Transactors: A Programming Model for Maintaining
Globally Consistent Distributed State in Unreliable
Environments

John Field
IBM T.J. Watson Research Center

jfield@watson.ibm.com

ABSTRACT

We introducetransactors a fault-tolerant programming model for
composing loosely-coupled distributed components rugirinan
unreliable environment such as the internet into systerasrit
liably maintain globally consistent distributed state.eTihansac-
tor model incorporates certain elements of traditionahgeetion
processing, but allows these elements to be composed aretiff
ways without the need for central coordination, thus ftatilng the
study of distributed fault-tolerance from a semantic poihtiew.
We formalize our approach via thecalculus, an extended lambda-
calculus based on tteetor model, and illustrate its usage through a
number of examples. Thecalculus incorporates constructs which
distributed processes can use to create globally-consisbeck-
points We provide an operational semantics for thealculus,
and formalize the following safety and liveness propertifist,
we show that globally-consistent checkpoints have egeitatxe-
cution traces without any node failures or applicatioreldsilures,
and second, we show that it is possible to reach globallsistent
checkpoints provided that there is some bounded failwee-fiter-
val during which checkpointing can occur.

Categories and Subject Descriptors

D.3.3 [Programming Language$: Language Constructs and
Features—eoncurrent programming structuresF.3.2 [Logics

and Meanings of Program§: Semantics of Programming
Languages-eperational semantics, process mogelsD.4.5

[Operating System$: Reliability—checkpoint/restart, fault-
tolerance D.1.3 [Programming Technique§: Concurrent

Programming—distributed programming

General Terms
Languages, Reliability, Design, Theory

Keywords

Distributed state, Transactor, Tau-calculus, Actor

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

POPL'05,January 12—14, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-830-X/05/0001%5.00.

Carlos A. Varela
Department of Computer Science
Rensselaer Polytechnic Institute

cvarela@cs.rpi.edu

1. MOTIVATION

Many distributed systems must maintalistributed state By
this, we mean that the states of several distributed commsiire a
network-connected system are interdependent on one an®tre
classical example of such a scenario is a bank transactiotving
the transfer of money from one account to another, where wst mu
ensure that it is not possible (even in the presence of amyfsié
ure) for one account to be debited without a correspondieditr
being made to the other account, and vice-versa.

Ensuring that these interrelated states are maintaineccana
sistentway in a wide-area network—where transmission latencies
may be high, and where node and link failures are relativetyp-c
mon occurrences—is difficult. By exposing key semantic con-
cepts related to maintenance of distributed state in a comwell-
foundedlanguage rather than relegating these issues to system or
middleware, composite distributed applications can neasmout
the failure semantics of their components, and, if appederisup-
ply extra protocol layers (e.g., logging, rollbacks, restireplica-
tion, etc.) to add additional reliability.

To better illustrate the complexity of maintaining distribd
state in a loosely-coupled distributed system, considellaation
of web services that are combined dynamically to manageuhe p
chase of a house. Such a purchase is a complex multi-step tran
action involving many interacting participants. Today,nyaf the
steps required to purchase a house entail tedious requekte-a
sponses for information via telephone calls, faxes and pdpeu-
ments. However, in the future, it should be possible forwilty all
the information generated during the process to be excldaage
managed electronically.

Figure 1 depicts a subset of the operations that might be per-
formed by a collection of web services involved in the negoti
tion of a house purchase, and serve to illustrate many olthes
that arise in building an infrastructure to support suchises. We
will consider such services to be concurrent processesamegend
and receive messages to other processes as well as spawnorew p
cesses. The negotiation may involve the failure and sulesgqu
recovery of several sub-processes. In the figure, the aétiErs
labeled bybuySrv andsellSrv represent web services acting on
behalf of the buyer and seller, respectiveliendSrv, apprSrv,
andsrchSrv represent web services for a lender, appraisal service,
and title search service, respectiveliendTrns, apprTrns, and
srchTrns represent sub-processes spawned by the lender, appraisal
service, and search service specifically to manage theaitten
with the particular buyer in this example. Horizontal arsogepict
messages sent between processes or the creation of newgEsce
Portions of the vertical process bars that are black reptéstable

states”, where the state maintained by the process shotiklibe
sequently change. Process rollback (arising from various$ of
failure) is depicted by dashed diagonal arrows.

In the example depicted in Fig. ApprTrns generates an esti-
mated price based on specifications (size of house, agg,pete.
vided electronically. As is typical in such transactiorieneents of
the process proceeds optimistically under the assumptiaintthe
initial specifications are correct, while a human verifieobysite
inspection that the electronic specifications are indeedrate. In
this case, the inspector discovers an inconsistency battheeac-
tual specifications and those provided electronically, @ngses the
appraisal process to be rolled back and restarted usingotinect
specifications. The system must then somehow reconcileatite f
that the components of the distributed state are now instergi
(e.g., the mortgage application was initiated by the bugeseld in-
formation from an inaccurate appraisal), and bring thedysitem
back to a consistent state. Here, a consistent state isedstden
lendTrns requests price information frorpprTrns and returns a
message indicating the mortgage has been approvédiySry.
At that point, the state dbuySrv is based on inconsistent infor-
mation: the original price returned apprTrns and the approved
mortgaged based on an updated price generateghpgTrns after
rollback of the initial state.

The transactor model serves to maintdépendencaformation
needed to detect semantic inconsistencies such as thatetbpi
Fig. 1, and to cause the rollback of theySrv process to occur
automatically. In addition to such “semantic” failuresppess or
network failures during the course of the transaction mighise
information loss that requires an orderly re-establishnadrthe
transaction’s distributed state. Note, however, thatagesteps of
the transaction, such as the title search, need not be rigiego
after a semantic or system failure, since the results of daech
are unaffected by the inconsistent appraisal values. Sepls san
be committedearly in the process, while other steps (such as the
final transfer of the purchase price) might require mutuedament
between multiple parties to be reached before becomingbtiura
and binding.

In this paper, we describe thansactormodel, a fault-tolerant
programming model for composing loosely-coupled distebu
components running in an unreliable environment such asmthe
ternet into systems that reliably maintain consistentrithisted
state. Our model ismot concerned with certain aspects of tradi-
tional “ACID” transactions [13] such as isolation or centdborms
of atomicity. While such features are beyond the scope sffiai
per, they can be explicitly coded in our model if desired,,grga
manner similar to [12]; instead, we focus on ensuring coasty
of distributed state in the presence of certain types of modienet-
work failures. In particular, we assume that a node failseziby
stopping, or by reverting to a programmatically-defirvbéckpoint
saved to stable storage, then restarting.

The remainder of the paper is structured as follows: Se@ion
introduces related work. Section 3 informally describesttians-
actor model. Section 4 introduces the syntax of thealculus,
an extended lambda-calculus based ondatter model. Section 5
illustrates some representative transactor examplesio8dcpro-
vides an operational semantics for thecalculus. Section 7 for-
malizes safety and liveness properties of the model. Thaeraa
referred to [10] for complete proofs. Finally, Section 8 cloies
with a discussion and potential future directions.

2. RELATED WORK

The transactor model is based on #wtor model introduced by
Hewitt [15], and further refined and developed by Agha et Hl. [

| schSry | | apprSrv | buySrv sellSrv lendSrv
Teq. price —
$ "€¥>1 apprTms
req. specs
[y
specs

. prida

.

E offer

|
erify specqy)
req. search - 1
new
*l >| srchTrns H
search DKy
req. mortg
new
req. price lendTrns 4
price
= mortg. appr]

T I
|
i

Figure 1: A house purchase scenario involving the “seman-
tic failure” and rollback of the apprTrns sub-process due to
inconsistent information about house specifications. Thisiti-
mately results in the rollback of the buySrv process itself, due
to the inconsistency between the appraised price used to ti
ate the buying process, and the differing price incorporatd in
the mortgage approval sub-process.

3, 20]. Actors are inherently independent, concurrent, and
tonomous which enables efficiency in parallel executior] &l
facilitates mobility [2]. The actor model and languagesvie a
very useful framework for understanding and implementipgro
distributed systems.

Traditionally, distributed state maintenance has beemvede
primarily as a systems or “middleware” [5] problem, in which
e.g., system infrastructure for message-passing proygdasan-
teed message delivery on an unreliable network substratz1]6
or where distributed databases or transaction systemssupp il-
lusion of shared, atomically-updatable state across pieltiodes
[17, 19]. A number of projects are underway to realize distied
programming models for the internet, e.g., theb servicesnodel
based on exchange of XML data [22].

Distributed transaction management systems, e.g., thasae-
plement the XA system-neutral transaction API [23], typicee-
quire that all of the participants in the transaction cooatt their
work with a pre-designatettansaction managerand that every
transaction has well-defined beginning and end points. & pesp-
erties make it difficult to build open distributed systemsenehthe
topology of the system is determined dynamically, wheresttupe
of—and even the need for—a transaction is situation-degrand
and where transactional and non-transactional componantsas-
ily interact. While there is much existing foundational wayn
languages for concurrent, and to a lesser extent, distdbsys-
tems (e.g., actors [1, 3], the-calculus [18], the join calculus [11],
and mobile ambients [7]), formalisms that provide prim@tvfor
reasoning about the consistency of distributed state iprtbsence
of failures are not well developed.

