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INTRODUCTION

Ubiquitous sensing is pervasive in society for such applications
as biometrics for health care, smart grids for power delivery, and
avionics for transportation safety [1]. As society continues to rely
ever more on sensors for various applications, there is a need to ad-
dress the accuracy of sensor readings for health maintenance, sig-
nal identification, and control [2]. While there have been advances
in information fusion [3] for avionics control [4] and user warnings
[5]. there is still a need for further research in methods that allow
for fault detection and recovery techniques to be easily realized
and implemented with minimal risk of software errors.

SENSOR DATA ERRORS

Aircraft sensor errors have been at the root of many flight ac-
cidents [6]. Sensor faults inducing erroneous airspeed, altitude,
and attitude data have led to pilot inability to correctly fly a
plane. In February 1996, Birgenair Flight 301's airspeed indica-
tor failed due to a blocked pitot-static system that gave the indi-
cation that airspeed was increasing during climb-out, leading to
a stall and subsequent fatal crash [6]. In Dec. 1999, the Korean
Air Cargo Flight 8509 crashed after takeoff due to pilot error
induced by an unreliable attitude director indicator that resulted
in the pilot applying excessive bank angle [6]. In both cases, an
air data inertial reference unit could benefit from logical redun-
dancy with independently-measured data. A third example in-
volves a military B-2 plane which resulted in a loss of $1 billion
[7]. Caused by bad weather, the three pressure sensors (trans-
ducers) were improperly calibrated due to condensation inside
the devices. During flight, the sensor errors caused diesel fuel
to enter skin-flush air-data sensors that determine the airspeed,
altitude, and attitude. Investigation of the accident determined
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that computers calculated inaccurate aircraft angle of attack and
airspeed [8].

The 2009 crash of Air France Flight 447 [9] resulted from iced
pitot tubes that led to erroneous air speed data. In this article, we
advocate the use of logical redundancy; specifically, the ground
speed and estimated wind speed data—which were available from
onboard Global Positioning System (GPS) monitors and weather
forecasts—could have been used to catch erroneous air speed read-
ings coming from the malfunctioning pitot tubes.

Figure 1 highlights the airspeed indicator components of the
Airbus 330 configurations, including the pitot tubes for dynamic
pressure measurement, the static port for static pressure measure-
ment, and the instrumented diaphragm that determines airspeed by
measuring the difference between these two quantities. To main-
tain accurate airspeed measurements, it is important to heat the
pitot tube at high altitudes or in cases of low temperatures in which
moisture would freeze and obstruct airflow.

SENSOR FAULT DETECTION

Two important directions of research for safe air transportation are:
Data Stream Management Systems (DSMS) and Fault Detection,
[solation, and Reconfiguration (FDIR).

DSMS are prevalent in transportation systems designs, but few
studies have been applied to aviation. Available systems such as
PLACE [10] and Microsoft StreamlInsight [11], which are DSMS-
based systems supporting spatio-temporal streams, combine data
stream processing and database management. These DSMS-based
spatio-temporal stream management systems support general con-
tinuous queries for multiple moving objects such as “Find all the
planes flying within a sphere diameter of X from a point Y in the
past Z time.” [12]. Unlike these DSMS-based systems which handle
multiple spatio-temporal objects, the ProgrammlIng Language for
spatiO-Temporal data Streaming applications (PILOTS) [13] as-
sumes each application to be running on a single platform and tries
to extrapolate data that is relevant to its current location and time.
The PILOTS approach for spatio-temporal data stream filtering, and
error detection and correction, uses high-level abstractions, so that
users can more easily design error models to correct data in flight.

FDIR has been intensively studied in the control and aerospace
communities [14]. Mission critical systems, such as nuclear power
plants, flight control systems, and automotive systems, are key ap-
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plication domains of FDIR. FDIR systems (1) generate a set of
residuals to detect if a fault has occurred [15]-[19], (2) isolate the
type of the fault, and (3) reconfigure the system according to the
fault type, using precomputed strategies or recalculating control
parameters online [20]. To alleviate the effect of noise on residu-
als, robust residual generation techniques, such as a Kalman Filter
based approach [21], have been used. Hansen and Blanke have
used error residuals from different sources including ground speed,
estimated wind speed, and propeller speed, to successfully detect
and isolate airspeed sensor faults [22]. The false positive and false
negative detection rate of a FDIR method can be evaluated by sev-
eral statistical models [20], [23].

PILOTS

The PILOTS programming language and software [13], [24], [25]
uses established mathematical relationships between different data
streams to monitor incoming data and
detect errors.! Combining dynamic data

systems. Due to PILOTS' domain-specific programming language
approach, PILOTS users have the ability to control error condi-
tions more generally through error signatures. The differences be-
tween PILOTS' error signatures and FDIR's error residuals [27],
[28] will be analyzed in the Discussion section.

In this article, we first introduce our model for data-error-toler-
ant stream processing and review flight accidents primarily due to
sensor faults. Second, we describe the mathematical concepts we
have developed to detect sensor faults from independently-mea-
sured redundant data streams, namely error signatures [24] and
mode likelihood vectors. Third, we illustrate the use of the PILOTS
system in analyzing two commercial aviation accidents initially
caused by erroneous data coming from malfunctioning or incor-
rect sensors: Air France 447's pitot tubes icing and Tuninter 1153's
installation of a wrong fuel quantity indicator. Finally, we discuss
related work and advocate advances in sensor processing for safer
air transportation.
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for rapidly correcting for aircraft sensor
errors.

Since PILOTS implements fault-
tolerant functionality to withstand data
errors, it is expected that PILOTS'
framework has resemblance to FDIR

' Available in open-source form at:
http://wcl.cs.rpi.edu/pilots/.

