
An Architecture for Reconfigurable Iterative MPI
Applications in Dynamic Environments

Kaoutar El Maghraoui, Boleslaw K. Szymanski, and Carlos Varela

Rensselaer Polytechnic Institute, Troy, NY 12180, USA,
elmagk@cs.rpi.edu,

http://www.cs.rpi.edu/

Abstract. With the proliferation of large scale dynamic execution environments
such as grids, the need for providing efficient and scalable application adapta-
tion strategies for long running parallel and distributed applications has emerged.
Message passing interfaces have been initially designed with a traditional ma-
chine model in mind which assumes homogeneous and static environments. It is
inevitable that long running message passing applications will require support for
dynamic reconfiguration to maintain high performance under varying load condi-
tions. In this paper we describe a framework that provides iterative MPI applica-
tions with reconfiguration capabilities. Our approach is based on integrating MPI
applications with a middleware that supports process migration and large scale
distributed application reconfiguration. We present our architecture for reconfig-
uring MPI applications, and verify our design with a heat diffusion application in
a dynamic setting.

1 Introduction

A wide variety of computational environments are increasingly available to host the
execution of distributed and parallel applications. Examples include large scale super-
computers, shared or dedicated clusters, grid environments, and metacomputing en-
vironments. Performance variability in such environments is the rule and not the ex-
ception. For application developers, this variability poses new challenges that go far
beyond those of parallelism and scalability. The issue here is not only how to optimize
large applications to run on a given set of distributed resources, but also how to main-
tain the desired performance anytime there is a change in the pool or characteristics of
the resources or in the application’s demands during its lifetime. In conventional dis-
tributed and parallel systems, achieving high performance was a matter of application-
level scheduling or application-specific tunings. Such techniques relied on the follow-
ing assumptions: 1) the application’s performance model is known, 2) the number of
resources is static, and 3) the characteristics of the resources are known. An obvious so-
lution is dynamic application reconfiguration; i.e., adjusting the allocation of resources
as the demand on the system and its availability varies.

While this new generation of computational environments presents multiple re-
source management challenges, it also provides an abundant pool of resources that is
appealing to large scale and computationally demanding distributed applications. Ex-
amples are parallel computational science and engineering applications that arise in di-
verse disciplines such as astrophysics, fluid dynamics, materials science, biomechanics,



or nuclear physics. These applications often involve simulating multi-scale problems
and exhibit an insatiable need for computational resources. Many of these applications
have been implemented with the Message Passing Interface (MPI) [1]. MPI is a widely
used standard to develop parallel applications that harness several processors. How-
ever, the issues of scalability, adaptability and load balancing still remain a challenge.
To maintain a good performance level, MPI applications need to be able to scale up
to accommodate new resources or shrink to accommodate leaving or slow resources.
Most existing MPI implementations assume a static network environment. MPI imple-
mentations that support the MPI-2 Standard [2, 3] provide some support for dynamic
process management by allowing running processes to spawn new processes and com-
municate with them. However, developers still need to handle explicitly issues such as
resource discovery, resource allocation, scheduling, profiling, and load balancing. Ad-
ditional middleware support is therefore needed to relieve application developers from
non-functional concerns while allowing high performance.

The Internet Operating System (IOS) [4, 5] is a distributed middleware framework
that provides support for dynamic reconfiguration of large-scale distributed applica-
tions through opportunistic load balancing capabilities, resource-level profiling and
application-level profiling. IOS has a modular nature that allows developers to create
easily various reconfiguration policies. One key ingredient to application reconfigura-
tion is the support for process migration. Applications should support process mobility
to be able to benefit from IOS reconfiguration policies.

We target in this work the broad class of iterative applications. A large number
of scientific and engineering applications exhibit an iterative nature. Examples include
partial differential equation solvers, particle simulations, and circuit simulations [6].
We have chosen to experiment initially with the class of iterative applications for two
reasons: this class is important in the scientific and engineering communities, and 2) It
exhibits predictable profiling and reconfiguration points that could easily be automated
through static software analysis or code-level annotations. To allow such applications to
benefit from the reconfiguration capabilities of IOS middleware, we have developed a
user-level library on top of MPI that allows process migration [7]. Our strategy achieves
portability across different implementations of the the MPI standard. MPI/IOS is a sys-
tem that integrates IOS middleware strategies with existing MPI applications. MPI/IOS
adopts a semi-transparent checkpointing mechanism, where the user needs only to spec-
ify the data structures that must be saved and restored to allow process migration. This
approach does not require extensive code modifications. Legacy MPI applications can
benefit from load balancing features by inserting just a small number of calls to a sim-
ple application programming interface. In previous work [7], we described in detail
the IOS architecture and evaluated our migration scheme. We take this work further in
this paper by demonstrating the capability of IOS to adapt the class of iterative MPI
applications to changing load conditions.