Liskov's Argus language [17] incorporates constructs fainm
tenance of distributed state (wigsted transactionsLiskov intro-
duced two principal abstractions: guardians and actiongug\es-
sentially provides a programming interface onto centraignaged
nested transactions. By contrast, with transactors, wenihto

uniformly model a variety of failure-management technijue-
cluding transactions and applications with weaker coesist se-
mantics. Haines et al. designed an extension to ML to molgular
support first-class transactions [14]. That is, atomidgglation
and durability properties can be composed as desired. Wepare
cerned with distributed state consistency and durabditg do not
explicitly model isolation. Atomicity within a transactds inher-
ited from the actor model, where each transactor represeuntst

phase of a two-phase commitment protocol.

A rollback operation brings a transactor back to its presipu
checkpointed state, if any, or makes it disappear othervhkmle
failures have a similar effect.

4. THE TAU CALCULUS

The 7-calculus is based on an extended, untyped, call-by-value

of concurrency and processes only one message at a timer Othelambda calculus; its terms are depicted in Fig. 2. The basibta

actor-based abstractions (such as synchronizers [12]pearsed
to provide atomicity for actions performed by groups of etated
actors.

Chotia and Duggan’s abstractions for fault-tolerant glaosm-
puting [8] include conclavesas groups of correlated processes
which fail atomically, andogswhich abstract over persistent stor-
age. Berger and Honda provide an extension tontt@lculus to
model the two-phase commitment protocol [4]. While the moti
vation of their work is similar to ours, the approaches ariequ
different. The transactor model does not assume atomitipyd-
cess group failures: transactors can fail independentlycamisal
dependencies are carried along with messages to ensurentijat
globally consistent checkpoints can be reached by apjaicétvel
protocols. Our calculus also enables reasoning about angas
ing modules with different transactional semantics anthbdlty
properties.

A preliminary account of the ideas underlying the transacto
model was published as [9]; it contained no correctnessferoo
While the work presented here shares some of the ideas oathe e
lier paper, almost all of the semantic components-clculus have
been updated and simplified.

3. TRANSACTOR MODEL

The goal of the transactor model is to enable developinghkdi
systems composed from potentially unreliable componevtigch
may suffer both system failures and application-specifinasic
inconsistencies. We show that given any two checkpointetad|
statesk and &’ of a distributed system such thatand £’ are re-
lated by an execution trace containing inconsistent statadting
from node failures, application-level failures, and lostssages,
there exists an equivalent execution trace containing magsage

calculus constructs are standard and we will not commenhem t
further. The extensions can be divided into two categotiesse
terms €4) that encode the traditional actor [1] semantics with ex-
plicit state management, and additional constructs to @uifs-
tributed state maintenance. In this section, we will giveriafp
intuitive tour of r-calculus constructs, and defer a more detailed
discussion of its semantics to Section 6.

4.1 Traditional Actor Constructs

Thetransactor creatiorconstructtrans e; init e» snart cre-
ates a new transactor wittehaviore;, and initial statees. The
behavior must evaluate to an abstraction term; intuitivblig term
evaluates each incoming message to the created transactor.

The expression returnsteansactor namea fresh value that can
be subsequently used as the target ofrttessage senconstruct,
send v to t. This construct sends a message witintentsv
to the transactor named Theready construct indicates that a
transactor is waiting to process the next incoming messagH.
yields the transactor’s own name.

The setstate(v) construct imperatively updates a transactor’s
state to the value. A message send can potentially introduce
a causal dependency from the sender to the target transéctor
the target transactor modifies its state in response to ttssage.
When a transactor has committed not to change its statejxec
of setstate(v) has no effect; thus the expressisatstate(v)
returns a boolean value indicating whether or not the statiate
actually took placegetstate retrieves the value of the state.

4.2 State Maintenance Constructs

Thestabilize construct causes the current transactor to ignore
subsequentetstate(v) or rollback expressions and become

losses. Hence programmers using our model need only reasonstable this fact is communicated by the underlying operational se

about the possibility of lost messages, not about the otbrens
of failure.

Transactors extend the actor model [1] by explicitly maulgli
node failures, network failures, persistent storage, date Sm-
mutability. A transactor encapsulates state and commtasaaith
other transactors via asynchronous message passingptmeesto
a message, a transactor may create new transactors, sesabe®s
to other transactors, or modify its internal state. In addito these
inherited actor operations, a transactor may stabilizeclghoint,
or rollback.

A transactor’s stabilization is a commitment not to modtyin-
ternal state—i.e., to become immutable—until a subseqlestk-
point is performed or until another peer actor causes it tbaok
due to semantic inconsistencies. Stabilization can begtttoof as
the first phase of a two-phase commitment protocol.

A checkpoint serves two purposes: first, it is a commitment to
make the current transactor state persistent, i.e. abievive local
temporary node failures; and second and most importans, at i
consistency guarantee, i.e. there are no pending depdéadent
the volatile state of peer transactor®ependence informatiois
carried along with messages, so that only globally consistates
can be checkpointed. Checkpoint can be thought of as thedeco

mantics to other transactors with which the current tratos@orre-

sponds, and is in effect a “promise” to the transactor’'s pteat the
transactor will not attempt to change its own state. Notédkan

after entering astablestate via thestabilize construct, a trans-
actor can still process messages, it simply cannot chaaganit

state.

The checkpoint construct creates eheckpoint which is (ef-
fectively) a copy of the transactor’s current state which ba re-
covered in the event of certain failures. checkpoint can only
be made if the current transactor is m&pendenbn the volatile
state of one or more other transactors. That is, a state tadtgn
unrecoverable in the presence of node failures. dépendent?
construct tests whether this is the case. TaHback construct
causes a transactor to revert to its previous checkpoionéfex-
ists, and causes the transactor to disappear otherwiseithshe
setstate(v) construct, theollback construct has no effect when
the transactor is stable.

4.3 Defined Forms

Fig. 3 depicts a number of defined forms that provide convenie
syntactic sugar for writing-calculus programs. Most of these con-
structs are self explanatory, a few deserve further exfitama

A = {true, false, nil, .. .} Atoms
A {0,1,2,...} Natural numbers
T = {t1,t2,t3,...} Transactor names
X = {z1,22,23,...} Variable names
F = {=+,...} Primitive operators
\% = Values
AN |T|X
| AX.E Lambda abstraction
| %) Pair constructor
Ep = Pure expressions
\%
(£€) Lambda application
fst(&) First element of pair
snd (&) Second element of pair
if £ then £ else € fi Conditional
letrec X = £ in € ni Recursive definition
FE,..., &) Primitive operator
Ea = Traditional actor constructs
Ep
trans £ init £ snart New transactor
send € to &£ Message send
ready Ready to receive message
self Reference to own name
| setstate(&) Set transactor state
| getstate Retrieve transactor state
& = Transactor expressions
Ea
| checkpoint Make failure-resilient
| rollback Revert to prev. checkpt.
| stabilize Prevent state changes
| dependent? Test dependence

Figure 2: Terms.

Themsgcase construct yields a lambda abstraction whose body

processes incoming messages. Messages are assumed teetake t [stal]

form of a vector of parameters, the first of which is an atont tha
constitutes anessage nam& hemsgcase body tests the value of
the incoming message and processes the other message argume
appropriately; messages that are not understood are @nore
Thedeclstate construct declares names for a transactor’s state,
which is presumed to consist of a vector of elements. This con
struct does not “expand” into a corecalculus expression, instead,
it simply defines a static name scope for subsequent refesesfc
the form!u andu := e, which expand into appropriate operations
on the transactor’s state vector.

5. TRANSACTOR EXAMPLES

In this section, we illustrate a few representative tratsgmro-
grams. We refer the reader to [10] for additional examples.

5.1 Reference Cells

We begin with a simple reference cell and tvediable versions
thereof providing progressively more refined notions ofsistent
state under different failure and interaction assumptions

The cell program, shown in Figure 4, is a volatile reference cell
that never gets checkpointed: it cannot tolerate procdssga and
therefore, any other programs which depend on that celliseva
will not be able to reach consistent states or checkpoint.