APRIL 2017

Heater Switch

Stalic Porl

Pitot
Tube

Chamber Alternate Static Source
Figure 1.

differential

Diaphragm

Pitol Tube
Rzn Air l ‘%

Aircraft airspeed sensor configuration. (Adapted from https://en.wikipedia.org/wiki/Pitot-static_system.)

|EEE A&E SYSTEMS MAGAZINE



Airplane Flight Safety Using Error-Tolerant Data Stream Processing

MOTIVATION
DATA-ERROR-TOLERANT STREAM PROCESSING

Fault detection is based on data errors, which can come from sen-
sor, processing, or information errors. To detect data errors, PI-
LOTS exploits logical redundancy that exists between fault-inde-
pendent sensor sources. In the presence of faults, PILOTS uses
known redundancy to estimate incorrectly reported data.

Consider an example shown in Figure 2a, which shows the re-
lationship between three speed vectors: airspeed (v ), ground speed
('FK}, and wind speed (v,). These speeds are obtained through in-
dependent data collection methods: the ground speed is typically
computed from GPS hardware, the airspeed is computed from
dynamic air pressure measurements by pitot tubes, and the wind
speed from weather forecast computer models. Since any one of
the three speeds can be calculated using the other two with Equa-
tion (1) according to physical principles, they are redundant to
each other. PILOTS first uses crosscheck on whether the relation-
ship holds, and if not, estimates the correct values. For example, if
v, is incorrect, then v, is estimated using vector arithmetic: v, —v,.

v, =V, +V, (N

Even though wind speed estimation from computer models
may not be highly accurate, we only need a reasonable approxi-
mation to get the current fault mode (e.g., normal condition vs
pitot-tubes fault). If Equation (1) holds within that error threshold,
we can assume normal conditions and estimate wind speed from
airspeed and ground speed. However, once Equation (1) is signifi-
cantly violated, signaling an error—e.g., in the case of Air France
447, airspeed dropped from 470 knots to 180 knots after pitot tubes
iced—the system can, upon issuing a warning and getting agree-
ment from the pilots, use the best-known wind speed estimate to
compute airspeed as shown in Figure 2b. If the error remains for
too long—in AF447, pitot tubes recovered after 33 seconds—there
are methods to estimate wind speed on board, such as making a
circular standard-rate turn and calculating wind speed by GPS-
measured position shift [29]. It is also possible to regularly get
wind speed data from nearby airplanes or from updated weather
forecasts.

Numerous flight accidents have resulted from sensor faults
causing erroneous speed indications. Automated real-time sensor
data cross-checks could help prevent similar accidents in the fu-
ture.

FLIGHT ACCIDENTS

Table 1 presents several flight accidents that motivate the use of
methods to perform fault-tolerant sensor data evaluation through
data redundancy or system-advised precautionary measures. For
example, in the accident of Azerbaijan Airlines Flight 217 in 2005,
all three gyroscopes failed during the climb, while in the Copa Air-
lines Flight 201 in 1993, a short circuit rendered the attitude indica-
tor inoperative. In both cases, a dynamic data-driven avionics sys-
tem could recreate a virtual artificial horizon from nongyroscopic
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Figure 2.

(a) Independently-produced correlated data streams: airspeed ( Fﬂ}.
ground speed (Fg), and wind speed (v, ). (b) Calculating wind speed in
normal mode and using it to correct airspeed in the pitot-tube error mode.

data, e.g., the path of the plane, and high-fidelity dynamics models
[23] to give plausible/estimated attitude information to pilots.

Given the numerous aviation accidents that have occurred due
to sensor faults inducing data errors, it is imperative to further
research avionics systems for detecting and correcting for sensor
malfunctions using logical redundancy.

DETECTING SENSOR FAULTS
ERROR SIGNATURE-BASED FAULT DETECTION

A key need in avionics health monitoring is capturing the redun-
dancy between input variables, which requires an error function,
also known as a residual. It is possible to recognize the shape
of the error function on known faults by using error signatures.
Signatures can then be used to identify an erroneous variable and
compute a new value for that variable from redundant data. An
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Table 1.

Flight Accidents and Possible Precautionary Measures

: 2o : Precautionary
Flight Date Description of the Accident Moasures
TransAsia Airways February Two minutes after takeoff, pilots report engine Decision support
Flight 235 4" 2015 flameout. Right engine failure alert, warning sounds system to not turn