The remainder of the paper is organized as follows. Section 2 presents related
work. In Section 3, we give an overview of the IOS middleware. Section 4 presents
the MPI/IOS architecture with details on how MPI has been extended to support re-
configuration with IOS. Section 5 discusses the adopted reconfiguration policies. In



Section 6, we present performance evaluation. We conclude with discussion and future
work in Section 7.

2 Related Work

There are a number of conditions that can introduce computational load imbalances dur-
ing the lifetime of an application: 1) the application may have irregular or unpredictable
workloads from, e.g., adaptive refinement, 2) the execution environment may be shared
among multiple users and applications, and/or 3) the execution environment may be
heterogeneous, providing a wide range of processor speeds, network bandwidth and la-
tencies, and memory capacity. Dynamic load balancing (DLB) is necessary to achieve
a good parallel performance when such imbalances occur. Most DLB research has tar-
geted the application level (e.g., [8, 9]), where the application itself continuously mea-
sures and detects load imbalances and tries to correct them by redistributing the data, or
changing the granularity of the problem through domain repartitioning. Although such
approaches have proved beneficial, they suffer from several limitations. First they are
not transparent to application programmers. They require complex programming and
are domain specific. Second, they require applications to be amenable to data partition-
ing, and therefore will not be applicable in areas that require rigid data partitioning.
Lastly, when these applications are run on a dynamic grid, application-level techniques
which have been applied successfully to heterogeneous clusters [8, 10] may fall short
in coping with the high fluctuations in resource availability and usage. Our research tar-
gets middleware-level DLB which allows a separation of concerns: load balancing and
resource management are transparently dealt with by the middleware, while application
programmers deal with higher level domain specific issues.

Several recent efforts have focused on enhancing MPI run-time systems to adapt
applications to dynamic environments. Adaptive MPI (AMPI) [11, 12] is an implemen-
tation of MPI on top of light-weight threads that balances the load transparently based
on a parallel object-oriented language with object migration support. Load balancing in
AMPI is done through migrating user-level threads that MPI processes are executed on.
This approach limits the portability of process migration across different architectures
since it relies on thread migration. Process swapping [13] is an enhancement to MPI
that uses over-allocation of resources and improves performance of MPI applications
by allowing them to execute on the best performing nodes. MPI process swapping has
been also used for the class of iterative applications. Our approach is different in the
sense that we do not need to over-allocate resources initially. Such a strategy, though
potentially very useful, may be impractical in large-scale dynamic environments such
as grids where resources join and leave and where an initial over-allocation may not be
possible. We allow new nodes that become available to join the computational grid to
improve the performance of running applications during their execution.

Other efforts have focused on process checkpointing and restart as a mechanism to
allow applications to adapt to changing environments. Examples include CoCheck [14],
starFish [15], MPICH-V [16], and the SRS library [17]. CoCheck, starFish, and MPICH-
V support checkpointing for fault-tolerance, while we provide this feature to allow pro-
cess migration and hence load balancing. Our framework could be integrated with the



sophisticated checkpointing techniques used in these projects to be able to support also
non-iterative applications. SRS supports checkpointing to allow application stop and
restart. Our work differs in the sense that we support migration at a finer granularity.
Application-transparent process checkpointing is not a trivial task, could be very expen-
sive, and is architecture-dependent as it requires saving the entire process state. Semi-
transparent checkpointing provides a simpler solution and a more portable approach. It
has been been proved useful for the important class of iterative applications [13, 17].
API calls are inserted in the MPI program that informs the middleware of the important
data structures to save. This is an attractive solution that can benefit a wide range of ap-
plications and does not incur significant overhead since only relevant state is saved. The
instrumentation of applications could be easily automated since iterative application
have a common structure.