The pcell, program is a first attempt to provide a cell whose
invariant is to always checkpoint its current value to beeatol
recover from process failures. Upon creation it must recein
initialize message, that creates an initial checkpoint. Notice that
it first needs to become stable to succeed checkpointingy #ds
tice that the creator of that cell needs to be stable as wethfat
checkpoint to succeed. On reception ofed message, the cell
will modify its value, and checkpoint again. This checkpaas-
sumes that the transactor sending shie message is stable, and

[vecl] (e1,...,en) £ (e, (..., (en,nil))...), n>0
[vec2] () 2 il
[vec3] & L2 (z1,...,z,) forsomen >0
[sea] erses 2 ((Aw.e2)er), @ ¢ Mea)
[if1] if e; then e fi £ if e; then ey else nil i
[let1] letz=e inesni 2 ((Az.e2)er)
[let2] let (z1,...,z,) =e1 in

ez

ni
= let z; = fst(ey) in
et z, = fst(snd(...snd(e1)...)) in
e
ni
ni

[vabs] AZ. e

2 Az'.let =2a'ineni, 1z’ ¢fv(e)
[msgl] msg & = (msg, T)
[msg2] msgcase

msg, 1 = el
| msg, Tn = en
esac
A ’
2 Am,). (
if m = msg; then
let &, = 2’ in e; ni
else

if m = msg,, then

let Z, = 2z’ in e, ni
else

ready
fi

fi;
ready)
declstate (uy,...,u,) in e etats
= declaration of names fon elements of state

[sta2] luy
= let (z1,...,z;, Z) = getstate in z; ni
wu; is theith name declared in the closest
statically-enclosingleclstate scope, of lengtm, n > ¢ > 0
[sta3] wu; = e

A

setstate((lui, ..., lui—1, e, luiq1, ..., luy))
whereu; is theith name declared in the closest
statically-enclosingleclstate scope, of lengtm, n > ¢ > 0

Figure 3: Defined forms.

therefore, does not create spurious dependencies on thgooel
state assignment. On reception ofet message, the cell needs to
stabilize first, to ensure that no new dependencies arerggtim
the cell’'s customer. And finally, to preserve the invariaihbeing
just checkpointed (and therefore, volatile) on messageptém, it
does a finatheckpoint.

The pcell, program builds on the previous example, but also
considers the possibility that the clients setting the ealfithe cell
may do it from a volatile (i.e., unstable) state. In this cdise cell's
set message handler checks for any outstanding dependeneies af
ter updating its state, and if the transactor is dependerttiogr
transactors, it rolls back to its previously (known to behsistent
state.pcell, is strictly more reliable thapcell, in the sense that it
considers interaction with potentially volatile clients.

5.2 Electronic Money Transfer

The traditional electronic money transfer example dedidte
Fig. 5 is implemented with transactors using a a protocoli-sim
lar to classical two-phase commit protocol&ller represents an
ATM machine or a similar coordinator for a transfer betwesn t

let cell = trans
declstate (contents) in
msgcase

let pcell, = trans
declstate (contents) in
msgcase

let pcell, = trans
declstate (contents) in
msgcase

set(val) = initialize() = initialize() =
contents := wval stabilize; stabilize;
| get{customer) = checkpoint checkpoint
send data(!contents) | set{val) = | set{val) =
to customer contents := wal; contents := wal;
esac stabilize; if dependent? then
etats checkpoint rollback
init | get(customer) = else
(0) stabilize; stabilize;
snart send data(lcontents) checkpoint
to customer; fi
checkpoint | get{customer) =
esac stabilize;
etats send data(!contents)

init
(0)

snart

to customer;
checkpoint
esac
etats
init
(0)

snart

Figure 4: A progressively more refined reference cell. The femost example is an unreliable reference cell. The middleme is a
persistent reference cell which assumes stable clients. &hightmost cell represents a persistent reliable refererecell.

bankaccounts. All of the transactors are assume to be persistent 6.1 Notational Preliminaries

and checkpointed initially, and we assume that t#iéer has ex-
clusive access to both accounts. Isolation and lockinggefed to
ensure exclusive access, can be managed by appropriatiaguxi
transactors.

The basic protocol used in the example is quite simple. The

Most of the notation we use in the sequel is standard or self-
explanatory. Here, we cover a few concepts that are notatdnd

Grammars as setswe will often define sets using context-free
grammars, and will use a non-terminal of the grammar to sgme

teller sends appropriate account adjustment requests to each aCihe set of all terms derivable from that non-terminal.

count. Each account separately determines whether it & tabl
fulfill the request. If so, it stabilizes and sendtsne (with a result
message) to the:ller. If not, it also senddone (with an error mes-
sage) to the teller, then rolls back. When the teller hasvedewo
done messages, it stabilizes, then requests that each accouha se

ping message both to its peer account and to the teller. Notetthat a

this point in the protocol, théeller has no idea whether the update
has been successful or not (assuming that it is not inténgréte
messages returned ldpne). However, if either of the transactors
has rolled back in the meantime due to insufficient funds ontp
neous failure, th@ing messages will incorporate inconsistent de-
pendence information, thus effectively resulting in ratk when
received. In the absence of failure, each transactor wihaally
receive sufficienping messages for theheckpoint operation to
succeed; until that point, theheckpoint is a no-op.

The protocol in Fig. 5 ensures that the transfer will alwaysie
plete in a consistent state, either with both accounts epdgbpro-
priately, or both left unchanged. The protocol does not deattly
with certain combinations of message losses; howevenlticeas-
ily be augmented by adding @mer transactor that periodically
re-sendging requests if the participants have not checkpointed.

Note that we could easily interposecarrencyconverter trans-
actor between participantshich does not need to know that the
parties involved are part of a transactierthe model enables to
compose services with full transaction semantics withisesthat
do not have any transactional behavior in a seamless andctorr
manner.

6. OPERATIONAL SEMANTICS

In this section, we provide an operational semantics forithe
calculus. We first need to establish some notational corest

Lists. Given a setS, we will use[S] to denote the set dists
defined overS, where[] denotes the empty list, and: [, denotes
alist cell. We will frequently usées; ez; .. . ; e,] as a shorthand to
denotee ::(e2::(... (en :2[]) .. .)). len(l) denotes the length df
andlastn(n,l) denotes the list consisting of the laselements of
[(for 0 < n < len(l))).

Finite maps.Given setsS: and S, S 7, S, denotes the set
of finite partial maps fron; to Sz, wheredom(m) andran(m)
denote the domain and rangeraf respectively. We will us@ to
denote the empty mapy(x) to denote the element to which
mapsz, m[x — e] to denote the map that is the samerasexcept
thatz is mapped te, andm \ z to denote the map:’ that is the
same asn, except thatr ¢ dom(m’). We will use[z — e] as a
shorthand fof)[x +— e]. Letm be a map, ang be a function from
ran(m) to ran(m). Then we will usem[z — f] as a shorthand
for the mapm[z — f(m(z))]. m'(z) = f(m(z)). If we want
to apply f to selected elements of a map, we will sometimes use
“map comprehension” expressions such{gs — f(e)] | = €
dom(m),e = m(x), p(z, e) } to generate new maps from in the
obvious way.

Multisets. If S is a set, thed{S}} denotes the set of multisets,
(i.e., bags) consisting of collections of elementsSofWe will use
‘W’ to denote multiset union. We will also sometimes use “nseiti
comprehension” expressions such{@g(z) | = € M, p(z)}} to
generate new multisets frork in the obvious way (multiple in-
stances of: generate the same number of instanceg(af)). We
will use s\ z to denote the multiset which is the same as except
that one instance af has been removed.

let bankaccount = trans
declstate (bal) in
msgcase
adj(delta, atm) =
bal :=lbal 4 delta;
if 1bal < 0 then
send done(" Not enough funds!") to atm
rollback
else
stabilize;

send done(" Bal ance update successful ") to atm

fi
| pingreq(requester) =
send ping() to requester
| ping() = // may cause rollback
checkpoint
esac
etats
init
(0)

snart

let teller = trans
declstate (inacct, outacct, acks) in
msgcase
transfer(delta) =
send adj(delta, self) to linacct;
send adj(—delta, self) to loutacct
| done(msg) =
send printin(msg) to stdout;
acks :=lacks + 1;
if lacks = 2 then
stabilize;
send pingreq
send pingreq
send pingreq
send pingreq

linacct) to loutacct;
loutacct) to linacct;
self) to loutacct;
self) to linacct

P

| ping() = // may cause rollback
checkpoint
esac
etats
init
(savings, checking, 0)
snart

Figure 5: Electronic money transfer example. lllustrates rontrivial use of stabilize for a protocol similar to two-phase commit.
Note that ping messages are used to communicate status (stable or rolleddk) implicitly: checkpoints resulting from receipt of
ping messages will succeed only if all peer transactors have silibed; otherwise it will be a no-op (if pings have not yet ber received

from peers), or cause rollback (if peer is inconsistent).

Pattern Matching.when writing rules comprising the opera-
tional semantics for transactors, we will use varipatern match-
ing constructs, both to determine the applicability of a pattic
rule, and to match components of terms to variables. In it
the usual convention of building patterns by applying teion-c
structors to variables, we will also use the following aubdial
pattern-related conventions: The underscore charactaratches
any term. The patterm[z — p] matches any map’ for which
x € dom(m') andp matchesn'(z); the variablem is then bound
to the mapn’ \ z. Finally, the patters & {z} matches any multiset
s’, in which caser is bound to ararbitrary element ofs’, ands is
bound to the multiset’ \ .

6.2 Reduction Contexts

Each transition rule of our operational semantics will retea
particularredexterm within the lambda term encoding a transac-
tor's behavior. As is standard for lambda calculi, we wileube
notion of reduction contextef the formR(O) to distinguish the
redex on which the transition rule will operate. Each rewuncton-
text is a special term with a single “hole” eleméntdefined such
that a transactor behavior can be uniquely decomposedxattile
one redex and one reduction context. Our definitions forxeael
reduction context are completely standard and are covargd].