for 3 sec. Crew reduces and then cuts the left engine. | off the left engine.
Asiana Airlines July 6" Descent below visual glide path and impact with Internal glide-
Flight 214 2013 seawall. 82 seconds before impact at 1,600 ft, path assistance.
autopilot was turned off and throttles set to idle. Airspeed
Final approach speed was 34 knots below the target crosscheck.
approach speed of 137 knots. Pilots unaware that the
auto-throttle was failing to maintain that speed.
Turkish Airlines February Aircraft had an automated reaction which was Sensing the
Flight 522 25% 2009 triggered by a faulty radio altimeter. Auto-throttle altimeter error
decreased the engine power to idle during approach. | using crosschecks.
Crew noticed too late. Although the pilots did try to
hold the glide slope after increasing the throttle, the
auto-throttle decreased it to idle again.
British Airways January Although aware of the outside temperature Check for fuel
Flight 38 17t 2008 conditions being -65C to -74C, the crew simply did temperature
not monitor the temperature of the fuel, which was when outside
well below freezing point. A small quantity of water air temperature
within the fuel did freeze, causing ice on the fuel outside normal
lines, ultimately leading to fuel starvation near the range.
final stages of the approach.
Azerbaijan Airlines December | After climbing to 6,900 ft entered a descending spiral | Attitude indicator
Flight 217 23 2005 tightening from 500 m to 100 m. Absence of all three | crosscheck.
gyroscopes during the climb. Lack of pitch, roll, and Re-create a
heading performance. virtual artificial
horizon from
nongyroscopic
data.
Helios Airways August Lack of cabin pressurization and pilot error leading Prevent the climb
Flight 522 14™ 2005 to crew incapacitation due to hypoxia. Cabin altitude | or strongly advise
warning horn sounded at 12,040 ft and should have pilots against it.
stopped the climb.
Air Midwest January Elevator range of motion cut to only 7 degrees out of | Weight and
Flight 5481 8t 2003 the full 14. Stalled after take-off due to overloading systems check
and maintenance error. from sensors
onboard before
departure.
Austral Lineas Aereas | October Pitot tube icing caused faulty airspeed readings. Airspeed
Flight 2553 10" 1997 Pilots interpreted as a loss of engine power and crosscheck.
added power. No improvement to airspeed, so
they descended and increased the speed. Wing
slats were torn off one wing and the plane became
uncontrollable.
Copa Airlines June 6™ At 25,000 ft, the plane entered a steep dive at an Attitude indicator
Flight 201 1993 angle of 80 degrees to the right and began to roll. crosscheck.
Exceeding the speed of sound at 10,000 ft, the Recreate a
plane broke apart. Faulty readings were caused by a virtual artificial
short circuit traced to a faulty wiring harness in the horizon from
attitude indicator. nongyroscopic
data.
APRIL 2017 |EEE A&E SYSTEMS MAGAZINE 7
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overview of the error detection method Measured error

) ) ; Error signatures )

based on different error signatures is e(t) — -
summarized in Figure 3. VL,/\ — ‘a\ e

The DDDAS PILOTS approach g T r > > > |
includes five steps: (1) error function w: window size Noerror:Sp S, Sm
model development, (2) error signature
pattern analysis, (3) likelihood estima-
tion of anomalies against stochastic er- (1) Compute distances b/w 6=<20, 3 - &>
rors, (4) dynamic mode estimation, and e(t) and each signature
(5) application-based data correction 1
based on logical redunda}n.cy in environ- (2) Convert the distances L=<3/20, 3/3, 3/4> g Egm element: |
mental and system conditions. to a likefibood vector =<015, 100, . 075> mmh»l‘f+['ll
1. Error functions: An error func- I

tion is a function that computes a 3) Choose the best T e

numerical value from independently : Imatchingsignature Error mode € [-1, M] ‘

measured input data. It is used to ex- -1: unknown error

amine the validity of redundant data.  Figure 3.

If the value of an error function is
zero, we interpret it as no error in the
given data. For the speed vector example shown in Figure 2a,
we can define an error function as follows [22].

e(ux,vd,vk_) = |VL_| —11.?“ + V“,|

- - 2 2
=v,—V =V, —Jvad- 2vv, cos(a, —a,)+v)

(2)

The values of input data are sampled periodically from corre-
sponding data streams. Thus, an error function e changes its value
as time proceeds, represented as e(f).

2. Error signatures: A error signature is a set of constrained
mathematical functions that is used to capture the characteristic
pattern of an error function e(f) under a specific fault condition.
Using a vector of constants K= (ks ks ooy k), a function fit, K_’),

and a set of constraint predicates F’(E] = {pl (E),m,p.-(f)},
the error signature S is defined as follows:

S(f(.«,i?], ﬁ(E))é{f |p1(]?)/\u-;\p‘,[f?)}‘ 3)

For example, an interval error signature S, can be defined using a
set of constraint predicates P, (K, A, B) ={a, sk <b,....,a, <k,
< b, } denoting intervals, as follows:

) s(f(r,E],E(E,E,E]) ={fla,<k<b,...a,<k,<b). (4)

For example, letting K = (.-'r),f(.r,(k)) =t+kA= (2) and B = <5),
the error signature S, contains all linear functions with slope 1, and
crossing the Y-axis at values from 2 to 5 as shown in Figure 4.

3. Mode likelihood vectors: Given a vector of error signatures
(S, S;» ---» S ). we calculate d(?), the distance between the
monitored error function e(#) and each error signature S, by:

3,(¢)=min

gl)es, _[:w e(f) = g(f}‘ dt, )

8 IEEE A&E SYSTEMS MAGAZINE

Error signature-based fault detection method.

fa

Figure 4.
Error signature §, = S(fir, (k})) =t + k, {2 =k < 5}).

where @ is a window size parameter. Note that our convention is to
capture normal conditions as signature S. The smaller the distance
d,, the closer the measured data is to the theoretical signature S.
We define the mode likelihood vector as L(t) = (I (1), [ (¢), ..., L (1))
where /(¢) is defined as:

1, if 5,(1)=0
min{8, (¢)....., ()} : (©)

otherwise

L(r)=

Observe that each /, € (0,1] represents the ratio of the likelihood of
signature S, being matched with respect to the likelihood of the best
matching signature.

4. Mode estimation: Using the mode likelihood vector, the fi-
nal mode, which corresponds to the most likely signature, is
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estimated. Because of the way
L(r) is created, the largest ele- [
ment will always be equal to I. |
Given a significance threshold
7€(0.1), PILOTS checks for
one likely candidate / that is
sufficiently more likely than its
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< 1. Thus, j is determined to be inputs N I i

the correct mode by choosing the Error signatures time window User
most likely error signature S, If / — e —

= 0, then the system is in normal /I Identified

mode. Well-designed vectors of b ::s S > Error Analwer mode

error signatures should produce H_‘H__H__f " -

mode likelihood vectors forming (Mathemati ;iunction_

an orthonormal basis under the
modeled m + 1 conditions. How-
ever, if /, > 7, then both modes j
and & match the measured error
within the significance thresh-
old, and therefore, unknown error
mode (—1) is estimated.