Several projects have actively investigated the issue of application adaptivity in grid
environments. Examples include GrADS [18], AppLeS [19], Cactus [20], and Grid-
Way [21]. We share several performance and scheduling ideas with these projects. Most
of the strategies they have adopted rely on the application ’s stop and restart mechanism;
i.e., the entire application is stopped, checkpointed, migrated, and restarted in another
hardware configuration. Although this strategy can result in improved performance in
some scenarios, a more effective adaptivity could be achieved if migration is supported
at a finer granularity. We address reconfigurability at the process-level of the application
to increase flexibility.

3 Overview of the IOS Framework

The goal of IOS middleware is to provide effective decentralized middleware-triggered
dynamic reconfiguration strategies that enable application adaptation to the constantly
changing behavior of large scale shared networks. To distributed application developers
who often lack the time and expertise to handle complex performance tunings, IOS is a
promising approach that combines both ease of use and high performance.

Applications wishing to interact with IOS need to have a flexible structure that syn-
ergizes easily with the dynamic nature of shared networks. They should exhibit a large
degree of processing and/or data parallelism for efficient use of the system and scal-
ability to a large number of resources. We assume that every application consists of
distributed and migratable entities. In the case of MPI application, such entities refer to
MPI processes.

IOS reconfiguration mechanisms allow 1) analyzing profiled application communi-
cation patterns, 2) capturing the dynamics of the underlying physical resources, 3) and
utilizing the profiled information to reconfigure application entities by changing their
mappings to physical resources through migration. A key characteristic of IOS is that
it adopts a decentralized strategy that avoids the use of any global knowledge to allow
scalable reconfiguration.

The IOS architecture consists of distributed middleware agents that are capable of
interconnecting themselves in various virtual topologies. We support both hierarchical
and peer-to-peer (P2P) topologies. The first is more suitable in grid environments that



Fig. 1. Interactions between a reconfigurable application and the local IOS agents.

usually consist of a hierarchy of homogeneous clusters while the second is more suitable
for Internet environments that usually lack a well defined structure.

Figure 1 shows the architecture of an IOS agent and how it interacts with the appli-
cation entities that are hosted in a given node. Every IOS agent consists of a profiling
component, a decision component, and a protocol component:

– Dynamic Profiling Component
Resource-level and application-level profiling is used to gather dynamic perfor-
mance profiles about physical resources and application entities. Profiling gener-
ates performance profiles that are used in the reconfiguration decisions. Every ap-
plication entity profiles its processing, communication, data accesses and memory
usage. Every resource has also a profiling monitor that monitors periodically its
utilization. Information about the resource’s available CPU power, memory, and
disk storage are measured and recorded periodically. The IOS architecture defines
well-defined interfaces for profiling monitors which allow using several profiling
technologies as long as they implement the appropriate interfaces. Examples in-
clude the Network Weather Service (NWS) [22] and MDS [23].

– Protocol Component
The protocol component is responsible for inter-agent communication and virtual
topology creation. The middleware agents form a virtual network. When new nodes
join the network or existing nodes become idle, their corresponding protocol com-
ponent contact peers randomly to steal work [24]. This strategy aids in advertising
new or existing resources as they become available. Every work stealing request
carries with it performance-related information about the node that originated the
request.

– Reconfiguration Module
Upon receiving a work stealing request, the reconfiguration module tries to evaluate



whether there are any potential candidate entities that will benefit from migration
to the originator of the request. The decision is done by examining the performance
of the application entities in the local node and the predicted performance in the re-
mote node. If a gain is predicted, the local protocol component notifies the selected
entities to migrate.

Applications communicate with the IOS middleware through clearly defined inter-
faces that permit the exchange of profiled information and reconfiguration requests.
Figure 2 shows the profiling interface that allows applications to notify the middle-
ware about all communication exchanges. The profiling component maintains a list of
all application entities hosted in its local run-time system. For every application entity,
the list maintains information about all other entities that have been exchanging mes-
sages with it and their frequency of communication. In other words, this list represents
a weighted communication subgraph of every application entity where the nodes rep-
resent application entities, the edges represent communication links, and the weights
represent communication rates. Every entity has a unique name (UAN) associated with
it and a universal locator (UAL) that keeps track of the current location where the entity
is currently hosted. A UAN stands for Universal Actor Name while a UAL stands for
Universal Actor Locator. We adopt here the naming conventions of the SALSA [25]
language. SALSA is a language for developing actor oriented application. It is a dialect
of Java with high-level constructs for universal naming, remote message sending, and
coordination. IOS has been prototyped using both SALSA and Java.