6.3 Transactor Configurations

Fig. 6 depicts a collection of semantic domains that the
calculus operational semantics will manipulate.

A volatility valuew € W encodes the fact that a transactor is
volatile (w = V(n) for somen > 0) or stable(w = S(n),n > 0).
The value ofn will be referred to as amcarnation

A historyh € H encodes the checkpoint history of a transactor.

A history h = (w,l;) encodes the fact that the transactor which
refers toh has volatility valuew, and has checkpointetdn (i5)
times since its creation, where the values in thelljsteflect the
incarnation at which each checkpoint occurred.

The r-calculus semantics defines four operations on histories:

1. When a transactor is created, its history is initialized t

(V(0),1)-

2. When a transactor with historfV (n), 1) rolls back, its
incarnation is incremented by, i.e., its history becomes
(V(n+1),1n).

3. Ifatransactor with historyS(n), l;,) checkpoints, its history
becomegV(0),n::p).

4. If a transactor with historyV(n), 1) stabilizes, its history
becomegS(n),ix).

Dependence mapA are critical auxiliary structures that can in-
formally be thought of as encoding the states of all tramsaain
which some value depends. More precisely, a dependence map
maps each transactor namen which it is defined to a history value
associated with. Dependence maps are associated with three dis-
tinct semantic components of a transactor: the transaatonghich
t is dependent for itexistencéthe creationdependence map), the
transactors on whicl's current state depends (tistate depen-
dence map), and the transactors on which the value of thergurr
redex depends (thbehavioraldependence map). By separating
a transactor's dependences into three components, we sgém- di
guish those dependences related to creation from thogeddla
state (which have radically different semantic consegegnand
avoid the creation of spurious dependences when, e.gnsairtor
never reads its state.

A transactorr € S = (b,5/; €,5; 0s, 0c, 0p) iS @ 7-tuple con-
taining the following components: Thelatile statecomponents
containst’s current state; we say thatis volatile since its value
is lost in the event of’s failure. By contrast, th@ersistent state
component, encodes the last value seftored by a&heckpoint
operation; this state is resilient to failure and model$lstator-
age. Thebehaviorof , i.e., its fixed response to every incoming
message, is represented lgyin order to be well-formedh must
be a lambda expression. Thealuation stateomponentg, is an
expression (generally partially evaluated) represertiegcurrent

w = VW) |SW) Volatility value

H = (W, N]) Transactor history
A = 7L H Dependence map
S = (V,V; E,V; AAA) Transactor

M = T < (V,A) Message
e = 7ls Name service
K = {MP|e Transactor configuration

Figure 6: Semantic domains.

state of the evaluation of a transactor’s behavior. 3ta¢e depen-

dence magomponentgs, is a dependence map that encodes the

fact that the state of is dependent (transitively) on the states of
all of the transactors idom (), whose histories are encoded in
the map. Thereation dependence mapmponentg., is similar
to é5, except that it records information about the transitiveete
dence ofr on theparenttransactor that initially created Finally,
the behavioral dependence mapmponentg,, represents thbe-

havioral dependences the transactor, i.e., the dependences of the

current redex under evaluation.

Note that we use both commas and semicolons to separate com

ponents of a transactor. There is no semantic distinctidwezn
the two; this is a purely syntactic convention designed foase
rate transactor components into three (semicolon-seggfrdbg-
ical clusters” for easier reading. These clusters reptesespec-
tively, persistent (i.e., durable) components that serfailures
ands,), volatile components that generally do not survive faitur
(e ands), and dependence informatiof (., anddy).
A messagen € M contains a target transactor name encod-

ing the message’s destination, a value representing theage's

‘a>" encodes the fact that a transactor has rolled back. A Velati
transactor can roll itself back (the first case fes") or be rolled
back “spontaneously” due to node failure or inconsisteatesta
stable transactor (the second case) only rolls back if atess
found to be inconsistent. The- ' transition encodes the fact that
a transactor has stabilized, ang;)’ encodes the fact that a trans-
actor has checkpointed. Since these relations are fusctieawill
sometimes speak of “applying” them to a history to yield a new
history.

We can now define the following composite relation:

~ £ (U —o U—y) (Yissucceeded by”)

Intuitively, h1 ~», hq if hy andhs are valid histories for the same
transactor (sayr), andhs occurs aftefh; in some execution trace
for 7. ‘~+.’" defines a partial order on histories. We will say that
historiesh, andh, arecomparablef either by ~». ha OF ho ~

hi.
Finally, we have the following relation:

A

i~ 9> -~ (“is superseded by”)

Intuitively, h1 x ho if hs is a history of a transactor that rolled
back from the state represented by histary then proceeded to

do zero or more additional operations. Thus the state reptes
by h2 supersedes the obsolete state representéd.bye will say
that two histories areonsistenif neither supersedes the other.

Given consistent historiels; and 2 we define thesharpening
operation, notate#l; f h2, as follows:

I
{ h1

Intuitively, if k1 is not stable, and, is reachable (via~».") from

if there existsh’ such that
hl —0 h/ ™ hz
otherwise

hifhe =

payload and a dependence map encoding the transitive closure of1 Via an intermediate histor’ which is the stable form o,

transactors on which the message’s payload is dependent.

A transactorconfigurationk € K is a pair consisting of aet-
work, a multiset of messages, anchameservemap from trans-
actor names to transactors. The network serves to buffesages
sent among the transactors in the configuration. The mutége
resentation for the network encodes the fact that the ondehich
messages sent to the same transactor are received is edtel#te
order in which they were seng¢yen from the same sengler

6.4 History and Dependence Map Operations

In this section, we define a number of auxiliary operations on
histories, dependence maps, and related structures thdiewe-
quired by the operational semantics.

Basic history operationswe begin by defining some basic
operations on histories. Lét = (w,lx) be a history. Therh
is stable notated((h), if w = S(n) for somen; otherwiseh
is volatile. If I;, is nonempty, i.e., it has checkpointed, thiems
persistent notated,/(k); otherwise,h is ephemeral The empty
history (V(0), []) will be denoted byHj.

Relations on historiesNext, we define some relations on his-
tories that will be used in the transition rules in the opersl
semantics for the-calculus. &', ' —’, and '—,/’ are the least

relations satisfying the following conditions:

(V(n),lp)y % (V(n+1),lp) (‘rolls backto”)

(S(n),lp) > (V(n+1),l) (‘rolls backto”)
(V(n), 1)) —o (S(n),ln) (‘stabilizes o)

(S(n),ln)y —y (V(0),n::lp) (“checkpoints to”)

‘', ' —¢’, and ‘—,/’ represent all of the valid “single-step” tran-
sitions that a history associated with a single transactormake:

then the sharpening operation yielt§ otherwise it is a no-op.
The sharpening operation is used to “update” dependence- inf
mation about peer transactors that have stabilized sirae Itst
communication.

Operations on dependence mapst 6, and . be de-
pendence maps. Then is invalidated byd., notatedd; x 0 if
and only if there exist$ such thatt € dom(d1) N dom(d2) and
(51 (t) X (52(1‘,).

Let §; andd, be dependence maps. Then thaifon denoted
01 @ 92, is defined as follows:

max ., (61(t), 62(t))

whent € dom(d1) N dom(d2) and
61 (t) andd2 (t) are comparable

whent € dom(81), t ¢ dom(d2)

whent ¢ dom(61), t € dom(d2)

otherwise

(51 2] 52)(t) = 51 (t)

92(t)
undef.

We extend the sharpening operation on histories to consiste

dependence maps andd- as follows:
61(t) §62(t) when
t € dom (1) N dom(d2)
otherwise

(01 402)(t) =
51(t)

Let o be a dependence map. Theis independentnotated) ()
if for all t € dom(6), 0(4(t)); otherwise is dependent

Characterizing transactorsiet
T = (b,g/; € 5; ds[t = hl,0c, dp)
be a transactor bound to narh& some transactor configuration

Then we will say that is stableif ¢(h) andvolatile otherwise.
Transactorr is independentf ¢(ds @ . \ t) (i.e., 7 depends on

no unstable transactors other than itself) degendenbtherwise.
Transactorr is readyif e = ready, andbusyotherwise; it isper-
sistentif \/(h) andephemerabtherwise; it isinitial if s = 5, and
non-initial otherwise. Ifr is persistent, independent, ready, and
initial, we will say that it isresilient

When not otherwise qualified, we will refer to the volatilatst
of 7, i.e., s, as simply thestate of . If 7 is both stable and in-
dependent, we will say that it iségaemon Daemons can be used
to model humans or other “external agents” in a system that se
and receive messages, are resilient to (system!) failutedd» not
“participate” in global state.