Figure 5.

. Fault-tolerant sensor fusion: It is problem dependent if a
known error mode i is recoverable or not. If there is a math-
ematical relationship between an erroneous value and other
independently measured values, the erroneous value can be re-
placed by a new value computed from the other independently
measured values. In the case of the speed vector example used
in Equation (2), if the ground speed % is detected as erroneous,
its true value ‘;'x can be estimated as follows:

~ B B
v, = Jvu +2v,v,cos(a, —a, )+ ;.

)

PROGRAMMING SYSTEM SUPPORT

PILOTS enables data analysts and programmers to use a high-level
application programming environment for designing error signa-
tures for fault-tolerant dynamic data stream processing.

System Architecture

Figure 5 shows the high-level architecture of the PILOTS run-
time system. The PILOTS application is written in the PILOTS
programming language, which has been developed for aviation
studies to analyze inputs from aircraft sensors. The PILOTS ini-
tial studies and experimental analyses
have focused on aviation data analyt-
ics, but could be adapted to other sen-
sor and actuator systems. The error
analyzer collects the latest e error val-

Table 2.

used to identify error modes)

*: Programming Language for spatiO-Temporal data Streaming applications

High-level architecture of the PILOTS system.

applying a corresponding data estimation function. Finally, the PI-
LOTS application computes output streams based on the estimated
inputs produced from the error analyzer. These output values could
be displayed in the cockpit or used directly in unmanned flight
systems.

PILOTS PROGRAMMING LANGUAGE

PILOTS is a declarative, domain-specific programming language
specifically developed to help users analyze spatio-temporal data
streams and design error signatures to detect erroneous data. Using
PILOTS, application programmers can easily develop systems that
handle data streams by writing a high-level program specification.
Table 2 compares the number of lines to write the three programs
we will introduce using PILOTS and Java.

PILOTS programs must contain an inputs and an outputs
section. The inputs section specifies the data streams and how data
is to be extrapolated from incomplete data, typically using declara-
tive geometric criteria such as closest, interpolate, and
euclidean keywords (refer to [25] for details of the geometric
criteria). The outputs section specifies data streams to be produced
by the application, as a function of the input streams with a given
frequency. The optional errors and signatures sections are
required in order to detect errors. The errors section specifies error

Comparison of Lines of Code Between PILOTS and Java Applications

ues from the PILOTS application and . . .

keeis ditesting Fils ased oo kaev Programming Language Twice SpeedCheck WeightCheck
error signatures. If PILOTS detects a PILOTS 16 23 18
recoverable error, it replaces an erro-

neous input with the estimated one by 1o UL il 1
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program Twice;

inputs
a(t) using closest(t);
b(t) using closest(t);

outputs
o: b -2 * a at every 1 sec;
errors
e: b -2 * a;
signatures
S0 e =0 “Normal”;

Sl(k):e = 2 * t + k ‘a failure”
estimate a = b / 2;
s2(k):e =-2 * t + k
estimate b = a * 2;
S53(k):e = k, abs(k) > 20
end

“B failure”

“Out-of-sync”;

Figure 6.
Twice PILOTS program to detect and correct errors in a simple two-
stream application.

streams to be produced by the application and to be analyzed by
the runtime system to recognize known error patterns as specified
in the signatures section. If a detected error is recoverable, output
values are computed from input data after being estimated using
formulas under the estimate clause of the signatures section.’
An example PILOTS program called Twice is shown in
Figure 6 that compares two data streams. The two input streams, a
and b, are specified in the inputs section. The value of b is always
supposed to be twice as large as the value of @, so that the value of
o and e in the outputs and errors sections should always be zero
under normal conditions. There are four error signatures S0, ..., S3
under the signatures section. In this example, S7 and S2 are detect-
able and correctable whereas S3 is detectable, but not correctable.

APPLYING SENSOR FAULT DETECTION AND CORRECTION

TO ACTUAL COMMERCIAL FLIGHT ACCIDENTS" DATA

We present two examples of using PILOTS for aviation data error
analysis: (1) Air France Flight 447 and (2) Tuninter Flight 1153.
For each example, the flight data, experimental design, and results
are illustrated.

AIR FRANCE FLIGHT 447: PITOT TUBES ICING

Air France Flight 447 (AF447), which departed from Rio de Janeiro
bound for Paris on June 1st, 2009 (flight path shown in Figure 7), was
one of the worst flight accidents in aviation history [9]. The initial cause
of the accident was identified as incorrect airspeed readings caused by
pitot tubes clogged with ice crystals. The AF447 challenge was that all
the pitot tubes failed under the same icing conditions. Other sensors or
information could have been incorporated to cross-check the sensor
readings to inform the pilots or auto-pilot of the correct aircraft speed.
Research suggests that the accident could have been prevented by en-

We used correct in earlier versions of the software/papers, but
estimate better reflects that the mathematical formula is an esti-
mation of a data stream. Thus, the new terminology and syntax
will be used in PILOTS release 0.3.1 and higher.
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/ Last transmis
< 02:14, 1 June

Fernando de Noronha
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Rio de Janeiro
22:03, 31 May

Figure 7.
Air France Flight 447 flight investigation. (Adapted from https://
commons.wikimedia.org/wiki/File:Air_France Flight 447 path.png.)

dowing the flight system with the ability to estimate the speed using the
physical relationship between different speed measurements (Equation
1) to detect and correct for the error. To demonstrate the applicability
of error signatures to recover the airspeed from the actual ground speed
stored in the flight data recorder and the weather forecast-based wind
speed; we created an error signatures vector to detect airspeed sensor
faults and developed a corresponding PILOTS program.