'

&

$

%

//The following methods notify the profiling agent of entities
//entering and exiting the local run-time system due
//to migration or initial entity startup.

public void addProfile(UAN uan);
public void removeProfile(UAN uan);
Public void migrateProfile(UAN uan, UAL target)

//The profiling agent updates its entity profiles based
//on message sending with these methods

public void msgSend(UAN uan, UAL targetUAL, UAL sourceUAL,
int msg_size);

//The profiling agent updates its entity profiles based
//on message reception with this method

public void msgReceive(UAN uan, UAL targetUAL, UAL sourceUAL,
int msg_size);

//The following methods notify the profiling agent of the start
//of a message being processed and the end of a message being processed,
//with a UAN or UAL to identify the sending entity

public void beginProcessing(UAN uan, UAL targetUAL, UAL sourceUAL,
int msg_size);

public void endProcessing(UAN uan, UAL targetUAL, UAL sourceUAL,
int msg_size);

Fig. 2. IOS Profiling API



4 Reconfiguring MPI applications with IOS

4.1 Process Migration Support

In MPI, any communication between processes needs to be done as part of a communi-
cator. An MPI communicator is an opaque object with a number of attributes, together
with simple functions that govern its creation, use and destruction. An intracommunica-
tor delineates a communication domain which can be used for point-to-point communi-
cations as well as collective communication among the members of the domain. On the
other hand, an intercommunicator allows communication between processes belonging
to disjoint intracommunicators.

We achieve MPI process migration by rearranging MPI communicators. Migration
is performed by a collaboration of all the participating MPI processes. It has to be
done at a point where there are no pending communications. Process migration re-
quires careful update of any communicator that involves the migrating process. The
class of iterative application have natural barrier points. When necessary, we perform
all reconfiguration at the beginning of each iteration. A migration request forces all run-
ning MPI processes to enter a reconfiguration phase where they all cooperate to update
their shared communicators. The migrating process spawns a new process in the target
location and sends it its local checkpointed data.

Process migration and checkpointing support have been implemented as part of a
user-level library. This approach allows portability across several vendor MPI imple-
mentations that support the MPI-2 process spawning feature since the library is imple-
mented entirely in the user space and does not require any infrastructural changes. The
library is called PCM (Process Checkpointing and Migration).

4.2 Profiling MPI Application

Fig. 3. Library and executable structure of an MPI/IOS application



MPI processes need to send periodically their communication patterns to their cor-
responding IOS profiling agents. To achieve this, we have built a profiling library that
is based on the MPI profiling interface (PMPI). The MPI specification provides a gen-
eral mechanism for intercepting calls to MPI functions. This allows the development
of portable performance analyzers and other tools without access to the MPI imple-
mentation source code. The only requirement is that every MPI function be callable by
an alternate name (PMPI_Xxxx instead of the usual MPI_Xxxx.). The built profiling
library intercepts all communication methods of MPI and sends any communication
event to the profiling agent.

All profiled MPI routines call their corresponding PMPI_Xxxx and, if necessary,
PCM routines. Figure 3 shows the library structure of the MPI/IOS programs. The in-
strumented code is linked with the profiling library PMPI, the PCM library, and a vendor
MPI implementation’s library. The generated executable passes all profiled information
to the IOS run-time system through Java Native Interface (JNI) and also communicates
with a local PCM Daemon (PCMD) that is started in every node. The PCMD is respon-
sible for storing local checkpoints and passing reconfiguration decisions across a socket
API from the IOS agent to the MPI processes. For more details about the PCMD, the
reader is referred to [7].

Fig. 4. A reconfiguration scenario of an MPI/IOS application



4.3 A Simple Scenario for Adaptation

MPI applications interact with each other, with the checkpointing and migration ser-
vices provided by the PCM library, and with the profiling and reconfiguration services
provided by IOS agents. Walking through the simple scenario of an application adapta-
tion that is shown in Figure 4 further explains these interactions. The example illustrates
the execution of a parallel MPI application that is composed of n processes running on
n different processors.

1. An available processor joins the IOS virtual network.
2. The new processor starts requesting work from its peers.
3. Processor 1 receives the work stealing request. The decision component in its lo-

cal IOS agent predicts that there will be a gain migrating process 1 to the remote
processor f .

4. MPI process 1 gets notified of a migration event.
5. At the beginning of the next iteration, the migrating process broadcasts a message

to the rest of the processors so that they enter a reconfiguration phase.
6. The migrating process checkpoints its local state, and spawns an image of itself

in the remote processor f . The local PCMD takes care of transferring the check-
pointed state to the newly created process and notifying the rest of the processes.