Operations on configurationg.et & = . | 6 be a config-
uration. Then we will usenet(k) to denote the network, and
ns(k) to denote the nameservér The domainof k, denoted
by dom(k) is the set of all transactors ikis name service map,
i.e., dom(ns(k)). Given a configuratiort and a transactor name
t € dom(k), we will usek(t) as a shorthand for the transactor
(ns(k))(t). We will say that a configuratioh is readyor resilient

iff for all t € dom(k), k(t) is ready or resilient, respectively.

6.5 Transactor Transition

Rules

We will divide the transition rules of the-calculus into two prin-
cipal classes: those representimgmaltransitions, where the only
form of failure allowed is message loss, amatie failuretransitions
representing either spontaneous node failures or rulégragsto
manage inconsistencies resulting from such failures.

The set of normal transitions will be represented by the com-
posite transition relation-—’, which is the relational union of the

primitive transition rules in Fig. 8 and 9. The transitioriesiin
Figs. 8 encode the “classical” semantics of the Actor modigl [
The transition rules in Fig. 9 augment the classical seroanti
with additional operations for managing consistency (emating
checkpoints).

The set of node failure transitions will be represented kg th
composite transition relation——', which is the relational union

of the primitive transition rules in all of Figs. 10 and 11.€Ttnan-
sition rules in Figure 10 model “spontaneous” node failpies,
failures beyond the control of the transactors themselks.tran-
sition rules in Figure 11 define the semantics of “progracuied”
failures via therollback operation, and other operations to handle
inconsistencies resulting from failures.

We will use ‘—' to denote an arbitrary--calculus transition,

Configuration

i,e_, —s=—J —

In the following sections, we will consider each collectioh
rules in turn. While the number of transition rules may appea
somewhat daunting initially, we believe that each of themoeies
a “semantically orthogonal” component ofcalculus semantics in
a reasonably natural way.

Pure Reduction Rulessig. 7 depicts a set of standapdire

reduction rules for lambda terms encoding transactor bersav
These rules are “imported” into the classical actor cakulthose
transition rules are depicted in Fig. 8.

Transition Rules for Basic Actor Semanticig. 8 de-
picts the collection of transition rules that encode theamtins of
the Actor model [1]. The semantics is loosely modeled after t
semantics of Agha et al.[3], but with a significantly diffetereat-
ment of state. In the rules of Fig. 8 as well as other rules @& th

[purl] ((Az.e)v) —a e[v/z]
[pur2] fst((vi,-)) —ax 1
[pur3] snd({-,v2)) —x w2
[purd4] if truethene; else . i —) e
[purb] if false then _elseex fi — e2
[pur6] letrecz =vineni —
e[(v[(letrec x = v in e ni)/xz])/x]
[pur7] fvi,...,vn) —x v

(f € Foo=[fI(v1, ..., vn))
Figure 7: Pure reduction rules.

sequel, the relationf—> is asingle-stegransition relation on trans-

actor configurations. Single-step transitions will be datedl with
both the name of the applicable rule and a distinguishedaetor
namet to which the relation will be said tapply. Given a trans-
actor configuratiork that maps transactor nameo transactorr,
it will be convenient to refer ta- by its name¢. We now consider
each rule in turn.

[pure] This rule applies one of the pure reduction rules depicted
in Fig. 7 to the behavior of a transactor.

[new] This rule creates a new transactobwith behaviord’ and
initial states’. The persistent state is initiallyil sincet’ has not
yet checkpointed. The state dependence map’fe initialized
to refer to itself: a transactor is always dependent onfi{séiile
this information may appear to be redundant, it avoids teethn
problems when a transactor sends messages to itself, whichg
other things is a convenient way to encode “continuationsbe
performed following checkpoints). The creation dependemep
for ¢’ is the dependence map union of the creation dependences
and behavioral dependences for the creating transactcoa evap-
ping for the creating transactof) (itself. This map encodes those
transactors on whose staté's creation is transitively dependent.
Note that the behavioral dependence may ferupdated to encode
a dependence on the newly-created transactor. This “c@mntra
ant” dependence is critical for ensuring that the persisttate of
a transactor cannot refer to an ephemeral (i.e., nonchatkpd
transactor.

[send] This rule encodes the act of sending messageith pay-
loadw,, to transactot.. The message is “tagged” with the creation
and behavioral dependences of the sender (transagtoas well
as a dependence onitself. Thusm carries information about the
transactors on which it isansitivelydependent. Note that it is not
necessary to incorporate the state dependences of the sirde
are included in the behavioral dependence map if the staeeis
read.

[rev1] This rule encodes message receipt. Note that messages are
selected from the network component of a configuration niamele
ministically. Thus while our model assumes guaranteed agess
delivery, it does not guarantee order of delivery. The pnéditmns
of the rule ensure that no received message either invatidae
state or creation of the receivernor is invalidated by. The pre-
conditions always hold in the absence of failures; rulesesking
the failure of these preconditions are addressed below. rasudt
of message receipt, the behavioral dependencesref updated to
contain the dependences of the received message sdnehavior
(alambda expression) is applied to the message. Finallyirrent
state and creation dependence maps are updated by thershgrpe
operation (f) to reflect new information about those dependences
contained in the arriving message. In particular, we neeatkter-
mine if any previously volatile transactors on whicls dependent
have now become stable.

[get], [set1] These rules model retrieving and setting state, which

we model as a single (possibly composite) cell. Note thahe t
case of rulgget], the updated behavioral dependence mapn-
codes a dependence on the state, symmetrically, [seté] adds
information in the behavioral dependence map to updatetttie s
dependence map,. Among other things, this semantics ensures
that if a transactot does not update its state in the course of pro-
cessing a message from another transacton whicht was not
previously dependent,will not become dependent agh

[self] This rule encodes retrieval of the transactor’'s own name.

Core Transactor Transition RuleShe rules depicted in
Fig. 9 augment the basic actor transitions of Fig. 8 with tiolclal
rules for managing distributed state, as follows:

[set2] This rule causes the expressigststate(v) to be ignored
when target transactoris stable; this encodes a “promise” to peer
transactors that will not voluntarily update its state or roll back
(however, it may nonetheless be rolled back due to incarsists).

[stal], [sta2] These rules encode the stabilization operation. Sta-
bilization inhibits further state updates andllback operations
(via rules[set2] and[rol1]), renders the transactor resilient to spon-
taneous failure (due to the absence of rules for such failime
Fig. 10), and is a prerequisite to checkpointing (r¢lék1]). Rule
[stal] applies if the transactor is currently volatile; it simplp-u
dates the transactor’s history to reflect the fact that iteble. Rule
[sta2] encodes the fact that stabilization is a no-op if the tratesac
is already stable.

[chk1], [chk2] These rules encode tlgheckpoint operation.
The preconditions of ruleghk1] and [chk2] determine whether
has received messages from all of the transactors on whicHet
pendent indicating that those transactors have stabibzethieck-
pointed the relevant dependent states. If the checkpoiertatipn
succeeds (ruliehkl]), the volatile state of is stored int’s persis-
tent state¢’s history is updated to reflect the checkpoint, and the
state dependences ofare reset, and the creation and behavioral
dependence maps are resef td hus in addition to storing volatile
state persistently, the dependence map resetting perdoomnéhe
checkpoint operation has the effect of bounding the amotudé-o
pendence information that must be tracked across chedkpdihe
resetting of the creation dependence mafitoplies that this map
is only non-empty for ephemeral transactors. If the preitmrs
for checkpointing do not hold, rulehk2] causes it to behave like
ready.

[roll] Rule[roll] encodes the fact that programmatic rollback is
disallowed whert is stable; in this case, rollback behaves as if it
wereready.

[dep1], [dep2] These rules determine whetheis dependent on
any non-stable transactors other than itself.

[lose] Finally, this rule models the fact that under “normal cir-

Failure Transitions.The rules depicted in Fig. 10 modsgion-
taneousnode failure caused by faults. In realistic systems, these
rules will be applied far less frequently than the non-fialtules.

[f11] This rule models the transient node failure of a persistent,
volatile transactor. In such cases, the state of the tramsawverts
to the stored persistent state, and the state dependencaation
is reinitialized. This rule assumes that a persistent &etos is
capable of checkpointing intermediate states to stabtago then
restoring such checkpoints after a failure (e.g., follayvinreboot
or software recovery).

[12] This rule models the permanent node failure of an
ephemeral transactor: it is annihilated. This rule modgtdesns
that cannot checkpoint intermediate states to stablegapthese
systems are assumed to fail by stopping permanently.

Note that if a transactor is stable, no failure rule appli€his
means in practice that the “program counter” for intermedéval-
uation states of a stable transactor’s behavior must beetbdg
persistent storage. While this may seem like a rather osergu
quirement, we expect that the number of intermediate Statesn-
putations performed by a stable transactor will be minimddso,
many optimizations are possible to minimize the overheatthisf
requirement in practice, e.g., deferring all “side effe¢tmessage
sends or transactor creations) to cause them to be exeautied d
a (local) ACID transaction of short duration.