Error Signatures Vector

In addition to considering the pitot tubes fault that actually occurred
in the AF447 flight, we design a general error signatures vector that
can detect the following four conditions: (1) normal, (2) pitot tube
fault due to icing, (3) GPS fault, and (4) simultaneous pitot tube and
GPS faults. Suppose the airplane is flying at airspeed v , from which
other speeds are expressed in relation to v, as follows:

» Wind speed: v < av,, where a is the maximum reasonable
wind speed to airspeed ratio.

» Ground speed: (1 —a)v, <v, <(1 +a)y,

» Pitot tube failed airspeed: by, <v, <bv,, where b, and b,
are the lower and higher values of pitot tube clearance ratio
b,,b, €[0,1],b, < b,. 0 represents a fully clogged pitot tube,
while 1 represents a fully clear pitot tube, and

» GPS failed ground speed: v, = 0.

We use v, and v, to denote erroneous airspeed and ground speed,
respectively. We assume that when a pitot tube icing occurs, it is
gradually clogged and thus the airspeed data reported from the pitot
tube system (which may combine multiple physical probe measure-
ments) also gradually drops and eventually remains at a constant
speed while iced. This is consistent with data from AF447. The re-
sulting constant speed is characterized by ratio b, and b,. On the other
hand, when a GPS fault occurs, the ground speed suddenly drops to
zero. This is why we model the failed ground speed as ';'g =0. Using
these parameters and the error model Equation (2), we design the
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error signatures vector shown in Table 3
(for more details on how to create error
signatures vectors, please refer to [24]).

Speed Check PILOTS Pragram

A PILOTS program called SpeedCheck
implementing the error signatures vec-
tor of Table 3 is presented in Figure 8.
SpeedCheck checks if the wind speed,
airspeed, and ground speed are consis-
tent with each other or not, and computes
a crab angle, which is used to adjust the
direction of the aircraft to keep a desired
ground track based on the estimated val-
ues. If a “GPS fault” is detected by the
error signature 52, the Error Analyzer
estimates the ground speed from the
airspeed and wind speed Equation (7).

Imai et al.

program SpeedCheck;
/* v_w: wind speed, a_w: wind speed angle
v_a: airspeed,
v_g: ground speed,
inputs
v_w, aw (X,¥Y,2,t) using euclidean(x,y), closest(t), interpolate(z,2);
v_a, a_a (x,¥,t) using euclidean(x,y), closest(t);
v_g, a_g (x,¥,t) using euclidean(x,y), closest(t);
outputs
crab_angle :

a_a: airspeed angle
a_g: ground speed angle */

arcsin(v_w * sin (a_w - a_a) /
sqrt(v_a”™2 + 2 * v_a * v_w * cos(a_w - a_a) + v_w "2))
at every 1 sec;
errors

e: v.g - sqrt(v_a”2 + vw"2 + 2 * v_a * v_w * cos(a_w - a_a));
signatures

/* v_a = 470 knots, a = 0.1, b 1 = 0.2, b h = 0.33 */

S0(k):e = k, -47 <=k, k <= 47 “Normal”;

Sl(k):e = k, 220.9 <=k, k <= 517 “Pitot tube fault”

estimate v_a = sqrt(v_g "2 + v.w"2 + 2 * v. g * v.w * cos(a_g - a_w));
s2(k):e = k, =517 <= k, k <==423 “Gps fault”

estimate v_g = sqrt(v_a "2 + v.w"2 + 2 * v_a * v_w * cos(a_w - a_a));
S3(k):e = k,-203.66 <= k, k <=- 47 “Both pitot tube and GPS faults”;
end
Figure 8.

Similarly, it a “Pitot tube fault™ is detect-
ed by S/, a similar data correction can
be applied to estimate the airspeed. On the other hand, if a “Both
pitot tube and GPS faults” condition is detected by S3, PILOTS
cannot estimate any values due to not having sufficient redundancy
in the data. With the inability to estimate speeds, an alert or warn-
ing should be sent to the aircrew. It is assumed that with aircraft
inspections, the likelihood of redundant fault-independent sensors
producing data errors would be limited to situations of aircraft dis-
tress, such as structural failure.

For the SpeedCheck PILOTS program to be applicable to the
AF447 flight, we use a cruise speed of 470 knots as v, the cruise
speed of the AF447 flight available from the flight data recorder
information before the accident. Note that the angle signs are re-
versed in the PILOTS implementation as opposed to the equations
presented in the previous sections. In trigonometry, angles increase
counter-clockwise (with 0° representing East) while in aviation,
angles increase clockwise (with 0° representing North).

Fvaluation

Flight data: The ground speed and airspeed were collected
based on Appendix 3 in the final accident report of Air France
Flight 447 [9]. Note that the (true) airspeed was not recorded in

Table 3.

Error Signatures Vector for Speed Data

PILOTS program to detect and correct for speed data faults.

the flight data recorder, and so it was computed from recorded
Mach (M) and static air temperature (SAT) data. The airspeed was
obtained by using the relationship: v = anM,fSAT /T,, where a is
the speed of sound at standard sea level (661.47 knots) and T, is
the temperature at standard sea level (288.15 Kelvin). Independent
wind speed information was not recorded either. According to the
description from page 47 of the final report: “(From the weather
forecast) the wind and temperature charts show that the average
effective wind along the route can be estimated at approximate-
ly ten knots tail-wind.” We followed this description and created
the wind speed data stream as ten knots tail wind. As shown in
Figure 2b, weather forecast wind speed was used for checking the
correctness of air speed and ground speed. If the SpeedCheck PI-
LOTS program detects a pitot tube failure (S57) or a GPS failure
(52), accurate wind speed from the last normal mode is used for
correction of air speed (S7) or ground speed (52).

