
We have described a model to predict the total processing time
when offloading part of an application from smartphones to
servers. In our model, if an application developer can (1) define a
basic model of the problem (e.g., f(x)=ax+b) and (2) implement
an algorithm to update the model (e.g., least squares method), the
application quickly adjusts the parameters of the model and
minimizes the difference between predicted and measured
performance adaptively. We also assume that an application
developer statically partitions the program for the remote
execution, however, this model’s simplicity greatly reduces the
time required for profiling the performance of the application at
run-time and thus enables users to start using an application
without pre-computing a performance profile. The model is

applicable not only to nearby servers, but to servers in distant
locations. However, it is practical and effective when used with
nearby servers due to its low-latency network environment.

The experiments have shown that our update parameter protocol
for the performance prediction functions works sufficiently well
for the face detection problem. It takes some time to adapt to the
network or the server performance change, but the prediction error
gradually becomes smaller and finally a state is reached where a
parameter update is no longer required.

To use our method, the server program has to be downloaded to a
computer before the user starts using the application on the
smartphone. Since the proposed task-offloading method is
adaptive as shown in the experiments, we can use newer/older
computers and faster/slower networks, yet guaranteeing a higher
(or at least no lower) quality of service to smartphone users at
home. Therefore, even slow computers on fast home networks
could help improve the user experience on smartphones.

ACKNOWLEDGEMENT
We would like to thank Gustavo A. Guevara S. and Qingling
Wang for their valuable feedback. We would also like to express
our gratitude to Evan Patton who kindly guides us how to setup
the iPhone development environment. This research is partially
supported by NSF CAREER CNS Award No. 0448407 and by the
Air Force Office of Scientific Research.

REFERENCES
[1] Wang, C. and Li, Z. A computation offloading scheme on

handheld devices. In Proceedings of J. Parallel and
Distributed Computing. 2004, 740-746.

[2] Satyanarayanan, M., Bahl, P., Cáceres, R., and Davies, N.
The Case for VM-Based Cloudlets in Mobile Computing. In
Proceedings of IEEE Pervasive Computing. 2009, 14-23.

[3] Chun, B., Ihm, S., Maniatis, P., Naik, M., and Patti, A.
CloneCloud: elastic execution between mobile device and
cloud. In Proceedings of EuroSys. 2011, 301-314.

[4] Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A.,
Saroiu, S., Chandra, R., and Bahl, P. MAUI: making
smartphones last longer with code offload. In Proceedings of
MobiSys. 2010, 49-62.

[5] OpenCV, http://opencv.willowgarage.com/wiki/

[6] Niwa, Y., Using OpenCV on iPhone,
http://niw.at/articles/2009/03/14/using-opencv-on-iphone/en

[7] Balan, R.K., Flinn, J., Satyanarayanan, M., Sinnamohideen,
S., and Yang, H. The case for cyber foraging. In
Proceedings of ACM SIGOPS European Workshop. 2002,
87-92.

[8] Su, Y. and Flinn, J. Slingshot: deploying stateful services in
wireless hotspots. In Proceedings of MobiSys. 2005, 79-92.

[9] Varela, C.A. and Agha, G. Programming Dynamically
Reconfigurable Open systems with SALSA. In Proceedings
of SIGPLAN Notices. 2001, 20-34.