Transactor Rules for Managing Inconsistentye fi-
nal collection of rules, depicted in Fig. 11, encode progreatic
rollback and manage the inconsistencies that result frophicitx
rollback or inconsistencies due to incoming messages. At
sistency management rules are as follows:

[rol2], [rol3] These rules (along witfroll]) above encode the
rollback operation. Ruldroll] encodes the fact that program-
matic rollback is disallowed when is stable; in this case, roll-
back behaves as if it weready. Rule[rol2] encodes the fact that
if an ephemeral (non-checkpointed) transactor rolls baaisap-
pears, i.e., iennihilated(among other things, this behavior allows
certain transactors to “dispose of themselves” when theikvis
done). Otherwise, rul@rol3] encodes the fact that rollback resets
the (volatile) state to the last stored persistent stataddition, the
state, creation, and behavioral dependences are raigtial

[rev2] This rule applies when the dependences associated with
an incoming message aievalidatedby the state or creation de-
pendences associated withThis occurs if the message depends
on an earlier incarnation of some dependent transactortttiaes.

In this case, the message is ignored to ensure global censyst

[rev3] This rule applies when the dependences associated with
an incoming message supersedehe state dependences (but not
the creation dependences) associated Widndt is persistent. In

cumstances” messages may be lost after being sent. We assumsuch cases,is effectively rolled back to ensure global consistency,

that such losses are relatively rare; however it may ihjtiseem
odd to make message loss an element of normal transactor-beha
ior at all. In part, this is a consequence of our global cdasisy/
semantics, which trades the possibility of global incalesisy for
the possibility of message loss, hence transforming thgrpm-
mer's burden from reasoning abogiobal failures (about which
they can have no knowledge in general), to reasoning abloggh
failure in the form of lost messages. However, as a praaticter,
even programs running in systems with guarantees aboutigess
delivery musteffectivelyreason about the possibility of message
loss, since they typically must incorporate time-outs taldeith
protracted message latencies (which then become indissimable
from losses).

and the result is the same as in r{iel3].

[rcv4] This rule applies when an ephemeral transactor’s state or
creation dependences are invalidated by an incoming messag
this caset cannot roll back since there is no checkpoint to roll back
to; instead, it is annihilated to ensure global consistency

7. FORMAL PROPERTIES

In this section, we define what it means for a system such as
the r-calculus to be well-behaved. In particular, we prove darta
soundness and liveness properties appropriate fortbalculus.

For soundness, we show that a trace (i.e., a transition segye
containing node failures and inconsistencies is equivdtea nor-
mal trace, i.e., one containing no node failures, but pbssites-
sage losses. We also show that checkpointimpgsible assuming

[pure] Evaluate pure redex.
e—xe ec 5;‘”

w0t — (b5 Rlel,s; 8s,06e,65)] [L] w0t — (b,s/; Rl],s; 8s,8c,65)]
pure

[new] Create new transactor.
w8t — (b,s,; R[trans b’ init s" snart],s; 6a[t — h], dc, 6p)]

t
—

[new]

[send] Send message, piggybacking dependence information.

wl Ot — (b,s/5 Rt],s; 8s[t — h],6c, 8, @)]t +— (b, nil; ready, s’ ; §',8c D & @ [t — h],0)]

t' ¢ dom(0) U {t}
5/ = [t/ — H()]

wlOft— (b,s,; R[send v, tot'],s; 5[t h], b, 8p)] [ﬁ] (W {t' <= (v, 8c ® 6y ® [t — h])}) | O]t — (b, g, 5 R[nil],s; 8s[t — h], 8¢, 8b)]

[rcv1] Message dependences not invalidated by transactor; ttosdependences not invalidated by message: process geessamally.

“(8sc X 0m)

(8 X dsc)

0sc =65 @ bec

t
—

(W {t <= (vm,0m)}) | 0]t — (b, 5/; Rlready],s; ds,dc,)] -t

[get] Retrieve state.

I ‘ 9[t = <b7§/; (b vm)a'S? ds ﬁ5m756ﬁ5m;67n>]

w0t — (b, 5, ; Rgetstate],s; ds,dc,8)] ﬁ w0t = (b3 R[], 55 8s,0c,0p @ 8s)]
get

[set1] Transactor is volatile: setting state succeeds.
—0(h)

|0t — (b, 5/ ; Rlsetstate(s)],_; ds[t — h], dc, 6b)] [Ll)] |0t — (b,g/; Rltrue],s; ds[t — h] ® b, dc, dp)]
set

[self] Yields reference to own name.

w8t (b5, ; Rlself],s; 6s,6c,6b)] [%;] w8t — (b5, ; R[t],s; s, 0c,05)]

Figure 8: Transition rules encoding basic actor semantics.

certain reasonable preconditions. First, we need somearpnelry
definitions.

7.1 Preliminary Definitions

Traces.If S = {R1,Ra,...,Rn»} is a set of binary relations
andR = Ry URx U...U R, we will refer to R’ as acomposite
relation based on théasis setS of primitive relations In general,
primitive relations will represent “single step” transiti relations
for an operational semantics.dfis a basis set of primitive relations
such that for allR:, R2 € S, R1 N R2 = 0, we will say thatS
is anorthogonalbasis set. LefS = {Ri, R2,...,R,} be a set
of primitive relations, and?’ be the composite relation based on
S. Then we will refer to a (possibly empty) sequence of priveiti
relations from the se$ as anR’-trace. Given an initial valuerg
and anR'-tracep = R;, Ri, ... R;, over an orthogonal basis
set, there exists a unique sequenger; ... z., such that

zo (Riy - Riy -+ Ri,) Tm

In this case, we will use the trage to refer either to the se-
quence of relationsk;, R;, ... R;,, or the sequence of values
xo 1 ... xm—1, and will also feel free to treat as the set of val-
ues{xo,x1,...,Tm—1} When convenient. Note that we adopt the
convention that the value sequence represented includésitial
element of the transition sequence, but not the final eleméfat
will frequently use the notatiomy —*~~ x,, whenp is anS-trace,
and — is the composite relation based 6h We will usee to
denote an empty trace, aieh(p) to denote the length of a trage

Configuration well-formedness this section, we define
what it means for a transactor configuration to be “sensiti¢h
respect to its history annotations. ket= (b, 5/; e, s; s, dc, dp) be

atransactor, and let be an arbitrary transactor name. Then the set

of histories oft’ associated with is denoted byhistories(t', 7),

defined by

histories(t’,T)

{n" | st

ey

h' or 6.(t') =h' or 6,(t') =h'}

Note that this set isot necessarily a singleton; e.g's creation
can be dependent on one checkpointed versigh ahd its current

state on a different version.

Let u be a network, and be an arbitrary transactor name.
Then the set ohistories oft associated withy is denoted by
histories(t, 1), defined by

histories(t, p) 2 {h | (L < (,, Sm[t — h])) € p}

Let k£ be a well-formed transactor configuration, anloke a trans-
actor such that € dom(k). Then theprincipal historyof ¢ in k is
denoted byhistory(t, k), and is defined by

history(t, k) £
ds(t) suchthat k(t) = ({(b,s/; e,5; ds,dc,0p))

Let k£ be a configuration. Then the setflependent node his-
tories ink is denoted bylep Hists (¢, k), and is defined by

depHists(t, k) = histories(t’, k(t))
t’ €(dom (k)\t)

Thus depHists(t, k) yields the set of all histories of present
in nodes ofk with the exception of its principal history. Given
configurationk, a transactort in dom(k) is garbageif ¢t ¢
depHists(t', k) for any other transactdf.

We will say that a configuratioh is well-formediff the following
conditions hold:

1. For all ¢ € dom(k) such
((b,ys/ ; €5 ; 0s,0c,00)), t €
V/(history(t, k)), thend. = 0.

that k(t) =
dom(ds), and if

2. Forallh € depHists(t, k), h ~ history(t, k)

[set2] Transactor is stable: attempt to set state fails.
O(h)
w0t — (b,s/; Rlsetstate(.)],s; ds[t — h], dc, dp)] [L] w0t — (b,g,; Rlfalse],s; ds[t — h],dc, dp)]
set2

[stal] Transactor is volatile: stabilization causes it to becortebte.
h —¢ b/
w0t — (b,s,; R[stabilize],s; J;s[t — h],dc, dp)] [L»] w6t — (b,s/; Rlnil],s; 65[t — h'],6c,6)]
stal

[sta2] Transactor currently stablestabilize is a no-op.
O(h)
w0t — (b,s,; R[stabilize],s; d;s[t — h],dc, dp)] [L»] w0t — (b,g,; Rlnil],s; ds[t — h],dc, dp)]
sta2

[chk1] Transactor is stable and independent: checkpoint succeeds
O(6s[t— h]®6S) h—yh

u10lt = (b3 Rl checkpoint], 53 [t = hl,8c,)] o | 0lt = (b3 ready, s [t h'],0,0)]

[chk2] Transactor is dependent or volatileheckpoint simply behaves likeeady.
—0(0s @ dc)
w0t — (b,5,; R[checkpoint],s; ds,dc, -)]

t
enia) M | 0]t — (b,s,; ready,s; 6s,dc, 0)]

[rol1] Transactor is stablerollback simply behaves likeeady.
©(h)
w0t — (b,s,; R[rollback],s; ds[t — h],dc,-)]

[;j;] 1|0t — (b, 5/ ; ready, s; 8a[t — hl, 6., 0)]

[dep1] Transactor is independent: yields false.
O((0s ®0c) \)

w0t — (b,s,; R[dependent? |, s; Js, dc, dp)] [f] w0t — (b,s,; Rlfalse],s; ds,dc,)]
epl

[dep2] Transactor is dependent: yields true.
—0((6s B oc) \ 1)

w0t — (b,s,; R[dependent? |, s; Js, dc, dp)] [(ﬁ;] w0t — (b,s/; Rltrue],s; ds,dc,)]

[lose] Message loss.
(nw{m}) |0 " ul6
[lose]

Figure 9: Transition rules encoding basic transactor sematics.