Experimental settings: According to the final report [9],
speed data was provided from 2:09:00 UTC on June 1%, 2009 and
it became invalid after 2:11:42 UTC on the same day. Thus, we
examine the valid 162 seconds of speed data including a period of
pitot tube failure which occurred from 2:10:03 to 2:10:36 UTC. We
used the SpeedCheck PILOTS program shown in Figure 8.

Results: With w = 1 and 7= 0.8, Figure 9 shows
the PILOTS results. From Figure 9a, the airspeed
error is successfully corrected at 69 seconds, which
is 5 seconds after the start of the fault, and seam-
lessly transitions to the normal airspeed when pitot
tubes recover at 98 seconds. From Figure 9b, we

can see that the mode spikes twice to the both faults
condition at around 63 seconds. This is due to the

Error Signature
Mode
Function Constraints
Normal e=k -av,<k<av,

gradual change in the error; however, the pitot tube

fault condition is successfully detected in the time

Pilot tube fault (1-2a-b)v,<k<(1+a-|a-b)v,

GPS fault —(a+1)v,sk<-|la-1|v,
Both faults —(a+ b)v,sk<-|la-b|v,
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it would have taken a human expert (e.g., cockpit
crew) given the same data. The accuracy of the pre-
diction is 96.3% for the entire test period, with 3.7%
false negative rate, and 0% false positive rate.
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Figure 9.

Estimated airspeed and detected modes for AF447 flight. Once an error
is detected, the airspeed is recalculated (green line) by the appropri-
ate correction formula, i.e., S1 line in correct section of SpeedCheck
PILOTS program (Figure 8).

TUNINTER FLIGHT 1133: WRONG FUEL QUANTITY
INDICATOR

Tuninter Flight 1153 (TU1153) was a flight from Bari, Italy
to Djerba, Tunisia on August 6", 2005 (flight path shown in
Figure 10). About an hour after the departure, the ATR 72 aircraft
ditched into the Mediterranean Sea due to the exhaustion of its
fuel, killing 16 of 39 people on board (see Figure 11 for altitude
transition obtained from the accident report [30]). The accident
was caused by the installation of an incorrect fuel quantity indica-
tor. That is, a quantity indicator for the smaller ATR 42 model was
mistakenly installed, reporting 2,150 kg more fuel than actually
available.

How could this accident be prevented? If all other conditions
are the same between two flights except for the weight, the one with
lighter weight would have a higher airspeed. If a system could com-
pute expected airspeed from the monitored weight, the expected and
monitored airspeed could be compared to detect if there is a discrep-
ancy between the two. Once the system detects the discrepancy, it can
warn pilots in an early stage of the flight to prevent accidents. Using
this idea, we design a vector of error signatures and evaluate it with
real data recorded during the TU1153 flight.

Frror Signatures Vector

In the ATR 72 fight crew operating manual [31], there are tables
for pilots to estimate cruise airspeed (knots) under certain condi-
tions of engine power settings, temperature difference to the In-
ternational Standard Atmosphere (Celsius), flight level (feet), and
weight (kg) of the aircraft; which are denoted by v, ¢,, &, and w,
respectively. To interpret the tables, we fix ¢, = +10, since accord-
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Figure 10.

Tuninter Flight 1153 flight path. (Tuninter crash.png by DOWIMA,
adapted from https://commons.wikimedia.org/wiki/File:Tuninter_crash.
png.)
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Figure 11.
Altitude transition of the TU1153 flight.

ing to the accident report, that is a reasonable approximation at
the time of the accident. To obtain a relationship that holds among
these variables, a polynomial regression was applied to the operat-
ing manual tables to derive an equation to estimate the airspeed.
Then, to get an improved functional fit to the actual data, a calibra-
tion term (= — 2.59), computed from the first cruise phase from the
actual TU1153 flight, was added to the regression equation. As the
result, the regression estimate airspeed v, model is:

r -r

1 [ 6.4869E + 01 ]
1.4316E - 02
. h 6.6730E - 03 )
o= " -2.59,
“lw-h| | =3.7716E -07
w —2.4208E - 07
W | |-1.1730E-07]

Likewise, an error function is defined as follows:

e(v,,wh)=v, -, ©

a?

Since the error function is close to zero on average after the cali-
bration, naturally the error value of zero with small margins iden-
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tifies a normal condition. For underweight
conditions, we set a constraint that will
identify 10% discrepancy in weight. Since
the 10% weight difference leads to a 4.69
knots difference in airspeed from Equation
(8) (computed by averaging over w= 13,000
~ 22,000 kg at 23,000 feet), 4.69 is used as
the boundary for the underweight condi-
tions. In summary, the error signatures vec-
tor is shown in Table 4.

Weight Check PILOTS Program

A PILOTS program called WeightCheck
implementing the error signatures vector of
Table 4 is presented in Figure 12. Weight-
Check detects an underweight condition
by comparing the monitored and estimated
airspeed computed from the weight and alti-
tude. Once WeightCheck detects the under-
weight condition by the error signature S1, it
estimates the corrected weight, which can be
obtained by solving Equation (9) for w.