7. As a part of completing the migration process, the PCM library takes care of re-
arranging the MPI_COM_WORLD communicator by removing the old process and
including the new one. The newly created process gets assigned rank 1.

5 Reconfiguration Policies

The reconfiguration policies use the application’s characteristics and the underlying re-
sources’ characteristics to evaluate whether there will be any performance gain through
migration. Resources such as storage, CPU processing power, network bandwidth, and
network latencies are ranked according to their importance to the running application.
For instance, if the application is computationally intensive, more weight is given to the
CPU processing power. If the application is communication intensive and the messages
exchanged have large sizes, more weight is given to the network bandwidth. Whereas, if
it is communication intensive with small exchanged message sizes, the network latency
is very important.

Let P be the set of m processes running on a local node n.

P = {p0, p1, ..., pm}
Let R be a set of resources available in the local node n.

R = {r0, r1, ..., rl}
Let ω be the weight assigned to a given resource ri based on its importance to the per-
formance of the set P .

0 ≤ ω(ri, P ) ≤ 1 and

l∑

i=0

ω(ri, P ) = 1



Let a(r, f) be the amount of resource r available at foreign node f , u(r, l, A) be the
amount of resource r used by the processes P at local node l, M(P, l, f) be the es-
timated cost of migration of the set P from l to f , and L(P ) be the average life ex-
pectancy of the set of processes P . The predicted increase in overall performance Γ
gained by migrating P from l to f , where Γ ≤ 1 is:

∆r,l,f,P =
a(r, f)− u(r, l, P )
a(r, f) + u(r, l, P )

(1)

Γ = (
∑

r

ω(r, P ) ∗∆r,l,f,P )− (
M(P, l, f)

(10 + log(L(P ))
) (2)

When a node l receives a work stealing request from a node f , a process or a group
of processes will be migrated if the evaulation of the gain Γ is positive. The larger this
value is, the more beneficial the migration is.

It is important to factor in Equation 2 the remaining life expectancy of the group of
processes P . The intuition behind this is that processes who are expected to have a short
remaining life are not migrated because the cost of the reconfiguration might exceed the
benefit over their remaining life expectancy. For the case of iterative applications, we
estimate the life expectancy by looking at the number of remaining iterations multiplied
by the average time each iteration takes in the current node.

6 Performance Evaluation

6.1 Application Case Study

We have used a fluid dynamic problem that solves heat diffusion in a solid for testing
purposes. This applications is representative of the large class of highly synchronized
iterative mesh-based applications. The application has been implemented using C and
MPI and has been instrumented with PCM library calls. We have used a simplified
version of this problem to evaluate our reconfiguration strategies. A two-dimensional
mesh of cells is used to represent the problem data space. The mesh initially contains
the initial values of the mesh with the boundary values. The cells are uniformly dis-
tributed among the parallel processors. At the beginning, a master process takes care
of distributing the data among processors. For each iteration, the value of each cell is
calculated with the values of its neighbor cells. Each cell needs to maintain a current
version of the values of its neighboring cells. To achieve this, processors exchange val-
ues of the neighboring cells, also referred to as ghost cells. To sum up, every iteration
consists of doing computation and exchange of ghost cells from the neighboring pro-
cessors. Figure 5 shows the structure of the parallel decomposition of the heat diffusion
problem.

6.2 Adaptation Experiments

We have used the iterative 2-dimensional heat diffusion application to evaluate the re-
configuration capabilities of the MPI/IOS framework. The original MPI code was in-
strumented with PCM calls to enable checkpointing and migration. For the experimental



Fig. 5. Parallel decomposition of the 2D heat diffusion problem.

testbed we used a 4-dual node cluster of SUN Blade 1000 machines. Each node has a
processing speed of 750M cycles per second and 2 GB of memory. For comparative
purposes, we used MPICH2 [26], a free implementation of the MPI-2 standard. We em-
ulated a shared and dynamic environment with varying load conditions by introducing
artificial load in some of the cluster nodes and varying it periodically.

We conducted two experiments using the heat application using the MPI/IOS frame-
work and MPICH2 under similar load conditions. For both experiments, we started run-
ning the application, then we kept increasing the load in some of the cluster nodes and
watched how the application’s performance was affected in each case.