[f11] Spontaneous failure of volatile, persistent transactarszs rollback.
V/(h) =O(h) h % b’/

|6t — (b, s/ ; -3 85t — h], Sc, 8b)] [T]’

w0t — (b,g/; ready, s, ; ds[t — h'], ¢,)]

[f12] Spontaneous failure of volatile, ephemeral transactorsesiit to be annihilated.
V() —0M)

| 0ft — (il 5 8.t — hl,)] ﬁ o

Figure 10: Transition rules modeling spontaneous failures

In other words, for a configuration to be well-formed, evegns- rations will correspond to transactors whose states aongistent
actort must have its own history in its state dependence map and its due to node failures. Let = (b, 5/ ; e, s; ds,dc, &) be a transac-
creation dependence map must be emptyhiés checkpointed. In tor. Then thecomposite dependence mfap 7, notatedmaps(7)

addition, a transactor’s principal history must be the “trresent” is defined bymaps(T) £ 65 ® 5. @ 0. Letk be a configura-
of all the histories of associated with other transactorskin tion, andt € dom(k) be a transactor name. Then tbempos-

b ite dependence madipr ¢ in k, notatedmaps(t, k), is defined by
LEMMA 1 (WELL-FORMEDNESSPRESERVATION). Letk be maps(t, k) = maps(k(t)).

a well-formed configuration, and I&t be a configuration such that Given a configurationk, we will say that a transactar €

k %’* k'. Thenk’ is also well-formed. dom(k) is consistent(with respect tok) if there exists not’
in dom (k) such thatmaps(t, k)(t') x history(t', k). In other
words, k is dependent on no other transactdrfor which the
state oft’ is currently inconsistent with. Similarly, a message

Configuration consistencyn this section, we define notions (¢ < (- (i’?»de nz(k:) |shc?1n§stet1KW|t}:1_ respect ZOk) if there
of consistencyor transactor configurations. Inconsistent configu- €XIStS no- In om(k) such thabm (t') x history(t', k).

PROOF. Straightforward induction ofen(p). [

[rol2] Transactor is volatile and ephemeral: rollback causes s@etor to be annihilated.

~0(h) ~v(h)

t

pl| 0t — (., nil; R[rollback |, _; ds[t — h],.,)] — pl6

[rol2]

[rol3] Transactor is volatile and persistent: rollback revertatstto contents of persistent state saved by last checkpoint

~0(h) V(R _

has b/

|0t — (b,s/; R[rollback],-; [t — h], -,)] [;l?:]

w0[t — (b5, ; ready, g/; [t — h'],0,0)]

[rcv2] Message dependences invalidated by those of transactmobutce-versa: discard message.

Om X Ose

“(8sc X Om)

0se =05 @ be

(nW{t < (5 0m)}) |0t — (b,g/; Rlready],s; s, 0c, -)]

[rev2

: w0t — (b, s, ; ready,s; &s,8c,0)]

[rcv3] State dependences (but not creation dependences) intelidg message and transactor is persistent: transactds bzlck.

5[t = Rl X dm —~(8c X 8m) /(h) hah
pWA{t < (Vm, 6m)} | O]t — (b, 5,5 R[ready],-; 6s[t — h],6c,-)] revsy M | 6]t — (b, s, ; ready, s, ; [t — h'],0,0)]

[rcv4] State or creation dependences invalidated by message anskirtor is ephemeral: transactor is annihilated.

Osc X Om

~v(h)

Sse = 0s[t — h] @ 8.

(LW {t < (4 0,)}) | 8t — (nils R[ready], 6.[t — hl, .,)]

t
Emd 0
[reva] wl

Figure 11: Transition rules for programmatic rollback and c onsistency management.

We will say that nameservéris consistentf for all ¢ € dom(6),
t is consistent. A well-formed network is consistentf for all
m € u, m is consistent. A configuratiok is network consisterif
net(k) is consistent with respect foandnode consisterif ns(k)
is consistent with respect fa Finally, a configuratiork is consis-
tentif it is both network consistent and node consistent.

Configuration equivalence modulo histony.this sec-
tion, we define a simple notion of transactor equivalence itha
oblivious to certain inconsequential differences in dejgerce in-
formation. Given two historied andh, such thath is a prede-
cessor history ta, the reversionoperationrevert; (h) defines a
new historyh’ that is “the same” a#, except that the operations

represented bj do not occur:

K’ if there existsho such that
ho & h ~5, hand
hi~S. 0

h otherwise

revert; (h) =

The definition above will be critical to defining a node-faddree
trace from a corresponding trace with node failures# ifepre-
sents a set of failing operations in a transactor, we wiltraost”
those operations from a trace and update other histariesing
revert; (h).

Let ¢ be a transactor nama,be a history, and be a transactor
configuration. Themeverty(t, k) is defined as follows:

reverty (t,u|0) £ u' |0’

where
foo= { (= (vm, St — reverts]))
| (' < (vm,0m)) € p 1}
and
0 = {[t'—={(bg;es;

05t — reverty],
Oc[t — reverty],
Op[t — reverty])]
|t € dom(#) and
((b,g/5 €,85 8s,0¢,6)) = 0(¢)
}

(Recall thatds[t — reverty] is shorthand for the map;[t —
revert, (0 (t))]; similarly for the other maps).

If pis atrace, we will useeverty (¢, p) to denote the trace' re-

sulting from replacing every configuratidne p by revert, (¢, k).

Let ¢ be a transactor; be ¢-consistent configuration, arfd =
history(t, k). Thenk =, ; k" if k" = revert; (t, k). The relation
‘a7, read “equivalence modulo history” is then defined as tlaeste

equivalence relation satisfying
k =~y p k' forsomet,h — k=xFk

The relation &' is a very weak form of configuration equiva-
lence akin toa-equivalence in the lambda calculus or structural
congruences in process calculi. The idea is that two corstgurs
that are identical up to certain inconsequential diffeesnin de-
pendence information behave identically. This fact is ediba in
the following lemma:

LEMMA 2 (BEHAVIOR OF ~-EQUIVALENT CONFIGURATIONS).
Let k1 and k2 be configurations such thdt; ~ k2, and p be

a trace such thats; —2>« k). Then there exist&, such that

ko i Ky and ks ~ k.

PrRoOF Straightforward induction ofen(p) and the definition
of‘'~'. O

Cycle PropertiesLet p be a—- trace. Then a nonempty
tracep is at-sequencdf all primitiveTtransitions inp have the form
%, i.e., all transitions are applicable to a transactor named
cycle-terminating transitiofs any primitive transition rule ir—=x
that either takes the form ’

)0t — (bys/; €55 ds,0c,0p)] SN
p' | 0t — (b, s, ; ready, s ; ds,0c, 0p)]
or
| Ot — 7] % wle

In other words, a cycle-terminating transition either esua trans-
actor’s evaluation state to becomeady, or results in the annihi-
lation of some transactor. Atracec is at-cycleif ¢ = ¢’ r where
cis a— trace, and- is a cycle-terminating transition.

LEMMA 3 (CycLE DECOMPOSITION. Let k1 and k2 be The proof of this theorem effectively shows how global redsg

well-formed and ready configurations such that—-« k,. Then about state inconsistencies can be reduced to local remsabbut

there exists a tracg’ of the form the possibility of message loss.

h=Doc A ... cn A 7.3 Universal Checkpointing

where foralll < i < n, ¢ is at;-cycle, and forald < j < n, A, Th_e other critical-calculus p_roperty_ idivenessi.e., that it is
is a (possibly emptyheséage loss tracéthe form— . such that posglbleto reach global checkpoints using the transactor model op-
[lose] erational semantics. Of course, not all transactor prograam
reach global checkpoints. Indeed, a trivial program withaag-
actor that sends messages introducing dependencies eutsta-
of p. bilizes or tries to checkpoint, will eliminate the ability s de-
PROOF. By induction onien(p). Define a total ordering on all pendents to reach checkpoints. We therefore introdudeieersal
transactor names presentdnPermute pairs of primitive non-loss ~ Checkpointing Protocol (UCPhat assumes a set of preconditions
transitions inp not consistent with the total ordering, and permute that will entail global checkpointing for a set of transastd. We
loss/non-loss pairs. The resulting trace has the desiredl fo[] also prove that under those preconditions, the protocolitertes

. . . . and therefore, a global checkpoint is reached.
7.2 Simulation Without Node Failures g P

Given the preceding definitions, we are now in a position to DEFINITION1 (UCP RRECONDITIONS). LetD be the set of
prove that arbitraryr-calculus traces can be simulated by traces transactorsi” and the transitive closure of its dependencies, i.e., all
containing only the node failure free subset of thealculus. We the transactors that elements Bfdepend on, the transactors that
first require the following key lemma: they depend on, and so forth.

k1 =« ks. We will refer to the trace as acycle decomposition

LEMMA 4 (SIMULATION). Letk{, kS, k¥, andkJ be well-

. . A. All transactors inD need to keep a set of acquaintances,
formed configurationsy and 3 be traces such that P q

ACQ, in their state since the last checkpoint or time of cre-

B~ kS and kP BN ation, including the names of:

* 1 T_ xR
T.. andT; be sets of transactor names, andl be a network (i.e., (1) transactors which have been a target for messages sent.
amultiset of messages). Assube ks, ki, k5, a, 8, T+, Ti, and (2) transactors which have been created.