Fvaluation

Flight data: The airspeed, monitored
fuel weight, and altitude of the aircraft are
collected from Attachment H of the acci-
dent report [30]. Since the total weight of
the aircraft is needed for the model used in
WeightCheck, the fuel weight comparison
to the zero fuel weight of the aircraft is com-
puted and added to the model. As a result,
before the departure, the monitored “ficti-
tious™ weight of the aircraft is 19,420 kg,
whereas the actual weight is 17,270 kg.

Experimental settings: We run
the WeightCheck PILOTS program in
Figure 12 for 1,500 seconds, from 2,000 to
3,500 seconds after departure including the
first (2,170-2,370 seconds) and the second
cruise phases (2,960-3,450 seconds), to see
how the error signatures vector works for
these two cruise phases. Note that we evalu-
ate only the second cruise phase since the er-
ror signatures vector is adjusted by the first
cruise phase.

Results: With w=1and r=0.8, Figure 13
presents the results. As shown in Figure 13b,
the PILOTS program correctly detects the
underweight condition for the first cruise
phase whereas it detects the underweight
condition well before the second cruise phase
starts. The fault is detected early because the
error goes beyond 4.69 (the boundary for the
underweight condition) around 2,770 sec-
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Table 4.

Imai et al.

Error Signatures Vector for the Tuninter 1133 Flight

Error signature
Mode
Function Constraints
Normal e=k -2<k<2
Underweight 4.69 < k

program WeightCheck;

/* v_w: wind speed, w: weight, h: altitude */
inputs

v_a, w, h(t) using closest(t);
outputs

corrected w: w at every 1 sec;
errors

e: v_.a — ((6.4869E+01 + 1.4316E-02
(-3.7716E-07)

* w + 6.6730E-03
* w * h + (-2.4208E-07)

(-1.1730E-07) * h * h) - 2.59);
signatures
S0(k): e=k, -2 <k, k < 2 “Normal”;
Sl(k): e = k, 4.69 < k “Underweight”

estimate w = 3.34523E-12 *
(sqrt(1.09278E+22 * h * h + (-1.65342E+27) *
(-3.69137E+29) * v_a + 1.01119E+32) —
2.32868E+11 * h + 8.83906E+15);
end

Figure 12.
PILOTS program to detect and correct for weight data faults.
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(Detected modes: 1 = underweight, 0 = normal, -1 = unknown)

(b) Error and detected modes

Figure 13.
Aircraft weights and detected modes for the TU1153 flight.

|EEE A&E SYSTEMS MAGAZINE

* h +
*w o w o+

h +



Airplane Flight Safety Using Error-Tolerant Data Stream Processing

Table 5.

Comparison of Error Signatures and Binary Residuals

Error Functions and Signatures

Binary Residuals

Expected value in normal mode

Zero

Zero

Expected value in error modes

Not zero, value is compared to
signatures and classified into
different modes.

Not zero, value is not further
considered.

Number of error functions/residuals | One Multiple
for fault isolation

Need to estimate signatures for Yes No
different error modes

Can detect single source fault Yes Yes

Can isolate single source fault

Yes, but it depends on accurate fault

modeling.

Yes, but it depends on multiple
models/residuals.

Can isolate most common faults Yes

Yes

onds. From Figure 13a, PILOTS indicates that the estimated weight
is reasonably close to the real weight during the first cruise phase,
but is not very close during the second phase. That is, the differ-
ences between the estimated and real weights are at most ~643 kg
for the first cruise phase and ~1,935 kg for the second cruise phase.
The PILOTS corrected weight discrepancy between the two phases
can be explained by inaccuracy of the airspeed estimation during
the second cruise phase, which may be caused by variables that
are not considered such as angle of attack, center of gravity, and
aircraft engine and configuration settings. The results reveal that
the PILOTS airspeed prediction model is not accurate enough to
precisely estimate the weight from the airspeed; but nonetheless, it
is able to detect the underweight condition.

COMPARISON OF ERROR SIGNATURES AND BINARY
RESIDUALS

In the PILOTS programs, error functions and signatures are used
for fault detection and isolation. Error signatures are compared
to binary error residuals in Table 5. The expected value of error
functions and residuals under normal conditions is zero. When the
value of an error function deviates from zero, it is compared to a
vector of error signatures that are determined theoretically based
on models of different fault types. Using mode likelihood vec-
tors, the most likely mode is estimated which may correspond to a
single sensor fault or multiple sensor faults. In the case of a single
sensor fault, PILOTS uses logical redundancy to estimate the cor-
rect value for the erroneous data. In the simplified FDIR methods
implemented in the PILOTS declarative language, the value of a
residual was considered as binary. As shown in the SpeedCheck
program, one error function and four signatures are used to detect
and isolate different fault conditions. Similar work could be done
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using residual based methods, with three different residuals for iso-
lation [22].

PILOTS works best in detecting and isolating faults within
the assumptions used to generate the error signatures. In Speed-
Check, a pitot tube clearance ratio of 0.1-0.33 is assumed when
pitot tubes fail due to icing, and a ground speed indication of
zero when GPS fails (GPS denied). If the pitot tube clearance
ratio is not in the expected range, or ground speed fails in some
other unanticipated way, the PILOTS program will most likely
report “unknown error”. While in a binary residual based method,
with properly chosen redundant residuals, the unanticipated fault
would be correctly isolated. Even though the error signature-
based approach is less capable of isolating unanticipated errors
with respect to residual-based approaches, the error signatures
require fewer error functions (redundancy models) and may be
therefore less sensitive to modeling errors, demonstrating very
good performance in properly anticipated error conditions. Also,
in some FDIR research for automotive applications [27] [28], the
residuals are not considered as binary values, but are assumed
to have different distributions according to different modes. In
these cases, the residual based methods are similar to the error
signatures approach.