The first experiment was conducted with MPI/IOS. Figure 6 shows the performance
of the application. We started running the application with 8 processes on 4 processors.
the remaining 4 processors joined the virtual IOS network gradually. We started in-
creasing gradually the load on one of the cluster nodes (two processors) participating
in the computation. One node joined the virtual IOS network around iteration 1000 and
started sending work stealing requests. This caused one process to migrate to the new
machine and to reduce the load on its original hosting node. We notice an increase in the
application throughput. The load in the slow machine increased even further around iter-
ation 2500. Around iteration 3000, a fourth node joined the virtual network and started
sending work stealing packets. At this point, two processes migrated to this machine.
This caused the slow processors to be eliminated from the computation. The applica-
tion ended up using a total of the 6 best available processors, which caused a substantial
increase in its performance. The total execution time of the application was 645.67s.

Figure 7 shows the performance of the application using MPICH2. We emulated the
same load conditions as in the first experiment. With no ability to adapt, the application
was stuck with the first hardware configuration and experienced a constant slowdown in



Fig. 6. Performance of the the two-dimensional heat simulation application using the reconfigu-
ration mechanism of MPI/IOS. The experiment was conducted on a 4 dual-processor SUN blade
1000 cluster.

its performance. The highly synchronized nature of this application causes it to run as
fast as the slowest processor. The application took 1173.79s to finish, about an 81.8%
decrease in performance compared to the adaptive execution.

Fig. 7. Performance of the the two-dimensional heat simulation application using MPICH2. The
experiment was conducted on a 4 dual-processor SUN blade 1000 cluster.

7 Discussion and Future Work

We presented in this paper an architecture that enhances the performance of iterative
applications under dynamically changing conditions. We implemented a user-level li-
brary that adds checkpointing and process migration features to existing iterative MPI
applications. We also integrated our library with a middleware for reconfigurable com-
puting. The experimental evaluation has demonstrated the importance of augmenting



long-running MPI application with reconfiguration capabilities to achieve high perfor-
mance.

This work opens up several interesting future directions. One direction is the eval-
uation of different reconfiguration policies and how effective they are in dynamic ex-
ecution environments. The sensitivity of these policies to application’s characteristics
needs also to be investigated. Another important direction is extending our framework
beyond the class of iterative applications. This will require developing more sophisti-
cated checkpointing and migration policies. We plan also to evaluate our framework on
larger networks with interesting and realistic load characteristics and network latencies.

8 Acknowledgments

The authors would like to acknowledge the members of the Worldwide Computing
Laboratory at Rensselaer Polytechnic Institute. In particular, our special thanks go to
Travis Desell for his contributions to the IOS middleware. This work has been supported
by the following grants: IBM SUR Award 2003, IBM SUR Award 2004, NSF CAREER
Award No. CNS-0448407, and NSF-INT 0334667.

References

1. Message Passing Interface Forum: MPI: A message-passing interface standard. The Inter-
national Journal of Supercomputer Applications and High Performance Computing 8(3/4)
(1994) 159–416

2. Gropp, W., Lusk, E.: Dynamic process management in an MPI setting. In: Proceedings of
the 7th IEEE Symposium on Parallel and Distributeed Processing, IEEE Computer Society
(1995) 530

3. Message Passing Interface Forum: MPI-2: Extensions to the Message-Passing Interface
(1996)

4. Desell, T., Maghraoui, K.E., Varela, C.: Load balancing of autonomous actors over dynamic
networks. In: Hawaii International Conference on System Sciences, HICSS-37 Software
Technology Track, Hawaii (2004)

5. Maghraoui, K.E., Desell, T., Varela, C.: Network sensitive reconfiguration of distributed ap-
plications. Technical Report CS-05-03, Department of Computer Science, Rensselaer Poly-
technic Institute (2005)

6. Fox, G.C., Williams, R.D., Messina, P.C. In: Parallel Computing Works. Morgan Kaufmann
Publishers, San Fransisco, CA (1994) Available at http://www.npac.syr.edu/pcw/.

7. Maghraoui, K.E., Desell, T., Szymanski, B.K., Teresco, J.D., Varela, C.A.: Towards a mid-
dleware framework for dynamically reconfigurable scientific computing. In Grandinetti, L.,
ed.: Grid Computing and New Frontiers of High Performance Processing. Elsevier (2005) to
appear.