M, all satisfy the following conditions:
(3) the parent transactor.

1. k¢, k7, andkf are resilient and network consistent.
B. All transactors inD need to eventually stabilize and start
the Universal Checkpointing Protocol. Also, all transasto
3. Tv. C dom(k?), and for allt € Ts., history(t, kS') 9~ in D need to be able to receiygng messages.
history(t, k) and k? (¢) is initial.

2. Forall k € 3, k is node consistent.

C. Once the first transactor i stabilizes, no other transac-
4. Forallt € dom(k}) \ T, k5 (t) = K/ (1) tors in D will programmatically rollback or be caused to
rollback by other transactors iD. This assumes previ-
ous application-dependent communication that provides th
guarantee.

5. Ty U dom(k?) = dom(k$), and for allt € T such that
h = history(t, kS'), ~O(h) and—+/(h).

6. My W net(k?Y) = net(k$), and for allm € M;, m is incon-

sistent with respect t5 . D. There can be no failures while the Universal Checkpogntin

Protocol is taking place.

Then there exists configuratiosy and tracea’ such thatk =~

k5 and DEFINITION 2 (UNIVERSAL CHECKPOINTING PROTOCOL).
, When a transactot in D stabilizes, it:

ko kB
PrROOF By induction on the length of a cycle decomposition I Pings every transactor iflC'Q
of a. Full details may be found in a companion technical report
[10]. OO

We are now in a position to prove our main simulation theorem: (@) If not, it pings every transactor illC'Q, checkpoints
and ends protocol.

Il. Checks ifitis dependent,

THEOREM1 (SIMULATION WITHOUT NODE FAILURES). o . .
Letk; and k> be well-formed, resilient, and consistent configura- (b) If so, it pings every transactor iIHCQ) and waits for
tions such that; —« k2. Then there existg; such thatks ~ k5 Incomingpings.

andky —= k. l1l. On reception of aping message, goes back to IL.

PrRooF Follows directly from Lemma 4. Define the variables
in the premise of the lemma as follows: Lgt = k1, kS = ki = THEOREM2 (UNIVERSAL CHECKPOINTING PROPERTY).
kg — ko. Leta be the unique trace such that — . k2, § = e, The Universal Checkpointing Protocol (UCP) terminates emd

. .) UCP preconditions A..D.
andTy. = Ti = (). Given these definitions, all of the premises of) S)
Lemma 4 are satisfed trivially, and thus the theorem follawsie- PrRoOOF Omitted due to space limitations; details may be found
diately from the lemma. [OJ in a companion technical report [10]]

8. DISCUSSION AND FUTURE WORK

In this paper, we have introduced a formal framework for unde
standing and managing distributed state in the presencariafus
classes of failures. Internet-scale distributed compuiirbecom-

ing ever more important as use of Grid mechanisms and web ser-

vices increases. We believe that in order to develop rolpysica-

tions in these settings, it is necessary to incorporate stanage-
ment constructs that are more flexible than traditionalsaation

mechanisms.

In addition to the failure-free simulation and universabck-
pointing properties, there are a number of additional aspefahe
7-calculus that are worthy of further study. For example, woald
like to show how certain application properties and topiEsgl-
low specialized checkpointing techniques. As a trivialrepée,
consider a transactarapplication that reads, but does not update
the state of another transactérf ¢ is initially checkpointed, one
can easily show that can checkpoint without requiring message
exchanges with. More interestingly, one could define various fail-
ure rates and scenarios, and show situations under whidlgaen
rations are always able to make progress (under reasorzrieds
assumptions) despite failures.

Finally, there are a number of interesting directions fotHer
research that build on the ideas developed here, includimagtel-
ing transactionatompensatiomechanisms, in which consistency
is maintained througheversalof actions, rather than rolling back
to previous states; modelirigolation and atomicityin a modular
way; studying type systems for statically constrainingedefences
and exposing various failure modes; developing technifpresp-
timizing dependence information, and modeling additiatasses
of failures.

9. ACKNOWLEDGMENTS

We gratefully acknowledge the insightful comments of James
Leifer, Carolyn Talcott, Maria-Cristina Marinescu, ane @nony-
mous referees.

10. REFERENCES

[1] G. Agha.Actors: A Model of Concurrent Computation in
Distributed SystemMIT Press, 1986.
G. Agha, N. Jamali, and C. Varela. Agent haming and
coordination: Actor based models and infrastructures. In
A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf,
editors,Coordination of Internet Agents: Models,
Technologies, and Applicationshapter 9, pages 225-246.
Springer-Verlag, Mar. 2001.
G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A
foundation for actor computatiodournal of Functional
Programming 7:1-72, 1997.
M. Berger and K. Honda. The two-phase commitment
protocol in an extended pi-calculus. Rrelim. Proc.
EXPRESS '0ONS-00-2, pages 105-130. BRICS Notes,
2000.
P. A. Bernstein. Middleware: A model for distributed &%
servicesCommunications of the ACN9(2):86-98, 1996.
K. P. Birman and R. V. RenessReliable Distributed
Computing with the ISIS ToolkiViley-IEEE Computer
Society Press, 1994.
L. Cardelli and A. Gordon. Mobile ambients. Foundations
of System Specification and Computational Structures
LNCS 1378, pages 140-155. Springer Verlag, 1998.
[8] T. Chothia and D. Duggan. Abstractions for fault-toletra

global computingElectronic Notes in Theoretical Computer

(2]

(3]

[4]

(5]

(6]

[7]

Science (ENTCS). Foundations of Wide-Area Network

Computing (FWAN)66(3), 2002. Elsevier.

J. Field and C. Varela. Towards a programming model for

building reliable systems with distributed staidectronic

Notes in Theoretical Computer Science (ENTCS). First

International Workshop on Foundations of Coordination

Languages and Software Architectures (FOCLASS]3),

2003. Elsevier.

J. Field and C. Varela. Transactors: A programming nhode

for maintaining globally consistent distributed state in

unreliable environments. Technical Report 04-15,

Department of Computer Science. Rensselaer Polytechnic

Institute, Troy, NY, November 2004.

C. Fournet and G. Gonthier. The reflexive CHAM and the

join-calculus. InProc. ACM Symp. on Principles of

Programming Languagepages 372—-385, 1996.

[12] S. FrglundCoordinating Distributed Objects: An
Actor-Based Approach to Synchronizatiddl T Press, 1996.

[13] J. Gray and A. Reutellransaction Processing: Concepts
and TechniquesMorgan Kaufman, 1993.

[14] N. Haines, D. Kindred, J. G. Morrisett, S. M. Nettlesdan
J. M. Wing. Composing first-class transactioA&M Trans.
Program. Lang. Syst16(6):1719-1736, 1994.

[15] C. Hewitt. Viewing control structures as patterns ofgiag
messageslournal of Artificial Intelligence8-3:323-364,
June 1977.

[16] W. Kim and G. Agha. Efficient Support of Location

Transparency in Concurrent Object-Oriented Programming

Languages. IfProceedings of Supercomputing,9895.

B. Liskov. Distributed programming in Argus.

Communications of the Association of Computing

Machinery 31(3):300-312, 1988.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile

processes, parts I-linformation and Computatign

100(1):1-77, 1992.

A. Spector, R. Pausch, and G. Bruell. Camelot: A flexible

distributed transaction processing systenPtac. IEEE

Computer Society International Conpages 432—437, San

Francisco, March 1988. IEEE Computer Society Press.

C. L. Talcott. Composable semantic models for actor

theoriesHigher-Order and Symbolic Computatiohl(3),

1998.

R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A

flexible group communication syste@ommunications of

the ACM 39(4):76-83, 1996.

[22] World Wide Web Consortium. Web services activity
statement. http://www.w3.0rg/2002/ws/, 2002.

[23] X/Open Company Limited. Distributed transaction
processing: The XA specification. X/Open Company
Limited, 1991. X/Open CAE Specification XO/CAE/91/300.

(9]

[10]

[11]

[17]

(18]

[19]

[20]

[21]