Assuming sensor faults exhibit characteristic error function
“signatures,” PILOTS is able to alert aircrew of possible anoma-
lies. Trusting the output is based on the fidelity of the error and
signatures model; however, even properly designed simple ana-
Iytics could provide the aircrew timely updates of possible sen-
sor faults using additional information from weather forecasting,
other sensors, and physical models of airplane parameters such
as weight profiles. Increasing the fidelity of any of these methods
would enhance the results from PILOTS and would be needed for
any aviation equipment with flight passengers. In summary, error
signatures require modeling specific fault modes, but have the po-
tential to enhance pilot awareness complementing residual-based
error detection and isolation techniques.
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v, : ground speed
v, : wind speed
v, :airspeed

SENSOR MATHEMATICAL
MODELING

Further research is needed in understanding
and formalizing the relationships between
hundreds of data streams that are available
to flight systems. In the Air France Flight
447 case study, the relationship between
speed vectors was mathematically simple fq :fuel quantity
(i.e., Equation (1)), whereas in the Tuninter
1153 case study, the relationship between h
weight and aircraft performance was not T

: altitude

. . . : temperature
so easy to formalize since different factors P

beyond weight affect air speed. Figure 14
shows the relationships between the two
case studies.

While it is possible to use aerody-
namics theory to relate lift and weight
(equal in cruise phases of flight) to air-
speed, other factors such as altitude,

cf :aircraft
configuration

Figure 14.

temperature (affecting air density), angle of attack, and engine set-
tings play an important role in the data relationship.

SENSOR FUSION

Sensor fusion analysis for aircraft safety includes three areas: (1)
health monitoring, (2) pilot awareness, and (3) air-ground coordi-
nation. For health monitoring, there are many opportunities that in-
clude the DDDAS paradigm with multimeasurement sensor fusion,
software enhancements, and uncertainty modeling [32]. Using the
normal flight operations, models can be used to cross-check sen-
sor readings and with our proposed software and techniques [13],
alert when unexpected sensor readings occur. Inherently, sensor
fusion techniques can determine inconsistency between readings.
Examples of redundant sensor monitoring would best be achieved
with more than two sensors to resolve conflicts between only two
sensors [33]. The second category supports pilot awareness which
in and of itself is the leading cause of accidents (e.g., pilot error).
Sensor fusion would be able to use multiple sensors to display
warnings in the cockpit. The challenge is to experiment (e.g., with a
simulator) the optimum display technology to warn pilots of critical
challenges. There have been many accidents when the pilot failed
to take action even in the presence of stall lights and horns [33].
The final category is air-ground coordination which could be both
a machine (e.g., GPS) and communications (e.g., with Air Traffic
Controllers) that alert to low approaches, see-through bad weather
conditions, relevant pilot reports and data from other aircraft, and
identification of unavoidable terrain. The future of sensor fusion for
aircraft accident mitigation is in a variety of methods to provide ex-
ternal validation of unsafe flight that can enhance action plans when
health monitoring and pilot awareness are not sufficient.

CONCLUSION AND FUTURE WORK

Supplementing flight systems with error detection and data estima-
tion based on error signatures can add another layer of (logical)
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fault-tolerance enabling safer flight. In this article, we overviewed
the ProgrammlIng Language for spatiO-Temporal data Streaming
applications (PILOTS) system which is a declarative language.
With tens of lines of code, a data scientist can test and validate
their error detection models in the form of error signatures. Ex-
amples were presented to demonstrate dynamic data-driven error
detection and correction using data from the Air France Flight 447
and the Tuninter Flight 1153 accident reports. We view our work
on error signatures as complimentary to existing work on fault de-
tection, isolation, and reconfiguration. In particular, it is possible
to use high-fidelity models that constrain the relationship between
sensor and actuator data following aerodynamic principles. Such
systematic analysis of fault behaviors can result in a set of residu-
als and error signatures that improve the performance and accuracy
of fault detection, isolation, and reconfiguration strategies in flight
systems. Such additional avionics support is needed to alert pilots
with warnings of sensor faults in a more effective way for timely
diagnostics and safer flight.

Future work includes exploring automated error signature
acquisition by using machine learning and distributed computing
[35], [36]. Machine learning techniques [37] may help physics-
based models be more accurate by taking data into account. A di-
rection of future work for the PILOTS project is to be expanded
into a DDDAS Model Learning Toolkit: to facilitate Monte Carlo
simulations to learn model parameters from data, to enable Kal-
man filters to reduce the impact of noise in the data, and to use
probabilistic (Bayesian) techniques to continuously update mod-
els to account for new data. Distributed computing helps address
scalability as the number of data streams to be analyzed increases
with the increased complexity of avionics systems. For example,
due to the increasing number of sensors in aircraft, more complex
aircraft fault models, error signatures, and damaged aircraft per-
formance profiles would need to be assessed. Two methods are
being investigated: high-level abstractions and uncertainty quan-
tification. High-level abstractions [38] enable data scientists and
engineers to more easily develop concurrent software to analyze
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data and facilitate distributed computing optimizations needed for
real-time response. Finally, uncertainty quantification [39], [40]
is an important future direction to associate data confidence and
error estimation in support of pilot decision making.

As automated flight systems take into account terrain data, up-
dated weather, and information from other planes, a more complete
picture can be formed to assist pilots, especially in emergency con-
ditions. Fundamental developments needed for human expert-level
machine flight assistants include a combination of quantitative and
qualitative spatio-temporal logics and reasoning systems, as well as
stochastic reasoning. Further research in these fundamental direc-
tions will enable automated spatio-temporal situational awareness as
required for computer flight assistance in emergency conditions. 4
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