8. Elsasser, R., Monien, B., Preis, R.: Diffusive load balancing schemes on heterogeneous
networks. In: Proceedings of the Twelfth Annual ACM Symposium on Parallel Algorithms
and Architectures, ACM Press (2000) 30–38

9. Flaherty, J.E., Loy, R.M., Özturan, C., Shephard, M.S., Szymanski, B.K., Teresco, J.D.,
Ziantz, L.H.: Parallel structures and dynamic load balancing for adaptive finite element
computation. Applied Numerical Mathematics 26 (1998) 241–263



10. Teresco, J.D., Faik, J., Flaherty, J.E.: Resource-aware scientific computation on a hetero-
geneous cluster. Technical Report CS-04-10, Williams College Department of Computer
Science (2005) To appear, Computing in Science & Engineering.

11. Bhandarkar, M.A., Kale;, L.V., de Sturler, E., Hoeflinger, J.: Adaptive load balancing for MPI
programs. In: Proceedings of the International Conference on Computational Science-Part
II, Springer-Verlag (2001) 108–117

12. Huang, C., Lawlor, O., Kalé, L.V.: Adaptive MPI. In: Proceedings of the 16th International
Workshop on Languages and Compilers for Parallel Computing (LCPC 03), College Station,
Texas (2003)

13. Sievert, O., Casanova, H.: A simple MPI process swapping architecture for iterative appli-
cations. International Journal of High Performance Computing Applications 18(3) (2004)
341–352

14. Stellner, G.: Cocheck: Checkpointing and process migration for MPI. In: Proceedings of the
10th International Parallel Processing Symposium, IEEE Computer Society (1996) 526–531

15. Agbaria, A., Friedman, R.: Starfish: Fault-tolerant dynamic MPI programs on clusters of
workstations. In: Proceedings of the The Eighth IEEE International Symposium on High
Performance Distributed Computing, IEEE Computer Society (1999) 31

16. Bosilca, G., Bouteiller, A., Cappello, F., Djilali, S., Fedak, G., Germain, C., Herault, T.,
Lemarinier, P., Lodygensky, O., Magniette, F., Neri, V., Selikhov, A.: MPICH-V: toward
a scalable fault tolerant mpi for volatile nodes. In: Proceedings of the 2002 ACM/IEEE
conference on Supercomputing, IEEE Computer Society Press (2002) 1–18

17. Vadhiyar, S.S., Dongarra, J.J.: SRS - a framework for developing malleable and migratable
parallel applications for distributed systems. In: Parallel Processing Letters. Volume 13.
(2003) 291–312

18. Vadhiyar, S., Dongarra: Self adaptivity in grid computing. Concurrency and Computation:
Practice and Experience 17(2-4) (2005) 235–257

19. Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H., Faerman, M., Figueira, S., Hayes,
J., Obertelli, G., Schopf, J., Shao, G., Smallen, S., Spring, N., Su, A., Zagorodnov, D.: Adap-
tive Computing on the Grid Using AppLeS. IEEE Trans. Parallel Distrib. Syst. 14(4) (2003)
369–382

20. Allen, G., Dramlitsch, T., Foster, I., Karonis, N.T., Ripeanu, M., Seidel, E., Toonen, B.:
Supporting efficient execution in heterogeneous distributed computing environments with
Cactus and Globus. In: Supercomputing ’01: Proceedings of the 2001 ACM/IEEE conference
on Supercomputing (CDROM), New York, NY, USA, ACM Press (2001) 52–52

21. Huedo, E., Montero, R.S., Llorente, I.M.: A framework for adaptive execution in grids.
Softw. Pract. Exper. 34(7) (2004) 631–651

22. Wolski, R.: Dynamically forecasting network performance using the network weather ser-
vice. Cluster Computing 1(1) (1998) 119–132

23. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid information services for dis-
tributed resource sharing. In: Proceedings of the 10th IEEE Symposium On High Perfor-
mance Distributed Computing. (2001)

24. Blumofe, R.D., Leiserson, C.E.: Scheduling Multithreaded Computations by Work Stealing.
In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS
’94), Santa Fe, New Mexico (1994) 356–368

25. Varela, C., Agha, G.: Programming dynamically reconfigurable open systems with SALSA.
ACM SIGPLAN Notices. OOPSLA’2001 Intriguing Technology Track Proceedings 36(12)
(2001) 20–34 http://www.cs.rpi.edu/ cvarela/oopsla2001.pdf.

26. Argone National Laboratory: (MPICH2, http://www-unix.mcs.anl.gov/mpi/mpich2)


